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Abstract
The order scheduling models have kept growing attention in the research community. However, as studying research regarding
order scheduling models with release dates is relatively limited; this study addresses an order scheduling problemwith release
dates where the objective function is to minimize the weighted number of tardy orders of all the given orders. To solve this
intractable problem, this study first proposes some dominance properties and a lower bound used in a branch-and-bound
method for finding an optimal solution. This paper then utilizes four basic bee colony algorithms, and four hybrid bee colony
algorithms for searching the optimal solution and approximate solution, and performs one-way analysis of variance and
Fisher’s least significant difference tests to determine and evaluate the performances of all eight proposed algorithms.

Keywords Order scheduling · Artificial bee colony algorithm · Branch-and-bound algorithm

1 Introduction

Recently, order scheduling (OS) problem has become an
important issue in many service and manufacturing envi-
ronments, in which a product development team develops
modules independently for several products, and the product
design is deemed to be completed when all the modules have
been designed (seen Ahmadi et al. 2005; Wang and Cheng
2007).

For relevant OS literature studies, Wagneur and Sriskan-
darajah (1993) claimed that the maximum completion time
minimization and the maximum tardiness minimization
problems are solved in polynomial time, that the number
of late jobs minimization problem is in binary NP-hard in
the two-machine case, and that the total completion time

Communicated by V. Loia.

B Chin-Chia Wu
cchwu@fcu.edu.tw

1 Department of Statistics, Feng Chia University,
Taichung 40724, Taiwan

2 College of Information Science and Engineering,
Northeastern University, Shenyang 110819, China

3 College of Economics and Management, Nanjing Forestry
University, Nanjing 210037, China

4 Department of Business Administration, Fujen Catholic
University, New Taipei City, Taiwan

minimization and the total tardiness minimization problems
are unary NP-hard for m � 2. Meanwhile, Leung et al.
(2005a) gave a counterexample and showed that the num-
ber of late jobs minimization problem in the two-machine
case is still an open issue. Leung et al. (2005b) showed that
the OS model on three- or more machine settings is strongly
NP-hard, and derived a heuristic based on the shortest pro-
cessing time rule on the machine with the largest current
load and a heuristic based on the earliest completion time
for approximate solutions. For the two-machine case, Sung
and Yoon (1998) provided the shortest maximum process-
ing time (SMPT) algorithm and the shortest total processing
time (STPT) algorithms to solve it. Yang (2005a, b) con-
sidered OS problems associated with the completion time
of the orders and analyzed the complexity of several prob-
lems with different types of objectives, job restrictions, and
machine environments. Ahmadi et al. (2005) showed that the
weighted sum of customer order delivery times minimiza-
tion is proved as unary NP-hard, characterized the optimal
schedule, solved several special cases of the problem, derived
tight lower bounds, and proposed several heuristic solu-
tions.

Regarding the literature research for minimizing the total
weighted order completion time, Wang and Cheng (2007)
claimed that the problem is unary NP-hard, and proposed a
heuristic and discussed its worst-case behavior. Yoon and
Sung (2005) built a branch-and-bound method to solve
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the problem, while Leung et al. (2006a, 2007a, 2008a)
derived heuristic algorithms for finding approximate solu-
tions.

For some OS studies involving due dates, Lee (2013)
considered the tardiness minimization as the objective
function, derived some dominance properties and three
lower bounds in a branch-and-bound algorithm for finding
optimal solution, and proposed three heuristic algorithms
for approximate solutions. Introducing the position-based
learning idea to the Lee’s model, Xu et al. (2016a) pro-
posed a branch-and-bound algorithm incorporating certain
dominance rules and three lower bounds and simulated
annealing, particle swarm optimization, and modified ear-
liest due dates of orders to solve the problem. Lin et al.
(2017) addressed a two-agent order scheduling with ready
times and utilized a branch-and-bound method, a parti-
cle swarm optimization, and opposite-based particle swarm
optimization for the optimal solution and approximate solu-
tion. Additional OS works in other settings, readers may
refer to Blocher et al. (1998), Erel and Ghosh (2007),
Framinan and Perez-Gonzalez (2017), Lin and Kononov
(2007), Hsu and Liu (2009), Wu et al. (2018), Xu et al.
(2016b), Yang and Posner (2005), Zhao et al. (2016), and
so on.

The issue of the release dates of orders in the OS mod-
els has, however, been rarely studied. In manufacturing
semi-finished lenses, the complexity of relevant customer
satisfaction criteria, along with meeting customer due dates
with different priorities, poses a difficult challenge. Read-
ers may refer to Ahmadi et al. (2005) for details. In
addition, the occurrence of resources in parallel is com-
mon in many real applications. Given the unequal ready
times of the jobs on parallel batch machines, a good pol-
icy is to wait and combine future job arrivals to increase
the completeness of a batch (Monch et al. 2005). For the
importance of the due dates in real applications, readers
may refer to French (1982) and Armentano and Ronconi
(1999) for the scheduled landing time of an aircraft and
for several production examples involving due date set-
tings.

Motivated by these observations and the relatively lim-
ited use of metaheuristic to solve order scheduling models,
in this study we consider both release dates and number
of tardy jobs in the OS model. The main contributions of
this study are summarized as follows: A new OS model of
considering release dates for each orders and the weighted
number of tardy orders criterion is addressed. A branch-
and-bound algorithm along with several properties and a
lower bound is developed to find the optimal solution.
Eight versions of artificial bee colony (ABC) algorithm
with an improvement scheme are developed for finding the

high-quality near-optimal solutions. Some extensive com-
putational experiments and statistical tools are applied to
evaluate the performances for all proposed algorithms.

The remainder of this study is summarized as follows.
Section 2 presents the notation and problem formulation.
Section 3 introduces several properties and a lower bound,
artificial bee colony algorithm, and the branch-and-bound
algorithm. Section 4 reports and evaluates observations of
all the proposed algorithms, and Sect. 5 provides conclusions
and suggestions.

2 Notation and problem statement

The notations used in this study are given in the following:

n: order number,
m: machine number,
Mk : machine code k, where k=1, …, m,
σ , σ ′: schedules of n orders, where σ � (π, i, j, π ′) and
σ ′ � (π, j, i, π ′) are two full sequences, and π and π ′
denote two partial sequences,
pvk : component k processing time of order v processed on
machine k, for 1 ≤ k ≤ m.
dv: due date for order v, for 1 ≤ v ≤ n.
tk : a starting time onMk , for 1 ≤ k ≤ m.
Cv(σ ): finished time of order v in σ .
[]: determined position in a given sequence;
Uv(σ ) � 0, whenCv(σ ) < dv , while Uv(σ ) �
1, whenCv(σ ) > di .
Ui (σ ) and Uj (σ ): tardiness of order i and order j in σ ;
Uj (σ ′) and Ui (σ ′): tardiness of order j and order i in σ ′;
Nb: number of employee bees;
Non: number of onlooker bees;
ITRN: number of repeat cycles or the stopping criterion
that the ABC algorithm terminates;
limit: number of improvements;
p_scout: the value for the employed bee abandoned;
em_beei : an employed bee with em_beei ∈ Rn , i=1, 2,
…, Nb;
on_beei : an onlooker bee with on_beei ∈ Rn , i=1, 2, …,
Non;
em_beei j : an employed bee with em_beei j ∈ Rn , i=1,2,
…, Nb; j=1,2, …, ITRN;
on_beei j : an onlooker bee with on_beei j ∈ Rn , i=1,2, …,
Non; j=1,2, …, ITRN;
vi j : a new candidate bee with vi j ∈ Rn , i=1,2, …, Nb;
j=1,2, …, ITRN;
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fi � 1

1+
∑Nb

l�1 wlUl (σ )
: the fitness value for employed bee i,

where an employed bee as a schedule σ of the n orders in
this study;
p_beei � fi

∑Nb
l�1 fl

: a selection probability for an employed

bee i;

The model can be formally stated as follows. Consider a
set of n orders from n different clients and m components
for each order. The m components are operated on different
machines in parallel. A machine can only process a partic-
ular component. In this study, we assume that each order
has its own release time. The interruption or preemption is
not allowed. Let pvk be the component k processing time of
order v to be processed on Mk . Let wi , di , and ri denote the
weighted, due date, and release date of order i, respectively. In
this study,we aim to explore an optimal sequence tominimize
the weighted number of tardy orders. Karp (1972) showed
that the total weighted number of tardiness scheduling prob-
lem (or named as 1//

∑
wiUi ) is NP-hard when each order

has one component only. Accordingly, our proposed problem
1/ri , OS/

∑
wiUi is also NP-hard. Therefore, some dom-

inant properties and a lower bound are derived to find an
optimal solution for the branch-and-bound (B&B) method.

3 The branch-and-boundmethod

3.1 Dominance and lower bound

We build several properties and a lower bound to facilitate
the B&B to quickly find an optimal schedule. To show that
σ dominates σ ′, it suffices to prove wiUi (σ ) + w jU j (σ ) ≤
w jU j (σ ′) + wiUi (σ ′) and C j (σ ) < Ci (σ ′). The proofs are
omitted because they can be discussed by the pairwise inter-
change method. For more details of the B&B, readers may
refer to Wang et al. (2017a, b) and Cheng et al. (2017).

Property 1-1 If r j > ri ≥ max1≤k≤m{tk},
max1≤k≤m{pik} < max1≤k≤m{p jk}, ri + max1≤k≤m{pik} >

r j , ri + max1≤k≤m{pik} < di , r j + max1≤k≤m{p jk} +
max1≤k≤m{pik} > di , and ri + max1≤k≤m{pik} +
max1≤k≤m{p jk} < d j , then σ dominates σ ′.

Property 1-2 If r j > ri ≥ max1≤k≤m{tk},
max1≤k≤m{pik} < max1≤k≤m{p jk}, ri + max1≤k≤m{pik} >

r j , r j + max1≤k≤m{p jk} > d j , r j + max1≤k≤m{p jk} +
max1≤k≤m{pik} > di , and di > ri +max1≤k≤m{pik}, then σ

dominates σ ′.

Property 1-3 If r j > ri ≥ max1≤k≤m{tk},
max1≤k≤m{pik} < max1≤k≤m{p jk}, ri + max1≤k≤m{pik} >

r j , r j +max1≤k≤m{p jk} > d j , and di > ri +max1≤k≤m{pik},
then σ dominates σ ′.

Property 1-4 If r j > ri ≥ max1≤k≤m{tk},
max1≤k≤m{pik} < max1≤k≤m{p jk}, ri + max1≤k≤m{pik} >

r j , d j > ri + max1≤k≤m{pik} + max1≤k≤m{p jk}, and
dl > r j + max1≤k≤m{p jk} + max1≤k≤m{pik}, then σ

dominates σ ′.

Property 2-1 If ri ≥ max1≤k≤m{tk}, ri + max1≤k≤m{tk} <

r j , r j + max1≤k≤m{p jk} < d j , and ri + max1≤k≤m{pik} <

di < r j + max1≤k≤m{p jk} + max1≤k≤m{pik}, then σ domi-
nates σ ′.

Property 2-2 If ri ≥ max1≤k≤m{tk}, ri + max1≤k≤m{tk} <

r j , r j + max1≤k≤m{p jk} > d j , and ri + max1≤k≤m{pik} <

di < r j + max1≤k≤m{p jk} + max1≤k≤m{pik}, then σ domi-
nates σ ′.

Property 2-3 If ri ≥ max1≤k≤m{tk}, ri + max1≤k≤m{tk} <

r j , wi > w j , and r j + max1≤k≤m{p jk} < d j < ri +
max1≤k≤m{pik} + max1≤k≤m{p jk}, then σ dominates σ ′.

Property 2-4 If ri ≥ max1≤k≤m{tk}, ri + max1≤k≤m{tk} <

r j , r j+max1≤k≤m
{
p jk

}
> d j , and ri+max1≤k≤m{pik} < di ,

then σ dominates σ ′.

Property 2-5 If ri ≥ max1≤k≤m{tk}, ri + max1≤k≤m{tk} <

r j , d j > ri + max1≤k≤m{pik} + max1≤k≤m
{
p jk

}
, and d j >

r j + max1≤k≤m
{
p jk

}
+ max1≤k≤m{pik}, then σ dominates

σ ′.

Property 3-1 If max
{
tk, r j

}
> max{tk, ri } and pik ≤ p jk

for k=1, 2,…, m, and max1≤k≤m{max{tk, ri } + pik + p jk} <

d j , and max1≤k≤m{max{tk, r j } + p jk + pik} > di >

max1≤k≤m{max{tk, ri } + pik}, then σ dominates σ ′.

Property 3-2 If max
{
tk, r j

}
> max{tk, ri } and pik ≤

p jk for k�1, 2,…, m, and max1≤k≤m{max{tk, r j } +
p jk} > d j , max1≤k≤m{max{tk, ri } + pik} < di , and
max1≤k≤m{max{tk, r j } + p jk + pik} > di , then σ dominates
σ ′.

Property 3-3 If max
{
tk, r j

}
> max{tk, ri } and pik ≤ p jk

for k�1, 2,…, m, wi > w j , and max1≤k≤m{max{tk, ri } +
pik + p jk} > d j > max1≤k≤m{max{tk, r j } + p jk}, then σ

dominates σ ′.

Property 3-4 If max
{
tk, r j

}
> max{tk, ri } and pik ≤ p jk

for k�1, 2,…, m, max1≤k≤m{max{tk, r j } + p jk} > d j , and
max1≤k≤m{max{tk, ri } + pik} < di , then σ dominates σ ′.

Property 3-5 Ifmax
{
tk, r j

}
> max{tk, ri } and pik ≤ p jk for

k�1, 2,…,m, max1≤k≤m{max{tk, ri }+ pik + p jk} < d j , and
max1≤k≤m{max{tk, r j } + p jk + pik} < di , then σ dominates
σ ′.
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Next, we present one more property to justify a feasible
sequence of the unscheduled orders. Assume that (π, πc) is a
schedule of orders inwhichπ is a partial determined schedule
with q orders and πc is another undetermined part with (n–q)
orders. Furthermore, let πedd be the sequence according to
the earliest due date first rule (EDD) of undetermined (n–q)
order and tk denote the finished time of the last order onMk

in π for 1 ≤ k ≤ m.

Property 4 If max1≤k≤m
{
max{tk, r j } + p jk

}
j∈πc >

max j∈πc {d j } holds, then (π, πedd ) dominates (π, πc).

In the following, a lower bound is also proposed for the
B&B method. Consider π as a partial schedule in which
the sequence of the first q orders is scheduled, and πus as
the unscheduled orders with (n–q)� n1 orders. Assume that
�
p(q+1),

�
p(q+2), . . . ,

�
p(q+n1) denote the increasing sequence

of
∑m

k�1 pq+1 k,
∑m

k�1 pq+2 k, . . . ,
∑m

k�1 pq+n1 k . Then, the
lower bound (LB) can be easily computed and given by

LB �
∑q

i�1
wiUi + wmin

∑n1

i�1
I{C[q]+ p̃(q+i)>dmax},

where I{t>a} � 1, I{t≤a} � 0, dmax � max j∈πUS {d j }, and
wmin � min j∈πUS {w j }.

3.2 Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm has been widely
applied to solve a lot of combinatorial problems (Abba
Ari et al. (2016), Basturk and Karaboga (2006), Kang
et al. (2015, 2016a, b), Tereshko (2000), Tereshko and Lee
(2002), Tereshko andLoengarov (2005),Kang andLi (2016),
Teodorovic (2003), Lucic and Teodorovic (2002), Teodor-
ovic and Dell’orco (2005), Benatchba et al. (2005), Wedde
et al. (2004), Yang (2005a, b), Karaboga (2005), Aydoğdu
et al. (2016), Singh and Mann (2017), Xin et al. (2017), and
Xue et al. (2018)). Inspired by these observations, we use
intelligent behaviors of honeybee swarms to solve problem
under study.

Following the design of Karaboga (2005), the three ele-
ments of the ABC cover employed bees, onlookers, and
scouts. In ABC, two ways, including the multi-point insert
method by Chaurasia et al. (2016), Singh (2009), Sundar and
Singh (2012), and three-point exchange method by Liang
et al. (2002) and Chaurasia et al. (2016), are commonly
adopted to generate a new neighborhood solution. The main
advantages of two methods are to avoid trapping in a local
searching and to explore the search space. The pseudo-code
of ABC and the neighborhood local search method are pro-
vided in the following.

The main codes of the ABC are given below.

Input: Nb, Non, ITRN, limit, p_sout.
Initialization: generate Nb employed bees and Non onlooker bees randomly

Decode each employed bee by the ranking method
Compute the food source of each employed bee
Determine the acceptance probability of each employed bee i
Retain the best food source among m employed bees 

Do while { j<ITRN}
Do while {i< Nb}

Improve each employed bee i by a local search
Retain the best food source among Nb employed bees
Choose a food source for each onlooker bee k according the probability  by 

roulette wheel selection and generate a candidate solution according the 
following formula

, where (k )
w=(rnunf()-0.5)*2.0

Update employed bee i by
Decode this employed bee by the ranking method
Compute its food source and determine if its food source is better than the best one, 

then update the best one by the current food source.
Do l=1, limit

Employed bee i improved by local search
Retain the local best food source and the improved employed bee i

End do    
Determine if its food source is better than the best one, and then update the best one 
by the current food source.
Generate a random r with 0 < r <1
if (r < p_scout) then  

regenerate employed bee i
decode employed bee i
Compute its food source and determine if its food source is better than the best 
one, then update the best one by the current food source.

endif
End while

End while

The details of the neighborhood local search method
are given below.

Let em_beei � (x1, x2, . . . , xn) denote an employed bee
with xi ∈ R, i �1, 2, …, n. Consider an employed bee as a
schedule of the n orders in this study. During the execution of
ABC, a random number encoding method is used to define
a set of continuous real numbers to represent the codes of
the orders. For example, given em_beei � (0.83, 0.72, 0.34,
0.23, 0.51) as an employed bee, it is decoded as a sequence σ

� (5, 4, 2, 1, 3) by the rankingmethod. To show the impact of
parameter settings on the ABC algorithm, four types of ABC
algorithms were constructed, each of which was assigned a
different parameter setting. Specifically, the parameter set-
tings of the four ABC algorithms are given in Table 1. In
addition, we also compare four proposed hybrid ABCs with
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Table 1 Parameter settings of the four types of ABC algorithms

Algorithm Parameter settings

Nb Non ITRN limit

ABC1 20 20 30 5

ABC2 10 10 30 5

ABC3 20 20 30 10

ABC4 10 10 30 10

their corresponding four basic ABC algorithms where the
number of limit is set to 0. They are referred as B-ABC1, B-
ABC2, B-ABC3, and B-ABC4. Due to the setting of Table 1,
B-ABC1 and B-ABC3, and B-ABC2 and B-ABC4 are with
the same number of employed bees and the same number of
onlookers, but they adopt different levels of limit.

3.3 A branch-and-bound algorithm

The depth-first rule is utilized in the branching procedure.
The advantage of this policy is that the computer only keeps
no more than (n − 1) nodes for the lower bounds throughout
the procedure. In the branch-and-bound method (B&B), the
orders are first scheduled in a forward way and select a sys-
tematically search and branch down each tree. The steps are
summarized in the following:

Step 1: Initialization Perform eight ABCs and choose the
best schedule as the current best
solution

Step 2: Branching Apply the depth-first rule

Step 3: Eliminating Utilize all dominances to determine if
the node is active or non-active. For
the non-active nodes

Compute their lower bound by the
proposed lower-bound formulas

Compute the weighted number of
tardy orders for the full node

Step 4: Bounding If the lower bound is larger than the
initial solution, cut that node and all
nodes beyond it in the branch, or if
the weighted number of tardy orders
for the completed node less than the
initial solution, update it as a new
current best solution

Step 5: Stopping rule Repeat to do step 2, step 3, and step 4
until all nodes are visited

4 Computational experiment

In this section, we evaluate the performances of the eight
ABCs and the B&B through some computational tests.
All the algorithms were coded in a FORTRAN and run

Table 2 Performances of B&B as the value of each parameter changes

n m Node CPU time FS

14 2 1,893,119 38.03 1794

3 1,601,208 38.68 1796

4 1,356,169 37.34 1798

16 2 8,703,212 181.81 1595

3 7,914,658 195.51 1596

4 9,159,211 203.48 1611

λ

14 0.2 4,305,450 102.38 1788

0.5 522,206 11.13 1800

0.8 228,389 0.51 1800

16 0.2 18,887,477 493.56 1284

0.5 5,989,023 141.60 1720

0.8 441,603 10.08 1798

τ

14 0.25 2,464,975 57.25 2688

0.50 768,689 18.77 2700

16 0.25 8,095,795 197.89 2279

0.50 9,103,761 232.27 2523

R

14 0.25 1,287,846 30.01 1798

0.50 1,216,725 29.08 1797

0.75 2,345,925 54.95 1793

16 0.25 3,302,633 84.74 1637

0.50 8,021,892 206.12 1679

0.75 14,790,753 354.39 1486

on a personal computer with an Intel(R) Core(TM)7 Quad
CPU 2.66 GHz with 4 GB RAM. Following the design
of Lee (2013) and Leung et al. (2006b, 2007b, 2008a, b),
we generated the normal component processing times from
Uniform(1, 100) for the order instances. In addition, we gen-
erated the order due dates from another Uniform(Pbar(1−τ

−R/2), P(1−τ +R/2)), where Pbar � ∑m
k�1

∑n
i�1 pik/m,

and τ and R describe the tardiness factor and the range of
the due dates, respectively. Six cases of τ and R were exam-
ined at (τ , R)� (0.5, 0.75), (0.5, 0.5), (0.5, 0.25) (0.25, 0.25),
(0.25, 0.5), and (0.25, 0.75). Following the design of Reeves
(1995), we generated the release times fromUniform(0, 100n
λ) where λ and n denote the control variable and order size.
The values of λ were set at 0.2, 0.5, 0.8. In this paper, we
design two parts of the computational experiment compris-
ing the small-size order and the big-size order. (Note that a
job is equivalent to an order.)

4.1 Results of small number of orders

For the small-size orders, we set the number of order sizes at
n �14, 16, and the number of three machine sizes at m �2,
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Table 3 Performances of AEP
of ABCs as the value of each
parameter changes

n m ABC1 ABC2 ABC3 ABC4 B-ABC1 B-ABC2 B-ABC3 B-ABC4

14 2 0.59 0.74 0.54 0.66 1.36 1.74 1.36 1.74

3 0.47 0.57 0.42 0.51 1.20 1.34 1.20 1.34

4 0.54 0.62 0.47 0.57 1.19 1.37 1.19 1.37

16 2 0.88 1.06 0.85 0.96 1.72 2.01 1.72 2.01

3 0.94 1.19 0.95 1.07 1.77 2.06 1.77 2.06

4 0.82 1.00 0.76 0.81 1.48 1.62 1.48 1.62

λ

14 0.2 1.29 1.53 1.15 1.38 2.89 3.46 2.89 3.46

0.5 0.25 0.31 0.23 0.29 0.63 0.73 0.63 0.73

0.8 0.07 0.09 0.05 0.08 0.23 0.27 0.23 0.27

16 0.2 2.09 2.57 2.04 2.22 3.78 4.32 3.78 4.32

0.5 0.45 0.55 0.44 0.50 0.92 1.06 0.92 1.06

0.8 0.10 0.13 0.08 0.11 0.27 0.31 0.27 0.31

τ

14 0.25 0.88 1.05 0.78 0.95 2.04 2.43 2.04 2.43

0.50 0.20 0.24 0.17 0.21 0.46 0.54 0.46 0.54

0.25 1.44 1.80 1.41 1.55 2.74 3.14 2.74 3.14

16 0.50 0.32 0.37 0.29 0.34 0.58 0.65 0.58 0.65

R

14 0.25 0.35 0.44 0.30 0.39 0.88 1.02 0.88 1.02

0.50 0.49 0.61 0.43 0.53 1.20 1.37 1.20 1.37

0.75 0.77 0.89 0.70 0.82 1.67 2.06 1.67 2.06

16 0.25 0.46 0.56 0.41 0.49 0.98 1.11 0.98 1.11

0.50 0.87 1.01 0.80 0.93 1.64 1.87 1.64 1.87

0.75 1.31 1.68 1.35 1.42 2.36 2.71 2.36 2.71

3, 4. We examined one hundred problem instances for each
category. Therefore, there were a total of 10,800 instances
tested in this experiment. The B&B algorithm would stop
and turn to run next instance once node number was over
108.

To evaluate the performance of the B&B, we recorded the
average and maximum number of nodes and the average and
maximum execution times (in seconds). To evaluate the per-
formance of eight versions ofABCs,we recorded the average
error percentage (AEP) and maximum error percentage. The
AEP is defined as

AEP � [
(Hi − O∗)/O∗] × 100%,

where Hi is the objective obtained by using eight ABCs and
O∗ is the objective obtained using the B&B.

The performance of theB&B is given in Table 2,where the
last columnFS is the number of instances theB&Bsucceeded
in achieving the optimal solution. The performances of the
eight versions of ABCs are given in Table 3.

As given in Table 2, the number of machines had little
impact on the performance of theB&B.Regarding the impact
of parameter λ on the performance of the B&B, it appears Fig. 1 Box plot of AEP for eight algorithms at n=14,16

123



Artificial bee colony algorithms for the order scheduling with release dates 8683

Table 4 ANOVA table for the
small number of jobs

Source of
variation

df Sum of squares Mean square F value Pr > F

Model 15 1856.5261 123.7684 68.2100 <0.0001

Algorithm 7 154.8160 22.1166 12.1900 <0.0001

Size 1 33.8278 33.8278 18.6400 <0.0001

Machine 2 5.4796 2.7398 1.5100 0.2215

λ 2 1046.4183 523.2092 288.3600 <0.0001

τ 1 485.6488 485.6488 267.6600 <0.0001

R 2 130.3356 65.1678 35.9200 <0.0001

Error 848 1538.6547 1.8145

Corrected total 863 3395.1807

Table 5 Results of Fisher’s LSD
for the four ABCs and four
B-ABCs at n=14,16

Pairwise comparison Pairwise mean difference LSD (α �0.05)�0.3598
Between algorithms

∣
∣AEPi − AEP j

∣
∣ Difference>LSD?

ABC1 versus ABC2 |0.7084–0.8642| No

ABC1 versus ABC3 |0.7084–0.6647| No

ABC1 versus ABC4 |0.7084–0.7623| No

ABC1 versus B-ABC1 |0.7084–1.4539| Yes

ABC1 versus B-ABC2 |0.7084–1.6919| Yes

ABC1 versus B-ABC3 |0.7084–1.4539| Yes

ABC1 versus B-ABC4 |0.7084–1.6919| Yes

ABC2 versus ABC3 |0.8642–0.6647| No

ABC2 versus ABC4 |0.8642–0.7623| No

ABC2 versus B-ABC1 |0.8642–1.4539| Yes

ABC2 versus B-ABC2 |0.8642–1.6919| Yes

ABC2 versus B-ABC3 |0.8642–1.4539| Yes

ABC2 versus B-ABC4 |0.8642–1.6919| Yes

ABC3 versus ABC4 |0.6647–0.7623| No

ABC3 versus B-ABC1 |0.6647–1.4539| Yes

ABC3 versus B-ABC2 |0.6647–1.6919| Yes

ABC3 versus B-ABC3 |0.6647–1.4539| Yes

ABC3 versus B-ABC4 |0.6647–1.6919| Yes

ABC4 versus B-ABC1 |0.7623–1.4539| Yes

ABC4 versus B-ABC2 |0.7623–1.6919| Yes

ABC4 versus B-ABC3 |0.7623–1.4539| Yes

ABC4 versus B-ABC4 |0.7623–1.6919| Yes

B-ABC1 versus B-ABC2 |1.4539–1.6919| No

B-ABC1 versus B-ABC3 |1.4539–1.4539| No

B-ABC1 versus B-ABC4 |1.4539–1.6919| No

B-ABC2 versus B-ABC3 |1.6919–1.4539| No

B-ABC2 versus B-ABC4 |1.6919–1.6919| No

B-ABC3 versus B-ABC4 |1.4539–1.6919| No

in Table 2 that the AEPs of CPU time and nodes tend to
decrease for both n=14 and n=16 as the value of parameter
λ increases, when the other parameters are fixed. For param-
eter τ , Table 2 shows that the AEPs of nodes and CPU time
decrease for n=14, while they increase for n=16. There is

no apparent pattern of impact of parameters τ and R on the
performance of the B&B.

For the impact of the above parameters on the performance
of the eight types of ABCs, Table 3 shows no apparent impact
of the parameterm. The average AEP first decreases but then
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Table 6 Performances of RPD
of ABCs as the value of each
parameter changes

n m ABC1 ABC2 ABC3 ABC4 B-ABC1 B-ABC2 B-ABC3 B-ABC4

40 2 0.06 0.09 0.04 0.07 0.22 0.26 0.22 0.26

5 0.05 0.08 0.04 0.07 0.20 0.23 0.20 0.23

10 0.05 0.08 0.03 0.07 0.19 0.22 0.19 0.22

80 2 0.03 0.05 0.02 0.04 0.12 0.14 0.12 0.14

5 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

10 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

λ

40 0.2 0.09 0.14 0.06 0.11 0.32 0.38 0.32 0.38

0.5 0.05 0.07 0.03 0.06 0.17 0.20 0.17 0.20

0.8 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

80 0.2 0.05 0.08 0.04 0.07 0.19 0.22 0.19 0.22

0.5 0.03 0.04 0.02 0.04 0.09 0.11 0.09 0.11

0.8 0.02 0.03 0.01 0.02 0.06 0.07 0.06 0.07

τ

40 0.25 0.07 0.11 0.05 0.09 0.26 0.30 0.26 0.30

0.50 0.04 0.06 0.03 0.05 0.15 0.17 0.15 0.17

0.25 0.04 0.06 0.03 0.05 0.14 0.17 0.14 0.17

80 0.50 0.03 0.04 0.02 0.03 0.08 0.10 0.08 0.10

R

40 0.25 0.05 0.08 0.03 0.07 0.20 0.23 0.20 0.23

0.50 0.05 0.08 0.04 0.07 0.20 0.24 0.20 0.24

0.75 0.05 0.09 0.04 0.07 0.21 0.24 0.21 0.24

80 0.25 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

0.50 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

0.75 0.03 0.05 0.02 0.04 0.11 0.13 0.11 0.13

increases as m increases for instances of n=14; however, an
opposite trajectory is observed for instances of n=16. As
clearly given in Table 3, the average AEP of the four types
of ABC algorithms tends to decrease as the value of λ or τ

increases. On the contrary, the averageAEP of the eight types
of ABCs increases as the value of parameter R increases.
Table 3 also confirms that the ABC3, on average, slightly
outperformed the other algorithms.

As for the performance of eight ABCs, the box plots in
Fig. 1 show the AEP distributions of all the proposed meth-
ods. To compare the solution quality among the four basic
ABCs (B-ABC1, B-ABC2, B-ABC3, and B-ABC4) and the
four hybrid ABCs (ABC1, ABC2, ABC3, and ABC4), anal-
ysis of variance (ANOVA) was conducted. The results are
given in Table 4.With a p value of less than 0.0001, follow-up
Fisher’s least significant difference tests were subsequently
conducted to find out the differences of solution quality
among the eight algorithms. The reports are presented in
Table 5. At the 0.05 level of significance, the AEPs were
divided into two groups: the AEPs of ABC1, ABC2, ABC3,
and ABC4 were in one group; the AEPs of the B-ABC1, B-
ABC2, B-ABC3, and B-ABC4 were in the other group. The

ABC3 algorithm with the smallest value of AEP is recom-
mended for small number of orders.

4.2 Results of big number of orders

For the big number of jobs, we set the number of order sizes
at n �40 and 80, and number of three machine sizes at m
�2, 5, 10. One hundred instance problems were randomly
examined for each case. Consequently, there were also a total
of 10,800 problem instances examined in this experiment. To
evaluate the performance of the eight versions of ABCs, we
reported the mean and maximum RPD. The RPD is defined
as

RPD � [
(Hi − H∗)/H∗] × 100%,

where Hi is the objective obtained by using four ABCs and
H*=min{eight versions of ABC algorithms}. The computa-
tional results are summarized in Table 4.

As given in Table 6, the RPDs of the four types of ABC
algorithms strictly decrease as the values of parameters λ and
τ increase for both n=40 and n=80. It appears in Table 6 that
for both instances of n=40 and n=80, there are few changes

123



Artificial bee colony algorithms for the order scheduling with release dates 8685

Fig. 2 Box plot of RPD for eight algorithms at n=40, 80

for the RPDs of the four types of ABC algorithms as the
values of parameters R and m increase.

As demonstrated in Fig. 2, the box plots of RPDs show
that the four hybridABCs (ABC1,ABC2,ABC3, andABC4)
outperformed the four basic ABCs (B-ABC1, B-ABC2,
B-ABC3, and B-ABC4) for large numbers of orders. Mean-
while, as shown in Fig. 3, four hybrid ABCs did consume
much CPU time than the four basic ABCs for large numbers
of orders. An ANOVA was conducted to compare the solu-
tion quality among the four basic ABCs and the four hybrid
ABCs. Table 7 shows the ANOVA test results. With a p value
of less than 0.0001, follow-up Fisher’s least significant dif-
ference tests were subsequently conducted to find out the
differences of solution quality among the eight algorithms
for large number of orders. The results are listed in Table 8.
At the 0.05 significance level, the RPDs were divided into
several groups: ABC3 in one group, ABC1 in the second
group, ABC2 and ABC4 in the third group, B-ABC2 and B-
ABC4 in the fourth group. Moreover, the box plots in Fig. 2
also show that the RPDs of the four ABC3 have less dis-
persion; thus, the ABC3 with both accuracy and stability is
recommended for big number of orders.

Based on the above test results, we conclude that the
ABC3, on average, outperformed the other seven ABCs.

Fig. 3 Box plot of CPU time for eight algorithms at n=40 and 80

5 Conclusions and suggestions

Recently, the OS models have become important and chal-
lenging topics in a lot of practical services andmanufacturing
environments. Different from previous research assumption
that the orders are available at time zero, this paper investi-
gates the condition that orders come in different release times.
In this study, we made several main contributions. First, a
lower bound and several dominance properties were derived
to be used in a B&B for the small-size orders. Second, eight
versions of ABCs were also presented to obtain approximate
solutions for the big number of orders. Computational exper-
iments were conducted to evaluate the performances of the
B&B and eight versions of ABCs, as well as the impacts of
parameters on their performances. The experimental results
show that, incorporating with the proposed lower bound and
dominance properties, the B&B can solve a problem instance
up to n=16 within a reasonable CPU time. In addition, the
experimental tests further illustrate that the eight types of
ABC algorithms performed satisfactorily in terms of efficacy
and efficiency for problem instances of both small and big
number of orders. Based on the results of the four versions
of ABC algorithms, ABC-3 is recommended for the prob-
lem under study because of its superior performance and its
quickness in achieving good-quality solutions in term of the
AEPs andRPDs. For some interesting issues, onemay extend
our model to the bi-criterion case or in different machine
environments for the future study.
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Table 7 ANOVA table for the
big number of jobs

Source of
variation

df Sum of squares Mean square F value Pr > F

Model 15 7.0539 0.4703 191.2000 <0.0001

Algorithm 7 3.3018 0.4717 191.7800 <0.0001

Size 1 0.7807 0.7807 317.4200 <0.0001

Machine 2 0.0208 0.0104 4.2300 0.0149

λ 2 2.2138 1.1069 450.0500 <0.0001

τ 1 0.7353 0.7353 298.9700 <0.0001

R 2 0.0015 0.0007 0.3000 0.7433

Error 848 2.0857 0.0025

Corrected total 863 9.1396

Table 8 Results of Fisher’s LSD
for the four ABCs and four
B-ABCs at n=40, 80

Pairwise comparison Pairwise mean difference LSD (α �0.05)�0.0013
Between algorithms

∣
∣RPDi − RPD j

∣
∣ Difference>LSD?

ABC1 versus ABC2 |0.0436–0.0687| Yes

ABC1 versus ABC3 |0.0436–0.0030| Yes

ABC1 versus ABC4 |0.0436–0.0558| No

ABC1 versus B-ABC1 |0.0436–0.1559| Yes

ABC1 versus B-ABC2 |0.0436–0.1839| Yes

ABC1 versus B-ABC3 |0.0436–0.1559| Yes

ABC1 versus B-ABC4 |0.0436–0.1839| Yes

ABC2 versus ABC3 |0.0687–0.0030| Yes

ABC2 versus ABC4 |0.0687–0.0558| No

ABC2 versus B-ABC1 |0.0687–0.1559| Yes

ABC2 versus B-ABC2 |0.0687–0.1839| Yes

ABC2 versus B-ABC3 |0.0687–0.1559| Yes

ABC2 versus B-ABC4 |0.0687–0.1839| Yes

ABC3 versus ABC4 |0.0030–0.0558| Yes

ABC3 versus B-ABC1 |0.0030–0.1559| Yes

ABC3 versus B-ABC2 |0.0030–0.1839| Yes

ABC3 versus B-ABC3 |0.0030–0.1559| Yes

ABC3 versus B-ABC4 |0.0030–0.1839| Yes

ABC4 versus B-ABC1 |0.0558–0.1559| Yes

ABC4 versus B-ABC2 |0.0558–0.1839| Yes

ABC4 versus B-ABC3 |0.0558–0.1559| Yes

ABC4 versus B-ABC4 |0.0558–0.1839| Yes

B-ABC1 versus B-ABC2 |0.1559–0.1839| Yes

B-ABC1 versus B-ABC3 |0.1559–0.1559| No

B-ABC1 versus B-ABC4 |0.1559–0.1839| Yes

B-ABC2 versus B-ABC3 |0.1839–0.1559| Yes

B-ABC2 versus B-ABC4 |0.1839–0.1839| No

B-ABC3 versus B-ABC4 |0.1559–0.1839| Yes
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