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Abstract
In this article, a semianalytical numerical method has been presented to solve fuzzy integro-differential equation whichmay be
linear or nonlinear under multi-point or mixed boundary conditions. A convergence analysis of the proposed method has been
studied to emphasize its reliability in general. In order to show the effectiveness of this method, some illustrative examples
are given. We have shown that with a small number of obtained approximating terms, we achieve a high accuracy level of the
obtained results. Comparisons have been made between the solutions of our method and some existing methods. Moreover,
proper graphs are provided to show that increasing the number of approximating terms yields a significant decrease in the
error of the approximate solution.

Keywords Generalized Seikkala derivative · Fuzzy differential equation · Fuzzy integral equation · Fuzzy integro-differential
equation · Mixed boundary conditions · Residual function

1 Introduction

There are lots of different types of fuzzy derivatives
and integrations in the literature. Before discussing fuzzy
integro-differential equations and their associated numeri-
cal algorithms, it is necessary to present an appropriate brief
introduction to fuzzy derivatives and integrations of fuzzy
functions. Puri and Ralescu (1983) first introduced the con-
cept of Hukuhara differentiability. The approach based on
the Hukuhara derivative has the disadvantage that a differen-
tiable function has increasing length of its support interval
(Diamond 2000). This is not always a realistic assumption.
This is a big shortcoming of Hukuhara derivative. Then,
Seikkala (1987) introduced Seikkala derivative which has
the same disadvantages as the Hukuhara derivative. So Bede
and Gal (2005) introduced strongly generalized differen-
tiability and weakly generalized differentiability of fuzzy
number-valued function. These two concepts of differentia-
bility solve the above-mentioned shortcoming of Hukuhara
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and Seikkala derivative, but these have a disadvantage com-
pared to Hukuhara and Seikkala derivative that is a fuzzy
differential equation which has no unique solution. Then,
Bede and Stefanini (2009) introduced fuzzy gH-derivative
which coincides with the concept of weakly generalized dif-
ferentiability. Again Bede and Stefanini (2013) introduced
another concept of fuzzy derivative, fuzzy g-derivative,
which is the most general among the previous definitions.
In fact, fuzzy gH-derivative and fuzzy g-derivative coincide
whenever gH-difference exists. There are other works also
on fuzzy derivative (Chalco-Cano and Román-Flores 2008,
2009) where they redefine fuzzy derivative by considering
first two cases of strongly generalized differentiability and
neglect last two cases of strongly generalized differentia-
bility. Biswas and Roy (2018a) introduced the concept of
gS-derivative which is equivalent to the lateral H-derivative,
but compared to the definition of the lateral H-derivative,
gS-derivative is easier to understand and use.

There are also various kinds of definitions of fuzzy inte-
gration in the literature. Seikkala (1987) defined the fuzzy
integral which is same as that proposed by Dubois and Prade
(1982a, b). Diamond and Kloeden (2000) introduced the
fuzzy Aumann integral. Gal (2000) introduced the fuzzy
Riemann integral which is an alternative way to define
Aumann-type integral. Wu and Gong (2001) introduced
Henstock integral of fuzzy number-valued functions. For a
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continuous fuzzy number-valued function, fuzzy Aumann
integrable (Diamond and Kloeden 2000), fuzzy Riemann
integrable (Gal 2000) and fuzzy Henstock integrable (Wu
and Gong 2001) all are same.

Lots of work has been done on fuzzy integro-differential
equations. Balasubramaniam and Muralisankar (2001),
Alikhani et al. (2012), Zeinali et al. (2013), Vua et al. (2014),
Donchev et al. (2014), Alikhani and Bahrami (2015) and
Zeinali (2017) all have done work on the existence and
uniqueness of the solution for different types of fuzzy integro-
differential equations. There are different kinds of analytical
and numerical procedures to solve different kinds of fuzzy
integro-differential equations in the literature (Allahviran-
loo et al. 2012; Matinfar et al. 2013; Alikhani and Bahrami
2015; Zeinali2017; Otadi and Mosleh 2016; Sathiyapriya
and Narayanamoorthy 2017; Biswas and Roy 2018a, b).
Allahviranloo et al. (2012) presented the extending of 0-
cut and 1-cut solutions method for fuzzy integro-differential
equations with trapezoid fuzzy initial value. Matinfar et al.
(2013) presented variational iteration method, and Biswas
and Roy (2018a) presented differential transformmethod for
fuzzy Volterra integro-differential equations. Alikhani and
Bahrami (2015) presented the method of upper and lower
solutions,Otadi andMosleh (2016) presented amethodbased
on Newton–Cotes methods with positive coefficient, Biswas
andRoy (2018b) presentedAdomian decompositionmethod,
and Sathiyapriya andNarayanamoorthy (2017) presented the
extended form of homotopy perturbation method for approx-
imate solution of fuzzy integro-differential equations.

In thiswork,we have considered fuzzy integro-differential
equation which may be linear or nonlinear and may be
Volterra or Fredholm or Volterra–Fredholm. This type of
general fuzzy integro-differential equation has not been con-
sidered before in the literature for analytical or numerical
solutions. Kheybari et al. (2017a, b) presented a semianalyt-
ical method for crisp integro-differential equation. Here, we
have modified and presented same method for fuzzy integro-
differential equation.

The organization of this paper is as follows. In Sect. 2,
somemathematical preliminaries which are needed to under-
stand fuzzy derivative and integration are given. Section 3
contains the formulation of the problem. In Sect. 4, the algo-
rithm to solve fuzzy integro-differential equation has been
presented. Section 5 contains the minimization technique of
the residual functions. A brief error and convergence analysis
of the proposedmethod is presented in Sect. 6. Application of
the proposed method is presented in Sect. 7 where some test
problems have been investigated. Finally, a brief conclusion
of the article is presented in Sect. 8.

2 Preliminaries

Definition 2.1 Let E be the set of all upper semicontinuous
normal convex fuzzy numbers with bounded α-cut intervals.
It means if v ∈ E , then the α-cut set is a closed bounded
interval which is denoted by

vα � [v1,v2].

For arbitrary uα � [u1,u2], vα � [v1,v2] and k ≥ 0,,
addition (uα + vα) and multiplication by k are defined as
(u + v)1(α) � u1(α) + v1(α), (u + v)2(α) � u2(α) +
v2(α), (ku)1(α) � ku1(α), (ku)2(α) � ku2(α) and each
y ∈ R can be regarded as a fuzzy number defined by

μy(x) �
{
1 if x � y,
0 if x �� y.

The Hausdorff distance between fuzzy numbers is given
by D : E × E → R+ ∪ {0}
D(u, v) � supmax{|u1(α) − v1(α)|, |u2(α) − v2(α)|}, α ∈ [0, 1]

It is easy to see thatD is ametric in E and has the following
properties (see Puri and Ralescu 1983)

(i) D(u ⊕ w, v ⊕ w) � D(u, v),∀u, v, w ∈ E,

(ii) D(k 
 u, k 
 v) � |k|D(u, v),∀k ∈ R, u, v ∈ E
(iii) D(u⊕v,w⊕e) ≤ D(u, w)+D(v, e),∀u, v, w, e ∈ E,

(iv) (D, E) is a complete metric space.

Definition 2.2 Let f : R → E be a fuzzy-valued function.
If for arbitrary fixed t0 ∈ R and ε >0, ∃ a δ > 0 such
that |t − t0| < δ ⇒ D( f (t), f (t0)) < ε, f is said to be
continuous.

Definition 2.3 (Puri and Ralescu 1983) Let x, y ∈ E . If there
exists z ∈ E such that x � y + z,, then z is called the H-
difference of x and y and it is denoted by x�y.

Definition 2.4 (Puri and Ralescu 1983) A function f :
(a, b) → E is called H-differentiable on x0 ∈ (a, b) if
for h > 0 sufficiently small there exist the H-differences
f (x0+h)� f (x0), f (x0)� f (x0−h) and an element f ′(x0) ∈
E such that

lim
x →0

f (x0 + h)� f (x0)

h
� lim

x→0

f (x0)� f (x0 − h)

h
� f ′(x0)

Definition 2.5 (Seikkala 1987) The Seikkala derivative (S-
derivative) at x0 ∈ (a, b) of a fuzzy number-valued
function f : (a, b) → E is defined by f ′

α(x0) �
[ f ′

1(x0, α), f ′
2(x0, α)], 0 ≤ α ≤ 1, provided that it defines a

fuzzy number f ′(x0) ∈ E .
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Definition 2.6 (Chalco-Cano and Román-Flores 2008) Let
f : (a, b) → E and x0 ∈ (a, b). One says f is (1)-
differentiable at x0, if there exists an element f ′(x0) ∈
E such that for all h > 0 sufficiently small there exist
f (x0 + h)� f (x0), f (x0)� f (x0 − h) and the limits (in
the metric D) lim

x→0+
f (x0+h)� f (x0)

h � lim
x→0+

f (x0)� f (x0−h)
h �

f ′(x0) � f ′(x0). f is (2)-differentiable at x0, if there exists
an element f ′(x0) ∈ E such that for all h < 0 sufficiently
small there exist f (x0 + h)� f (x0), f (x0)� f (x0 − h) and
the limits (in the metric D)

lim
x →0−

f (x0 + h)� f (x0)

h
� lim

x→0−
f (x0)� f (x0 − h)

h
� f ′(x0).

Definition 2.7 (Biswas and Roy 2018a) Let f : (a, b) → E
and x0 ∈ (a, b). Then, the generalized Seikkala derivative
(gS-derivative) of f (x) at x0 is denoted f ′(x0) and defined
by

(i) if f ′
1(x0, α), f ′

2(x0, α) exist and f ′
1(x0, α) ≤ f ′

2(x0, α),
then f ′

α(x0) :� [ f ′
1(x0, α), f ′

2(x0, α)]
(ii) if f ′

1(x0, α), f ′
2(x0, α) exist and f ′

1(x0, α) ≥ f ′
2(x0, α)

then f ′
α(x0) :� [ f ′

2(x0, α), f ′
1(x0, α)]

Remark 2.1 (Biswas and Roy 2018a) This gS-derivative is
well defined because if f (x) is gS-differentiable at x0 ∈ [a, b]
in the form of (i) and (ii) both, then f ′

1(x0, α) � f ′
2(x0, α),

i.e., f ′(x0) ∈ R ⊂ E .

Theorem 2.1 (Biswas and Roy 2018a) The following defini-
tions of fuzzy derivative are equivalent

(a) lateral H-derivatives (Definition 2.6)
(b) generalized S-derivative (Definition 2.7)

Definition 2.8 (Diamond and Kloeden 2000) A mapping f :
[a, b] → E is said to be strongly measurable if the α - cut
set mapping [ f (x)]α are measurable for all α ∈ [0, 1]. Here,
measurable means Borel measurable.

A fuzzy-valued function f : [a, b] → E is called
integrably bounded if there exists an integrable function
h : [a, b] → R, such that ‖ f (t)‖F ≤ h(t), ∀ t ∈ [a, b]
where the norm of fuzzy number is ‖ f (t)‖F � D( f , 0).

A strongly measurable and integrably bounded fuzzy-
valued function is called integrable. The fuzzy Aumann
integral of f : [a, b] → E is defined α - cut-wise by the
equation

⎡
⎣(FA)

b∫
a

f (x)dx

⎤
⎦

α

�
b∫

a

[ f (x)]αdx, α ∈ [0, 1].

The following Riemann-type integral presents an alterna-
tive to Aumann-type definition.

Definition 2.9 (Gal 2000) A function f : [a, b] → E is
called Riemann integrable on [a, b], if there exists I ∈ E,

with the property ∀ε > 0, ∃δ > 0, such that for any division
of [a, b], d : a � x0 < · · · < xn � b of norm ν(d) < δ, and
for any points ξi ∈ [xi , xi+1], i � 0, . . . , n − 1, we have

D

(
n−1∑
i�0

f (ξi )(xi+1 − xi ), I

)
< ε.

Then, we denote I � (FR)
b∫
a

f (x)dx , and it is called fuzzy

Riemann integral.

Definition 2.10 (Wu and Gong 2001) Let f : [a, b] → E
be a fuzzy-valued function and �n : a � x0 < x1 < · · · <

xn−1 < xn � b a partition of the interval [a, b], ξi ∈
[xi , xi+1], i � 0, . . . , n − 1, a sequence of points of the
partition �n and δ(x) > 0 a valued function over [a, b].
The division P � (�n, ξ ) is said to be δ-fine if [xi , xi+1] ⊆
(ξi − δ(ξi ), ξi + δ(ξi )).

The function f is said to be Henstock (or FH-) integrable
having the integral I ∈ E if for any ε > 0 there exists a
real-valued function δ, such that for any δ-fine division P we
have

D

(
n−1∑
i�0

f (ξi ) · hi , I
)

< ε,

where hi � xi+1 − xi . Then, I is called the fuzzy Henstock

integral of f and it is denoted by (FH)
b∫
a

f (t)dt .

Theorem 2.2 (Bede 2013) A continuous fuzzy number-
valued function is fuzzy Aumann integrable, fuzzy Riemann
integrable and fuzzy Henstock integrable too and more over

(FA)

b∫
a

f (x)dx � (FH)

b∫
a

f (x)dx � (FR)

b∫
a

f (x)dx

3 Fuzzy integro-differential equation

In this article, we consider the following nth-order nonlinear
fuzzy Volterra–Fredholm integro-differential equation
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un(x) + G(x,U (x))

+
m∑
j�1

⎛
⎝

x∫
a

K j
1 (x, t)F

j
1 (t,U (t))dt +

b∫
a

K j
2 (x, t)F

j
2 (t,U (t))dt

⎞
⎠

� f (x), x ∈ [a, b] (1)

with boundary conditions

nk∑
l�1

alku
rlk (ηlk) � dk, k � 1, 2, . . . , n,

ηlk ∈ [a, b] and rlk∈{0, 1, . . . , n − 1} (2)

where dk, a jk are real fuzzy constants

G(x,U (x)) � G(x, u(x), u′(x), . . . , un(x))

F j
1 (t,U (t)) � F j

1 (t, u(t), u
′(t), . . . , un(t))

F j
2 (t,U (t)) � F j

2 (t, u(t), u
′(t), . . . , un(t))

and K j
1 (x, t), K

j
2 (x, t), F

j
1 , F j

2 ,G for j � 1, 2, . . . ,m are
the continuous fuzzy functions on the interval [a, b].

If K j
1 � 0 for all j � 1, 2, . . . ,m,, we have Fredholm-

type integro-differential equation and we have its Volterra
type if K j

2 � 0 for all j � 1, 2, . . . ,m,

From (1), we have

(
un(x, α)

)
i + Gi (x,U (x, α), α)

+
m∑
j �1

⎛
⎝

x∫
a

(
K j
1 (x, t, )F

j
1 (t,U (t))

)
i
dt +

b∫
a

(
K j
2 (x, t)F

j
2 (t,U (t))

)
i
dt

⎞
⎠

� fi (x),

(3)

where i � 1, 2 and x ∈ [a, b] subject to the boundary con-
ditions

nk∑
l �1

(
alku

rlk (ηlk)
)
i � dki , k � 1, 2, . . . , n, i � 1, 2 ηlk

∈ [a, b] and rlk ∈ {0, 1, . . . , n − 1}
(4)

where

[u(x)]α � [u1(x, α), u2(x, α)]

Gi (x,U (x, α), α)

� Gi (x, u1(x, α), u
′
1(x, α), . . . , u

n
1(x, α),

u2(x, α), u
′
2(x, α), . . . , u

n
2(x, α), α)

(
K j
1 (x, t)F

j
1 (t,U (t))

)
i

� P j
i

(
x, t, u1(x, α), u

′
1(x, α), . . . , u

n
1(x, α),

u2(x, α), u
′
2(x, α), . . . , u

n
2(x, α), α

)
(say)

(
K j
2 (x, t)F

j
2 (t,U (t))

)
i

� P j
i

(
x, t, u1(x, α), u

′
1(x, α), . . . , u

n
1(x, α),

u2(x, α), u
′
2(x, α), . . . , u

n
2(x, α), α

)
(say)

4 Method of solution

To solve (3), we assume that its approximate solution takes
the following form

uA
i,N (x, α) � ψi (x, α) +

n∑
j�0

ξi jϕi j (x, α), i � 1, 2. (5)

where uA
i,N (x, α) is the approximate solution of ui (x, α)

with (N +2) approximating terms. Also, ψi (x, α) and
{ϕi j (x, α)}Nj�1 must be obtained in such a way that

{uA
i,N (x, α)}2i�1 satisfy the boundary conditions (4). To

ensure that (3) satisfy boundary conditions (4), wemust have

nk∑
l�1

(
alku

Arlk
,N (ηlk)

)
i
� dki , k � 1, 2 . . . , n, i � 1, 2, (6)

where [uA
,N (ηlk)]α � [uA

1,N (x, α), u
A
2,N (x, α)].

Now, since we do not know that uA
,N (ηlk) is gS-

differentiable in the form of (i) or (ii) andwewant to consider
general case here, so, we are denoting [uArlk

,N (ηlk)]α �
[uArlk

s,N (x, α), uArlk
s′,N (x, α)],where swill take exactly one value

from {1,2} depending on the type of gS-derivative we are
considering and s′ � {1, 2} − {s}. So, using (5), (6) can be
written as following

nk∑
l�1

alks1ψ
rlk
s2 (ηlk, α) +

N∑
j�0

ξs2 j

nk∑
l�1

alks1φ
rlk
s2 j

(ηlk, α) � dk1

nk∑
l�1

alks′1ψ
rlk
s′2
(ηlk, α) +

N∑
j�0

ξs′2 j

nk∑
l�1

alks′1φ
rlk
s′2 j

(ηlk, α) � dk2
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where si will take exactly one value from {1,2} depending
on the type of gS-derivative we are considering and s′

i �
{1, 2} − {si }, i � 1, 2.

If for k � 1, 2, . . . , n and j � 0, 1, . . . , N we have the
following equalities, then {uA

i,N (x)}2i�1 satisfies the boundary
condition (4).

nk∑
l�1

alks1ψ
rlk
s2 (ηlk, α) � dk1,

nk∑
l�1

alks′1ψ
rlk
s′2
(ηlk, α) � dk2,

nk∑
l�1

alks1φ
rlk
s2 j

(ηlk, α) � 0,

nk∑
l�1

alks′1φ
rlk
s′2 j

(ηlk, α) � 0.

In fact, these conditions are sufficient conditions which
ensure that {uA

i,N (x, α)}2i�1 satisfy the boundary conditions

(4).Wewould find {ψi (x, α)}2i�1 in such away that it satisfies
the following auxiliary differential equations

Case I If uA
,N (x) is gS-differentiable in the form of (i) or n is

an even number, then

ψn
i (x, α) � fi (x, α), x ∈ [a, b], i � 1, 2 (7)

subject to the following non-homogeneous boundary condi-
tions

nk∑
l�1

alks1ψ
rlk
s2 (ηlk, α) � dk1,

nk∑
l�1

alks′1ψ
rlk
s′2
(ηlk, α) � dk2, (8)

Hence, if we express ψi (x, α) as

ψi (x, α) �
x∫

a

(x − t)n−1 fi (t, α)

(n − 1)!
dt +

n−1∑
q�1

ciq x
q , (9)

Then, ψi (x, α) for i � 1, 2 satisfies (7). By taking the rth-
derivative of (9), we have

ψr
i (x, α) �

⎧⎪⎨
⎪⎩

x∫
a

(x−t)n−r−1 fi (t,α)
(n−r−1)! dt +

n−1∑
q�r

ciq
q!xq−r

(q−r)! , r � 0, 1, . . . , n − 1

fi (x, α), r � n.

(10)

Substituting (10) in boundary conditions (8) gives the fol-
lowing linear system with respect to {ciq}n−1

q�1

nk∑
l�1

alks1

⎡
⎣

ηlk∫
a

(ηlk − t)n−rlk−1 fs2 (t, α)

(n − rlk − 1)!
dt +

n−1∑
q�r

cs2q
q! ηq−rlk

lk

(q − rlk )!

⎤
⎦ � dk1,

k � 1, 2, . . . , n

or,

nk∑
l �1

n−1∑
q �r

q! alks1η
q−rlk
lk

(q − rlk)!
cs2q

� dk1 −
nk∑
l�1

alks1

ηlk∫
a

(ηlk − t)n−rlk−1 fs2 (t, α)

(n − rlk − 1)!
dt

and

(11)

nk∑
l �1

n−1∑
q �r

q! alks′1η
q−rlk
lk

(q − rlk)!
cs′2q

� dk2 −
nk∑
l�1

alks′1

ηlk∫
a

(ηlk − t)n−rlk−1 fs′2 (t, α)

(n − rlk − 1)!
dt

Note that when one can not compute the integral terms of
the right-hand side of (11) analytically, it can be computed
by a numerical quadrature. Equations of (11) ensure that the
boundary conditions of (8) are satisfied.Theunknownbound-
ary coefficients {ciq}n−1

q�0 can be obtained by solving the linear
system of Eq. (11).

Suppose that V � {p0(x), p1(x), . . . , pN (x)} be a set
of basis polynomials on [a, b], where pk(x) is polynomial
of degree k, for k � 0, 1, . . . , N . Also, we would like
{ϕi j }Nj�1, i � 1, 2 be such that they satisfy the following
auxiliary differential equation under homogeneous bound-
ary conditions

φn
i j � p j (x), x ∈ [a, b], i � 1, 2, j � 0, 1, . . . , N (12)
nk∑
l�1

alks1ϕ
rlk
s2 j

(ηlk, α) � 0,

nk∑
l�1

alks′1ϕ
rlk
s′2 j

(ηlk, α) � 0 (13)

Consequently, if we define ϕi j (x, α) as

ϕi j (x, α) �
x∫

a

(x − t)n−1 p j (x)

(n − 1)!
dt +

n−1∑
q�0

ci j,q x
q (14)
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then i � 1, 2 and j � 0, 1, . . . , N , ϕi j (x, α) satisfy (12).
By taking the rth-derivative of (14), we have

ϕr
i j �

⎧⎪⎨
⎪⎩

x∫
a

(x−t)n−r−1 p j (t)
(n−r−1)! dt +

n−1∑
q�r

ci j,q
q!xq−r

(q−r )! , r � 0, 1, . . . , n − 1

p j (x), r � n

(15)

Substituting (15) in the homogeneous boundary conditions
(13) for each i � 1, 2 and J � 0, 1, . . . , N yields the fol-
lowing linear systemwith respect to the unknowns {ci j,q}n−1

q�0

nk∑
l�1

n−1∑
q�r

q! alks1η
q−rlk
lk

(q − rlk )!
cs2 j,q � −

nk∑
l�1

alks1

ηlk∫
a

(ηlk − t)n−rlk−1 p j (t)

(n − rlk − 1)!
dt

nk∑
l�1

n−1∑
q�r

q! alks′1η
q−rlk
lk

(q − rlk )!
cs′2 j,q � −

nk∑
l�1

alks′1

ηlk∫
a

(ηlk − t)n−rlk−1 p j (t)

(n − rlk − 1)!
dt

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(16)

System (16) ensures that the homogeneous boundary con-
ditions (13) hold. One can compute the integral term of the
right-hand side of (16) analytically because p j (x) is a poly-
nomial. Solution of linear system (16) gives the unknown
coefficients {ci j,q}n−1

q�0.

Substituting (9) and (14) in (5) yields

uA
i,N (x, α) �

x∫
a

(x − t)n−1

(n − 1)!

⎡
⎣ fi (t, α) +

N∑
j�0

ξi j p j (t)

⎤
⎦dt

+
n−1∑
q�0

[ciq +
N∑
j�0

ci j,qξi j ]x
q (17)

From (10), (15) and rth-derivative of (17), we have

uA(r )
i,N (x, α) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x∫
a

(x−t)n−r−1

(n−r−1)!

[
fi (t, α) +

N∑
j�0

ξi j p j (t)

]
dt +

n−1∑
q�k

[
ciq +

N∑
j�0

ci j,qξi j

]
q!xq−1

(q−1)! , r � 0, 1, . . . , n − 1

fi (x, α) +
N∑
j�0

ξi j p j (x), r � n

(18)

If {uA
i,N (x, α)}2i�1 be the exact solution of (3), then we

must have
(
uA(n)
,N (x, α)

)
i
+ Gi

(
x,U A

N (x, α), α
)

+
m∑
j �1

⎛
⎜⎝

x∫
a

(
K j
1 (x, t)F

j
1 (t,U

A
N (t))

)
i
dt +

b∫
a

(
K j
2 (x, t)F

j
2 (t,U

A
N (t))

)
i
dt

⎞
⎟⎠

� fi (x, α),

(19)

i � 1, 2, x ∈ [a, b], where

U A
N (x, α) � (uA

1,N (x, α), u
A(1)
1,N (x, α), . . . , uA(n)

1,N (x, α),

uA
2,N (x, α), u

A(1)
2,N (x, α), . . . , uA(n)

2,N (x, α))(
K j
1 (x, t)F

j
1 (t,U

A
N (t))i � P j

i (x, t,U
A
N (x, α), α)

)
(
K j
2 (x, t)F

j
21(t,U

A
N (t))i � Q j

i (x, t,U
A
N (x, α), α)

)

Hence, using (18), we can write (19) as
N∑
j�0

ξi j p j (x) + Gi (x,U
A
N (x, α), α)

+
m∑
j�1

⎛
⎝

x∫
a

P j
i

(
x, t,U A

N (t, α), α
)
dt

+

b∫
a

Q j
i

(
x, t,U A

N (t, α), α
)
dt

⎞
⎠ � 0, i � 1, 2, x ∈ [a, b].

(20)

Therefore, the left-hand side of (20) should be equal to
zero for the exact solution. However, since our method is a
numerical method and we are trying to find an approximate
solution as close as possible to the exact solution, hence,
our approximate solution {uA

i,N (x, α)}2i�1 often does not sat-
isfy the relation (20). So, for the approximate solution, the
left-hand side of (20) is asmuch close to zero, and our approx-
imate solution will be that much close to exact solution. We
shall use this fact in the next section to get better approximate
solution from (17).

After substituting the computed values of {ciq}n−1
q�0 and

{ci j,q}n−1
q�0 for i � 1, 2 and j � 0, 1, . . . , N in (17), which

are obtained by solving (11) and (16),we define the following
residual functions

Ri,N (x, ξ̄ , α)

�
m∑
j�1

⎛
⎝

x∫
a

P j
i

(
x, t,U A

N (t, α), α
)
dt +

b∫
a

Q j
i

(
x, t,U A

N (t, α), α
)
dt

⎞
⎠

+
N∑
j�0

ξi j p j (x) + Gi

(
x,U A

N (x, α), α
)
, i � 1, 2, x ∈ [a, b],

where ξ̄ � (ξ10, ξ11, . . . , ξ1N , ξ20, . . . , ξ2N ). (21)

Case II If uA
,N (ηlk) is gS-differentiable in the form of (ii) and

n is an odd number, then in place of Eq. (7) we will consider

ψn
i (x, α) � fi ′ (x, α), x ∈ [a, b], i � 1, 2 and i ′ � {1, 2} − {i}

(7a)
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So, in place of (17) the approximate solution will be

uA
i,N (x, α) �

x∫
a

(x − t)n−1

(n − 1)!

⎡
⎣ fi ′ (t, α) +

N∑
j�0

ξi j p j (t)

⎤
⎦dt

+
n−1∑
q�0

⎛
⎝ciq +

N∑
j�0

ci j,qξi j

⎞
⎠xq (17a)

Now, since inCase I, after putting (18) in (19) fi , i � 1, 2
get canceled and there is no fi , i � 1, 2 in the residual
functions (21). So, here also for Case II, we will get the same
notational residual functions (21) where {uA

i,N (x, α)}2i�1 is
given by (17a) instead of (17).

The approximate solution is not completely known yet
because the value of {ξi j }Nj�1 for i � 1, 2 yet to be computed.

In the next section, we obtain {ξi j }Nj�1 for i � 1, 2 in such a
way that the residual functions be minimized or forced to be
zero in an average sense over the interval [a, b].

5 Minimization of the residual functions

In this section, we present a minimization algorithm for the
residual functions (21). To do this, we obtain the unknown
coefficients {ξi j }Nj�0 of (21) for i � 1, 2 in such a way that
the following weighted integrals of the residual function be
equal to zero

Ei j (ξ̄ , α) �
b∫

a

w j Ri,N (x, ξ̄ , α)dx, j � 1, 2, . . . , N , i � 1, 2

where {w j }Nj�0 is a set of weight functions.
In this algorithm, the following weight functions are taken

from the displaced Dirac delta function

w j � δ(x − x j ) �
{
+∞, x � x j
0, x �� x j

So, for j � 1, 2, . . . , N , we have the following property

Ei j (ξ̄ , α) �
b∫

a

w j Ri,N (x, ξ̄ , α)dx � Ri,N (x j , ξ̄ , α) � 0,

(22)

Hence, the residual functions are forced to be zero at N +
1 specified collocation points {x j }Nj�0. If N increases, then
the approximate solutions will be better, because the residual
functions {Ri,N (x, ξ̄ , α)}2i�1 equal to zero over the interval
[a, b]. We have different options for the collocation points.
In this article, we use Chebyshev collocation points x j �
cos( jπN ) for j � 0, 1, . . . , N .

Solving the system (22) yields the unknown coefficients
{ξi j }Nj�0 for i � 1, 2.

6 Error analysis

In this section, the convergence of our method for solving
fuzzy integro-differential equation has been presented.

Theorem 6.1 Suppose that

εi (x, ξ̄ , α) � Gi

(
x,U A

N (x, α), α
)

+
m∑
j�1

⎛
⎝

x∫
a

P j
i

(
x, t,U A

N (x, α), α
)
dt

+

b∫
a

Q j
i

(
x, t,U A

N (x, α), α
)
dt

⎞
⎠

where

Gi (x,U
A
N (x, α), α) � Gi (x, u

A
1,N (x, α), u

A(1)
1,N (x, α), . . . ,

uA(n)
1,N (x, α), uA

2,N (x, α), u
A(1)
2,N (x, α), . . . , uA(n)

2,N (x, α), α)

uA
i,N (x, α) � ψi (x, α) +

n∑
j�0

ξi jϕi j (x, α), i � 1, 2

ξ̄ � (ξ10, ξ11, . . . , ξ1N , ξ20, . . . , ξ2N ).

If {εi (x, ξ̄ , α)}2i�1 are analytic at all points inside and on
circle C of radius r with center at x0 ∈ (a, b) and if x is any
interior point of C, then we can obtain ξ̄ in such a way that∣∣Ri,N

∣∣ → 0 as N → ∞.

Proof From(21) andTaylor series expansion for polynomials
p j (x), we have

Ri,N (x, ξ̄ , α) �
N∑
j�0

ξi j p j (x) + εi (x, ξ̄ , α)

�
N∑
j�0

ξi j

j∑
k�0

(x − x0)k

k!
pkj (x0) + εi (x, ξ̄ , α) (23)

By Cauchy’s integral formula, we have

εi (x, ξ̄ , α) � 1

2π i

∮
εi (z, ξ̄ , α)

z − x
dz i2 � −1
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We can write

εi (z, ξ̄ , α)

z − x
� εi (z, ξ̄ , α)

z − x0

[
1 +

x − x0
z − x0

+
(x − x0)2

(z − x0)2

+ · · · + (x − x0)N

(z − x0)N
+

(x − x0)N+1

(z − x0)N+1(z − x)

]
.

Therefore,

εi (x, ξ̄ , α) � 1

2π i

N∑
k�0

(x − x0)
k
∮
C

εi (z, ξ̄ , α)

(z − x0)k+1
dz + Ti,N

�
N∑

k�0

(x − x0)k

k!

dkεi (x0, ξ̄ , α)

dxk
+ Ti,N , (24)

where Ti,N � (x−x0)N+1

2π i

∮
C

εi (z,ξ̄ ,α)
(z−x0)N+1(z−x)

dz.By substituting

(24) in (23)

Ri,N (x, ξ̄ , α)

�
N∑

k�0

(x − x0)k

k!

⎡
⎣ N∑

j�k

ξi j p
k
j (x0) +

dkεi
dxk

(x0, ξ̄ , α)

⎤
⎦+Ti,N

So,

∣∣Ri,N (x, ξ̄ , α)
∣∣

≤
∣∣∣∣∣∣

N∑
k�0

(x − x0)k

k!

⎡
⎣ N∑

j�k

ξi j p
k
j (x0) +

dkεi (x0, ξ̄ , α)

dxk

⎤
⎦

∣∣∣∣∣∣
+

∣∣Ti,N ∣∣
(25)

For the first term of the right-hand side of (25) to vanish, we
set

N∑
j�k

ξi j p
k
j (x0) � −dkεi (x0, ξ̄ , α)

dxk
, k � 0, 1, . . . , N , i � 1, 2.

(26)

So (25) becomes

∣∣Ri,N (x, ξ̄ , α)
∣∣ ≤ ∣∣Ti,N ∣∣

From system of Eq. (26), we can obtain ξi j � ξ A
i j for

i � 1, 2 and j � 0, 1, . . . , N . Now we define εAi (z, α) �
εi (z, ξ̄ A, α), where ξ̄ A � (ξ A

10, ξ
A
11, . . . , ξ

A
1N , ξ A

20, . . . , ξ
A
2N ).

There is a constant M such that for any z on C,

∣∣∣∣εi (z, ξ̄
A, α)

z − x

∣∣∣∣ �
∣∣∣∣∣
εAi (z, α)

z − x

∣∣∣∣∣ ≤ M, |z − x0| � r (27)

Therefore,

∣∣∣Ri,N (x, ξ̄
A, α)

∣∣∣ ≤ ∣∣Ri,N
∣∣ � |x − x0|N+1

2π

∣∣∣∣∣∣
∮
C

εAi (z, α)

(z − x0)N+1(z − x)
dz

∣∣∣∣∣∣
≤ |x − x0|N+1

2π

∮
C

∣∣∣∣∣
εAi (z, α)

(z − x0)N+1(z − x)

∣∣∣∣∣|dz|

≤ M|x − x0|N+1

2πr N+!

∮
C

|dz| (using (26))

� M|x − x0|N+1

r N
.

Now, since |x−x0|
r < 1, we have

∣∣Ri,N
∣∣ → 0 as N → ∞.

This completes the proof.

It is necessary to state that we can control the accuracy of
the obtained approximate solutions by evaluating the upper
bound of the mean value of the residual functions Ri,N (x, α)
on the interval [a, b]. In order to estimate the upper bound
of the mean value of residual functions, we suppose that
Ri,N (x, α) for i � 1, 2 are integrable with respect to x in the
Riemann

∣∣∣∣∣∣
b∫

a

Ri,N (x, α)dx

∣∣∣∣∣∣ ≤ √
b − a

∥∥Ri,N
∥∥
2 , where

∥∥Ri,N
∥∥
2

�
⎧⎨
⎩

b∫
a

∣∣Ri,N (x, α)
∣∣2 dx

⎫⎬
⎭

1
2 .

According to the mean value theorem for integrals, if
Ri,N (x) is continuous in [a, b], there exists a point c in (a, b)

such that

∣∣∣∣∣
b∫
a
Ri,N (x, α)dx

∣∣∣∣∣ � (b − a)Ri,N (c, α).Thus

∣∣Ri,N (c, α)
∣∣ �

∣∣∣∣∣
b∫
a
Ri,N (x, α)dx

∣∣∣∣∣
b − a

≤
√
b − a

∥∥Ri,N
∥∥
2

b − a

�
∥∥Ri,N

∥∥
2√

b − a
� R̄i,N (say).

If R̄i,N → 0 when N is sufficiently large, then the error
of approximate solution is negligible.

In addition, the linear problems can be defined by

(un(x, α))i +
n∑

k�0

⎡
⎣(

μk(x)u
k(x)

)
i
+

x∫
a

(
Kk
1 (x, t)u

k(t)
)
i
dt

+

b∫
a

(
Kk
2 (x, t)u

k(t)
)
i
dt

⎤
⎦ � fi (x, α), (28)
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with boundary conditions

nk∑
l �1

(
alku

rlk (ηlk)
)
i � dki , k � 1, 2, . . . , n, i � 1, 2, ηlk

∈ [a, b] and rlk ∈ {0, 1, . . . , n − 1}.
(29)

We define the error function εi (x, α) � ui (x, α) −
uA
i,N (x, α) for i � 1, 2 where {ui (x, α)}2i�1 is the set of

exact solution of the system (28). If uA
i,N (x, α) for i � 1, 2

be the approximate solution of (28), then we have

uA(n)
s1,N

(x, α) +
n∑

k�0

⎡
⎣μks2 (x, α)u

A(k)
s3,N

(x, α) +

x∫
a

K k
1s4 (x, t, α)u

A(k)
s5,N

(t, α)dt

+

b∫
a

K k
2s6 (x, t, α)u

A(k)
s7,N

(t, α)dt

⎤
⎦ � f1(x, α) + R1,N (x, α)

uA(n)
s′1,N

(x, α) +
n∑

k�0

⎡
⎣μks′2 (x, α)u

A(k)
s′3,N

(x, α) +

x∫
a

K k
1s′4

(x, t, α)uA(k)
s′5,N

(t, α)dt

+

b∫
a

K k
2s′6

(x, t, α)uA(k)
s′7,N

(t, α)dt

⎤
⎦ � f2(x, α) + R2,N (x, α) (30)

nk∑
l�1

alks8u
A(rlk )
s9,N

(ηlk , α) � dk1

nk∑
l�1

alks′8u
A(rlk )
s′9,N

(ηlk , α) � dk2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(31)

where k � 1, 2, . . . , N ,s j ∈ {1, 2},s′
j � {1, 2} − {s j } for

j � 1, 2, . . . , 8, 9.
Using the definition of error function, from (28), (29),

(30) and (31), we can write the following system of integro-
differential equationwith homogeneous boundary conditions

εns1 (x, α) +
n∑

k�0

⎡
⎣μks2 (x, α)ε

k
s3 (x, α) +

x∫
a

K k
1s4 (x, t, α)ε

k
s5 (t, α)dt +

b∫
a

K k
2s6 (x, t, α)ε

k
s7 (t, α)dt

⎤
⎦ + R1,N (x, α) � 0

εns′1
(x, α) +

n∑
k�0

⎡
⎣μks′2 (x, α)ε

k
s′3
(x, α) +

x∫
a

K k
1s′4

(x, t, α)εks′5
(t, α)dt +

b∫
a

K k
2s′6

(x, t, α)εks′7
(t, α)dt

⎤
⎦ + R2,N (x, α) � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(32)

nk∑
l�1

alks8ε
A(rlk )
s9 (ηlk, α) � 0

nk∑
l�1

alks′8ε
A(rlk )
s′9

(ηlk, α) � 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(33)

where {εi (x, α)}2i�1 is the set of error functions.
Solving the error problem (32) by the proposed method

gives the approximate solution εAi,N (x, α) of εi (x, α). Con-
sequently, we have the following improved approximate
solution

uA imp
i,N (x, α) � uA

i,N (x, α) + εAi,N (x, α), i � 1, 2.

Note that we can iterate this process to reach a satisfactory
approximate solution, and if the exact solution of the problem
is not available, then we can approximate the error function
εi (x, α) by εAi,N (x, α).

In order to performa superior error analysis of the obtained
approximate solutions by our method, we use the following
convergence indicators with their rate of convergence

• The consecutive error: DN
i (α) �∥∥∥uA

i,N+1(x, α) − uA
i,N (x, α)

∥∥∥
2
.

• The point-wise error:EN
i (x, α) � uexacti (x, α) −

uA
i,N (x, α).

• The reference error: εNref,i (α) � ∥∥EN
i (x, α)

∥∥
2.

• The max absolute error: eNi (α) � ∥∥EN
i (x, α)

∥∥∞ �
max

{∣∣EN
i (x, α)

∣∣/a ≤ x ≤ b
}
.

• The relative error: rel.err Ni (x, α) �
∣∣∣∣ EN

i (x,α)
uexacti (x,α)

∣∣∣∣.

7 Application

In this section, we apply the present method on some test
problems. In all problems, our approximation space is based
on the Chebyshev polynomials of the first kind. The numer-
ical results are calculated using Wolfram Mathematica 9.0,
and the figures are drawn using MATLAB R2010a. As one
will see from the numerical results, by increasing N, the
accuracy of the approximate solution increases, because the
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residual functions {Ri,N (x, ξ̄ )}Ni�1 equal to zero at more
points. Here we have considered only the gS-derivative of
type (i). Similarly type (ii) can also be used.

Problem 7.1 Consider the following fuzzy linear Volterra
integro-differential equation with exact solution

[u1, u2] �
[
1

2
(α + 2)(sinh t − sin t) +

1

2
(α + 1)(cos t + cosh t)

+
1

2
α(sinh t + sin t),

1

2
(4 − α)(sinh t − sin t)

+
1

2
(3 − α)(cos t + cosh t) +

1

2
(2 − α)(sinh t + sin t)

]

u′′(x) � ax +

x∫
0

(x − t)u(t)dt, 0 ≤ x ≤ 1

with initial conditions [u(0)]α � [α + 1, 3 − α], [u′(0)]α �
[α, 2 − α] where [a]α � [α + 2, 4 − α].i.e.,

u′′
1(x, α) −

x∫
0

(x − t)u1(t, α)dt � (α + 2)x, 0 ≤ x ≤ 1

u′′
1(x, α) −

x∫
0

(x − t)u2(t, α)dt � (4 − α)x, 0 ≤ x ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(34)

with initial conditions u′
1(0, α) � α, u1(0, α) � α +

1, u′
2(0, α) � 2 − α, u2(0, α) � 3 − α.

This problem can be obtained from (3) by setting

n � 2, m � 1, a � 0, Gi (x,U (x, α), α) � 0,
x∫

a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt � −

x∫
0

(x − t)ui (t, α)dt,

b∫
a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt � 0, i � 1, 2,

f1(x, α) � (α + 2)x, f2(x, α) � (4 − α)x

To solve (34) by proposed method, we define
the following non-homogeneous auxiliary differential
equationsψ ′′

1 (x, α) � (α + 2)x, ψ1(0, α) � α +
1, ψ ′

1(0, α) � α and ψ ′′
2 (x, α) � (4 − α)x, ψ2(0, α) �

3 − α, ψ ′
2(0, α) � 2 − αSo, from (9) we have

ψ1(x, α) � (α + 2)
x3

6
+ c11x + c10

ψ2(x, α) � (4 − α)
x3

3!
+ c21x + c20

The unknown coefficients {ciq}1q�0 for i � 1, 2 are easily
obtained from the initial conditions

c10 � α + 1, c20 � 3 − α, c11 � α, c21 � 2 − α

Also, for N �2 we have the following homogeneous differ-
ential equations

φ′′
i j (x, α) � p j (x), φi j (0, α) � 0, φ′

i j (0, α) � 0,

i � 1, 2, j � 0, 1, 2

where p j (x) � cos( j cos−1 x) is the Chebyshev polynomial
of degree j. So from (14) it follows that

φi j (x, α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 x

2 + ci0,1x + ci0,0, j � 0

1
6 x

3 + ci1,1x + ci1,0, j � 1, i � 1, 2

1
6 x

4 − 1
2 x

2 + ci2,1x + ci2,0, j � 2

The unknown coefficients
{
ci j,q

}1
q�0, i � 1, 2 and j �

0,1,2 can be found from the initial conditionsci j,q � 0 for
q � 0, 1, i � 1, 2, j � 0, 1, 2So, from (5) we can find the
following approximate solution of (34) as

uA1,2(x, α) � ξ12
6

x4 +

(
α + 2

6
+

ξ11
6

)
x3 +

(
ξ10
2

− ξ12
2

)
x2 + αx + (α + 1)

uA2,2(x, α) � ξ22
6

x4 +

(
4 − α

6
+

ξ21
6

)
x3 +

(
ξ20
2

− ξ22
2

)
x2 + (2 − α)x + (3 − α)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(35)

In order to evaluate the residual functions,wemust replace
uA
1,2(x, α) and uA

2,2(x, α) in (34) in place of u1(x, α) and
u2(x, α), respectively. So, we have

R1,2(x, ξ̄ , α) � − ξ12

180
x6 − ξ11 + α + 2

120
x5 − ξ10 − ξ12

24
x4

− α

6
x3 +

(
2ξ12 − α + 1

2

)
x2 + ξ11x

+ (ξ10 − ξ12)

R2,2(x, ξ̄ , α) � − ξ22

180
x6 − ξ21 + 4 − α

120
x5 − ξ20 − ξ22

24
x4

− 2 − α

6
x3 +

(
2ξ22 − 3 − α

2

)
x2 + ξ21x

+ (ξ20 − ξ22)

where ξ̄ � (ξ10, ξ11, ξ12, ξ20, ξ21, ξ22). We should try to
determine the unknown coefficients

{
ξi j

}2
j�0 for i �1,2 in

such a way that the values of
{
Ei j (ξ̄ , α)

}2
j�0 in (22) be min-

imized or forced to be zero. To do this, we use the presented
minimization process in Sect. 5. So we have found

{
ξi j

}2
j�0

as follows

ξ10 � 0.2507 + 0.2507α, ξ11 � 0.0168 + 0.1765α,

ξ12 � 0.2507 + 0.2507α,
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Table 1 Absolute point-wise
errors of obtained values by our
method for different numbers of
approximating terms, N for
Problem 7.1

x
∣∣E2

1 (x, 0.2)
∣∣ ∣∣E6

1 (x, 0.2)
∣∣ ∣∣E10

1 (x, 0.2)
∣∣ ∣∣E2

1 (x, 0.6)
∣∣ ∣∣E6

1 (x, 0.6)
∣∣ ∣∣E10

1 (x, 0.6)
∣∣

0.0 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00

0.2 6.92E−05 1.20E−08 1.29E−13 1.62E−04 3.09E−08 3.45E−13

0.4 5.42E−04 7.65E−08 5.52E−13 1.26E−03 1.96E−07 1.48E−12

0.6 1.75E−03 1.74E−07 7.41E−13 4.04E−03 4.46E−07 1.99E−12

0.8 3.86E−03 2.43E−07 9.47E−13 8.79E−03 6.24E−07 2.54E−12

1.0 6.69E−03 2.91E−07 1.22E−12 1.51E−02 7.49E−07 3.27E−12

Table 2 Absolute point-wise
errors of obtained values by our
method for different numbers of
approximating terms, N for
Problem 7.1

x
∣∣E2

2 (x, 0.2)
∣∣ ∣∣E6

2 (x, 0.2)
∣∣ ∣∣E10

2 (x, 0.2)
∣∣ ∣∣E2

2 (x, 0.6)
∣∣ ∣∣E6

2 (x, 0.6)
∣∣ ∣∣E10

2 (x, 0.6)
∣∣

0.0 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00

0.2 2.81E−04 1.26E−06 1.29E−11 1.88E−04 9.79E−07 1.00E−11

0.4 2.24E−03 3.41E−06 1.49E−11 1.52E−03 2.65E−06 1.16E−11

0.6 7.24E−03 3.61E−06 4.66E−12 4.96E−03 2.80E−06 3.63E−12

0.8 1.58E−02 2.34E−06 1.55E−11 1.08E−02 1.82E−06 1.20E−11

1.0 2.65E−02 2.94E−06 1.39E−11 1.82E−02 2.28E−06 1.08E−11

Table 3 Consecutive errors and reference errors of obtained values by our method for different numbers of approximating terms, N for Problem 7.1

i D5
i (0.4) D7

i (0.4) D9
i (0.4) ε5ref,i (0.4) ε7ref,i (0.4) ε9ref,i (0.4)

1 1.60E−5 1.30E−8 4.98E−11 1.67E−5 3.38E−9 5.24E−11

2 2.79E−5 1.94E−8 8.67E−11 3.08E−5 5.01E−9 9.62E−11

ξ20 � 0.7521 − 0.2507α, ξ21 � 0.3697 − 0.1765α,

ξ22 � 0.7521 − 0.2507α

Substituting this values of
{
ξi j

}2
j�0 for i �1,2 in (35)

yields

uA
1,2(x, α) � 1 + 0.3361x3 + 0.0418x4

+ α(1 + x + 0.1961x3 + 0.0418x4)

uA
2,2(x, α) � 3 + 2x + 0.7281x3

+ 0.1253x4 + α(−1 − x − 0.1961x3 − 0.0418x4)

The absolute point-wise errors of obtained values by our
method for different numbers of approximating terms are
shown in Tables 1 and 2 which shows promising results
for small number of approximating terms. The consecu-
tive and reference errors of the solutions of our method for
different numbers of approximating terms are presented in
Table 3 which shows very small errors for small number of
approximating terms. Figure 1 shows that as the number of
approximating terms increases the absolute error decreases
very rapidly for different membership values.

Problem 7.2 Consider the following fuzzy linear Volterra
integro-differential equation (Allahviranloo et al. 2012) with
exact solution [u1, u2] � [(α − 2)ex , (2 − α)ex ]

u′(x) � a +

x∫
0

u(t)dt, 0 ≤ x ≤ 1

with initial conditions [u(0)]α � [α−2, 2−α], where [a]α �
[α − 2, 2 − α].This problem can be obtained from (3) by
setting

n � m � 1, a � 0, Gi (x,U (x)) � 0,

x∫
a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt

� −
x∫

0

ui (t, α)dt,

b∫
a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt � 0,

i � 1, 2 f1(x, α) � (α − 2), f2(x, α) � (2 − α)

By the same application of the new method which is
used for Problem 7.1, the approximating solutions can be
obtained for different values of N. The absolute point-wise
errors of obtained values by our method for different num-
bers of approximating terms, N, are shown in Tables 4 and 5.
The max absolute errors and relative errors of the solutions
of our method for value of N are presented in Table 6 which
shows also very promising results for different numbers of
approximating terms. In Fig. 2, we also see that the error
decreases very rapidly as the value of N increases.
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Fig. 1 Behavior of the absolute values of error functions versus x, and
different values of the approximating terms, N for Problem 7.1. a∣∣EN

1 (x, 0.4)
∣∣, for N � 2, 3, 4. b

∣∣EN
1 (x, 0.4)

∣∣, for N � 5, 6, 7. c∣∣EN
1 (x, 0.4)

∣∣, for N � 8, 9, 10. d
∣∣EN

1 (x, 0.8)
∣∣, for N � 2, 3, 4.

e
∣∣EN

1 (x, 0.8)
∣∣, for N � 5, 6, 7. f

∣∣EN
1 (x, 0.8)

∣∣, for N � 8, 9, 10.
g

∣∣EN
2 (x, 0.4)

∣∣, for N � 2, 3, 4. h
∣∣EN

2 (x, 0.4)
∣∣, for N � 5, 6, 7. i∣∣EN

2 (x, 0.4)
∣∣, for N � 8, 9, 10. j

∣∣EN
2 (x, 0.8)

∣∣, for N � 2, 3, 4. k∣∣EN
2 (x, 0.8)

∣∣, for N � 5, 6, 7. l
∣∣EN

2 (x, 0.8)
∣∣, for N � 8, 9, 10

123



A semianalytical method for fuzzy integro-differential equations under generalized Seikkala… 7971

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9
x 10

-9

x

E
rr

or
i

N=8
N=9
N=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

x

E
rr

or

j

N=2
N=3
N=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

x

Er
ro

r

k

N=5
N=6
N=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8
x 10

-9

x

Er
ro

r

l

N=8
N=9
N=10

(i) (j)

(k) (l)

Fig. 1 continued

Table 4 Absolute point-wise
errors of obtained values by our
method for different numbers of
approximating terms, N for
Problem 7.2

x
∣∣E2

1 (x, 0.2)
∣∣ ∣∣E6

1 (x, 0.2)
∣∣ ∣∣E10

1 (x, 0.2)
∣∣ ∣∣E2

1 (x, 0.6)
∣∣ ∣∣E6

1 (x, 0.6)
∣∣ ∣∣E10

1 (x, 0.6)
∣∣

0.0 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00

0.2 7.29E−03 1.26E−06 1.29E−11 5.67E−03 9.79E−07 1.00E−11

0.4 2.85E−02 3.41E−06 1.49E−11 2.21E−02 2.65E−06 1.16E−11

0.6 5.97E−02 3.61E−06 4.66E−12 4.64E−02 2.80E−06 3.63E−12

0.8 9.28E−02 2.34E−06 1.55E−11 7.22E−02 1.82E−06 1.20E−11

1.0 1.14E−01 2.94E−06 1.39E−11 8.90E−02 2.28E−06 1.08E−11

Table 5 Absolute point-wise
errors of obtained values by our
method for different numbers of
approximating terms, N for
Problem 7.2

x
∣∣E2

2 (x, 0.2)
∣∣ ∣∣E6

2 (x, 0.2)
∣∣ ∣∣E10

2 (x, 0.2)
∣∣ ∣∣E2

2 (x, 0.6)
∣∣ ∣∣E6

2 (x, 0.6)
∣∣ ∣∣E10

2 (x, 0.6)
∣∣

0.0 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00 0.00E−00

0.2 7.29E−03 1.26E−06 1.29E−11 5.67E−03 9.79E−07 1.00E−11

0.4 2.85E−02 3.41E−06 1.49E−11 2.21E−02 2.65E−06 1.16E−11

0.6 5.97E−02 3.61E−06 4.66E−12 4.64E−02 2.80E−06 3.63E−12

0.8 9.28E−02 2.34E−06 1.55E−11 7.22E−02 1.82E−06 1.20E−11

1.0 1.14E−01 2.94E−06 1.39E−11 8.90E−02 2.28E−06 1.08E−11

Table 6 Max absolute errors and relative errors of obtained values by our method for different numbers of approximating terms, N for Problem 7.2

i e5i (0.4) e7i (0.4) e9i (0.4) rel.err5i (1, 0.4) rel.err7i (1, 0.4) rel.err9i (1, 0.4)

1 2.75E−5 9.17E−8 1.94E−10 8.44E−7 3.39E−8 4.39E−12

2 2.75E−5 9.17E−8 1.94E−10 8.44E−7 3.39E−8 4.39E−12
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Fig. 2 Behavior of the absolute values of error functions versus x, and
different values of the approximating terms, N for Problem 7.2. a∣∣EN

1 (x, 0.4)
∣∣, for N � 2, 3, 4. b

∣∣EN
1 (x, 0.4)

∣∣, for N � 5, 6, 7. c∣∣EN
1 (x, 0.4)

∣∣, for N � 8, 9, 10. d
∣∣EN

1 (x, 0.8)
∣∣, for N � 2, 3, 4.

e
∣∣EN

1 (x, 0.8)
∣∣, for N � 5, 6, 7. f

∣∣EN
1 (x, 0.8)

∣∣, for N � 8, 9, 10.
g

∣∣EN
2 (x, 0.4)

∣∣, for N � 2, 3, 4. h
∣∣EN

2 (x, 0.4)
∣∣, for N � 5, 6, 7. i∣∣EN

2 (x, 0.4)
∣∣, for N � 8, 9, 10. j

∣∣EN
2 (x, 0.8)

∣∣, for N � 2, 3, 4. k∣∣EN
2 (x, 0.8)

∣∣, for N � 5, 6, 7. l
∣∣EN

2 (x, 0.8)
∣∣, for N � 8, 9, 10

123



A semianalytical method for fuzzy integro-differential equations under generalized Seikkala… 7973

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9
x 10

-9

x

E
rr

or
i

N=8
N=9
N=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

E
rr

or

j

N=2
N=3
N=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
x 10

-5

x

E
rr

or

k

N=5
N=6
N=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7
x 10

-9

x

E
rr

or

l

N=8
N=9
N=10

(i) (j)

(k) (l)

Fig. 2 continued

Problem 7.3 Consider the following fuzzy linear
Volterraintegro-differential equation (Matinfar et al. 2013)
with exact solution [u1, u2] � [αx, (2 − α)x]

u′(x) � f (x) +

x∫
0

(2x − 1)2(1 − 2t)u(t)dt, 0 ≤ x ≤ 1

with initial conditions [u(0)]α � [0, 0], where

α �
[
2 − α

3
(8x5 − 14x4 + 8x3) − 4 − α

6
x2 − 1 − α

3
x +

11

12
α

+
1

12
,
8

3
αx5 − 14

3
αx4 +

8

3
αx3 − 2 + α

6
x2 +

1 − α

3
x − 11

12
α +

23

12

]
.

This problem can be obtained from (3) by setting

n � m � 1, a � 0, Gi (x,U (x)) � 0,
x∫

a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt

� −
x∫

0

((2x − 1)2(1 − 2t)u(t))idt,

b∫
a

(K 1
1 (x, t)F

1
1 (t,U (t)))idt � 0, i � 1, 2,

f1(x, α) � 2 − α

3

(
8x5 − 14x4 + 8x3

)
− 4 − α

6
x2

− 1 − α

3
x +

11

12
α +

1

12
,

f2(x, α) � 8

3
αx5 − 14

3
αx4 +

8

3
αx3 − 2 + α

6
x2 +

1 − α

3
x

− 11

12
α +

23

12

By the same application of the new method which is
used for Problem 7.1, the approximating solutions can be
obtained for different values of N. The figure is same for
both the residual functions for uA

1,7 and uA
2,7 which is given

in Fig. 3. The comparison of absolute errors between our
method, variational iteration method (VIM) (Matinfar et al.
2013) and homotopy perturbation method (HPM) (Matinfar
et al. 2013) is shown in Tables 7 and 8 which shows that
our method gives less error than VIM (Matinfar et al. 2013)
and HPM (Matinfar et al. 2013) for the same number of itera-
tions. The comparison of relative errors between our method,
VIM (Matinfar et al. 2013) and HPM (Matinfar et al. 2013)
is given in Table 9 for different numbers of iterations. Here
also our method gives better results than VIM (Matinfar et al.
2013) and HPM (Matinfar et al. 2013).
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Table 7 Comparison of absolute errors between our method, variational iteration method (Matinfar et al. 2013) and homotopy perturbation method
(Matinfar et al. 2013) for Problem 7.3

α VIM (Matinfar et al.
2013)

HPM (Matinfar et al.
2013)

Our method

∣∣E7
1 (1, α)

∣∣ ∣∣E10
1 (1, α)

∣∣ ∣∣E7
1 (1, α)

∣∣ ∣∣E10
1 (1, α)

∣∣ ∣∣E7
1 (1, α)

∣∣ ∣∣E10
1 (1, α)

∣∣
0.0 2.71E−10 2.69E−14 2.71E−10 2.69E−14 2.24E−13 5.40E−15

0.2 2.17E−10 2.15E−14 2.44E−10 2.42E−14 2.00E−13 3.14E−15

0.4 1.63E−10 1.62E−14 1.63E−10 1.62E−14 1.77E−13 3.22E−15

0.6 1.09E−10 1.08E−14 1.09E−10 1.08E−14 1.53E−13 8.88E−16

0.8 5.43E−11 5.44E−15 5.43E−11 5.44E−15 1.30E−13 2.22E−16

1.0 0.00E−00 0.00E−00 0.00E−00 0.00E−00 1.07E−13 1.33E−15

Table 8 Comparison of absolute errors between our method, variational iteration method (Matinfar et al. 2013) and homotopy perturbation method
(Matinfar et al. 2013) for Problem 7.3

α VIM (Matinfar et al.
2013)

HPM (Matinfar et al.
2013)

Our method

∣∣E7
2 (1, α)

∣∣ ∣∣E10
2 (1, α)

∣∣ ∣∣E7
2 (1, α)

∣∣ ∣∣E10
2 (1, α)

∣∣ ∣∣E7
2 (1, α)

∣∣ ∣∣E10
2 (1, α)

∣∣
0.0 2.71E−10 2.71E−14 2.71E−10 2.71E−14 5.61E−12 7.51E−15

0.2 2.17E−10 2.18E−14 2.17E−10 2.18E−14 5.00E−12 6.99E−15

0.4 1.63E−10 1.64E−14 1.63E−10 1.64E−14 4.39E−12 1.87E−15

0.6 1.09E−10 1.09E−14 1.09E−10 1.09E−14 3.78E−12 5.91E−15

0.8 5.43E−11 5.55E−15 5.43E−11 5.55E−15 3.17E−12 5.35E−15

1.0 2.22E−16 3.33E−16 2.22E−16 3.33E−16 2.56E−12 4.73E−15

Table 9 Comparison of relative errors between our method, variational iteration method (Matinfar et al. 2013) and homotopy perturbation method
(Matinfar et al. 2013) for Problem 7.3

rel.err71 (1, 0.2) rel.err72 (1, 0.2) rel.err101 (1, 0.2) rel.err102 (1, 0.2)

VIM (Matinfar et al. 2013) 1.09E−09 1.21E−10 1.08E−13 1.21E−14

HPM (Matinfar et al. 2013) 1.22E−09 1.21E−10 1.21E−13 1.21E−14

Our method 1.00E−12 2.78E−12 1.57E−14 3.88E−15

Fig. 3 Residual function for N �7 for Problem 7.3

8 Conclusion

A reliable method has been presented to conveniently solve a
wide class of fuzzy integro-differential equations with multi-

point or mixed boundary conditions. A theorem has been
given regarding the convergence of our method which shows
that as the number of approximating terms increases, the
residual error goes to zero.We have explained the practicality
and efficiency of thismethod by examining several numerical
examples, and the obtained results shows high enhancement
over existingmethods, variational iterationmethod (Matinfar
et al. 2013) and homotopy perturbation method (Matinfar
et al. 2013) in Tables 7, 8 and 9. From Figs. 1 and 2, we can
see that as the number of approximating terms increases, the
absolute error decreases very rapidly. From Tables 1, 2, 3,
4, 5 and 6, we can see that the proposed method provides
excellent solutions for fuzzy integro-differential equations,
because of the small absolute error for very few numbers of
approximating terms.

It is nothing remarkable that the proposed method has
other advantages. The solutions of auxiliary equations can be
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tabulated in away that one can use them for any problemwith
same multi-point or mixed boundary conditions. Since we
have considered a fuzzy integro-differential equation which
has not been considered in the literature for analytical or
numerical solutions before, our proposed method even can
give solutions to those fuzzy integro-differential equations
which cannot be solved by using any other methods in the
literature.
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