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Abstract
Celani and Jansana (Math LogQ58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension
of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our
procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum
and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of
Hilbert algebras to that of generalized Heyting algebras, of possible independent interest.
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1 Introduction

Inwhat follows,we assume the reader is familiarwith the the-
ory of Heyting algebras (Balbes and Dwinger 1974), which
are the algebraic counterpart of Intuitionistic Propositional
Logic. Hilbert algebras were introduced in the early 1950s by
Henkin for some investigations of implication in intuition-
istic and other non-classical logics (Rasiowa 1974, pp. 16).
In the 1960s, they were studied especially by Horn (1962)
and Diego (1965).

Let K be any variety in the language LK and L a sub-
language of LK . Assume that the class of L -subreducts of
the elements of K form a variety M . Let us also write K
and M , for the algebraic categories whose class of objects
are the members of the varieties K and M , respectively. The
correspondence assigning eachmember of K to itsL -reduct
induces a functor U : K → M , which is usually referred to
as the forgetful functor from K to M , since part of the struc-
ture of each member in K is forgotten. It can be seen that
this functor has a left adjoint F : M → K (see for instance,
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Moraschini 2018, Theorem 3.5). For any a ∈ M , the element
F(a) ∈ K is usually referred to as the free K -extension of
a. However, the usual general arguments guaranteeing its
existence do not provide an easy description of it.

Celani and Jansana (2012) gave a concrete description of
the free implicative semilattice extension of a Hilbert alge-
bra, from where an explicit description for the left adjoint of
the forgetful functor from the category of implicative semi-
lattices to the category of Hilbert algebras follows.

The main goal of this paper is to arrive at the explicit
description of the adjunction presented in Celani and Jansana
(2012) following an alternative path. We also apply these
ideas in order to provide similar constructions for the cate-
gory of generalized Heyting algebras.

The paper is organized as follows. In Sect. 2, we give some
basic results about Hilbert algebras. In particular, we recall
the categorical equivalence for Hilbert algebras developed by
Cabrer et al. (2009) (see also Celani and Montangie 2012).
In Sect. 3, we use the equivalence for the category of Hilbert
algebras in order to build up a functor from the category of
Hilbert algebras to the category of implicative semilattices.
We also present an explicit description for the left adjoint to
the forgetful functor from the category of implicative semilat-
tices to the category of Hilbert algebras. Finally, we establish
the connections between our results and those of Celani and
Jansana (2012). In Sect. 4, we give an explicit description for
the left adjoint to the forgetful functor from the category of
generalized Heyting algebras (Heyting algebras) to the cat-
egory of Hilbert algebras with supremum (Hilbert algebras
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with supremum and aminimum). Finally, in Sect. 5, we build
up a functor from the category of Hilbert algebras to the cate-
gory of generalized Heyting algebras and we comment some
open problems.

2 Basic results

Recall that a Hilbert algebra (see Diego 1965) is an alge-
bra (H ,→, 1) of type (2, 0) which satisfies the following
conditions for every a, b, c ∈ H :

(a) a → (b → a) = 1,
(b) (a → (b → c)) → ((a → b) → (a → c)) = 1,
(c) if a → b = b → a = 1 then a = b.

Diego (1965) proves that the class of Hilbert algebras is a
variety.Moreover, this is the variety generated by the {1,→}-
reduct of Heyting algebras. In every Hilbert algebra H , we
have a partial order given by a ≤ b if and only if a → b = 1,
which is called natural order. Relative to the natural order
on H , 1 is the greatest element.

We write Hil for the variety of Hilbert algebras. Observe
that Hil, when equipped with homomorphisms, has the struc-
ture of a category.

Lemma 1 Let H ∈ Hil and a, b, c ∈ H. Then the following
conditions are satisfied:

(a) a → a = 1,
(b) 1 → a = a,
(c) a → (b → c) = b → (a → c),
(d) a → (b → c) = (a → b) → (a → c),
(e) if a ≤ b then c → a ≤ c → b and b → c ≤ a → c.

Some additional elemental properties of Hilbert algebras
can be found in Buşneag and Ghiţǎ (2010) and Diego (1965).

For the general development of Hilbert algebras, the
notion of implicative filter plays an important role. Let H
be a Hilbert algebra. A subset F ⊆ H is said to be a implica-
tive filter if the following two conditions are satisfied: (1)
1 ∈ F ; (2) if a ∈ F and a → b ∈ F then b ∈ F . If in
addition F �= H , then we say that the implicative filter F
is proper. Let f : H → G be a function between Hilbert
algebras. Celani (2002, Theorem 3.2) it was proved that the
following two conditions are equivalent: (1) f (1) = 1 and
f (a → b) ≤ f (a) → f (b) for every a, b ∈ H ; (2) f −1(F)

is an implicative filter of H whenever F is an implicative
filter of G.

Definition 1 Let H ∈ Hil and F an implicative filter. We say
that F is irreducible if F is proper and for any implicative
filters F1, F2 such that F = F1 ∩ F2 we have that F = F1 or

F = F2.Wewrite X(H) for the set of irreducible implicative
filters of H .

Let us consider a poset 〈X ,≤〉. A subset U ⊆ X is said
to be an upset if for all x, y ∈ X such that x ∈ U and x ≤ y
we have y ∈ U . The notion of downset is dually defined.

Remark 1 Every implicative filter of a Hilbert algebra is an
upset.

Let H ∈ Hil and I ⊆ H with I �= ∅. We say that I is an
order-ideal if I is a downset and for every a, b ∈ I there is
c ∈ I such that a ≤ c and b ≤ c. Let Id(H) be the set of
order-ideals of H and Fil(H) the set of implicative filters of
H . The following lemma is Celani (2002, Theorem 2.6). (It is
also an immediate consequence of the work of polarities and
optimality as carried on for instance in Gehrke et al. 2010,
Proposition 6.7.)

Lemma 2 Let H ∈ Hil. Let F ∈ Fil(H) and I ∈ Id(H) such
that F ∩ I = ∅. Then there exists P ∈ X(H) such that
F ⊆ P and P ∩ I = ∅.

Recall that if H is a Hilbert algebra and X ⊆ H , we
define the implicative filter generated by X as the least filter
of H that contains the set X , which will be denoted by F(X).
There is an explicit description for F(X) (see Buşneag 1985,
Lemma 2.3):

F(X) = {x ∈ H : a1 → (a2 → · · · (an → x) . . .) = 1

for some a1, . . . , an ∈ X} .

The followingknown results are consequenceofLemma2.

Corollary 3 Let H ∈ Hil, F ∈ Fil(H) and a /∈ F. Then there
exists P ∈ X(H) such that F ⊆ P and a /∈ P.

Corollary 4 Let H ∈ Hil and a, b ∈ H such that a � b. Then
there exists P ∈ X(H) such that a ∈ P and b /∈ P.

Corollary 5 Let H ∈ Hil, F ∈ Fil(H) and a, b ∈ H. Then
a → b /∈ F if and only if there exists P ∈ X(H) such that
F ⊆ P, a ∈ P and b /∈ P.

If f : H → G is a function between Hilbert algebras, we
define the relation R f ⊆ X(G) × X(H) by

(P, Q) ∈ R f if and only if f −1(P) ⊆ Q.

Normally duals of homomorphisms are functions (e.g., in
Priestley and Stone dualities). However, these functions can
be seen as binary relations and, accordingly, in not so well-
behaved dualities, the dual of a homomorphism tends to be
a binary relation. The definition of R f should be understood
in this spirit.

The following lemma was proved in Celani (2002, Theo-
rem 3.3).
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Lemma 6 Let H and G be Hilbert algebras and f : H → G
a function such that f (1) = 1 and f (a → b) ≤ f (a) →
f (b) for every a, b ∈ H. Then the following statements are
equivalent:

(1) f is a homomorphism.
(2) If (P, Q) ∈ R f , then there is F ∈ X(H) such that P ⊆ F

and f −1(F) = Q.

If H is a Hilbert algebra and a ∈ H , we define

ϕ(a) := {P ∈ X(H): a ∈ P} . (1)

Let X andY be sets and let R ⊆ X×Y be a binary relation.
For every x ∈ X , we define R(x) := {y ∈ Y : (x, y) ∈ R}.

Let f : H → G an homomorphism in Hil, P ∈ X(G) and
a ∈ H . Cabrer et al. (2009, Lemma 3.3) it was proved that
f (a) ∈ P if and only if for all Q ∈ X(G), if (P, Q) ∈ R f

then a ∈ Q. The previous property can be written in the
following way:

f (a) ∈ P if and only if R f (P) ⊆ ϕ(a). (2)

We now recall some definitions and results from Cabrer
et al. (2009) and Celani and Montangie (2012) and fix some
notation.

Let us consider a poset 〈X ,≤〉. For each Y ⊆ X , the upset
generated by Y is defined by [Y ) = {x ∈ X : there is y ∈
Y such that y ≤ x}. The downset generated by Y is dually
defined. If Y = {y}, then we will write [y) and (y] instead
of [{y}) and ({y}], respectively. We also define Y c := {x ∈
X : x /∈ Y }.
Remark 2 Let 〈X ,≤〉 be a poset. Write X+ for the set of
upsets of 〈X ,≤〉. Define on X+ the binary operation ⇒ by

U ⇒ V := (U ∩ V c]c. (3)

Then X+ is a complete Heyting algebra.

Let (X , τ ) be a topological space. An arbitrary non-empty
subsetY of X is said to be irreducible if for any closed subsets
Z andW such thatY ⊆ Z∪W wehave thatY ⊆ Z orY ⊆ W .
We say that (X , τ ) is sober if for every irreducible closed set
Y there exists a unique x ∈ X such that Y = {x}, where {x}
denotes the closure of {x}. A subset of X is saturated if it is
an intersection of open sets. The saturation of a subset Y of
X is defined as sat(Y ) := ⋂{U ∈ τ : Y ⊆ U }. Recall that
the specialization order of (X , τ ) is defined by x  y if and
only if x ∈ {y}. The relation  is reflexive and transitive,
i.e., a quasi-order. The relation  is a partial order if (X , τ )

is T0. The dual quasi-order order ofwill be denoted byd .
Hence,

x d y if and only if y ∈ {x}.

Remark 3 Let (X , τ ) be a topological space which is T0, and
consider the orderd . Let x ∈ X andY ⊆ X . Then {x} = [x)
and sat(Y ) = (Y ], where [x) is the upset generated by {x}
with respect to the partial order d and (Y ] is the downset
generated by Y with respect to the partial order d .

For the following definition see Celani and Montangie
(2012).

Definition 2 AHilbert space, or H -space for short, is a struc-
ture (X , τ, κ) where (X , τ ) is a topological space, κ is a
family of subsets of X and the following conditions are sat-
isfied:

(H1) κ is a base of open and compact subsets for the topol-
ogy τ on X .

(H2) For every U , V ∈ κ , sat(U ∩ V c) ∈ κ .
(H3) (X , τ ) is sober.

In what follows, if (X , τ, κ) is an H -space, we simply
write (X , κ).

Remark 4 1. A sober topological space is T0.
2. Viewing any topological space as a poset, with the order

d , condition (H2) of Definition 2 can be rewritten as:
for every U , V ∈ κ , (U ∩ V c] ∈ κ .

Let X andY be sets and let R ⊆ X×Y be a binary relation.
If U ⊆ Y , then we define R−1(U ) := {x ∈ X : R(x) ∩ U �=
∅}. Let X ,Y and Z be sets, R ⊆ X × Y and S ⊆ Y × Z .
Then the relational product (or composition) of R and S is
defined as follows:

R ◦ S := {(x, z): there is y ∈ Y such that

(x, y) ∈ R and (y, z) ∈ S} . (4)

Definition 3 Let X1 = (X1, κ1) and X2 = (X2, κ2) be two
H -spaces. Let us consider a relation R ⊆ X1 × X2. We say
that R is an H -relation from X1 into X2 if it satisfies the
following properties:

(HR1) R−1(U ) ∈ κ1, for every U ∈ κ2.
(HR2) R(x) is a closed subset of X2, for all x ∈ X1.

We say that R is an H -functional relation if it satisfies the
following additional condition:

(HF) If (x, y) ∈ R, then there is z ∈ X1 such that z ∈ {x}
and R(z) = {y}.

Remark 5 Condition (HF) from Definition 3 can also be
given as follows: if (x, y) ∈ R then there exists z ∈ X1

such that x d z and R(z) = [y).
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If H is a Hilbert algebra, then X(H) = (X(H), κH ) is
an H -space, where κH = {ϕ(a)c: a ∈ H}. If f is a homo-
morphism of Hilbert algebras then R f is an H -functional
relation. Write HS for the category whose objects are Hilbert
spaces and whose morphisms are H -functional relations,
where the composition of two H -relations is defined as in
(4). Then the assignment H �→ X(H) can be extended to a
functor X:Hil → HS.

Let (X , κ) be an H -space.Define D(X) = {U ⊆ X :Uc ∈
κ}. Then D(X) ⊆ X+. It follows from Definition 2 and
Remark 4 that D(X) is closed under the operation⇒ given in
(3) of Remark 2. Since X+ is a Heyting algebra thenD(X) =
(D(X),⇒, X) is a Hilbert algebra. If R is an H -functional
relation from (X1, κ1) into (X2, κ2), then the map hR from
D(X2) into D(X1) given by hR(U ) = {x ∈ X1: R(x) ⊆ U }
is a homomorphism of Hilbert algebras. Then the assignment
X �→ D(X) can be extended to a functor D:HS → Hil.

If H ∈ Hil, the map ϕ: H → D(X(H)) defined as in (1)
is an isomorphism in Hil. If (X , κ) is an H -space, then the
map εX : X → X(D(X)) given by εX (x) = {U ∈ D(X): x ∈
U } is an order-isomorphism and a homeomorphism between
the topological spaces X and X(D(X)) (Cabrer et al. 2009,
Theorem2.2). If there is no ambiguity,wewillwrite ε in place
of εX . Moreover, the relation ε∗ ⊆ X × X(D(X)) given by
(x, P) ∈ ε∗ if and only if ε(x) ⊆ P is an H -functional
relation which is an isomorphism in HS.

The following theorem can be found in Celani and Mon-
tangie (2012) (see also Cabrer et al. 2009).

Theorem 7 The contravariant functorsX andD define a dual
equivalence betweenHil andHSwith natural equivalences ε∗
and ϕ.

3 An adjunction between Hil and IS

In this section, we build up a functor from the algebraic
category of Hilbert algebras to the algebraic category of
implicative semilattices. This provides an explicit construc-
tion for the left adjoint for the forgetful functor from the
category of implicative semilattices to that of Hilbert alge-
bras. Finally, we establish the link between our result and the
results studied in Celani and Jansana (2012) (in particular,
with item (1) of Celani and Jansana 2012, Proposition 7.9).

We start with some preliminary definitions and results.
Let 〈H ,≤〉 be a poset. If any two elements a, b ∈ H have

a greatest lower bound a∧b, then the algebra (H ,∧) is called
meet semilattice. The algebra (H ,∧) is said to be bounded
if it has a greatest element, which will be denoted by 1; in
this case we write (H ,∧, 1). Throughout this paper, we just
write semilattice in place of meet semilattice.

Definition 4 An implicative semilattice is an algebra
(H ,∧,→) of type (2, 2) such that (H ,∧) is a meet semi-

lattice and for every a, b, c ∈ H , a ∧ b ≤ c if and only if
a ≤ b → c.

In the literature, implicative semilattices are known also as
Brouwerian semilattices. Every implicative semilattice has a
greatest element, denoted by 1. In this paper, we take this ele-
ment in the language of the algebras. It is part of the folklore
the fact that the variety of implicative semilattices is the vari-
ety generated by the {1,∧,→}-reduct of Heyting algebras.
For more details about implicative semilattices see Curry
(1963) and Nemitz (1965).

We write IS for the category whose objects are implicative
semilattices and whose morphisms are functions f : H → G
such that f (1) = 1 and f (a ∧ b) = f (a) ∧ f (b) for every
a, b ∈ H .

3.1 From IS to Hil

Let f : H → G be a morphism in Hil. It follows from Theo-
rem 7 that the following diagram commutes:

H
ϕ

f

D(X(H))

D(X( f ))

G
ϕ

D(X(G)).

Let g = D(X( f )). The elements of D(X(H)) take the
form ϕ(a) for a ∈ H . Thus, the commutativity of the previ-
ous diagram is equivalent to the following equality, for every
a ∈ H :

ϕ( f (a)) = g(ϕ(a)). (5)

Also note that it follows from (2) of Sect. 2 that

g(ϕ(a)) = {
P ∈ X(G): R f (P) ⊆ ϕ(a)

}
.

For every H ∈ Hil, we have that ϕ[H ] = D(X(H)) ⊆
X(H)+.

Lemma 8 The homomorphism of Hilbert algebras g can
be extended to a homomorphism of implicative semilattices
ĝ:X(H)+ → X(G)+.

Proof Let ĝ:X(H)+ → X(G)+ be given by

ĝ(U ) = {P ∈ X(G): R f (P) ⊆ U }.

In order to show the good definition of ĝ, let U ∈ X(H)+
and P, Q ∈ X(G) such that P ⊆ Q and P ∈ ĝ(U ), i.e.,
R f (P) ⊆ U . Let Z ∈ R f (Q), so f −1(Q) ⊆ Z . Since
f −1(P) ⊆ f −1(Q) then f −1(P) ⊆ Z , so Z ∈ R f (P) ⊆ U .
Thus, Z ∈ U . Hence, R f (Q) ⊆ U , i.e., Q ∈ ĝ(U ). In
consequence, ĝ is a well defined map. It is immediate that
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ĝ(X(H)) = X(G) and ĝ(U ∩ V ) = ĝ(U ) ∩ ĝ(V ) for every
U , V ∈ X(H)+. In particular, ĝ(U ⇒ V ) ⊆ ĝ(U ) ⇒ ĝ(V )

for every U , V ∈ X(H)+.
Let U , V ∈ X(H)+. In order to prove that ĝ(U ) ⇒

ĝ(V ) ⊆ ĝ(U ⇒ V ), suppose that P /∈ ĝ(U ⇒ V ), i.e.,
R f (P) � U ⇒ V . Then there exists Q ∈ X(H) such
that f −1(P) ⊆ Q and Q /∈ U ⇒ V . Hence, there exists
Z ∈ X(H) such that Q ⊆ Z and Z ∈ U ∩ V c. Since
f −1(P) ⊆ Q, then it follows from Lemma 6 that there
exists W ∈ X(G) such that P ⊆ W and f −1(W ) = Z .
Thus, R f (W ) ⊆ U . In order to show it, let T ∈ R f (W ).
Hence, Z ⊆ T . Since Z ∈ U and U ∈ X(H)+, then T ∈ U .
So, we have proved that R f (W ) ⊆ U . Besides R f (W ) � V
because Z ∈ R f (W ) and Z /∈ V . Summarizing, P ⊆ W ,
R f (W ) ⊆ U and R f (W ) � V , so P /∈ ĝ(U ) ⇒ ĝ(V ).
Therefore, ĝ(U ⇒ V ) = ĝ(U ) ⇒ ĝ(V ). ��
Remark 6 In general, themap ĝ ofLemma8 is not necessarily
a Heyting homomorphism. In order to prove it, consider the
following two posets:

H 1

x y

1

c

a b

G

Endow these posets with the Hilbert algebra structures
induced by the order; i.e., the implication is given by x →
y = 1 if x ≤ y and x → y = y if x � y. Define f : H → G
by f (x) = a, f (y) = b and f (1) = 1. Straightforward
computations show that f ∈ Hil and that f̂ does not preserve
joins.

It is worth mentioning that ϕ[H ] = D(X(H)) ⊆ X(H)+,
as defined before Lemma 8, is the logic-based canonical
extension of the Hilbert algebra H , as defined in Gehrke
et al. (2010). This fact follows from González (2018, Corol-
lary 6.26).

If S is a subset of an implicative semilattice, we write
〈S〉IS for the implicative semilattice generated by S. Let H ∈
Hil. Since ϕ[H ] is a subset of the implicative semilattice
X(H)+, then we define the following implicative semilattice
of X(H)+:

H IS := 〈ϕ[H ]〉IS.

Let H ∈ Hil. It is interesting to note that the immersion of
H into X(H)+ induced by ϕ does not necessarily preserve
existing infima; however, it does preserve existing suprema.
See for instance Chajda (2002, Theorem 3.2). Since X(H)+
is the logic-based canonical extension of H as defined in

Gehrke et al. (2010), then the fact thatϕ(a∨b) = ϕ(a)∪ϕ(b)
whenever a ∨ b exists can be also deduced from Gehrke et
al. (2013, Proposition 6.10).

The following remark is a well-known fact from universal
algebra (Burris and Sankappanavar 1981).

Remark 7 Let A and B be algebras of the same type and
X ⊆ A with X �= ∅. Let f : A → B be a homomorphism.
Write SgA(X) for the subalgebra of A generated by X and
SgB( f (X)) for the subalgebra of B generated by f (X). We
have that f (SgA(X)) = SgB( f (X)).

Lemma 9 The homomorphism of implicative semilattices ĝ
defined in Lemma 8 satisfies ĝ(H IS) ⊆ G IS.

Proof It follows from Lemma 8, Remark 7 and the equality
g(ϕ(a)) = ϕ( f (a)) given in (5). ��

Let f : H → G be a morphism in Hil. It follows from
Lemmas 8 and 9 that the map f IS: H IS → G IS given by

f IS(U ) = {
P ∈ X(G): R f (P) ⊆ U

}

is a morphism in IS. Let Id be an identity morphism in Hil.
It is immediate that IdIS is an identity in IS. Let f : H → G
and g:G → K be morphisms in Hil. It follows from Cabrer
et al. (2009, Theorem 3.3) that Rg◦ f = Rg ◦ R f . Hence,
straightforward computations based in the above-mentioned
equality shows that

(g ◦ f )IS = gIS ◦ f IS.

Therefore, we obtain the following proposition.

Proposition 1 The assignments H �→ H IS and f �→ f IS

define a functor ( )IS:Hil → IS.

In what follows, we write U for the forgetful functor from
IS to Hil.

3.2 Adjunction

Now we prove that the functor ( )IS:Hil → IS is left adjoint
of U.

Recall that if H ∈ IS, a subset F ⊆ H is said to be a filter
if it satisfies the following conditions:

(1) 1 ∈ F ,
(2) a ∧ b ∈ F whenever a, b ∈ F ,
(3) F is an upset.

We can also define the concept of implicative (and irre-
ducible) filter for the case of implicative semilattices. It is
part of the folklore that if H ∈ IS then the set of implicative
filters of H is equal to the set of filters of H . If H ∈ IS, we
also write X(H) for the set of irreducible filters of H .
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Remark 8 Let H ∈ IS.Wewrite H IS in place of (U(H))IS. For
every a ∈ H , we also write ϕ(a) for the set {P ∈ X(H): a ∈
P}.

Let H ∈ Hil. Consider the injective morphism of Hilbert
algebras ψ : H → U(H IS) given by ψ(a) = ϕ(a).

Proposition 2 Let G ∈ IS and f : H → U(G) ∈ Hil. Then,
there exists a unique morphism h: H IS → G such that f =
U(h) ◦ ψ .

Proof The map f IS: H IS → G IS is a morphism in IS.
Since G ∈ IS then for every a, b ∈ G, we have that
ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b), so a reflection’s moment shows
that the map ϕ:G → G IS is an isomorphism in IS. Hence,
the map h: H IS → G given by h = ϕ−1 ◦ f IS is also a mor-
phism in IS. Finally, it follows from (5) that f = U(h) ◦ ψ .

��
Let IHil be the identity functor in Hil. It follows from (5)

that �: IHil → U ◦ ( )IS is a natural transformation. Here, the
family of morphism associated to the natural transformation
is given by the morphisms ψ .

In other words, to say that �: IHil → U ◦ ( )IS is a natural
transformation is equivalent to say that if f : H → G is a
morphism in Hil then the following diagram commutes:

H
f

ψ

G

ψ

U(H IS)
U( f IS)

U(G IS).

Therefore, we get the following result.

Theorem 10 The functor ( )IS:Hil → IS is left adjoint to U.

3.3 Connections with the literature

In what follows, we connect our results with those of Celani
and Jansana (2012). We also make a brief remark about
ϕH : H → X(H)+, viewed as the logic-based canonical
extension of the Hilbert algebra H , as presented in Gehrke
et al. (2010).

Fix H ∈ Hil. A pair (G, e) where G is an implicative
semilattice and e is an injective morphism from H to U(G)

is said to be an implicative semilattice envelope of H if for
every y ∈ G there exists a finite subset X ⊆ H such that
y = ∧

e(X). Define the following set:

S(H) = {U :U = ϕ(a1) ∩ · · · ∩ ϕ(an)

for some a1, . . . , an ∈ H} .

Then, ϕ[H ] ⊆ S(H) ⊆ X(H)+. Moreover, S(H) ∈ IS
by considering the implication ⇒ given by (3). The pair

(S(H), η) is an implicative semilattice envelope of H , where
η: H → U(S(H)) is given by η(a) = ϕ(a) (Celani and
Jansana 2012, Lemma 6.4). It follows from results of Celani
and Jansana (2012) that (S(H), η) is a solution (G, e) of the
following universal problem: For every G ′ ∈ IS and every
e′: H → U(G ′) ∈ Hil, there is a unique g:G → G ′ ∈ IS
such that e′ = U(g) ◦ e.

It follows fromCelani and Jansana (2012, Proposition 6.9)
that if h: H → K ∈ Hil then there is a unique h:S(H) →
S(K ) such that η ◦ h = h ◦ η.

The following theorem summarize some properties from
Celani and Jansana (2012), which it was proved in an alter-
native way in the present paper (Theorem 10).

Theorem 11 There exists a functor S:Hil → IS that maps
every H ∈ Hil to S(H) ∈ IS, and every h: H → G ∈ Hil to
h:S(H) → S(G) ∈ IS. The functor S is left adjoint to U.

Let H ∈ Hil. Since S(H) ∈ IS, it follows from the defini-
tion of H IS that H IS is in fact equal to S(H), i.e.,

H IS = S(H). (6)

Gehrke et al. (2010) the logic-based canonical extension
of an algebra in certain classes of algebras of interest for
abstract algebraic logic is presented. In particular, it is proved
there that when this notion of canonicity is considered, the
variety of Hilbert algebras is canonical. It can be seen that
the logic-based canonical extension of a Hilbert algebra, as
performed inGehrke et al. (2010, Section 5.1) is indeed given
by the embedding ϕH : H → X(H)+.

4 Relation between Hil∨ (Hil∨0 ) and gH (Hey)

In this section, we provided a construction for the left adjoint
of the forgetful functor from the algebraic category of gener-
alized Heyting algebras (Heyting algebras) to the algebraic
category of Hilbert algebras with supremum (Hilbert alge-
bras with supremum and a minimum).

Definition 5 An algebra (H ,∨,→, 1) of type (2, 2, 0) is a
Hilbert algebra with supremum if the following conditions
are satisfied:

1. (H ,→, 1) is a Hilbert algebra.
2. (H ,∨, 1) is a join semilattice with greatest element 1.
3. For every a, b ∈ H , a → b = 1 if and only if a∨ b = b.

We denote by Hil∨ to the category whose objects are
Hilbert algebras with supremum and whose morphisms are
the homomorphisms f : H → G in Hil such that f (a ∨ b) =
f (a) ∨ f (b) for every a, b ∈ H . For more details about
Hilbert algebras with supremum, see Celani and Montangie
(2012).

123



Variations of the free implicative semilattice extension of a Hilbert algebra 4639

Definition 6 A generalizedHeyting algebra (gH -algebra for
short) is a lattice such that for every a, b ∈ H there exists the
maximum of the set {c ∈ H : a ∧ c ≤ b}, denoted by a → b.

It is known that gH -algebras have a largest element,which
will be denoted by 1. We consider gH -algebras as algebras
(H ,∧,∨,→, 1) of type (2, 2, 2, 0), and Heyting algebras as
algebras (H ,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0). We write
gH for the category of gH -algebras and Hey for the category
ofHeyting algebras. Formore about these classes of algebras,
see Balbes and Dwinger (1974) and Monteiro (1980).

Let H ∈ Hil∨ and F an implicative filter of H . We say
that F is prime if it is proper and for any a, b ∈ H such that
a ∨ b ∈ F we have that a ∈ F or b ∈ F . It is part of the
folklore that the set of prime filters of H is equal to the set
of irreducible implicative filters of H .

Lemma 12 Let f : H → G be a morphism in Hil∨. Then for
every P ∈ X(G) it holds that f −1(P) ∈ X(H) or f −1(P) =
H.

Proof It follows from Celani and Montangie (2012, Lemma
5.10). ��

Celani and Montangie (2012, Lemma 5.10) it was also
proved that if f : H → G be a morphism in Hil∨ then for
every P ∈ X(G) such that R f (P) �= ∅ it holds that if U , V
are closed sets of X(H) such that R f (P) ⊆ U ∪ V then
R f (P) ⊆ U or R f (P) ⊆ V . In the following lemma, we
generalize the above-mentioned property.

Lemma 13 Let f : H → G beamorphism inHil∨, P ∈ X(G)

and U , V ∈ X(H)+. If R f (P) ⊆ U ∪ V then R f (P) ⊆ U
or R f (P) ⊆ V .

Proof Assume that R f (P) ⊆ U ∪ V . It follows from
Lemma 12 that f −1(P) ∈ X(H) or f −1(P) = H . Suppose
that f −1(P) = H , i.e., R f (P) = ∅. Then R f (P) ⊆ U or
R f (P) ⊆ V . Hence, we can assume that f −1(P) ∈ X(H),
i.e., f −1(P) ∈ R f (P). Since R f (P) ⊆ U ∪ V then
f −1(P) ∈ U or f −1(P) ∈ V . Consider that f −1(P) ∈ U
and let Q ∈ R f (P). Thus, f −1(P) ⊆ Q. Since f −1(P) ∈ U
and U ∈ X(H)+ then Q ∈ U . Hence, R f (P) ⊆ U . The
same argument proves that if f −1(P) ∈ V then R f (P) ⊆ V .

��
If S is a subset of a gH -algebra,wewrite 〈S〉gH for the gH -

algebra generated by S. Let H ∈ Hil. Since ϕ[H ] is a subset
of the gH -algebraX(H)+ then we define the following gH -
algebra of X(H)+:

HgH := 〈ϕ[H ]〉gH.

Let f : H → G be a morphism in Hil∨ and ĝ:X(H)+ →
X(G)+ the function considered in Lemma 8. It follows from

Lemma 13 that if U , V ∈ X(H)+ then

ĝ(U ∪ V ) = ĝ(U ) ∪ ĝ(V ).

Hence, by Lemma 8, we have that ĝ:X(H)+ → X(G)+ is a
morphism ingH. By the same argument of Lemma9,we have
that ĝ(HgH) ⊆ GgH, so ĝ can be restricted to a morphism
f gH: HgH → GgH in gH.
The following result is similar to that given in Proposition

1.

Proposition 3 The assignments H �→ HgH and f �→ f gH

define a functor ( )gH:Hil∨ → gH.

Write also U for the forgetful functor from gH to Hil∨. As
in the case of Theorem 10, we can show the following result.

Theorem 14 The functor ( )gH:Hil∨ → gH is left adjoint to
U.

In the following proposition, we give an easy description
for HgH when H is a finite algebra.

Proposition 4 Let H ∈ Hil∨ be a finite algebra. Then HgH =
X(H)+.

Proof By definition, we have that HgH ⊆ X(H)+. In order
to prove the converse inclusion, let U ∈ X(H)+. Since H
is finite then ∅ ∈ HgH, so we can assume that U �= ∅.
Since U is finite there exist P1, . . . , Pn ∈ X(H) such that
U = {P1, . . . , Pn}. Hence, U = ⋃n

i=1[Pi ). Note that if
P ∈ X(H) then [P) = ⋂

a∈P ϕ(a) (it is a finite union)
and ϕ(1) = X(H). Thus, U = ⋂m

i=1Ui , where for every
i = 1, . . . ,m the setUi takes the form ϕ(a1i )∩· · ·∩ϕ(ami ).
Then U ∈ HgH. Therefore, HgH = X(H)+. ��

For H ∈ Hil∨, we can give the following description of
HgH, where we see HgH as an implicative semilattice.

Proposition 5 Let H ∈ Hil∨. Then S(H) = HgH.

Proof By (6) of the end of Sect. 3, we only need to prove
that ifU , V ∈ S(H) thenU ∪V ∈ S(H). LetU , V ∈ S(H).
Then there exist a1, . . . , an ∈ H and b1, . . . , bm ∈ H such
thatU = ϕ(a1) ∩ · · · ∩ ϕ(an) and V = ϕ(b1) ∩ · · · ∩ ϕ(bm).
Since ϕ(1) = X(H), we can assume that n = m. Hence,
U ∪ V = ⋂n

i, j=1(ϕ(ai ) ∪ ϕ(b j )) = ⋂n
i, j=1 ϕ(ai ∨ b j ).

Therefore, U ∪ V ∈ S(H). ��
Let Hil∨0 be the category whose objects are algebras

(H ,∨,→, 0, 1) of type (2, 2, 0, 0) such that (H ,∨,→, 1) ∈
Hil∨ and 0 satisfies that 0 ≤ x for every x ∈ H . The mor-
phisms are the homomorphisms f ofHil∨ such that f (0) = 0.
Also write U for the forgetful functor from Hey to Hil∨. If
H ∈ Hey, we define HHey as the Heyting subalgebra of
X(H)+ generated by ϕ[H ], and if f : H → G is a morphism
in Hey we can define a morphism f Hey: HHey → GHey in
Hey similarly to the case of gH -algebras. We also write U
for the forgetful functor from Hey to Hil∨0
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Corollary 15 The functor ( )Hey:Hil∨0 → Hey is left adjoint
to U.

5 Final remarks

In this final section, we define a functor from Hil to gH. As
usual, we start with some definitions and preliminary results.

The proof of the following lemma is similar to the proof
of Celani (2002, Theorem 3.3).

Lemma 16 Let f : H → G ∈ Hil, I ∈ Fil(G) and J ∈ X(H)

be such that f −1(I ) ⊆ J . Then there exists K ∈ X(H) such
that I ⊆ K and f −1(K ) = J .

Proof Since J ∈ X(H), we have that

( f (J c)] = {
b ∈ G: b ≤ f (a) for some a ∈ J c

}

is an order-ideal of G (see Celani 2002, Theorem 2.3). Let
us see that

( f (J c)] ∩ F(I ∪ f (J )) = ∅.

Suppose that ( f (J c)] ∩ F(I ∪ f (J )) �= ∅. Then, there are
x ∈ H , j /∈ J , j1, . . . , jm ∈ J and i1, . . . , in ∈ I such that
x ≤ f ( j) and

i1 → (i2 → · · · (in → ( f ( j1) → ( f ( j2) → · · ·
( f ( jm) → x) . . .) = 1.

Note that elements can be always ordered in this way, since in
any Hilbert algebra the identity a → (b → c) = b → (a →
c) holds. Since 1, i1, . . . , in are in I , f ( j1) → ( f ( j2) →
· · · ( f ( jm) → x) . . .) ∈ I . Since x ≤ f ( j) then

f ( j1) → ( f ( j2) → · · · ( f ( jm) → x) . . .) ≤
f ( j1) → ( f ( j2) → · · · ( f ( jm) → f ( j)) . . .)

= f ( j1 → ( j2 → · · · ( jm → j) . . .)) .

Since I is an upset then f ( j1 → ( j2 → · · · ( jm → j) . . .)) ∈
I , what implies that j1 → ( j2 → · · · ( jm → j) . . .) ∈
f −1(I ) ⊆ J . Hence, j ∈ J , which is a contradiction. In
consequence, ( f (J c)] ∩ F(I ∪ f (J )) = ∅.

By Lemma 2, there exists K ∈ X(G) such that F(I ∪
f (J )) ⊆ K and ( f (J c)] ∩ K = ∅. Thus, I ⊆ K and
f −1(K ) = J . ��
Let H ∈ Hil. We define the following set:

X∨(H) =
{
F ∈ Fil(H): F =

⋂
X0, for some finite

X0 ⊆ X(H)} . (7)

It is known that if F is a proper implicative filter of H
then F is the intersection of all irreducible filters of H such
that contain F (it is an immediate consequence of Corollary
3). In particular, note that if H is finite then F ∈ X∨(H) if
and only if F is a proper implicative filter of H .

Corollary 17 Let f : H → G ∈ Hil, I ∈ X∨(H) and J ∈
X∨(G) be such that f −1(I ) ⊆ J . Then there exists K ∈
X∨(H) such that I ⊆ K and f −1(K ) = J .

Proof Let I ∈ X∨(H) and J ∈ X∨(G) be such that
f −1(I ) ⊆ J . Then there exist Q1, . . . , Qn ∈ X(G) such that
J = Q1∩· · ·∩Qn , so f −1(I ) ⊆ Qi for every i = 1, . . . , n.
By Lemma 16, we have that there exist K1, . . . , Kn ∈ X(H)

such that I ⊆ Ki and f −1(Ki ) = Qi for every i = 1, . . . , n.
Let K = K1 ∩ · · · ∩ Kn . Thus, K ∈ X∨(H), I ⊆ K and
f −1(K ) = J . ��
Let H ∈ Hil. We define the function 	: H → (X∨(H))+

by

	(a) = {
F ∈ X∨(H): a ∈ F

}
.

Lemma 18 Let H ∈ Hil. The function 	 defined above is
an injective morphism in Hil. Moreover, if H† is the gH-
algebra of (X∨(H))+ generated by 	(H), then 	 can be
also considered as a map from H to H†.

Proof It is immediate that if a ∈ H then 	(a) is an upset of
X∨(H) and that	(1) = X∨(H). The equality	(a → b) =
	(a) ⇒ 	(b) follows fromCorollary 3. Finally, Corollary 4
implies the injectivity of 	. ��

Let f : H → G ∈ Hil. We define R∨
f ⊆ X∨(G)× X∨(H)

by

(I , J ) ∈ R∨
f if and only if f −1(I ) ⊆ J .

Lemma 19 Let f : H → G ∈ Hil. Then the following holds:

(a) For every a ∈ H, 	( f (a)) = {F ∈ X∨(G): R∨
f (F) ⊆

	(a)}.
(b) The function g: (X∨(H))+ → (X∨(G))+ given by

g(U ) =
{
F ∈ X∨(G): R∨

f (F) ⊆ U
}

is a morphism in gH.
(c) For every a ∈ H, g(	(a)) = 	( f (a)). In particular,

f (H†) ⊆ G† and the function f †: H† → G† given by
f †(U ) = g(U ) is a morphism in gH.

Proof First we will prove a). Let a ∈ H . It is immediate
that 	( f (a)) ⊆ {F ∈ X∨(G): R∨

f (F) ⊆ 	(a)}. Con-
versely, let F ∈ X∨(G) such that R∨

f (F) ⊆ 	(a). Suppose
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that F /∈ 	( f (a)), i.e., a /∈ f −1(F). Since f −1(F) is
an implicative filter of H then it follows from Corollary 5
that there exists P ∈ X(H) such that f −1(F) ⊆ P and
a /∈ P . Then, P ∈ R∨

f (F) ⊆ 	(a). Hence, we deduce that
a ∈ P , which is a contradiction. Thus, we have proved that
{F ∈ X∨(G): R∨

f (F) ⊆ 	(a)} ⊆ 	( f (a)).
Nowwewill prove b). LetU , V ∈ (X∨(H))+. It is imme-

diate that g(U ∩ V ) = g(U ) ∩ g(V ) and g(X∨(H)) =
X∨(G). The equality g(U ⇒ V ) = g(U ) ⇒ g(V ) can
be proved as Lemma 8 but using Corollary 17.

Finally, we will prove that g(U ∪ V ) = g(U ) ∪ g(V )

for every U , V ∈ (X∨(H))+. It is enough to prove that if
F ∈ X∨(G) and R∨

f (F) ⊆ U ∪ V then R∨
f (F) ⊆ U or

R∨
f (F) ⊆ V . Let R∨

f (F) ⊆ U∪V . Suppose that R∨
f (F) � U

and R∨
f (F) � V . Then there exist J , K ∈ X∨(H) such

that f −1(F) ⊆ J , f −1(F) ⊆ K , J /∈ U and K /∈ V . In
particular, f −1(F) ⊆ J ∩ K . Since J ∩ K ∈ X∨(H) then
J ∩ K ∈ R∨

f (F) ⊆ U ∪ V , so J ∩ K ∈ U or J ∩ K ∈ V .
Since J ∩ K ⊆ J , J ∩ K ⊆ K and U , V ∈ (X∨(H))+ then
J ∈ U or K ∈ V , which is a contradiction.

The item (c) follow from items (a) and (b). ��

The following result follows from Lemma 18.

Proposition 6 The assignments H �→ H† and f �→ f †

define a functor ( )†:Hil → gH.

A straightforward computation shows that if H is a finite
Hilbert algebra then

H† = (X∨(H))+.

We conclude this paper stating the following open prob-
lem. Is it possible to adapt the constructions of this paper
in order to get an explicit description of the (generalized)
Heyting algebra freely generated by a Hilbert algebra?
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