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Abstract
In this paper, we focus on those varieties of MTL-algebras whose lattice of subvarieties is totally ordered. Such varieties are
called linear. We show that a variety L of MTL-algebras is linear if and only if each of its subvarieties is generated by one
chain. We also study the order type of their lattices of subvarieties, and the structure of their generic chains. If L is a linear
variety with the finite model property, we have that the class of chains in L is formed by either bipartite or simple chains.
As a further result, we provide a complete classification of the linear varieties of BL-algebras. The more general case of
MTL-algebras is out of reach, but nevertheless we classify all the linear varieties of WNM-algebras.
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1 Introduction

MTL-algebras and their corresponding logic MTL were
firstly introduced in Esteva andGodo (2001), as a generaliza-
tion of Hájek’s basic logic BL, the logic that was proven in
Cignoli et al. (2000) to be the logic of all continuous t-norms
and their residua. On the other hand, MTL is the logic of all
left-continuous t-normand their residua (Jenei andMontagna
2002).

As pointed out in Noguera (2006), MTL and its axiomatic
extensions are all algebraizable in the sense of Blok and
Pigozzi (1989), and their corresponding semantics forms a
variety of algebras. The variety ofMTL-algebras and its sub-
varieties form an algebraic lattice: during the years, efforts
have been devoted to analyze and classify parts of such a lat-
tice, as well as the corresponding logics. Given an axiomatic
extension L of MTL, we denote by L its corresponding vari-
ety.

In this paper, we focus on those subvarieties of MTL

whose lattice of subvarieties forms a chain. We call such
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varieties linear. A notable example of linear variety of MTL

is given by the varietyG ofGödel algebras, as shown inHecht
and Katriňák (1972). A variety is called single chain gener-
ated whenever it is generated by one chain. A first result is
that a variety is linear if and only if each of its subvarieties is
single chain generated. In the first part of the paper, we pro-
vide an analysis of the general properties of linear varieties
of MTL-algebras.

The second part of the paper provides a classification of all
the linear varieties of BL. Our result is based on the decom-
position of any BL-chain into an ordinal sum of Wajsberg
hoops (Aglianò andMontagna 2003). The more general case
of MTL is out of reach, due to the lack of a sufficiently
strong classification of the general structure of these alge-
bras. However, we are able to classify all the linear varieties
of WNM-algebras, firstly introduced in Esteva and Godo
(2001). Finally, special cases of linear varieties are given by
almost minimal varieties, previously studied in Galatos et al.
(2007) and Aguzzoli and Bianchi (2017), andmaximally lin-
ear varieties. We conclude the paper with two sections on
them and with a final discussion of future research.

2 Preliminaries

We assume that the reader is acquainted with many-valued
logics as developed by Hájek: see Hájek (1998), Esteva and
Godo (2001) and Cintula et al. (2011) for details. In particu-
lar, we focus on some axiomatic extensions of the monoidal
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t-norm based logic MTL, firstly introduced by Esteva and
Godo (2001) and proved to be the logic of all left-continuous
t-norm and their residua in Jenei and Montagna (2002).

2.1 Syntax

The language of MTL is based over the set of connectives
{∧,&,→,⊥}: the formulas are built in the usual inductive
way from these connectives, and a denumerable set of vari-
ables.

Useful derived connectives are the following:

¬ϕ
def=ϕ → ⊥ (negation)

ϕ ∨ ψ
def=((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

(disjunction)

ϕ ↔ ψ
def=(ϕ → ψ)&(ψ → ϕ) (biconditional)

� def=¬⊥. (top)

Withϕn andnϕ,wedenote, respectively,ϕ& . . .&ϕ (n times)
and ϕ � . . . � ϕ (n times), where ϕ � ψ

def= ¬(¬ϕ&¬ψ).
MTL can be axiomatized with a Hilbert style calculus: for

the reader’s convenience, we list the axioms of MTL:

(ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) (A1)

(ϕ&ψ) → ϕ (A2)

(ϕ&ψ) → (ψ&ϕ) (A3)

(ϕ ∧ ψ) → ϕ (A4)

(ϕ ∧ ψ) → (ψ ∧ ϕ) (A5)

(ϕ&(ϕ → ψ)) → (ψ ∧ ϕ) (A6)

(ϕ → (ψ → χ)) → ((ϕ&ψ) → χ) (A7a)

((ϕ&ψ) → χ) → (ϕ → (ψ → χ)) (A7b)

((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ) (A8)

⊥ → ϕ (A9)

As inference rule, we have modus ponens:

ϕ ϕ → ψ

ψ
(MP)

An axiomatic extension ofMTL is a logic obtained by adding
one or more axiom schemata to it. A theory is a set of formu-
las: the notion of proof and logical consequence are defined
as in the classical case.

In this paper, we present results concerning several
axiomatic extensions of MTL.

The logics BL, WNM, G, DP (Hájek 1998; Esteva and
Godo 2001; Aguzzoli et al. 2014) are axiomatized as MTL
plus, respectively:

(ϕ ∧ ψ) ↔ (ϕ&(ϕ → ψ)). (div)

¬(ϕ&ψ) ∨ ((ϕ ∧ ψ) → (ϕ&ψ)). (wnm)

ϕ → (ϕ&ϕ). (id)

ϕ ∨ ¬(ϕ&ϕ). (dp)

NM is axiomatized as WNM plus:

¬¬ϕ → ϕ. (inv)

IMTL is axiomatized as MTL plus (inv). SMTL is axioma-
tized as MTL plus

¬(ϕ ∧ ¬ϕ). (s)

BP0 is axiomatized as MTL plus:

¬((¬(ϕ2))2) ↔ (¬((¬ϕ)2))2. (BP0)

NM− is axiomatized as NM plus (BP0).
For n ≥ 2, the logic SnMTL is axiomatized as MTL plus

ϕ ∨ ¬
(
ϕn−1

)
(EMn)

Note that S3MTL coincides with DP, and S2MTL is classical
propositional logic B. For n ≥ 2, SnMTL− is axiomatized
as SnMTL plus

¬
(
(ϕ ↔ ¬ϕ)n−1

)
, (nofixn)

see Noguera (2006).
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Product logic P is axiomatized as BL plus

¬ϕ ∨ ((ϕ → (ϕ&ψ)) → ψ). (canc)

Ł is axiomatized as BL plus (inv). The Chang’s logic C is
axiomatized as Ł plus (BP0). For n ≥ 2, Łn , Gn , DPn , NMn

are axiomatized as, respectively, Ł, G, DP, NM plus:

∨
1≤i≤n

(ϕi → ϕi+1) , (n-elem)

with the addition of the following family of axioms, for Ln :

(
p

(
ϕ p−1

))n ↔ n
(
ϕ p) , (n-div)

where p does not divide n − 1.

2.2 Semantics

AnMTL-algebra is an algebra 〈A, ∗,⇒,,�, 0, 1〉 such that

1. 〈A,,�, 0, 1〉 is a bounded lattice with minimum 0 and
maximum 1.

2. 〈A, ∗, 1〉 is a commutative monoid.
3. 〈∗,⇒〉 forms a residuated pair: z ∗ x ≤ y iff z ≤ x ⇒ y

for all x, y, z ∈ A.
4. The following identity holds, for all x, y ∈ A:

(x ⇒ y) � (y ⇒ x) = 1 (Prelinearity)

A totally ordered MTL-algebra is called MTL-chain.

In the rest of the paper, the notation ∼x denotes x ⇒ 0.
Let L be an axiomatic extension of MTL. It is known

(see Noguera 2006; Cintula et al. 2009) that L is algebraiz-
able in the sense of Blok and Pigozzi (1989) and that the
equivalent algebraic semantics forms a subvariety of MTL-
algebras, called L. The members of L are called L-algebras.
Following the traditional terminology, wemake an exception
for Ł, whose corresponding variety is called MV: its mem-
bers are called MV-algebras. Conversely, each subvariety L

of MTL is algebraizable, and we denote by L the corre-
sponding axiomatic extension of MTL. With B, we denote
the variety of Boolean algebras.

In particular, L is the extension ofMTL via a set of axioms
{ϕ}i∈I if and only if L is the subvariety of MTL-algebras
satisfying the equations {ϕ̄ = 1}i∈I , where ϕ̄ is obtained from
ϕ by replacing each occurrence of&,→,∧,∨,¬,⊥,�with
∗,⇒,,�,∼, 0, 1, and every formula symbol occurring in
ϕ with an individual variable. Given an MTL-chain A, and
an equation e, the notation A |� e (A �|� e) indicates that A
satisfies (does not satisfy) e. If ϕ is a formula, the notations
A |� ϕ and A �|� ϕ are defined similarly.

A variety of MTL-algebras is said to be n-contractive,
for some n ≥ 2, whenever each of its algebras satisfies the
equation xn = xn−1.

If A is an MTL-chain, with V(A) we denote the variety
generated by A, i.e., HSP(A) (Burris and Sankappanavar
1981): similarly, if K is a class of MTL-chains, then V(K )

indicates the variety generated by them. For example,V(2) =
B, where 2 is the two-element Boolean algebra. With Q(A)

and Q(K ), we denote the quasivarieties generated by A and
K , respectively (see Burris and Sankappanavar 1981). Given
an MTL-chain A, we define the sets A+ def= {a ∈ A : a >

∼a} and A− def= {a ∈ A : a < ∼a}.
With 1, we denote the trivial, one-element MTL-algebra

(up to isomorphisms).
We recall that a variety ofMTL-algebrasL is locally finite

whenever for every algebra A ∈ L and any finite subset X
of A, the subalgebra of A generated by X is finite. A vari-
ety L of MTL-algebras has the finite model property (FMP),
whenever it is generated by its finite chains. Similarly, an
axiomatic extension L of MTL has the FMP whenever it is
complete w.r.t. the class of finite L-chains.

As we shall implicitly use the following fact throughout
the paper, we stress that the equation corresponding to the
(n-elem) axiom is satisfied by anMTL-chain iff it has at most
n elements. See Cintula et al. (2009, Proposition 4.18).

2.3 Simple, bipartite and semihoop simple
MTL-chains

We first recall that, given an MTL-chainA, a filter F onA is
a non-empty set being upward closed (if x ∈ F , then y ∈ F ,
for every y ≥ x) and such that if x, y ∈ F , then x ∗ y ∈ F .
Given a filter F, we define F

def= {a ∈ A : ∼a ∈ F}.
Definition 1 – Given an MTL-chain A, with Rad(A) we

denote the largest proper filter1 of A.
– An MTL-chain A is said to be simple whenever {1} and

A are its only filters.
– AnMTL-chainA is said to be bipartite if A = Rad(A)∪
Rad(A).

– AnMTL-chainA is said to be semihoop simple if Rad(A)

is the universe of a simple totally ordered semihoop, i.e.
for all 1 �= x, y ∈ Rad(A), there is a natural n such thath
xn < y.

– An MTL-chainA is said to be strongly semihoop simple
if it is bipartite and semihoop simple.

We recall some useful properties of the radical.

Lemma 1 For every MTL-chain A, the following hold:

1 Usually Rad(A) is defined as the intersection of all the maximal
proper filters of A. Since we work only on MTL-chains, the two defi-
nitions are equivalent.
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– Rad(A) ⊆ A+.
– Rad(A) = {a ∈ A : an > ∼a for every n ≥ 1}.
– For every filter F ofA, F is downward closed, and F∪F
is a subuniverse of A.

Proof For the first two items, see Noguera et al. (2005). For
the third one, let F be a filter of anMTL-chainA. Pick x ∈ F :
then, for every y ≤ x it holds that ∼y ≥ ∼x . As ∼x ∈ F ,
then also ∼y ∈ F , whence y ∈ F , which is then downward
closed. Consider the set S = F ∪ F : since F ⊆ Rad(A) ⊆
A+, an easy check shows that F ∈ A−. Then, it is immediate
to see that S is closed under ∗. To conclude the proof, we need
to show that S is closed under ⇒. Since F is upward closed,
and for every x, y ∈ F , x ⇒ y ≥ y, we conclude that F
is closed also under ⇒. Let x ∈ F and y ∈ F ∪ F : then,
x ⇒ y ≥ ∼x . As ∼x ∈ F , also x ⇒ y ∈ F . Finally, let
x ∈ F and y ∈ F . We have x ⇒ y ≤ x ⇒ ∼∼y = x ⇒
((y ⇒ 0) ⇒ 0) = (x ∗ (y ⇒ 0)) ⇒ 0 = ∼(x ∗ ∼y). As
x ∗∼y ∈ F , then ∼∼(x ∗∼y) ∈ F , and hence ∼(x ∗∼y) ∈
F . As F is downward closed, x ⇒ y ∈ F . The proof is
settled. �
There is the following characterization, for bipartite MTL-
algebras.

Theorem 1 (Noguera et al. 2005, Theorem 3.20) LetA be an
MTL-chain. Then, the following conditions are equivalent:

– A is bipartite.
– Rad(A) = A+ and A does not have a negation fixpoint.
– A/Rad(A) � 2.
– A satisfies (BP0).

It is very easy to check that the only non-trivial simple chain
belonging to BP0 is (up to isomorphisms) 2.

2.4 Semihoops, hoops, ordinal sums

Definition 2 A semihoop is a structure A = 〈A, ∗,,⇒, 1〉
such that 〈A,, 1〉 is an inf-semilattice with upper bound 1,
∗ is a binary operation on A with unit 1, and ⇒ is a binary
operation such that:

– x ≤ y iff x ⇒ y = 1,
– (x ∗ y) ⇒ z = x ⇒ (y ⇒ z).

A bounded semihoop is a semihoop with a minimum ele-
ment; conversely, an unbounded hoop is a hoop without
minimum.

– A hoop is a semihoop satisfying x ∗(x ⇒ y) = y ∗(y ⇒
x).

– A Wajsberg hoop is a hoop satisfying x ⇒ (x ⇒ y) =
y ⇒ (y ⇒ x).

– A cancellative hoop is a hoop satisfying x ⇒ (x∗y) = y.

Lemma 2 (Blok and Ferreirim 2000; Esteva et al. 2003)
Every totally ordered Wajsberg hoop is either bounded, or
it is cancellative. Bounded Wajsberg hoops are the 0-free
reducts of MV-algebras.

Definition 3 Let 〈I ,≤〉 be a totally ordered set with mini-
mum 0. For all i ∈ I , let Ai be a totally ordered semihoop
such that for i �= j , Ai ∩ A j = {1}. Assume also that A0

is bounded. Then,
⊕

i∈I Ai (the ordinal sum of the family
(Ai )i∈I ) is the structure whose base set is

⋃
i∈I Ai , whose

top is 1, and whose operations are:

x ⇒ y =

⎧⎪⎨
⎪⎩

x ⇒Ai y if x, y ∈ Ai
y if ∃i > j(x ∈ Ai and y ∈ A j )

1 if ∃i < j(x ∈ Ai \ {1} and y ∈ A j )

x ∗ y =

⎧
⎪⎨
⎪⎩

x ∗Ai y if x, y ∈ Ai
x if ∃i < j(x ∈ Ai \ {1}, y ∈ A j )

y if ∃i < j(y ∈ Ai \ {1}, x ∈ A j )

x  y =

⎧
⎪⎨
⎪⎩

x Ai y if x, y ∈ Ai
x if ∃i < j(x ∈ Ai \ {1}, y ∈ A j )

y if ∃i < j(y ∈ Ai \ {1}, x ∈ A j )

A totally ordered semihoop is indecomposable if it is not iso-
morphic to an ordinal sum of two non-trivial totally ordered
semihoops.

An easy check shows that every ordinal sumof totally ordered
semihoops, with the first component bounded, is an MTL-
chain. Also, as shown inAglianò andMontagna (2003) every
totally ordered Wajsberg hoop is indecomposable.

The following result concerns the general structure of
MTL-chains.

Theorem 2 (Noguera 2006, Theorem 4.5.4) For every MTL-
chain, there is a maximum decomposition as ordinal sum of
indecomposable totally ordered semihoops, with the first one
bounded.

Observe that the idempotent elements in any ordinal sum of
semihoops are exactly 1 and the bottoms of every bounded
component.

2.5 BL-chains

Theorem 2 is significantly strengthened if restricted to BL-
chains.

Theorem 3 (Aglianò and Montagna 2003) Every BL-chain
can be uniquely decomposed as an ordinal sum of Wajsberg
hoops, whose first component is bounded.
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MV-algebras are exactly the bounded Wajsberg hoops
(Esteva et al. 2003). The standard MV-algebra [0, 1]Ł equips
the unit intervalwith the operations x∗y = max{0, x+y−1},
x  y = min{x, y}, and x ⇒ y = min{1, 1 − x + y}. For
k ≥ 2,Lk is the subvariety ofMV generated by the k-element
MV-chain Lk = ({0, 1

k−1 , . . . ,
k−1
k−1 }, ∗,→, 0), whose oper-

ations are defined by restriction from those of [0, 1]Ł. Notice
that two finite MV-chains with the same cardinality are iso-
morphic. Clearly L2 � 2.

Given an MV-chain A, with Rad(A) we denote the max-
imal proper filter of A. It is well known that A/Rad(A)

is a simple MV-chain. An MV-chain has finite rank if
|A/Rad(A)| is finite, i.e., A/Rad(A) � Lk , for some k. In
particular, Rank(A) = |A/Rad(A)| if A/Rad(A) is finite,
while Rank(A) = ∞ otherwise. For m ≥ 2, the MV-
chain Km is defined as Γ (Z ×lex Z, (m − 1, 0)), where Γ

is Mundici’s functor, which provides the categorical equiv-
alence between MV-algebras and lattice-ordered Abelian
groups with a distinguished strong order unit: see Cignoli
et al. (1999) for details.

Notice thatKn/Rad(Kn) is isomorphic withLn . TheMV-
algebra K2 is the well-known Chang’s MV-algebra. The
variety related to the logic C is generated by K2: it will be
denoted C.

With P, we denote the variety of product algebras.
Each totally ordered product algebra is isomorphic to the

ordinal sum of 2 ⊕ A, where A is a cancellative hoop, and
each totally ordered cancellative hoop arises as the second
and last component of a product chain (Esteva et al. 2003).
Notice that each totally ordered cancellative hoop either is
the singleton or has infinitely many elements.

2.6 WNM-chains

In this section, we provide some results concerning WNM-
chains and their operations.

Lemma 3 (Gispert 2003) In every WNM-chain A, the oper-
ations ∗ and ⇒ are defined as follows, for every x, y ∈ A:

x ∗ y =
{
0 if x ≤ ∼y

min{x, y} otherwise.

x ⇒ y =
{
1 if x ≤ y

max{∼x, y} otherwise.

(1)

We now describe the structure and the operations of DP-
chains.

Lemma 4 (Noguera 2006; Aguzzoli et al. 2014) Every DP-
chain A with more than two elements has a coatom c.
Moreover, the operations ∗ and ⇒ of such a chain are the
following ones, for every x, y ∈ A:

x ∗ y =
{
0 if x, y < 1,

min{x, y} otherwise.

x ⇒ y =

⎧⎪⎨
⎪⎩

1 if x ≤ y,

c if 1 > x > y,

y if x = 1.

(2)

Observe that the coatom c is a negation fixpoint, that is,
∼c = c.

3 Completeness properties

Definition 4 Let L be an axiomatic extension of MTL. Then:

– L enjoys the single-chain completeness (SCC) if there is
an L-chain such that L is complete w.r.t. it.

– L enjoys the finite strong single-chain completeness
(FSSCC) if there is an L-chain such that L is finitely
strongly complete w.r.t. it.

– L enjoys the strong single-chain completeness (SSCC) if
there is an L-chain such that L is strongly complete w.r.t.
it.

– Lenjoys thehereditary single-chain completeness (HSCC),
if L and every of its (consistent) axiomatic extensions
have the SCC.

– L enjoys the hereditary strong single-chain completeness
(HSSCC), if L and every of its (consistent) axiomatic
extensions have the SSCC.

Theorem 4 (Montagna 2011, Theorem 3) Let L be an
axiomatic extension of MTL having the FSSCC. Then, L has
also the SSCC.

Theorem 5 For every finite MTL-chain A, it holds that the
class of chains inV(A) coincideswithHS(A), andHS(A) =
SH(A). As a consequence, if V(A) = V(B), for some finite
MTL-chain B, then A � B.

Proof Let A be a finite MTL-chain. It is known that every
variety of MTL-algebras is congruence distributive, and then
by Burris and Sankappanavar (1981, Ch. IV, §6, Corollary
6.10), we have that all the subdirectly irreducible algebras
in V(A) belong to HS(A). Note that every chain in V(A)

is finite, as A satisfies the identity (n-elem) for some n, and
hence subdirectly irreducible; moreover, every subdirectly
irreducible MTL-algebra is totally ordered. Since every ele-
ment of HS(A) is a chain, we conclude that the class of
chains in V(A) coincides with HS(A). Since every variety
ofMTL-algebras has the congruence extension property (see
Noguera 2006), we have that HS(A) = SH(A).

Suppose that V(A) = V(B), for some finite MTL-chain
B. By Burris and Sankappanavar (1981, Ch. IV, §6, Exercise
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5), we conclude that A � B. As a matter of fact, if A �� B
and |A| = |B|, then A /∈ HS(B) and B /∈ HS(A), whence
V(A) �= V(B). �

4 Linear varieties of MTL-algebras: basic
definitions and results

Lemma 5 LetLbea variety ofMTL-algebras. Then, the class
of its non-trivial subvarieties, ordered by inclusion forms a
latticeLL, havingL as maximum, and the variety of Boolean
algebras B as minimum.

Definition 5 Let L be a variety of MTL-algebras. Then

– L is said to be single chain generated whenever V(A) =
L, for some chain A ∈ L.

– L is said to be strongly single chain generated whenever
L is strongly complete w.r.t A, for some chain A ∈ L.

– L is said to be linear whenever the lattice of its subvari-
eties is totally ordered.

– L is said to be strongly linear whenever L is linear, and
for every subvariety L

′ ⊆ L, there is a chain in A ∈ L
′

such that every countable chain in L
′ is embeddable into

A.

BL,MV,P,G are only few examples of varieties being single
chain generated. P and G are linear.

We can state the following proposition which easily fol-
lows from the previous definitions.

Proposition 1 Let Llin be the class of all the linear vari-
eties of MTL-algebras, ordered by inclusion. Then Llin is a
downward-closed sub-inf-semilattice of LMTL.

Wealso recall the notion of almostminimal varieties ofMTL-
algebras, a topic firstly introduced and studied in Galatos
et al. (2007) and Katoh et al. (2006) for residuated lattices,
and further analyzed in Aguzzoli and Bianchi (2017).

Definition 6 AvarietyLofMTL-algebras is saidalmostmin-
imal whenever B � L, and B is the only proper non-trivial
subvariety of L.

In other words, almost minimal (AM, for short) varieties are
the atoms ofLMTL. It is immediate to check that every almost
minimal variety is also linear. The converse, clearly, does not
hold: G is a counterexample.

Moving to the logical side, we have the following facts,
obtained byDefinitions 4, 5 andCintula et al. (2009, Theorem
3.5).

Remark 1 Let L be an axiomatic extension L of MTL. Then,

– L enjoys the SCC whenever L is single chain generated.

– L enjoys the SSCC whenever L is strongly single chain
generated.

Theorem 6 Let L be a variety of MTL-algebras. Then, L

is linear if and only if every non-trivial subvariety of L is
single chain generated. Equivalently, L is linear if and only
if L enjoys the HSCC.

Proof Let L be a variety of MTL-algebras.
Assume first that every subvariety of L is generated by

a chain. By Aguzzoli and Bianchi (2016, Theorem 5.1), we
have that every non-trivial subvariety ofL is join irreducible,
inLMTL. Then, clearlyL is linear, for otherwise itwould con-
tain a subvariety which is the join of other two subvarieties.

Assume now that L is linear: then, by Lemma 5 we have
that every subvariety in LL is join irreducible. By Aguzzoli
and Bianchi (2016, Theorem 5.1), we have that every one
of these varieties is single chain generated. By Remark1, we
conclude that L is linear if and only if L enjoys the HSCC. �

Theorem 7 A variety L of MTL-algebras is strongly linear
if and only if the logic corresponding to L, say L, has the
HSSCC.

Proof Immediate by Theorem 6 and Cintula et al. (2009,
Theorem 3.5). �

5 Logical characterization of linearity

In this section, we discuss some logical properties related to
linear varieties.

Lemma 6 Let L be an axiomatic extension of MTL having
the HSCC. If L is generated by an infinite chain, then every
variety generated by an infinite L-chain must contain all the
finite L-chains.

Proof Let L be an axiomatic extension of MTL having the
HSCC, and assume that L is generated by an infinite chain.
Suppose that there is an infinite L-chain B such that C /∈
V(B), for some finite L-chain C. Since L has the HSCC, the
lattice of the subvarieties of L must form a chain, and hence
V(C) ⊆ V(B) or V(B) ⊆ V(C). However, V(C) � V(B),
since C /∈ V(B). Moreover,V(B) � V(C), sinceB is infinite,
while C is finite. Hence,we have a contradiction, andwemust
conclude that every variety generated by an infinite L-chain
must contain all the finite L-chains. �

Theorem 8 Let L be an axiomatic extension of MTL having
the HSCC. Then, for every n ≥ 2, all the L-chains of cardi-
nality n are isomorphic.

Moreover, if L has the finite model property,
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– If L is generated by an infinite L-chain, then every other
infinite L-chain is generic.Moreover, the only proper sub-
varieties of L, which are infinitely many, are those singly
generated by a finite chain. As a consequence, the lattice
of the subvarieties of L is isomorphic to ω + 1.

– The only proper subvarieties of L are those singly gen-
erated by a finite chain.

Proof Let L be an axiomatic extension of MTL having the
HSCC.

Suppose by contradiction that there are two finite L-chains
A,B with the same cardinality, and such that A �� B. Then,
B /∈ HS(A) and A /∈ HS(B), and by Theorem 5, we con-
clude that B /∈ V(A) and A /∈ V(B). However, since L has
HSCC, the lattice of the subvarieties of L forms a chain,
which implies that V(A) ⊆ V(B) or V(B) ⊆ V(A), a con-
tradiction.We conclude that, for every n ≥ 2, all the L-chains
of cardinality n are isomorphic.

Suppose now that L has the finite model property: as a
consequence, L is generated by the class of its finite chains.

If L is generated by a finite chain, then we immediately
have that also every subvariety of L is generated by a finite
chain, since L has the HSCC, and every L-chain is finite.

If L is generated by an infinite chain, by Lemma 6 and
the FMP we immediately obtain that L is generated by every
other infinite L-chain.

Since L has theHSCC,we have that the only proper subva-
rietiesL are the ones generated by afinite chain. Suppose now
by contradiction thatL contains only a finite number of finite
chains: let k be the cardinality of the largest one. As a conse-
quence, every chain in L satisfies

⊔
1≤i≤k(xi ⇔ xi+1) = 1,

which would imply that there are no infinite L-chains, a con-
tradiction. Then, there are infinitely many non-isomorphic
finite L-chains, and since L has the HSCC, the lattice of the
subvarieties of L is isomorphic to ω + 1. This concludes the
proof. �

Remark 2 Note that there are axiomatic extensions of MTL
having the HSCC, but for which the FMP fails to hold. An
example is given by product logic.

However, we have the following result.

Theorem 9 Let L be an axiomatic extension of MTL having
the HSCC. Then, L has the FMP if and only if one of the
following two cases holds.

1. L is generated by a finite chain.
2. L is generated by an infinite chain, and

2.1. V(A) = L for every infinite L-chain A.
2.2. There is no finite upper bound on the cardinality

of non-trivial finite chains in L.

Proof Let L be an axiomatic extension of MTL having the
HSCC. If 1 holds, then it is immediate to check that L has
the FMP. If 2 holds, then since L is linear, there is an L-chain
C such that V(K ) = V(C). Note that C cannot be finite,
as otherwise every chain in V(K ) would have at most |C|
elements, in contrast with 2. So C must be infinite, and by 2
we conclude that V(K ) = V(C) = L. Then, L has the FMP.

Assume now that L has the FMP, and suppose by contra-
diction that neither 1 nor 2 hold. Let us call K the class of
non-trivial finite L-chains. Then, L is generated by an infi-
nite chain C and either there is an infinite L-chainD such that
V(D) � V(C) or there is k ∈ N such that |E | ≤ k, for every
finite L-chainE . Observe that suchD cannot exist, as it would
be in contrast to Theorem 8: then, V(F) = L, for every infi-
nite L-chain F . So, the only possibility is that |E | ≤ k, for
every E ∈ K , but—since L is linear and C is infinite—this
would imply that V(K ) � V(C) = L, and hence, the FMP
would not hold, a contradiction. Then, we conclude that if L
has the FMP, either 1 or 2 must hold. The proof is settled. �
Clearly, the HSSCC implies the HSCC. Does the converse
hold? We are only able to provide a partial answer.

Theorem 10 Let L be an axiomatic extension having the
HSCC, SSCC, and FMP. If for every finite L-chainA it holds
that HS(A) = IS(A ∪ {1}), then L enjoys also the HSSCC.

Proof Let L be an axiomatic extension having the HSCC,
SSCC, and FMP, and assume that for every finite L-chainA,
it holds thatHS(A) = IS(A∪{1}). Since L has the SSCC by
hypothesis, it is enough to show that the same holds for all
the axiomatic extensions of L. By Theorem 8, we know that
the only proper subvarieties of L are the ones generated by a
single finite chain. LetA be a finite chain, and let us callM the
logic related toV(A). By hypothesisHS(A) = IS(A∪{1}),
and hence by Theorem 5, we have that every non-trivial chain
inV(A) is isomorphic to a subalgebra ofA. By Cintula et al.
(2009, Theorem 3.5), M has the SSCC. Then, we conclude
that L enjoys the HSSCC. �

6 Linear varieties generated by a finite
chain: general results

We start with some general results concerning finite MTL-
chains.

Proposition 2 Let A be a finite MTL-chain. Then, for every
filter F in A there is an idempotent c ∈ A such that F =
{x ∈ A : x ≥ c}.
Proof Let A be a finite MTL-chain. Then, a filter F is a
finite set, and hence, it has a minimum, say m. Since F is
closed under the monoidal operation, m must necessarily be
idempotent. Finally, F is a totally ordered upward closed set,
and hence, we conclude that F = {x ∈ A : x ≥ m}. �
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Theorem 11 Let A be a finite MTL-chain such that every
non-trivial chain in H(A) belongs to IS(A). Then, V(A)

is linear if and only if for every B, C ∈ S(A) it holds that
B ↪→ C or C ↪→ B.
Proof LetA be a finiteMTL-chain such that every non-trivial
chain in H(A) belongs to IS(A). By Theorem 5, every non-
trivial chain in V(A) belongs to SH(A) = IS(A(A ∪ {1})).
Then, for every B, C ∈ S(A), we have that V(B) ⊆ V(C) if
and only if B ↪→ C. From this fact, we obtain the theorem’s
claim. �
Corollary 1 Let A be a finite MTL-chain being simple or
strongly semihoop simple. Then, V(A) is linear if and only
if for every B, C ∈ S(A) it holds that B ↪→ C or C ↪→ B.
Proof LetA be a finite MTL-chain being simple or strongly
semihoop simple. Then, {1} and Rad(A) are the only proper
filters of A whence every non-trivial chain in H(A) belongs
to IS(A). By Theorem 11, V(A) is linear if and only if for
every B, C ∈ S(A) it holds that B ↪→ C or C ↪→ B. �
As a consequence, we have the following result.

Theorem 12 Let L be a linear variety generated by a finite
MTL-chain being simple or strongly semihoop simple. Then,
L is also strongly linear.

Proof Immediate by Corollary 1 and Cintula et al. (2009,
Theorem 3.5). �
We can also provide the following characterization, for the
linear varieties generated by a finite MTL-chain.

Lemma 7 Let A be a non-simple MTL-chain with negation
fixpoint. Then, there is a chain B ∈ V(A) without negation
fixpoint, and such that B �� 2. As a consequence, V(A) is
not linear.

Proof Let A be a non-simple MTL-chain with negation
fixpoint f . Then, {1} � Rad(A) � A. By Lemma 1,
Rad(A) ∪Rad(A) is the carrier of a subalgebra ofA, which
is bipartite by construction. Let us call B such chain. As
{1} � Rad(A) � A, we have that |B| > 2. Note that the sub-
algebra of A generated by f is isomorphic to L3, and then,
we have that B /∈ V(L3), which implies V(B) � V(L3).
As B is bipartite by Theorem 1, we have that B |� (BP0)
and L3 �|� (BP0). Then, V(L3) � V(B), which implies that
V(A) is not linear. �
Lemma 8 Let A be a finite MTL-chain such that {1} �

Rad(A) � A+. Then, V(A) is not linear.

Proof Let A be a finite MTL-chain such that {1} �

Rad(A) � A+. By Lemma 1, Rad(A)∪Rad(A) is the carrier
of a subalgebra of A, and by the construction, it is bipartite.
Let us call B such chain. As {1} � Rad(A) � A+, we have

thatB is bipartite andnot simple. Since {1} � Rad(A) � A+,
by Theorem 1 A/Rad(A) is not bipartite.

By Theorem 1 V(A/Rad(A)) � V(B), as B |�(BP0)
and A/Rad(A) �|� (BP0). As A/Rad(A) is finite and sim-
ple, by Theorem 5, every chain in V(A/Rad(A)) belongs to
HS(A/Rad(A)) = IS(A/Rad(A) ∪ {1}). Since A/Rad(A)

is simple (i.e., there are no idempotent elements between 0
and 1), the same holds for every of its subalgebras, and this
implies that V(B) � V(A/Rad(A)), as B is not simple (in
particular, it has at least one idempotent element between 0
and 1). Then, V(A) is not linear, and the proof is settled. �

Remark 3 One can ask if Lemma 8 holds true, when A is
infinite. Actually, we do not know the answer, as we cannot
use the same proof strategy. Indeed, if A is infinite, it is
not necessarily true that V(A/Rad(A)) � V(A). Just take
A = Γ (Q ×lex Z, (1, 0)).

A direct inspection shows that {1} � Rad(A) � A+, and
V(A/Rad(A)) = V(A) = MV, as A and A/Rad(A) are
both infinite MV-chains with infinite rank.

Theorem 13 Let A be a finite MTL-chain such that V(A) is
linear. Then, A is simple or bipartite.

Proof Immediate by Lemmas 7 and 8. �

As a consequence,

Corollary 2 Let L be a linear variety of MTL-algebras gen-
erated by a finite chain. Then, the chains in L are either all
bipartite or all simple.

Proof Let L be a linear variety of MTL-algebras generated
by a finite chain. By Theorem 13, every chain in L is simple
or bipartite. By contradiction, assume L contains two chains
A, B, being, respectively, simple and bipartite, and having
both at least three elements (this to avoid trivialities, as 2
is both simple and bipartite). Clearly, A /∈ V(B), as B |�
(BP0) and A �|� (BP0). Also, by Theorem 5 B /∈ V(A), as
B /∈ HS(A). This because B contains at least a non-Boolean
idempotent, being finite (with at least three elements) and
bipartite, and A does not, being finite and simple. But then
L is not linear, a contradiction. The proof is settled. �

Then,

Theorem 14 Let L be a linear variety of MTL-algebras gen-
erated by a finite chain. Then, either L � BP0 or L ⊆
SnMTL, for some k ≥ 3.

Proof Immediate byCorollary 2, and the fact that every finite
and simple MTL-chain satisfies ∼(xn) � x = 1, for some
n ≥ 0. �
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7 Linear varieties and finite model property

Theorem 15 Let L be a linear variety of MTL-algebras hav-
ing the FMP. Then, every chain in L is either simple or
bipartite.

Proof Let L be a linear variety of MTL-algebras having the
FMP. If L is generated by a finite chain, then the result fol-
lows by Theorem 13. Suppose now that L is generated by
an infinite chain, and assume by contradiction that there is
a chain A ∈ L being neither simple nor bipartite. Then, A
is necessarily infinite. As L is linear, by Lemma 7 A cannot
have a negation fixpoint. SinceA is neither simple nor bipar-
tite, we must have that {1} � Rad(A) � A+. By Lemma 1,
Rad(A) ∪Rad(A) is the carrier of a subalgebra ofA, say C.
By construction, C is bipartite, and |C| ≥ 3. By Theorem 9,
we have that L = V(A).

Suppose that C is infinite. As C is bipartite, we have
C |�(BP0), and since A �|� (BP0), this would imply that
V(C) �= V(A) = L, in contrast to Theorem 9.

So, the only possibility is that C is finite. As L is linear, by
Corollary 2 a finite chain inL is either simple or bipartite. Let
B ∈ L be a finite chain. If |B| ≤ |C|, thenB ∈ V(C), and then
B is necessarily bipartite. If |B| > |C|, then C ∈ V(B): this
implies that B cannot be simple, as otherwise C /∈ HS(B).
Then, by Theorem 13, we must conclude that B is bipartite.
As a consequence, all the finite chains in L must be bipartite.
However, L has the finite model property, and since every
finite chain satisfies (BP0), this implies that every chain in L

is bipartite, in contrast to the fact that A �|� (BP0).
Since in all the cases we obtain a contradiction, we must

conclude that either every chain inL is simple or it is bipartite,
and the proof is settled. �
This result can be strengthened:

Lemma 9 Let L be a linear variety of MTL-algebras having
the FMP. If there is a chain in L being bipartite and not
simple, then every chain in L is bipartite.

Proof Let L be a linear variety of MTL-algebras having the
FMP, and assume that there is a chain A ∈ L being bipartite
and not simple. This means that |A| ≥ 3. If A is infinite,
then by Theorem 9 V(A) = L, and hence, every chain in L

is bipartite.
Finally, assume thatA is finite. Because of the linearity of

L every chain B ∈ L with |B| ≤ |A| is such that B ∈ V(A),
and hence B is bipartite. Moreover, every finite chain C ∈ L

with |C| > |A| is such that A ∈ V(C): by Theorem 13,
C is simple or bipartite. However, C cannot be simple, as
otherwise A /∈ HS(C) (remember that |A| ≥ 3), and hence,
it must be bipartite. As a consequence, all the finite chains in
L are bipartite, and by the FMP, we have that every chain in
L is bipartite. �

Theorem 16 Let L be a linear variety of MTL-algebras hav-
ing the FMP. Then,

– every chain in L is simple or
– every chain in L is bipartite.

Proof Let L be a linear variety of MTL-algebras having the
FMP. If there is at least one A ∈ C which is bipartite, then
by Lemma 9 every chain in L is bipartite.

If no chain in L is bipartite, then by Theorem 15 every
chain in L must be simple. �

8 Linear varieties of WNM-algebras

In this section, we classify all the linear subvarieties of
WNM. We begin by introducing a new variety, called F.

Definition 7 Let us call F the variety of WNM-algebras
axiomatized as WNM plus:

∼
((

∼
(
x2

))2) ⇔
(
∼

(
(∼x)2

))2 = 1, (bp0)

x � ∼
(
x2

)
� y � ((y ⇒ x)  (∼∼x ⇒ x)) = 1. (F)

The aim of this section is to show that the only linear varieties
of WNM-algebras are the following ones:

– G and its subvarieties.
– DP and its subvarieties.
– NM

− and its subvarieties.
– F and its subvarieties, where every chain A ∈ F is such
that if |A| > 2, then A has a coatom c, ∼∼c = c, and
∼c is the predecessor of c.

We also show that all these varieties are strongly linear.

Lemma 10 Let A be a WNM-chain, and let B be a subset
of A, containing {0, 1} and which is closed under negation.
Then, B is the carrier of a subalgebra of A.

Proof Immediate by (1). �
Theorem 17 Let V be a subvariety of WNM containing at
least two among G3 or NM4 or L3. Then, V is not linear.

Proof Immediate by the fact that if A,B ∈ {G3,NM4,L3},
and A �= B, then V(A) � V(B), and V(B) � V(A). �
Theorem 18 LetA be a WNM-chain having an element 0 <

x < 1 with ∼x = 0. If there is 0 < y < 1 with ∼y > 0 (i.e.,
A /∈ G), then V(A) is not linear.
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Proof LetA be aWNM-chain having an element 0 < x < 1
with ∼x = 0, and 0 < y < 1 with ∼y > 0. Then, by
Lemma 10 the subalgebra ofA generated by x is isomorphic
toG3. Note that∼y is involutive, as∼∼∼y = ∼y, and since
0 < y < 1, we have 0 < ∼y < 1, and 0 < y ≤ ∼∼y <

1. As a consequence, by Lemma 10 the subalgebra of A
generated by ∼y is isomorphic to L3 or NM4, depending on
whether ∼y = ∼∼y or ∼y �= ∼∼y. By Theorem 17, V(A)

is not linear. �
Lemma 11 LetA be a WNM-chain with negation fixpoint f .
Then, A is a DP-chain if and only if for every 0 < x < 1 it
holds that ∼x = f .

Proof Let A be a DP-chain with a negation fixpoint f . By
Lemma 4, f is the coatom of A, and for every 0 < x < 1 it
holds ∼x = f . Let now A be a WNM-chain with negation
fixpoint f , and assume that for every 0 < x < 1 it holds that
∼x = f . This implies that x ≤ f , for every 0 < x < 1:
indeed, if x is greater than f , and ∼x = f , then x ∗ f = 0,
in contrast to the fact that f = ∼ f = max{z : z ∗ f = 0}.
Then, x ≤ f , for every 0 < x < 1, and by Lemma 4, we
immediately see that A is a DP-chain. �
Theorem 19 LetA be aWNM-chainwith a negation fixpoint.
If |A| > 3 andA is not a DP-chain, then V(A) is not linear.

Proof Let A be a WNM-chain with a negation fixpoint f .
Clearly if |A| = 3, thenA � L3, andV(A) is linear. Assume
now that |A| > 4 and that A is not a DP-chain. Then, by
Lemma 11 there is 0 < x < 1 such that ∼x �= f : if ∼x =
0, then by Theorem 18 V(A) is not linear. Suppose then
0 < x,∼x < 1: since ∼∼∼x = ∼x , we have that ∼x is
involutive, and clearly 0 < x ≤ ∼∼x < 1. Since ∼x �=
f by hypothesis, we have ∼∼x �= f , and hence, ∼∼x is
not a negation fixpoint. By Lemma 10, the subalgebra of A
generated by ∼x has {0,∼x,∼∼x, 1} as carrier, and it is
isomorphic to NM4. On the other hand the subalgebra of
A generated by f is isomorphic to L3, and by Theorem 17
V(A) is not linear. �
Lemma 12 LetA be anMTL-chain without negation fixpoint
such that A+ has a minimum m, and ∼∼m = m. Then,
∼m = max(A−).

Proof LetA be an MTL-chain such that A+ has a minimum
m, and ∼∼m = m: then, clearly ∼m < ∼∼m = m, and
∼m ∈ A−. Suppose by contradiction that there is a ∈ A−
such that a > ∼m. Then, ∼a ∈ A+, and ∼a ≤ ∼∼m = m,
which implies ∼a = m, and ∼a ∗ m = 0. This, however, is
a contradiction, as ∼a > ∼m = max{z : z ∗ m = 0}. �
Proposition 3 The only chains in F are those WNM-chains
having a coatom c with∼∼c = c, and∼c is the predecessor
of c.

Proof Let A be a WNM-chain belonging to F. Since A sat-
isfies bp0, by Gispert (2003, Theorem 2) there is no negation
fixpoint. Note that if x = 1 or y = 1 or x ≤ ∼x or y ≤ ∼y,
then F holds.

Suppose that |A+| ≥ 3: then, we can find x, y ∈ A+ \ {1}
with x > y. Since x ⇒ y < 1, ∼(x2) < 1, ∼(y2) < 1,
we immediately have that F is not satisfied. So we must have
that |A+| ≤ 2. If |A+| = 1, then A � 2 or A must be
a DP-chain; however, we exclude this last case, as A does
not have a negation fixpoint. If |A+| = 2, then A has a
coatom 0 < c < 1, and A+ = {c, 1}. Then, F is satisfied if
{x, y} = A+. The only case left is x = y = c, and a direct
inspection shows that F holds true if and only if ∼∼c = c.
As c = min(A+) by Lemma 12 we have ∼c = max(A−)

(remember thatA does not have negationfixpoint), and hence
∼c is the predecessor of c. Then,we conclude that every chain
in F is a WNM-chain having a coatom c with ∼∼c = c, and
∼c is the predecessor of c. �
By Proposition 3, (1) and the fact that ∼ is order reversing,
we also have that:

Lemma 13 Let A be a chain in F, and let c be its coatom.
Then, for every 0 < x < ∼c (if any) it holds that ∼x = c. In
particular, the operations ∗ and ⇒ are the following ones,
for every x, y ∈ A:

x ∗ y =

⎧⎪⎨
⎪⎩

min{x, y} if x, y ≥ c or

x = 1 or y = 1,

0 otherwise.

x ⇒ y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x ≤ y,

c if 0 ≤ y < x ≤ ∼c,

∼c if x = c and y < c,

y otherwise.

Theorem 20 Every infinite chain in F is generates the whole
variety.

Proof As F � WNM, we have that F is locally finite, and
then it has the finite model property. By Proposition 3, we
have that every chain A ∈ F has a coatom c, and ∼c is its
predecessor. It follows that if A has more than 4 elements,
then there is 0 < x < ∼c: in particular, if A is infinite,
then it has infinitely many elements between 0 and ∼c. As
∼ is order reversing, for every 0 < x < ∼c it holds that
∼x ≥ ∼∼c = c, and hence, ∼x = c. So, if B is an infinite
chain in F, it is immediate to check that every finite chain in
F can be embedded into B, and hence V(B) = F. �
Theorem 21 Let A,B be two chains in F. Then

– If |A| < |B|, then A ↪→ B.
– If 〈A,≤A〉 � 〈B,≤B〉, then A � B.
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– The only proper subvarieties of F are those singly gen-
erated by a finite chain.

Proof Let A,B be two chains in F.
Assume first that |A| < |B|: observe that by Proposition 3

a chain in F has more than four elements if and only if there
is at least one 0 < b < ∼c, where c is its coatom. Hence
by Proposition 3 and Lemma 13, we immediately have that
A ↪→ B. As an immediate consequence of Lemma 13 if
〈A,≤A〉 � 〈B,≤B〉, then A � B. From this last fact and
Theorem 20, we have that the only proper subvarieties of F

are the ones generated by a finite chain. �
In the following Theorem 22, we shall use the WNM-chain
Q, first introduced in Aguzzoli and Bianchi (2016).

Definition 8 Let us callQ theWNM-chain 〈{0, a, b, c, 1}, ∗,

⇒,min,max, 0, 1〉, with 0 < a < b < c < 1, and whose
negation ∼ is defined as follows.

x ∼x

0 1
a c
b a
c a
1 0

Let us call Q the variety generated by Q.

Theorem 22 Let A be a WNM-chain such that there is 0 <

x < 1 with ∼∼x = x and ∼x �= x. If A /∈ NM ∪ F, then
V(A) is not linear.

Proof Let A be a WNM-chain such that there is 0 < x < 1
with ∼∼x = x , ∼x �= x , andA /∈ NM∪F. SinceA /∈ NM,
there is 0 < y < 1 with ∼∼y > y. We have two cases.

Assume first that there is z /∈ {x,∼x} with 0 < z < 1
and ∼∼z = z. If ∼z = z, then by Theorem 19 V(A) is
not linear. Assume now ∼z �= z: note that the subalgebra
of A generated by {x, z} has {0, x, z,∼x,∼z, 1} as carrier,
and it is isomorphic to NM6. However, the subalgebra of
A generated by y, say B, has at most 5 elements, and it is
not an NM-chain (since y is not involutive). It follows that
V(B) � NM6, NM6 � V(B), and V(A) is not linear.

The second case is when x and ∼x are the only involutive
elements between 0 and 1: without loss of generality assume
that ∼x < x . Since A /∈ F, by Proposition 3 there is x <

a < 1 or there is ∼x < b < x . Assume first that there is
x < a < 1: if ∼a = 0 by Theorem 18 V(A) is not linear.
We exclude the case ∼∼a = a, as x and ∼x are the only
involutive elements between 0 and 1. Then, suppose ∼∼a >

a, and ∼a > 0: as ∼∼∼a = ∼a, ∼a is involutive, and

we must have ∼a ∈ {x,∼x}, as 1 > a,∼a > 0. However,
∼∼a > a > x > ∼x , and hence, we have a contradiction.

Suppose now that there is ∼x < b < x . since ∼ is order
reversing, we have ∼b > ∼x > 0, and we exclude the case
∼∼b = b, as x and ∼x are the only involutive elements
between 0 and 1. So∼∼b > b, and∼b > 0: since∼∼∼b =
∼b, we have that ∼b is involutive, and since 1 > b,∼b > 0,
we have ∼b ∈ {x,∼x}. Because ∼∼b > b > ∼x , the only
possibility is ∼b = ∼x , and hence ∼x = ∼b < b < x . This
implies that b is idempotent. An easy check shows that the
subalgebra ofA generated by b is isomorphic to the chainQ
described in Definition 8. It is easy to show thatQ/{x, 1} �
G3, while the subalgebra of A generated by x is isomorphic
to NM4. Since NM4 � G3 and G3 � NM4, we conclude
that V(A) is not linear. Since there are no other cases, this
concludes the proof. �
Theorem 23 The only linear subvarieties of WNM are the
following ones.

– G and its subvarieties.
– DP and its subvarieties.
– NM

− and its subvarieties.
– F and its subvarieties.

Proof First of all, by the results ofHecht andKatriňák (1972),
Aguzzoli et al. (2014), Bianchi (2015) and Gispert (2003) we
have that G, DP, NM

− and their subvarieties are linear. By
Theorems 20 and 21, we have that also F and its subvarieties
are linear.

TakenowaWNM-chainA inWNM\(G∪DP∪NM
−∪F):

we show that V(A) is not linear. Notice first that |A| ≥ 4, as
all theWNM-chainswith two or three elements are contained
in G ∪ DP. If A has a negation fixpoint, then since A /∈
DP by Theorem 19 V(A) is not linear. So, assume that A
does not have negation fixpoint, and pick 0 < x < 1, with
x ∈ A. If ∼x = 0, since A /∈ G by Theorem 18 V(A)

is not linear. Suppose now that ∼∼x = x and ∼x �= x :
since A /∈ NM

− ∪ F, and it has no negation fixpoint, then
A /∈ NM ∪ F. By Theorem 22, V(A) is not linear. The last
case iswhen∼∼x > x and∼x > 0.Note that∼∼∼x = ∼x ,
and clearly 0 < ∼∼x < 1. Again, by Theorem 22 V(A) is
not linear. �
We now show that all these varieties are also strongly linear.

Lemma 14 Let L ∈ {G, DP, NM
−, F}. Then, for every pair

of chains A,B ∈ L the following holds:

– If |A| < |B|, then A ↪→ B.
– If 〈A ≤A〉 � 〈B,≤B〉, then A � B.
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Proof Immediate by the results of Hecht and Katriňák
(1972), Bianchi (2015), Aguzzoli et al. (2014) and Gispert
(2003) and Theorem 21. �
Theorem 24 The varieties G, DP, NM

−, and F are strongly
linear.

Proof Let L ∈ {G, DP, NM
−, F}. Since by Theorem 23 L is

linear, and it is locally finite, by Theorem 8 we have that for
every infinite chain A, V(A) = L, and every subvariety of
L is generated by a finite chain. By Lemma 14, given a finite
L-chain A it holds that every chain in V(A) is a subalgebra
of A. Hence by Cintula et al. (2009, Theorem 3.5) the logic
related to V(A) has the SSCC, and as a consequence, every
proper subvariety of L is strongly linear. To conclude the
proof, it remains to show that L has the SSCC: let A be an
infinite L-chain. By Lemma 14, we have that every finite L-
chain is embeddable into A, and since L is locally finite it
follows that every L-chain is partially embeddable into A.
By Cintula et al. (2009, Theorem 3.8) L has the FSSCC, and
by Theorem 4, we conclude that L has the SSCC, and L is
strongly linear. �

9 Linear varieties of BL-algebras

In this section, we classify all the linear varieties of BL-
algebras.

We start with the following result.

Theorem 25 ( Bianchi and Montagna 2009, Lemma 7) Let L
be an axiomatic extension of BL which is not n-contractive,
for any n. Then, L contains the variety of product algebras
P or the variety generated by Chang’s MV-algebra, K2.

Hence, in the rest of the section we analyze three cases.
Specifically, then-contractive linear varieties ofBL-algebras,
and the cases of linear varieties of BL-algebras containing P

or C.
We begin by presenting a family of varieties that will be

shown to be the only linear varieties of BL-algebras contain-
ing P.

Definition 9 – Let P∞ be the variety axiomatized as BL

plus (BP0) and

∼x � (x ⇒ (x ∗ x)) ⇒ x = 1. (SC)

– For k ≥ 1, let Pk be the variety axiomatized as P∞ plus:

(
k�

i=0

((xi+1 ⇒ xi ) ⇒ xi )

)
⇒

(
k+1⊔
i=0

xi

)
= 1. (λk+1)

The rest of the section is devoted to prove the following
results.

– Theonlyn-contractive varieties ofBL-algebraswhich are
linear are G and its subvarieties, the family of varieties
{Lk : k − 1 = hn, where n ≥ 1, and 1 ≤ h is prime},
and the family of varieties {V(2 ⊕ Lk) : k − 1 =
hn, where n ≥ 1, and 1 ≤ h is prime}.

– The only variety of BL-algebras which is linear and con-
tains C is C itself.

– The only varieties of BL-algebras which are linear and
contain P are the variety P∞, and the family {Pk}k≥2. In
particular, P = P1 � P2 � P3 � . . . � P∞, where
every chain in P∞ (Pk , k ≥ 1, respectively) has the form
2 ⊕ C, where C is an ordinal sum of cancellative hoops
(C is an ordinal sum of at most k cancellative hoops,
respectively).

We show that all these varieties are also strongly linear.

9.1 Linear n-contractive varieties of BL-algebras

This first subsection is devoted to the classification of linear
n-contractive varieties of BL-algebras.

Lemma 15 Let A be a finite BL-chain. Then, the class of
non-trivial chains in V(A) coincides with IS(A).

Proof Let A be a finite BL-chain. By Theorem 5, the class
of chains in V(A) coincides with HS(A) = SH(A). Note
that every finite MTL-chain is n-contractive, for some n, and
by Bianchi and Montagna (2011, Proposition 1) every n-
contractiveBL-chain is isomorphic to an ordinal sumof finite
MV-chains with at most n-elements, which are all simple. It
follows thatA is simple or it is isomorphic to an ordinal sum
of finite simpleMV-chains, and in this last case, the filters are
given by {1} and the upper sets of the bottom elements of each
component. Hence, by Definition 3 we have that H(A) ⊆
IS(A ∪ {1}), and then HS(A) = SH(A) = IS(A ∪ {1}). We
conclude that every non-trivial chain in V(A) is isomorphic
to a subalgebra of A. �
Theorem 26 LetLbea variety generated by ann-contractive
BL-chainA � ⊕

i∈I Ai such thatA /∈ G, and |I | > 2. Then
L is not linear.

Proof Let L be a variety generated by an n-contractive BL-
chain A � ⊕

i∈I Ai such that A /∈ G, and |I | > 2. By
Bianchi andMontagna (2011, Proposition 1) everyAi is iso-
morphic to an ordinal sum of finite MV-chains with at most
n-elements. SinceA /∈ G, there is k ∈ I such thatAk � Lh ,
with h > 2. Since A has more than two components, it has
G4 as a subalgebra (just take the subalgebra generated by
the bottom elements of two components different from the
first one). Let now B be the subalgebra generated by Ak :
we have that B � Lh or B � 2 ⊕ Lh . In both the cases,
we have that G4 /∈ V(B): indeed by Lemma 15 the non-
trivial chains in V(B) are isomorphic to the subalgebras of
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B. Since B �|� x = x2, we have B /∈ V(G4), and hence
V(B) � V(G4) and V(G4) � V(B). As a consequence, L is
not linear, and this concludes the proof. �
Theorem 27 A variety of the form Lk is linear if and only if
k − 1 = hn, where n ≥ 1, and 1 ≤ h is prime.

Proof By the results of Grigolia (1977), we have that for
2 ≤ l < m, Ll ∈ Lm if and only if l − 1 divides m − 1, and
by Lemma 15, this happens if and only if Ll ↪→ Lm , which
implies Ll ⊆ Lm .

It is then immediate to check that for each integer k > 0,
the variety Lk is linear if and only if k = hn + 1 for some
prime number h and some integer n > 0, as the only divisors
of k − 1 are the numbers of the form hm for 0 < m ≤ n.
Indeed if k is not of that form, there exist two divisors of
k − 1, say r , s, which are not one the multiple of the other.
But then Lr /∈ Ls , Ls /∈ Lr , and Lk would not be linear. �
We conclude the section with the classification of linear n-
contractive varieties of BL-algebras.

Theorem 28 The only linear n-contractive varieties of BL-
algebras are the following ones.

– The variety of Gödel algebras.
– Every variety generated by a chain of the form Gk , for

k ≥ 2.
– Every variety generated by a chain of the form Lk , with
1 ≤ k − 1 = hn, where h is prime and n ≥ 1.

– Every variety generated by a chain of the form 2 ⊕ Lk ,
with 1 ≤ k − 1 = hn, where h is prime and n ≥ 1.

Proof As shown in Hecht and Katriňák (1972), G is linear,
as well as Gk , with k ≥ 2. By Theorem 27 we have that if
1 ≤ k − 1 = hn , where h is prime, and n ≥ 1, then Lk is
linear.

Pick now B � 2 ⊕ Lk , with 1 ≤ k − 1 = hn , where
h is prime and n ≥ 1. By Lemma 15 the only non-trivial
chains in V(B) are the subalgebras of 2 ⊕ Lk , that is, the
chains isomorphic to 2 ⊕ Lh , where h − 1 divides k − 1.
By Theorem 27, for every pair of subalgebras of B, say 2 ⊕
Li , 2 ⊕ L j , with i < j , we have 2 ⊕ Li ↪→ 2 ⊕ L j , and
hence, V(2 ⊕ Li ) � V(2 ⊕ L j ). We conclude that V(B) is
linear.

Finally, pick an n-contractive BL-chain C which is not of
the type specified in the theorem.

IfC is anMV-chain, then byTheorem27V(C) is not linear.
If C has more than two components, since by hypothesis C /∈
G, byTheorem26wehave thatV(C) is not linear. IfC is of the
form 2⊕Li with i not being of the form hn +1 for any prime
number h and any integer n > 0, then i − 1 has two divisors
j1 and j2 which are not multiple the one of the other, as in the
proof of Theorem 27. Then, both 2 ⊕ L j1+1 and 2 ⊕ L j2+1

embeds into 2 ⊕ Li , which is not linear, as V(2 ⊕ L j1+1) �

V(2 ⊕ L j2+1) and V(2 ⊕ L j2+1) � V(2 ⊕ L j1+1). The last
case is when C is isomorphic to an ordinal sum of exactly two
(non-trivial) components, and the first one, say C0 has more
than two elements, say h. So, C0 � Lh , but notice that the
subalgebra generated by the bottom element of the second
component of C is isomorphic toG3. SinceV(G3) � V(Lh),
and V(Lh) � V(G3), we conclude that V(C) is not linear.
Since there are no other cases, this concludes the proof. �

9.2 Linear varieties of BL-algebras containing P

We start with the following characterization.

Theorem 29 LetL be a variety of BL-algebras such that P �

L. If L contains a BL-chain A � ⊕
i∈I Ai such that:

– A0 is an MV-chain with more than two elements or
– there is i > 0 such that Ai is bounded, that is, Ai is an
MV-chain,

then L is not linear.

Proof LetL be a variety of BL-algebras such that P � L,and
that contains a BL-chain A � ⊕

i∈I Ai with the properties
mentioned in the statement.

If A0 is an MV-chain with more than two elements, then
observeA0 ∈ L, since it is a subalgebra ofA. SinceV(A0) �

P and P � V(A0), we have that L is not linear.
The last case is when there is i > 0 such that Ai is

bounded: let us call 0i the minimum of this component. Note
that the algebra generated by 0i is isomorphic to the three ele-
ments Gödel chain G3. Since V(G3) � P, and P � V(G3),
we conclude that L is not linear. �
Corollary 3 Let L be a variety of BL-algebras such that P �

L. If L is linear, then every chain has the form 2⊕ ⊕
I∈i Ci ,

where every Ci is a cancellative hoop.

Proposition 4 Let A be an infinite totally ordered cancella-
tive hoop. Then, every other totally ordered cancellative hoop
can be partially embedded into it.

Proof Let C∞ = 〈{ai : i ∈ N}, ∗,,⇒〉 , 1 be a hoop such
that a0 < a1 < a2 < . . ., and for every ai , a j ∈ C∞,
ai ∗a j = ai+ j , ai ⇒ a j = amax{0, j−i}. As shown in Aglianò
et al. (2007, Theorem 6.2), the chain 2 ⊕ C∞ generates the
variety of product algebras as quasivariety, and hence byCin-
tula et al. (2009, Theorem3.8) every product chain is partially
embeddable into 2⊕C∞. Since a BL-chain is a product chain
if and only if it has the form 2⊕B, whereB is a totally ordered
cancellative hoop, we conclude that every totally ordered
cancellative hoop is partially embeddable into C∞. More-
over, in Aglianò et al. (2007, Lemma 6.1) it is shown that C∞
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is embeddable into every infinite totally ordered cancella-
tive hoop. Hence, we conclude that if A is an infinite totally
ordered cancellative hoop, then every other totally ordered
cancellative hoop can be partially embedded into it. �
Proposition 5 – Given k ≥ 2, every BL-chain of the form

2⊕C, where C is an ordinal sum of k infinite cancellative
hoops, generates the same variety.

– Every BL-chain of the form 2⊕ C, where C is an ordinal
sum of infinitely many infinite cancellative hoops, gener-
ates the same variety.

Proof Pick two BL-chains A � 2 ⊕ ⊕
i∈I Ci and B � 2 ⊕⊕

j∈J Di such that for every i, j ,Ci andD j are infinite totally
ordered cancellative hoops.

Assume first that I = J = {1, 2, . . . , k}. By Proposi-
tion 4, we have that, for every i ∈ {1, . . . , k}, Ci is partially
embeddable in Di , and viceversa.

Hence,V
(
2 ⊕ ⊕

i∈I Ci
) = V

(
2 ⊕ ⊕

i∈I Di
)
. This shows

the first claim of the theorem.
Suppose now that I , J are both infinite, and suppose by

contradiction that there is an equation e = 1 that is satisfied
in A but not in B. Clearly, in e there occur only finitely
many variables, say x1, . . . , xn . Then, there is an n-tuple
( j1, . . . , jn) of elements in B such that eB( j1, . . . , jn) < 1B.
By Definition 3, an easy and well-known inductive argument
shows that for all subterms t of e we have that the value
tB( j1, . . . , jn) is either 0 or it lies in a summand Ck for some
index k belonging to a finite subset K of J such that |K | ≤
n. Recall now that by Proposition 4, for every h, k > 0,
Dh is partially embeddable into Ck whence 2 ⊕ ⊕

j∈J D j

partially embeds into 2 ⊕ ⊕
i∈I Ci and the equation e = 1

fails inA, too: we have reached a contradiction.We conclude
that V

(
2 ⊕ ⊕

i∈I Ci
) = V

(
2 ⊕ ⊕

i∈I Di
)
, and the proof is

settled. �
We now provide a characterization of the chains in P∞ and
in Pk , for k ≥ 1:

Theorem 30 1. A BL-chain belongs to P∞ if and only if it
has the form 2 ⊕ ⊕

i∈I Ci , where each Ci is a totally
ordered cancellative hoop.

2. P∞ is generated by each BL-chain of the form 2 ⊕⊕
i∈I Ci , where I is infinite, and each Ci is a totally

ordered infinite cancellative hoop.
3. For k ≥ 1, a BL-chain belongs to Pk if and only if it has

the form 2 ⊕ ⊕
i∈I Ci , where 0 ≤ |I | ≤ k.

4. For k ≥ 1, Pk is the variety generated by each BL-chain
of the form 2⊕ ⊕

i∈I Ci , where |I | = k, and each Ci is a
totally ordered infinite cancellative hoop.

5. The only subvarieties of P∞ are the ones of the form Pk ,
for k ≥ 1, and the variety of Boolean algebras.

6. If i < j , Pi � P j . In particular, P1 coincides with P.

Proof 1. Let A � 2 ⊕ ⊕
i∈I Ci , where each Ci is a totally

ordered cancellative hoop. Clearly A does not have a
negation fixpoint, and Rad(A), the largest filter of A
coincides with A+ = ⊕

i∈I Ci . Then, by Noguera et al.
(2005, Theorem 3.20) A |�(BP0). An easy check shows
also that A |�SC.
Pick nowA ∈ P∞. SinceA |�SC, there is no idempotent
element 0 < x < 1. Indeed, if not then ∼x = 0, as the
non-Boolean idempotents of a BL-chain are the bottom
elements of the Wajsberg components, and (x ⇒ (x ∗
x)) ⇒ x = 1 ⇒ x = x < 1. However, this would imply
A �|� SC, a contradiction. So, if A � ⊕

i∈I Ai , with
|I | > 1, then for every i > 0 Ai must be an unbounded
hoop, as otherwise its minimum would be idempotent
between 0 and 1. If A is an MV-chain, then it cannot
have more than three elements: indeed, if |A| > 3, then
there would be at least one element 0 < a < 1 with 0 <

a < ∼a < 1, and (a ⇒ (a ∗ a)) ⇒ a = ∼a ⇒ a < 1,
a contradiction. Moreover, A |�(BP0), and by Noguera
et al. (2005, Theorem 3.20) A does not have a negation
fixpoint. Hence, ifA is an MV-chain, thenA � 2. Since
every BL-chain has an MV-chain as first component of
its decomposition as ordinal sum, we conclude that if
A ∈ P∞, then A � 2 ⊕ ⊕

i∈I Ci , where each Ci is a
totally ordered cancellative hoop.

2. Let A � 2 ⊕ ⊕
i∈I Ci and B � 2 ⊕ ⊕

j∈J Di where for
every i, j , Ci andD j are infinite totally ordered cancella-
tive hoops. Assume also that I is infinite. By the proof
of Proposition 5, we have that B is partially embeddable
intoA. Hence, by point 1 of the present theorem we have
that V(A) = P∞.

3. By definition, Pk (k ≥ 1) is a subvariety of P∞. Pick
A ∈ Pk , with k ≥ 1. As A |�λk+1, by 1 and Aglianò
and Montagna (2003, Lemma 4.2) we have that A �
2 ⊕ ⊕

i∈I Ci , where 0 ≤ |I | ≤ k.
4. Let A � 2 ⊕ ⊕

i∈I Ci and B � 2 ⊕ ⊕
j∈J Di where for

every i, j , Ci andD j are infinite totally ordered cancella-
tive hoops. Assume also that |J | ≤ |I | = k − 1. By the
proof of Proposition 5, we have thatB is partially embed-
dable into A, and hence by 3 we have that V(A) = Pk .

5. Immediate by 1–4.
6. Immediate by 3, 4, 5.

�
Finally,

Theorem 31 The only linear varieties of BL-algebras con-
taining P are P∞, and {Pk}k≥2.

Proof Immediate by Corollary 3 and Theorem 30. �
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9.3 Linear varieties of BL-algebras containingC

Theorem 32 LetLbe a variety of BL-algebras containing the
variety C generated by Chang’s MV-algebra. If L contains
a BL-chain A such that:

– A is not an MV-chain or
– A is a simple MV-chain with more than two elements,

then L is not linear.

Proof L be a variety of BL-algebras containing the variety
C generated by Chang’s MV-algebra.

Assume first thatL contains a BL-chainAwhich is not an
MV-chain. Then, we have A � ⊕

i∈I Ai , where |I | ≥ 2. If
there is i > 0 such thatAi is bounded, let 0i be the minimum
of such component. Note that the algebra generated by 0i
is isomorphic to the three elements Gödel chain G3. Since
V(G3) � C, and C � V(G3), we have that L is not linear.
If there is i > 0 such that Ai is unbounded, then the algebra
generated by Ai is 2 ⊕ Ai , and it generates P. Since P � C

and C � P, we conclude that L is not linear.
Suppose now that L contains a simple MV-chain A with

more than two elements. Then, there is k ≥ 3 such that Lk

is a subalgebra of A, and hence, Lk ∈ L. Since V(Lk) � C,
and C � V(Lk), we conclude that L is not linear. �
We now show that the only linear variety of BL-algebras
containingC isC itself.We startwithKomori’s classification.

Theorem 33 (Cignoli et al. 1999, Theorem 8.4.4) A class
C of MV-algebras is a proper variety of MV-algebras (i.e.,
B ⊆ C � MV) iff there are two finite sets I and J of integers
greater or equal than 2 such that I ∪ J �= ∅ and C =
V({Li }i∈I }, {K j } j∈J }).
Lemma 16 (Cignoli et al. 1999) For every n ≥ 2, Kn has
rank n.

Then, we can finally state the following result.

Theorem 34 The only linear variety of BL-algebras contain-
ing C is C itself.

Proof Let L be a linear variety of BL-algebras containing
C. By Theorem 32 we have that L � MV, and L does not
contain simpleMV-chainswithmore than twoelements. Sup-
pose by contradiction that L �= C. Since as pointed out in
Cignoli et al. (1999), K2 is Chang’s MV-algebra, by Theo-
rem 33 there is A ∈ L such that A ∈ {Lh,Kh}, with h > 2.
However, this is a contradiction, since by hypothesis L does
not contain simple MV-chains with more than two elements,
and by Lemma 16 Kh/Rad(Kh) � Lh ∈ V(A) ⊆ L. Then,
we conclude that L = C. �

From this theorem and the results of the previous two sec-
tions, we are able to classify all the linear subvarieties ofBL.

Theorem 35 The only linear varieties of BL-algebras are the
following ones.

– G and {Gk}k≥2.
– The family of varieties {Lk : k − 1 = hn, 1 ≤

h is prime and n ≥ 1}
– The family of varieties {V(2 ⊕ Lk) : k − 1 = hn, 1 ≤

h is prime and n ≥ 1}.
– The variety C.
– P, P∞, and {Pk}k≥2.

All these varieties are also strongly linear.

Proof In Theorem 28, it is shown that the only linear n-
contractive varieties of BL-algebras are G, {Gk}k≥2, {Lk :
k − 1 = hn, 1 ≤ h is prime and n ≥ 1}, and the family of
varieties {V(2 ⊕ Lk) : k − 1 = hn, 1 ≤ h is prime and n ≥
1}. The fact that they are also strongly linear easily follows
from the results of Hájek (1998) and Grigolia (1977) and
Montagna (2011, Theorem 9).

By Theorem 31, the only linear varieties of BL-algebras
containing P are P, P∞, and {Pk}k≥2. The fact that P is
strongly linear follows by Montagna (2011, Theorem 9).
Pick now k > 1, and two chains A � 2 ⊕ ⊕

i∈I Ai and
B � 2 ⊕ ⊕

j∈J B j , where I is infinite, |J | = k, and all the
Ai ’s andB j ’s are infinite cancellative hoops. By Theorem 30
and Propositions 5 and 4, we have thatA ∈ P∞,B ∈ Pk , and
every chain in P∞ (Pk) is partially embeddable into A (B,
respectively). By Cintula et al. (2009, Theorem 3.8), Theo-
rems 4, and 7 we conclude that P∞ and {Pk}k≥2 are strongly
linear.

By Theorem 34, the only linear variety of BL-algebras
containingC isC itself. By Bianchi (2012, Theorem 3.12),C
is strongly linear, as its only subvariety is the one of Boolean
algebras.

By Theorem 25, there are no other cases, and hence, the
proof is settled. �

10 Almost minimal varieties of MTL-algebras

In this section, we focus on the almost minimal varieties of
MTL-algebras.

By definition, every almost minimal variety is an atom, in
LMTL.

In Aguzzoli and Bianchi (2017), it has been provided a
classification of the AM varieties of BL and WNM. Using
Theorems 35 and 23, the following result becomes an easy
corollary.
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Theorem 36 ( (Aguzzoli and Bianchi 2017, Theorems 6,8))
The AM varieties in BL are G3, P, C, and {Lk : k −
1 is prime}. The AM varieties in WNM are G3, NM4 and
L3.

We now recall some results from Aguzzoli and Bianchi
(2017).

Theorem 37 (Aguzzoli and Bianchi 2017, Theorem 4) LetA
be a finite MTL-chain. Then, the variety L = V(A) is almost
minimal if and only if |A| > 2, and every element 0 < a < 1
singly generates A.

Theorem 38 (Aguzzoli and Bianchi 2017, Theorem 2) Let L
be an almost minimal variety of MTL-algebras. Then either
every L-chain is simple or every L-chain is bipartite.

Compare the following result with Theorem 14. Note that,
for k ≥ 4 DPk is linear but not AM.

Theorem 39 (Aguzzoli and Bianchi 2017, Theorem 3) Let L
be an almost minimal variety of MTL-algebras. Then, either
L � BP0 or L = L3 or L � S

−
n MTL, for some n ≥ 4.

Theorem 40 Let L be an almost minimal variety generated
by a finite chain. Then, L is strongly linear.

Proof Let L be an almost minimal variety generated by a
finite chain, say A. By Theorem 5, up to isomorphisms, the
only chains in L are 2 and A. Since 2 ↪→ A, and classi-
cal propositional logic is strongly complete w.r.t. 2 (i.e., B

is strongly linear), by Theorem 7 and Cintula et al. (2009,
Theorem 3.5) we have that L is strongly linear. �
Clearly every AM variety is linear, but is it also strongly
linear? We have a partial answer, in the light of Theorem 38.

Theorem 41 LetA be an infinite and simpleMTL-chain such
that L = V(A) is almost minimal. ThenQ(A) = V(A), and
L has the SSCC. Whence L is strongly linear.

Proof Let A be an infinite and simple MTL-chain such that
L = V(A) is almost minimal. Then,A ∈ SkMTL, for some
k ≥ 4, and by Aguzzoli et al. (2014, Theorem 5), the Δ

operator is definable in the language. As a consequence, by
Cintula et al. (2009, Theorem 3.2, Proposition 3.18), we have
that Q(A) = V(A). Then, by Cintula et al. (2009, Theorem
3.2) and Montagna (2011, Theorem 3), L has the SSCC. �
Notice that up to nowwe are not able to exhibit anMTL-chain
satisfying the conditions of Theorem 41.

We now provide two theorems, related to AM varieties
generated by a finite IMTL or SMTL-chain.

Lemma 17 (Aguzzoli and Bianchi 2017, Lemma 1) LetA be
an MTL-chain containing 0 < a < 1 such that a ∗ a = a
and ∼∼a = a. Then, the subalgebra of A generated by a is
isomorphic to NM4.

Theorem 42 The only almost minimal variety of IMTL-
algebras being generated by a finite and not simple IMTL-
chain is NM4.

Proof Let L be a almost minimal variety of IMTL-algebras,
and assume thatL = V(A), whereA is a finite and not simple
IMTL-chain. By Theorem 13 A is also bipartite. Then, by
Proposition 2 A has an idempotent element 0 < a < 1,
namely min(Rad(A)). By Lemma 17, we have thatNM4 ↪→
A. Then, since L is almost minimal we must have that A �
NM4. �

Theorem 43 The only almost minimal variety of SMTL-
algebras being generated by a finite SMTL-chain is G3.

Proof LetL = V(A) be an almostminimal variety of SMTL-
algebras, where A is a finite SMTL-chain. As |A| > 2, and
SMTL � BP0 (see Cignoli and Torrens 2006) it is easy
to check that A is bipartite, not simple, and 0 < m =
min(Rad(A)) < 1 is an idempotent element. Then, as A
has a strict negation, it follows that the algebra generated by
m is isomorphic toG3. IfA �� G3, thenV(2) � G3 � V(A),
which would imply that V(A) is not almost minimal, a con-
tradiction. Then, we conclude that the only almost minimal
variety of SMTL-algebras being generated by a finite SMTL-
chain is G3. �

We end this section with a result connecting almost-
minimality with local finiteness.

Theorem 44 LetLbe a locally finite variety ofMTL-algebras
such that B � L. Then, the class of almost minimal subvari-
eties of L is finite, and each of them is generated by one finite
chain.

Proof Let L be a locally finite variety of MTL-algebras such
that B � L. Due to the local finiteness, we immediately have
that every almost minimal subvariety of L must be gener-
ated by one finite chain. Assume by contradiction that the
class C = {Li }i∈I of all the almost minimal subvarieties
of L is infinite. Being AM, by Theorem 37 each Li is gen-
erated by exactly one chain, up to isomorphisms, say Ai .
Note that, up to isomorphisms, there are only finitely many
MTL-chains with cardinality k ∈ N. Since C = {Li }i∈I is
infinite, we must conclude that {Ai }i∈I is a(n infinite) set
of finite chains of unbounded cardinality. Then, the direct
product B = Πi∈IAi is a member of L. Since every Ai is
finite and has more than two elements, it must have a coatom
0 < ci < 1. Take the element x = (ci )i∈I ∈ B.

By Theorem 37, given i ∈ I , ci generates Ai . Since
{Ai }i∈I is a set of finite chains of unbounded cardinality, we
easily see that x generates infinitely many elements. Then, x
generates an infinite subalgebra of B, in contrast to the fact
that L is locally finite, a contradiction.
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Then, we conclude that the class of almost minimal sub-
varieties of L is finite, and each of them is generated by one
finite chain. �

It will be interesting to settle whether the converse of The-
orem 44 holds:

Problem 1 Let L be an AM variety containing only finitely
many AM varieties, each of them generated by a finite chain.
Is it always true that L is locally finite?

11 Maximally linear varieties

Recall from Proposition 1 that the class LinL of lin-
ear subvarieties of a variety L of MTL-algebras forms a
downward-closed poset which inherits from LL the struc-
ture of sub-inf-semilattice. Moreover, it is obvious that the
poset LinL is a tree rooted in the variety of Boolean algebras
B. Then LinL constitutes a faithful and complete descrip-
tion of the structure of a downward-closed fragment of L. In
this light, it is useful to observe that we cannot expand the
sub-inf-semilattice LinL without losing the property that its
shape is a tree. Particular interest lies in the leaves of this tree,
when they exist. We call them maximally linear varieties.

Definition 10 Let L be a variety of MTL-algebras. Given a
variety L ⊆ M ⊆ MTL, we say that L is maximally linear
within M whenever every variety N such that L � N ⊆ M

is not linear.

The following are corollaries of our classification of all the
linear varieties of WNM- and BL-algebras.

Theorem 45 The maximally linear varieties of WNM-
algebras are exactly G, NM

−, DP, F.

So, LinWNM has a maximum antichain, formed by its max-
imally linear varieties.

The situation is not so amenable for the BL case.

Theorem 46 The maximally linear varieties of BL-algebras
are exactly G, C, P∞.

whence the linear varieties of the form Lk orV(2⊕Lk) have
not a maximally linear varieties of BL-algebras above them.

An interesting problem is then the following:

Problem 2 Are there any examples of maximally linear vari-
eties in LinMTL?

We conclude this section stressing a property that identi-
fies Chang’s logic C inside the logics based on BL-algebras.
Compare with Aguzzoli and Bianchi (2017, Theorem 9),
where we characterized product logic as the only logic
which is both continuous-t-normbased andminimallymany-
valued.

Theorem 47 If a variety V of BL-algebras is both almost
minimal and maximally linear, then V = C. Furthermore, if
a variety V of MV-algebras is maximally linear then V = C.

Proof Immediate, from Theorems 34 and 35. �

12 Conclusions and future research topics

Our future research will be aimed at further investigating
the structure and classification of linear varieties of MTL-
algebras, being well aware that a complete classification is
probably out of reach. We shall address Problem 1 and Prob-
lem 2, but many other questions have been left unanswered
in this work. We list some of them.

Problem 3 Let L be a linear variety of MTL-algebras. Is it
always true that L is strongly linear?

Theorem 41 provides a partial answer.

Problem 4 Let L be a linear variety of MTL-algebras. Is it
always true that every chain inL is either simple or bipartite?

Every almost minimal variety is linear. Some open problems
besides Problem 1 are:

Problem 5 Can we find a characterization for the infinite
MTL-chains that generates AM varieties?

Problem 6 Is it true that every AM variety is strongly linear?

Finally, we plan to investigate other topics, like the amalga-
mation property for linear varieties, as well as the connection
between linear varieties and strictly join irreducible vari-
eties of MTL-algebras (a notion firstly introduced in Bianchi
2018). Also, it would be interesting to find a classification of
which linear varieties of MTL-algebras are finitely axioma-
tizable, from MTL.
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