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Abstract
In this paper, we introduce an automatic and robust method to detect and identify Alzheimer’s disease (AD) using themagnetic
resonance imaging (MRI) and positron emission tomography (PET) images.AD research as utilizedwith clinical and computer
aid diagnostic tools has been strongly developed in recent decades. Several studies have resulted in many methods of early
detection of AD, which benefit patient outcomes and new findings on the development of a deeper understanding of the
mechanisms of this disease. Therefore, using the operation of electronic computers to diagnose automatically the incident of
AD has served a vital role in supporting clinicians as well as easing significant elaboration on manual and subjectively AD
diagnosing of clinicians for the patient’s beneficial outcomes. To this end, we propose a deep learning approach-based model
of AD detection applying to MRI and PET images. Individually, we extract non-white matter of brain PET images, which are
guided by MRI images as an anatomical mask. Before running the classification module, we build an unsupervised network
entitled the high-level layer concatenation autoencoder to pre-train the network with inputs as three-dimensional patches
extracted from pre-processed scans. The learned parameters are reused for a well-known convolutional neural network to
boost up the training procedure. We conduct experiments on a public data set ADNI and classified a subject into one of three
groups: normal control, mild cognitive impairment, and AD. Our proposed method outperforms for AD detection problem
than other methods.

Keywords Alzheimer’s disease diagnostic · 3D-VGG16 · HiLCAE · Non-WM PET · MRI

1 Introduction

Alzheimer’s disease (AD) is an irreversible and progressive
brain disorder that slowly destroys memory and thinking
skills and eventually compromises the patient’s ability to
carry out the simplest tasks. It is the most common form of
dementia (Alzheimer’s Association 2014). The word demen-
tia describes a set of symptoms that can include memory loss
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and difficulties with thinking, problem-solving, or language
skills. These symptoms occur when the brain is damaged by
certain diseases, including AD. Recently, there have been
several tools and methods to diagnose the AD, such as con-
ducting tests of memory, carrying out standard medical tests,
and performing brain scans. The use of computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) is usually used for the brain scan
system to rule out other possible causes for symptoms. The
use of a structural MRI is a powerful tool because of high
resolution and its ability to capture anatomical details of the
brain, while the use of a PET is a promising indicator with
discovering and investigating new radioactive tracers (Jack
et al. 2001;McKhann et al. 2011). To take advantage of these
images, the system first extracts the dominant features from
brain images using feature extraction methods, and then a
classifier is trained to identify which set of categories that an
observation belongs. In general, a patient after classification
is divided into three groups: AD, mild cognitive impairment
(MCI), and normal control (NC).
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In AD diagnosis, research in the use of a machine learn-
ing(ML) area was used to predict the AD using bio-masker
extraction from multi-view of MRI, PET, and CT data (Bron
et al. 2015). In the studies, the support vectormachine (SVM)
is the most popular ML method for classification applying
after feature extraction process (Batmanghelich et al. 2009;
Yang et al. 2011; Janousova et al. 2012; Rueda et al. 2012;
Eskildsen et al. 2014). As dementia progresses, it is note
that the volume of grey matter gradually decreases. This is
called brain atrophy. For PET images in a normal ageing per-
son, amyloid responses set on only white matter regions. In
dementia, the amyloid uptake associates with a high magni-
tude that binds on grey matter. As dementia progresses, the
intake of the amyloid in grey matter is greater. Therefore, the
amyloid accumulation is normal in white matter only, but
when the amyloid accumulation is also seen in grey matter,
it is diagnosed as dementia. However, in reality, there are
ambiguous cases when the amyloid uptake is beyond white
matter if it is a normally ageing person, while it is not too
high uptake in grey matter to diagnosis as a dementia patient.

While previous studies focused onMRI (Bron et al. 2015;
Eskildsen et al. 2014; Kloppel et al. 2008; Suk et al. 2015) as
an essential technique for AD detection, recent cases of AD’s
clinical diagnosis with PET were reported notable results
(Camus et al. 2012; Selnesa et al. 2012; Saint-Aubert et al.
2014;Heurling et al. 2015). Clinical results in (Heurling et al.
2015) report that PET agents targeting amyloid deposition
cannot distinguish true grey matter uptake from white mat-
ter uptake. PET’s functionality mechanism is also based on
mechanism ofADvia radioactive visualization of PET agent.
Therefore, it can more effectively detect the disease status of
a person than the way which is based on only anatomical
changes in brain structure as in MRI. Particularly, in a very
old person (older than age 75), it is difficult to classify if
this person’s brain is in normal or diseased since the volume
of brain structure is commonly decreased according to age
(Camus et al. 2012). It reveals that PET is necessary, espe-
cially for early AD detection, when chances in anatomy are
hard to realize.

Typically, clinical PET-based AD detection is based on
visualization by clinician experts.Many studies have focused
on automatic detection of AD with the aid of statistical test-
ing conducted with the role of experts in evaluations. These
statistical values can be standard uptake value (SUV), stan-
dard uptake value ratio (SUVR), or the volume of each region
of interest (ROI) (Saint-Aubert et al. 2014). However, these
results are sensitive with group features as normalization,
sampled scales, the variation of shape and the size of subject
brains within the group. According to Noble and Scarmeas
(2013), the PET imaging has a critical role as a functional
technique that may enable clinicians to observe quickly and
exactly activities related to AD of human brain, via diffusion
of radioactive substances, such as the Pittsburgh compoundB

(PiB) (Klunk et al. 2004) or 18-FluoroDeoxyGlucose (FDG)
(Mosconi et al. 2010). As stated in Mosconi et al. (2010),
the FDG-PET images have been used to measure cerebral
metabolic rates of glucose (CMRglc), a proxy for neuronal
activity in AD. The CMRglc can be used to distinguish AD
from other dementias, predict and track decline from normal
cognition to AD, and identify individuals at risk for AD prior
to the onset of cognitive symptoms.

Furthermore, because of the white matter degeneration,
the amyloid uptake to white matter also can be changed
according to the status of the disease (Selnesa et al. 2012).
Therefore, it is useful to remove white matter (WM) from
each PET image to avoid ambiguous amyloid uptake bind-
ing and consider the remaining regions as input to classify
the status of AD. Based on these findings, we propose a fully
automatic AD classification method using the discriminat-
ing features of non-WM PET images extracted by masking
with MRI images from a same subject, which captured at
the same time. Thanks to very quick response of PET agent,
we can not only detect the status of diseased brain early, but
also classify if a person’s brain is in normal or diseased accu-
rately. By using the non-WM tissue, we solve the problem of
the ambiguous amyloid based onMRI guide. In addition, we
conduct a pre-trained strategy with a variant of convolutional
autoencoder network, namely high-level layer concatena-
tion autoencoder (HiLCAE) to learn hyper-parameters and
apply them as an initialization for the following classifier net-
work rather than using random initialization. Yosinski et al.
(2017) proved that transferring the features even from distant
tasks outperforms the random weights, because the transfer
learning provides an effective way in training a large net-
work using scarce training data without over-fitting. We use
a well-known CNN architecture called VGG16 (Simonyan
and Zisserman 2014) as AD classification method in our
study. We conduct experiments for the classification of nor-
mal control (NC), mild cognitive impairment (MCI), and AD
onADNI data set. The resultswith classification accuracy are
presented comparing to other methods.

The rest of this paper is organized as follows. Section 2
reviews the current literature on AD diagnosis. The detail
of our proposed method is described in Sect. 3. The exper-
imental setting and results are presented in Sect. 4. Finally,
in Sect. 5, we conclude our research.

2 Related works

Several pattern classifiers have been conducted for predicting
the AD status based onMRI, resting state MRI, PET images,
and cerebrospinal fluid (CFS). Among many approaches, it
is noted that the SVM has been used extensively in this case.
The common point of these SVM-based methods is to first
extract features on units such as voxels, ROI, greymatter, and
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then to manipulate the SVM to classify extracted features.
Kloppel et al. (2008) study used grey matter (GM) voxels
as features and trained an SVM to discriminate between AD
and NC subjects. Gerardin et al. (2009) study used SVMs
with linear kernels for classification of greymatter signatures
and benchmarked results against the performance achieved
by expert radiologists, which surprisingly were less accurate
than the algorithm.

A concatenation of features from multiple modalities
including MRI, PET, biological and neurological data into
a vector (Kohannim et al. 2010) used an SVM as classifier.
The whitening technique such as the independent compo-
nent analysis (ICA) is seen as a feature extractor (Yang et al.
2011) and is also an effective SVM-based method for AD
classification. An approach that combines penalized regres-
sion and data resampling for feature extraction prior to the
classification using SVMswithGaussian kernels is described
(Janousova et al. 2012).

Recently, deep learning methods have also been explored
in Genomic and Medical Image Data Analysis (Yu et al
2017). Gupta et al. (2013) used 2D convolutional neural
network (CNN) for a slice-wise feature extraction of MRI
scans. A multimodal deep Boltzmann machine (BM) was
used (Suk et al. 2014) to extract one feature from each
selected patch of the MRI and PET scans and predicts AD
with an ensemble of SVMs. Li et al (2015) developed a
multitask deep learning for AD classification and Mini–
Mental StateExamination (MMSE) andAlzheimer’sDisease
Assessment Scale–cognitive subscale (ADAS-cog) scoring
by multimodal fusion of MRI and PET features.

There were many fusion algorithms utilized to combine
two images into one modality to enhance the quality. It is
also a good starting point to extract features or edge detec-
tion in order to improve performance. Lee et al. (2014) used
the measure of sum of modified Laplacian map to compare
and generate 2-level map, and then median-filtered to reduce
effects of isolated noises. Agarwal andBedi (2015) presented
a hybrid technique using curvelet and wavelet transform to
combine the images obtained by computed tomography (CT)
scan and MRI. The resulted images obtain more information
and additional data from the fused images. Differing from
the above methods, when two images are treated equally and
have no distinction of roles, our matching method treats the
PET-MRI as a primary–subsidiary relation. In other words,
the MRI is used as a mask and applied to PET image to take
pure grey matter regions of PET, which is used later as an
input of convolution neural network.

Motivated from the advantages of utilizing themultimodal
technique with MRI and PET, as well as self-learning ability
of deep learning network as CNN, we proposed an efficient
automatic AD diagnosis method. In our study, we consider
the non-white matter tissue of PET scans as a pattern classifi-
cation ofAD rather than using thewhole images to revoke the

Fig. 1 Examples of PET images for normal subject, AD subject, and
ambiguous detection. a Normal, b AD, c ambiguous subject

ambiguous amyloid uptake. The use of a pre-trained network
is also applied to our method to improve the performance of
AD detection. Further, while the most of the methods study
on binary classifiers such as MCI/NC and AD/NC, except
Rueda et al. (2012), Gupta et al. (2013), and Eskildsen et al.
(2014), we conduct further identification of classifiers with
three classes of AD/MCI/NC.

3 AD detection using HiLCAE and 3D-VGG16

In this section, we introduce our proposed method to classify
AD based on non-white matters using HiLCAE and VGG16.
Figure 1 illustrates an ambiguous case between healthy brain
andADbrain because amyloid uptake is beyondwhitematter.
To solve this problem, preprocessing step is necessary to
abolish white matter under brain tissue.

3.1 Preprocessing

We use the FDG-PET and MRI data downloaded from
ADNI1 data set with each pair of FDG-PET and MRI for
same subject and captured at the same time. The MRI and
PET images have undergone several pre-processed steps
of research groups belonged to the ADNI. In detail, the
MRI images are pre-processed by steps: gradwarp, B1 non-
uniformity, and N3. Gradwarp means correction of image
geometry distortion due to gradient model, and B1 non-
uniformity is a correction procedure that uses B1 calibration
scans to correct image intensity non-uniformity. Finally, aN3
histogram peak sharpening algorithm was applied to reduce
intensity non-uniformity of images.

For the FDG-PET images, a procedure involving dynamic
co-registering frames and acquiring averaging from baseline
PET scanwas conducted. PET imageswere reoriented asAC-
PC correction into a standard 160 × 160 × 96 voxel image
grid, having 1.5mm cubic voxels. These images underwent
continued filtering with a scanner-specific filter function to

1 Available at https://ida.loni.usc.edu. As such, the investigators within
theADNI contributed to the design and implementation ofADNI and/or
provided data but did not participate in analysis or writing of this paper.
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Fig. 2 Preprocessing for non-white matter PET extraction

procedure images of a uniform isotropic resolution of 8mm
full width at half maximum (FWHM).

The next steps are our own preprocessing steps as shown
in Fig. 2, to acquire “non-white matter (WM) PET images”,
that include:

1. Co-register PET image to space ofMRI image to result in
same space and orientation for PET and MRI, as shown
in Fig. 2a);

2. Segment MRI to WM, grey matter probability maps by
using segment module of SPM122 toolbox. The output
of WM segmentation is shown in Fig. 2b);

3. Extract WM from PET image by an order of sub-steps:

3.1 Inversely binarize WM map of MRI using threshold
value. To choose a suitable threshold, we plot normal-
ized histogram of all WM images and determine the
average value where separates the dark (background)
and bright (WM) regions. It is usually in the middle
of two distributions, as shown in Fig. 3;

3.2 Cover full PET image by the mask in step 3.1, result
in a “non-WM PET” image, as illustrated in Fig. 2c);

4. Normalize “non-WM PET” images to a standard MNI
template, using transformation matrix that calculated
fromnormalizing coupledMRI to aMRI template inMNI
space. This step is conducted by normalizationmodule of
SMP12 toolbox, and results are in all images with same
size 79 × 95 × 79, i.e. 592, 895 voxels, since the orig-
inal data scanned in various sizes of 160 × 192 × 192,
166 × 256 × 256, or 164 × 256 × 256, etc. The output
after normalization is shown in Fig. 2d), which reduced
an example of the co-registered size of 166×256×256 to
the normalized size of 79× 95× 79. This work will save
the computational time and memory cost, but without
sacrificing the classification accuracy since the normal-
ized image removes the non-informative region around
brain and interpolated by 4th B-spline algorithm (Cheng
et al. 2001).

2 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

Fig. 3 Histogram of the normalized white matter MRI image

3.2 HiLCAE

In this paper, we conduct a pre-trained network for a pur-
pose of parameter initialization as shown in Huang et al.
(2017). In practice, very few people train an entire deep net-
work with random initialization, because it is relatively rare
to have a data set of sufficient size. Instead, it is common
to use a pre-trained network as an initialization or a fixed
feature extractor for the task of interest. In this case, transfer
learning provides an effective way in training a large network
using scarce training data without over-fitting. Yosinski et al.
(2017) proved that transferring the features even from distant
tasks outperforms the random weights.

Figure 4 illustrates a schematic architecture of our pro-
posed pre-trained network, called a high-level layer con-
catenation autoencoder (HiLCAE). This network is a vari-
ant of convolutional autoencoder (CAE) network. CAE of
(Turchenko and Luczak 2017) is the architecture of choice
for analysing structural data like images and 3D volumes.
The convolution operator allows filtering an input signal in
order to extract some part of its content. The autoencoders
in their traditional formulation do not take this informa-
tion into account. The fact is that a signal can be seen as
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Fig. 4 Architecture of pre-trained network HiLCAE

a sum of other signals. The CAE, instead, uses the con-
volution operator to exploit this observation. They learn to
encode the input in a set of simple signals and then try to
reconstruct the input from them. The difference between our
HiLCAE and the traditional CAE is that we concatenate the
high-resolution feature from the encoding layer with the cor-
responding decoding layer. A successive convolution layer
can then learn to assemble a more precise output based on
this information. Moreover, the deconvolution part has also
a large number of feature channels, which allow the network
to propagate context information to higher-resolution layers.

In Fig. 4, HiLCAE composes two convolutional pooling
layers for each encoder and decoder. Each layer includes
two convolutional sub-layers with kernel size of 33 and acti-
vation function of rectified linear unit (ReLU) following by
a max-pooling sub-layer to down-sample the output of con-
volutional sub-layer by 23 voxel. This procedure keeps only
the highest value per 23 cude. After that, there are two minor
layers entitled as the “flatten” and “bottleneck” layers. The
“flatten” layer is used to spread 3D data onto the 1D vec-
tor, while the “bottleneck” layer is used for the nonlinear
dimensionality reduction which usually contains few nodes
compared to the previous layers. Next is the decoding layer,
which has the same structure of convolutional operation to the
encoding layer, but replaces the max-pooling sub-layer with
the up-sampling sub-layer with size of 23 voxel. Besides, the
network does not have any fully connected layers and only
uses the valid part of each convolution. The cost function for
backpropagation is mean spared error (MSE) as presented in
(Nielsen2015). Statistical gradient descent (SGD)by (Bottou
2010) is used to minimize the cost function. To reconstruct
the image,we used the sigmoid formula as an activation func-
tion. After training, the learned weights and bias of encoding
structure are used to initialize the next classification network
in Sect. 3.3.

3.3 AD classification using adaptive 3D-VGG16

The visual geometry group (VGG) network (Simonyan and
Zisserman 2014) is a convolutional neural network that won
the ImageNet Competition in 2015 in the localization and
classification categories. The VGG-16 is a 16-layer neural
network and is usually used as pre-trained model for image
recognition. However, to take advantage of the deep network,
we built a 3D-VGG16 as classifier for identifying AD. We
also adapted the convolutional layers and fully connected
layers rather than using the original architecture of VGG-
16 to avoid an over-fitting problem, which occurs when the
amount of sample data is limited.

The extension of 2D-VGG16 to 3D introduces significant
challenges: an increased number of parameters and important
memory and computational requirements. Furthermore, 2D
inputs accommodate using pre-trained nets, either directly
or via transfer learning. However, an important drawback
of such an approach is that anatomical context in directions
orthogonal to the 2D plane is completely discarded. As dis-
cussed recently in Milletari et al. (2017), considering 3D
data directly, instead of slice-by-slice, can improve the per-
formance on working with neuroimaging.

Considering these facts, we proposed a microarchitecture
of an adaptive 3D-VGG16 as described in Fig. 5, where the
input is an 3D information of non-WM PET image with a
size of 79 × 95 × 79. As shown in this figure, the 16 layers
are divided into six subsets. The first two subsets include two
convolutional layers with kernel size of 3× 3× 3, which are
set up by the learned hyper-parameters (weights and bias)
from the pre-trained HiLCAE, while the rest of the layers
use random initialization, and a max-pooling layer to reduce
the convolutional map by half. The next three subsets com-
prise three convolutional layers with the same kernel size
and a 2 × 2 × 2 max-pooling layer. The last subset con-
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Fig. 5 Adaptive 3D-VGG16 for AD detection

Table 1 Demographic information of the subjects (SD: standard devi-
ation)

AD(193) MCI(215) NC(207)

Male/female 115/78 143/72 108/99

Age (Mean+SD) 77.96+12.53 77.06+7.94 84.58+7.92

[min–max] [55–90] [55–95] [60–95]

tains a fully connected layer and a softmax layer for the AD
classification. In this paper, the output at every node is deter-
mined by a ReLU function. SGD is also applied to update
the weights during training. Additionally, we execute four
classifiers including binarized class andmulti-class: AD/NC,
AD/MCI, MCI/NC, and AD/MCI/MC. Therefore, the soft-
max layer in Fig. 5 can change from two nodes to three nodes
in case of multi-class.

4 Experimental results

4.1 Materials and experimental setting

For the experiments, we used a publicly available ADNI data
set on the web, as presented in Sect. 3.1. Specifically, we
consider MRI and FDG-PET images acquired from 193 AD
scans, 215 MCI scans, and 207 NC scans, where one subject
can have several scan images. The total 615 scans are divided
into training, validation, and test sets with 80%, 10%, and
10% of data, respectively. Detail of data set is described in
Table 1.

All experiments were conducted five times, and we
reported the average performance. We used the Keras3 and
Tensorflow4 framework for training the HiLCAE and fine-
turn 3D-VGG16 networks. For the HiLCAE network, the
number of convolutional pooling (conv-pool) set is changed
from one to five corresponding to five conv-pool sets of
VGG-16 network. The best performance is obtained when

3 https://keras.io/.
4 https://www.tensorflow.org/.

Fig. 6 MSE on the HiLCAE with different patch sizes

implementing with the first two conv-pool sets. Further, we
trained each experiment during 5000 epochs on aGPUdevice
and completed after 8∼22 h, depending on the patch sizes.
In our approach, the HiLCAE is expected to exploit latent
presentations that may disentangle hidden factors of PET,
controlling variability of images. We train the HiLCAE on
a set of randomly selected 3D patches of size v extracted
from non-white matter PET images. We experimented with
many settings of v, and performance is reported as the lowest
MSE for v = 25, as shown in Fig. 6. We selected ran-
domly 100 scans from each class (total scans are 300 for
three classes) and extract 100 patches with size of 25-by-
25-by-25 for each scan. Therefore, there are 30,000 patches
in total, which divided into three sets: 24,000, 3000, and
3000 patches for training, validation, and test sets, respec-
tively. For 3D-VGG16, we ran 500 epochs and configure an
early stopping if there is no change of loss on validation set
after 100 epochs. The learning rate is fixed by 1e-5 for both
networks.

4.2 Performance

Table 2 reports the performance on four classifiers with dif-
ferent modalities on the test set. We found a result on the
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Table 2 Performance on four
classifiers with different
modalities using
HiLCAE+3D-VGG16

AD/MCI (%) MCI/NC (%) AD/NC (%) AD/MCI/NC (%) Mean (%)

Whole MRI 76.52 85.66 86.25 79.86 82.07

Whole PET 79 86.04 88.5 83.54 84.27

non-WM PET 93 95 98.8 91.13 94.48

Table 3 Performance on four classifiers with and without pre-trained network

AD/MCI (%) MCI/NC (%) AD/NC (%) AD/MCI/NC (%) Mean (%)

3D-VGG16 83.66 87.52 87 81.63 84.95

CAE+ 3D-VGG16 89.33 91.05 95.47 88.72 91.14

HiLCAE+ 3D-VGG16 93 95 98.8 91.13 94.48

Table 4 Comparison on four classifiers with different models. The numbers in the parentheses/bracket denote the number of AD/MCI/NC sub-
jects/scans in the data set used

Method Data set Feature Accuracy (%)
AD/MCI MCI/NC AD/NC AD/MCI/NC

Gupta et al. (2013) MRI Whole 88.1 86.35 94.75 85

(200/411/232) Brain

Eskildsen et al. (2014) MRI ROI – – 76.4 76.7

(181/381/222)

Lin et al. (2014) MRI+PET ROI – 76.92 87.76 –

(51/99/52)

Suk et al. (2014) MRI+PET Patch – 85.67 95.35 –

(93/204/101)

Suk et al. (2015) MRI+PET+CFS ROI 83.7 90.7 98.8 –

(51/99/52)

Suk et al. (2016) MRI+PET+CFS ROI – 80.11 95.09 62.93

(51/99/52)

Proposed method MRI+PET non-WM 93 95 98.8 91.13

(HiLCAE+3D-VGG16 [193/215/207]

single and combinedmodalities ofMRI andPET images. The
results show that, for all classifiers, the non-WM PET model
obtains better average accuracy (94.48%) than using only
the whole brain of MRI or PET model (82.07 and 84.27%,
respectively). It means that the proposed model significantly
improves the accuracy of AD classification because of the
noise reduction from WM. In addition, we compare the per-
formance of our study with and without pre-trained network.
Table 3 presents an amendment in the AD detection when
using pre-trainedmodel. Particularly, the accuracy of the four
classifiers AD/NC, AD/MCI, MCI/NC, and AD/MCI/NC
without pre-trained network is 87, 83.66, 87.52, and 81.63%,
respectively. While the performance with the pre-trained
CAE is 95.47% for AD/NC, 89.33% for AD/MCI, 91.05%
for MCI/NC, and 88.72% for AD/MCI/NC. Specially, using
the pre-trained HiLCAE, the accuracy increases to 98.8, 93,

95, and 91.13% respective to AD/NC, AD/MCI, MCI/NC,
and AD/MCI/NC classifiers comparing to the result without
using pre-trained model. The bold in Tables 2 and 3 indicate
the average accuracy over the four classifiers.

Table 4 shows a comparison of the proposed method, the
HiLCAE+3D-VGG16, and the state-of-the-art methods. The
bold in this table shows the highest accuracy on each clas-
sifier: AD/MCI, MCI/NC, AD/NC, and AD/MCI/NC. The
results also indicate that the HiLCAE+3D-VGG16 outper-
forms to other methods in terms of AD detection. Though
using multimodality strategy causes time-consuming effort
on the preprocessing step, themost relevant information from
pure grey matter region of FDG-PET images helps finding
discriminating features and remove outliers features of white
matter which exist on single modality.
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5 Conclusion

In this paper, we proposed an end-to-end AD classification
system based on convolutional autoencoder and convolution
neural networks using a combination of MRI and FDG-PET
scans. By using the pre-trained weights from autoencoder
network, we can boost up the classification process in the
CNN. Our experiments indicate that the fusion approach
has the potential to capture crucial local 3D amyloid uptake
patterns without redundant, noisy information of white mat-
ter. Our proposed method also enhances correctness of
using whole PET, also facilitating early detection AD rather
than using MRI standalone, when anatomical changes occur
slowly and are difficult to realize rather than functional
changes occur inside a subject’s brain. For future works, we
plan to build a deeper network for not only the HiLCAE but
also the VGG16 to improve the classification performance.
Further, we aim to develop a robust system that can deal with
the whole-brain challenge.
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