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Abstract
Preference analysis is a class of important issues inmulti-criteria decisionmaking. The rough set theory is a powerful approach
to handle preference analysis. In order to solve the multi-criteria preference analysis, this work improves the fuzzy multi-
granulation decision-theoretic rough set model with additive consistent fuzzy preference relation, and it is used to analyze data
from different sources, i.e., multi-source (fuzzy) information system. More specifically, we introduce the models of optimistic
and pessimistic fuzzy preference relationmulti-granulation decision-theoretic rough sets. Then, their principal structure, basic
properties and several kinds of uncertainty measure methods are investigated as well. An example is employed to illustrate
the effectiveness of the proposed models, and comparisons are also offered according to different measures of our models
and existing models.

Keywords Decision-theoretic rough set · Fuzzy preference relation · Multi-granulation · Granular computing

1 Introduction

After the introduction of rough set theory by Pawlak (1982),
number of generalization have been proposed in terms
of various requirements. For example, decision-theoretic
rough sets (Deng and Yao 2014; Yao and Wong 1992;
Yao 2003, 2008; Sun et al. 2016), variable precision rough
sets (Ziarko 1993), Bayesian rough sets (Slezak and Ziarko
2005), game-theoretic rough sets (Herbert and Yao 2011),
fuzzy rough sets/rough fuzzy sets (Dubois and Prade 2011),
Pythagorean fuzzydecision-theoretic rough sets (Mandal and
Ranadive 2018a), multi-granulation rough sets (Qian et al.
2010, 2014a), multi-granulation decision-theoretic rough
sets (Qian et al. 2014b), multi-granulation rough sets based
on covering (Lin et al. 2013), neighborhood-based multi-
granulation rough sets (Lin et al. 2012), multi-granulation
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bipolar-valued fuzzy probabilistic rough sets (Mandal and
Ranadive 2017), fuzzy multi-granulation decision-theoretic
rough sets (Lin et al. 2016), Multi-granulation interval-
valued fuzzy probabilistic rough sets based on interval-
valued fuzzy preference relations (Mandal and Ranadive
2018b) and so on.

In the viewpoint of granular computing and multi-source
information system, fuzzy multi-granulation decision-
theoretic rough set model is an important generalization
of rough set theory. It is based on fuzzy equivalence rela-
tion induced by a fuzzy attribute. However, they still cannot
be used to analyze the information with preference rela-
tion, which limits its application in many problems under
the framework of the preference analysis. This motives us
to develop a new approximate strategy based on multi-
granulation decision-theoretic rough sets to solve the multi-
criteria preference analysis. And in this work, we combine
multi-granulation decision-theoretic rough set with fuzzy
preference relation and introduce a fuzzy preference relation
multi-granulation rough set model.

Based on this idea, the contribution of this paper includes:
(1) this paper is to present a new approach to approximate
the decision class with a certain level of tolerance for errors
through inclusion measure between two fuzzy preference
granules; (2) process an additive consistent fuzzy prefer-
ence relation multi-granulation decision-theoretic rough set
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model in order to solve the multi-criteria preference prob-
lem; (3) several kinds of uncertainty measure methods of
proposed models are discussed; (4) furthermore, the com-
parisons of proposed models and existing models are also
offered according to the given uncertainty measures.

The remainder of this paper is organized as follows:
in Sect. 2 provides some basic concepts of fuzzy prefer-
ence relations. In Sect. 3, fuzzy preference relation multi-
granulation decision-theoretic rough set models are pro-
posed. Then, we discussed their some properties. The uncer-
tainties of the proposed models are measured in Sect. 4. In
Sect. 5, an example is used to illustrate our method and com-
parison of existing methods. Finally, Sect. 6 concludes the
paper.

2 Preliminaries

In this section, we will review some basic concepts such as
fuzzy preference relations and inclusionmeasure,which have
been addressed in Herrera-Viedma et al. (2004), Hu et al.
(2010b), Pan et al. (2017) and Lin et al. (2016). Throughout,
the paper, let U be a finite non-empty set called the universe
of discourse. The class of all fuzzy sets inU will be denoted
as F(U ). For a set A, |A| denotes the cardinality of the set
A.

Definition 1 (Lin et al. 2016) A multi-source fuzzy informa-
tion system is

MS = {I Sl | I Sl = (U , ATl , {(Va)a∈ATl }, fl},

where

(1) U = {x1, x2, . . . , xn} is a finite non-empty set of objects,
called the universe;

(2) ATl(1 ≤ l ≤ m) is a non-empty finite set of attributes
of each subsystem;

(3) {Va} is the value of the attribute a ∈ ATl ; and
(4) fl : U × ATl → {(Va)a∈ATl } such that for all xi ∈ U

and a ∈ ATl , f (xi , a) ∈ Va , where f (xi , a) is the value
of the attribute xi with respect to the attribute a.

Particularly, if the attribute value is fuzzy, we call

MS = {I Sl | I Sl = (U , ATl , {(Va)a∈ATl }, fl},

is a multi-source information system.

Definition 2 (Herrera-Viedma et al. 2004) Let R be a fuzzy
preference relation (FPR) for the set U = {x1, x2, . . . , xn},
shown as follows:

R = (ri j )n×n =

⎛
⎜⎜⎜⎝

x1 x2 · · · xn
x1 r11 r12 · · · r1n
x2 r21 r22 · · · r2n
...

...
...

. . .
...

xn rn1 rn2 · · · rnn

⎞
⎟⎟⎟⎠

where ri j denotes the degree of preference of alternative
xi over alternative x j , ri j ∈ [0, 1], ri j + r ji = 1, ∀i, j ∈
{1, 2, . . . , n}. Especially,

ri j = 0.5 indicates that there is no difference between
alternative xi and alternative x j ;

ri j > 0.5 indicates that alternative xi is better than alter-
native x j ;

ri j < 0.5 indicates that alternative x j is better than alter-
native xi ;

ri j = 1 indicates that alternative xi is absolutely better
than alternative x j ;

ri j = 0 indicates that alternative x j is absolutely better
than alternative xi ;

where 1 ≤ i ≤ n and 1 ≤ j ≤ n.

In Definition 2, the FPR is considered, ri j merely presents
the degree of preference of alternative xi is prior to the alter-
native x j . However, in some practical applications, we need
to show the degree of alternative xi is poor than the alterna-
tive x j . In order to satisfy all the two cases, we call the FPR
in Definition 1 as upward fuzzy preference relation (UFPR),
and call the other FPR as downward fuzzy preference rela-
tion (DFPR). We denote the UFPR as R↑ = (r↑

i j )n×n and the

DFPR as R↓ = (r↓
i j )n×n , and use R = (ri j )n×n to denote all

the two kinds of cases. In general, r↑
i j + r↓

i j = 1. Thus, for
the DFPR,

r↓
i j = 0.5 indicates that there is no difference between

alternative xi and alternative x j ;

r↓
i j > 0.5 indicates that alternative xi is poor than alterna-

tive x j ;

r↓
i j < 0.5 indicates that alternative x j is poor than alter-

native xi ;
r↓
i j = 1 indicates that alternative xi is absolutely poor than

alternative x j ;

r↓
i j = 0 indicates that alternative x j is absolutely poor than

alternative xi ;
where 1 ≤ i ≤ n and 1 ≤ j ≤ n.
As same as the UFPR, for the DFPR, r↓

i j + r↓
i j = 1 holds.

Obviously, FPRsnot only reflect the fact that an object xi is
greater (less) than another x j but alsomeasure howmuch xi is
greater (less) than x j . This shows fuzzy preference relations
are more powerful in extracting information from fuzzy data
than dominance relations.

Definition 3 A FPR R = (ri j )n×n is called an additive con-
sistent fuzzy preference relation, if it satisfies the following
property
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ri j = rik − r jk + 0.5,∀i, j, k ∈ {1, 2, . . . , n}.

Hu et al. (2010a) adopted the well-known Logis transfer
function 1

1+ek( f (xi ,a)− f (xi ,a)) to compute the fuzzy preference
degree of the alternative xi to the alternative x j

r↑
i j = 1

1 + e−k( f (xi ,a)− f (xi ,a))

r↓
i j = 1

1 + ek( f (xi ,a)− f (xi ,a))

where k is a positive constant. However, Pan et al. (2017)
pointed out that this transfer fuzzy preference degree is
not additive consistent and they suggest another transfer
function. They compute the fuzzy preference degree of the
alternative xi to the alternative x j

r↑
i j = 0.5 ×

(
f (xi , a) − ∧n

i=1 f (xi , a)

∧n
i=1 f (xi , a) − ∨n

i=1 f (xi , a)

− f (x j , a) − ∧n
i=1 f (xi , a)

∧n
i=1 f (xi , a) − ∨n

i=1 f (xi , a)
+ 1

)
(1)

r↓
i j = 0.5 ×

(
f (x j , a) − ∧n

i=1 f (xi , a)

∧n
i=1 f (xi , a) − ∨n

i=1 f (xi , a)

− f (xi , a) − ∧n
i=1 f (xi , a)

∧n
i=1 f (xi , a) − ∨n

i=1 f (xi , a)
+ 1

)
, (2)

“∧” and “∨” are the minimum and maximum value of
f (xi , a), respectively.
According to the transfer functions (1) and (2), we give

the following definition.

Definition 4 The upward and downward fuzzy preference
classes [xi ]R↑ and [xi ]R↓ of xi induced by the upward and
downward additive fuzzy preference relations R↑ and R↓ are
defined as follows:

[xi ]R↑ = r↑
i1

x1
+ r↑

i2

x2
+ · · · + r↑

in

xn

and

[xi ]R↓ = r↓
i1

x1
+ r↓

i2

x2
+ · · · + r↓

in

xn
,

where “+” means the union operation. Where r↑
i j and r

↓
i j are

defined in Eqs. (1) and (2). Obviously, [xi ]R↑ and [xi ]R↓ are
the fuzzy information granules containing xi .

The upward and downward additive preference rela-
tions generate a family of fuzzy information granules from
the universe, which composes the upward and downward
additive fuzzy preference granular structures, written by
P(R↑) = {[x1]R↑, [x2]R↑, . . . , [xn]R↑} and P(R↓) =
{[x1]R↓, [x2]R↓, . . . , [xn]R↓}. Particularly,

(1) if r↑
i i = r↓

i i = 1 and r↑
i j = r↓

i j = 0, j 
= i , i, j < n,

then [xi ]R↑ = [xi ]R↓ = 1, i < n and R↑ = R↓ = R is
called a fuzzy preference identity relation.

(2) if r↑
i j = r↓

i j = 1, i, j < n, then
∣∣[xi ]R↑

∣∣ = ∣∣[xi ]R↓
∣∣ =

|U |, i < n and R↑ = R↓ = R is called a fuzzy prefer-
ence universal relation.

To aggregate the FPRs induced by multiple criteria, we
use the following technique.

Definition 5 (Hu et al. 2010b) If ri j and si j are the fuzzy
preference degrees of the alternative xi and the alternative
x j derived from the criteria a1 and a2, respectively, then the
aggregate preference of a1 and a2 is defined as min(ri j , si j ).

Definition 6 (Hu et al. 2010b) Let A and B be two fuzzy
granules in the universeU , the inclusion measure I (A, B) is
defined as

I (A, B) = |A ∧ B|
|A| ,

where “∧”means theoperation “min” and |A|= ∑
x∈U A(x).

3 Fuzzy preference relation
multi-granulation decision-theoretic
rough sets

In this section, wewill adopt the transfer functions (1) and (2)
to compute the preference degree and introduce a fuzzy pref-
erence relation multi-granulation decision-theoretic rough
sets (FPR-MG-DTRSs).

Let us considerMS = {I Sl | I Sl = (U , ATl ,{(Va)a∈ATl },
fl} a multi-source fuzzy information system. In this paper,
we assume MS is composed of m single-source information
system. Similar to the granular method for the single-source
information system, one gets

m upward fuzzy preference granular structures: P(R↑
1 ),

P(R↑
2 ), . . ., P(R↑

m), where P(R↑
l ) = {[x1]R↑

l
, [x1]R↑

l
, . . .,

[xn]R↑
l
} and [xi ]R↑

l
(i = 1, 2, . . ., n; l = 1, 2, . . ., m) are

fuzzy preference granules,
m downward fuzzy preference granular structures:
P(R↓

1 ), P(R↓
2 ), . . ., P(R↓

m), where P(R↓
l ) = {[x1]R↓

l
,

[x2]R↓
l
, . . ., [xn]R↓

l
} and [xi ]R↓

l
(i = 1, 2, . . ., n; l = 1,

2, . . ., m) are fuzzy preference granules.

3.1 Optimistic fuzzy preference relation
multi-granulation decision-theoretic rough sets

Definition 7 Given P(R↑
1 ), P(R↑

2 ), . . ., P(R↑
m) and P(R↓

1 ),

P(R↓
2 ), . . ., P(R↓

m) are upward and downwardm fuzzy gran-
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ular structures. For a crisp decision class X ⊆ U , we can
defined as.

Upward optimistic fuzzy preference relation multi-
granulation lower approximation

m∑
l=1

R↑
l

α(O)

(X) =
{
x ∈ U | I ([x]

R↑
1
, X) ≥ α

∨ I ([x]
R↑
2
, X) ≥ α

∨ · · · ∨ I ([x]
R↑
m
, X) ≥ α

}
,

Upward optimistic fuzzy preference relation multi-
granulation upper approximation

m∑
l=1

R↑
l

β(O)

(X) = U −
{
x ∈ U | I ([x]

R↑
1
, X) ≤ β

∨ I ([x]
R↑
2
, X) ≤ β

∨ · · · ∨ I ([x]
R↑
m
, X) ≤ β

}
,

Downward optimistic fuzzy preference relation multi-
granulation lower approximation

m∑
l=1

R↓
l

α(O)

(X) =
{
x ∈ U | I ([x]

R↓
1
, X) ≥ α

∨ I ([x]
R↓
2
, X) ≥ α

∨ · · · ∨ I ([x]
R↓
m
, X) ≥ α

}
,

Downward optimistic fuzzy preference relation multi-
granulation upper approximation

m∑
l=1

R↓
l

β(O)

(X) = U −
{
x ∈ U | I ([x]

R↓
1
, X) ≤ β

∨ I ([x]
R↓
2
, X) ≤ β

∨ · · · ∨ I ([x]
R↓
m
, X) ≤ β

}
,

where [x]
R↑
l
and [x]

R↓
l
are the upward and downward fuzzy

preference classes of x induced by the upward and downward
additive fuzzy preference relations R↑

l and R↓
l ; I ([x]R↑

l
, X)

(I ([x]
R↓
l
, X)) is the fuzzy inclusion degree between [x]

R↑
l

([x]
R↓
1
) and X ; α and β are two probability constraints with

0.5 ≤ α ≤ 1 and 0 ≤ β < 0.5.

Then, we call (
∑m

l=1 R
↑
l

α(O)
(X),

∑m
l=1 R

↑
l

β(O)

(X))

and (
∑m

l=1 R
↓
l

α(O)
(X),

∑m
l=1 R

↓
l

β(O)

(X)), the upward opti-
mistic fuzzy preference relation multi-granulation
decision-theoretic rough set (UOFPR-MG-DTRS) anddown-
ward optimistic fuzzy preference relation multi-granulation
decision-theoretic rough set (DOFPR-MG-DTRS). The

upward and downward optimistic fuzzy preference relation
multi-granulation decision-theoretic boundary regions of X
are defined as

BNDα(O),β(O)∑m
l=1 R

↑
l

(X)

=
m∑
l=1

R↑
l

β(O)

(X) −
m∑
l=1

R↑
l

α(O)

(X)

and

BNDα(O),β(o)∑m
l=1 R

↓
l

(X)

=
m∑
l=1

R↓
l

β(O)

(X) −
m∑
l=1

R↓
l

α(O)

(X).

According to Definition 7, we have the following propo-
sitions

Proposition 1 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ U.

(1)
∑m

l=1 R
↑
l

α(O)
(X) ⊇ R↑,α

l (X), l ≤ m;

(2)
∑m

l=1 R
↑
l

β(O)

(X) ⊆ R
↑,β

l (X), l ≤ m;

(3)
∑m

l=1 R
↓
l

α(O)
(X) ⊇ R↓,α

l (X), l ≤ m;

(4)
∑m

l=1 R
↓
l

β(O)

(X) ⊆ R
↓,β

l (X), l ≤ m;

where

R↑,α
l (X) = {x ∈ U | I ([x]

R↑
l
, X) ≥ α},

R
↑,β

l (X) = {x ∈ U | I ([x]
R↑
l
, X) < β},

R↓,α
l (X) = {x ∈ U | I ([x]

R↓
l
, X) ≥ α}

and

R
↓,β

l (X) = {x ∈ U | I ([x]
R↓
l
, X) < β}.

Proposition 2 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ U.

(1)
∑m

l=1 R
↑
l

α(O)
(X) = ∪m

l=1R
↑,α
l (X);

(2)
∑m

l=1 R
↑
l

β(O)

(X) = ∩m
l=1R

↑,β

l (X);
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(3)
∑m

l=1 R
↓
l

α(O)
(X) = ∪m

l=1R
↓,α
l (X);

(4)
∑m

l=1 R
↓
l

β(O)

(X) = ∩m
l=1R

↓,β

l (X);

where

R↑,α
l (X) = {x ∈ U | I ([x]

R↑
l
, X) ≥ α},

R
↑,β

l (X) = {x ∈ U | I ([x]
R↑
l
, X) < β},

R↓,α
l (X) = {x ∈ U | I ([x]

R↓
l
, X) ≥ α}

and

R
↓,β

l (X) = {x ∈ U | I ([x]
R↓
l
, X) < β}.

Proposition 3 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ Y ⊆ U.

(1)
∑m

l=1 R
↑
l

α(O)
(X) ⊇ ∑m

l=1 R
↑
l

α(O)
(Y );

(2)
∑m

l=1 R
↑
l

β(O)

(X) ⊆ ∑m
l=1 R

↑
l

β(O)

(Y );

(3)
∑m

l=1 R
↓
l

α(O)
(X) ⊇ ∑m

l=1 R
↓
l

α(O)
(Y );

(4)
∑m

l=1 R
↓
l

β(O)

(X) ⊆ ∑m
l=1 R

↓
l

β(O)

(Y ).

Similar to the classical decision-theoretic rough sets,when
the thresholds 1 ≥ α > β ≥ 0, we can obtain the decision
rules tie-broke:

For UOFPR-MG-DTRS

(UOP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↑
l
, X) ≥ α,

decide POS(X);
(UON1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↑
l
, X) ≤ β,

decide NEG(X);
(UOB1) otherwise, we decide BND(X).

For DOFPR-MG-DTRS

(DOP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↓
l
, X) ≥ α,

decide POS(X);
(DON1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↓
l
, X) ≤ β,

decide NEG(X);
(DOB1) otherwise, we decide BND(X).

When the thresholds 1 ≥ α = γ = β ≥ 0, we can get the
following decision rules:

For UOFPR-MG-DTRS

(UOP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↑
l
, X) ≥ α,

decide POS(X);
(UON1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↑
l
, X) ≤ α,

decide NEG(X);
(UOB1) otherwise, we decide BND(X).

For DOFPR-MG-DTRS

(DOP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↓
l
, X) ≥ α,

decide POS(X);
(DON1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↓
l
, X) ≤ α,

decide NEG(X);
(DOB1) otherwise, we decide BND(X).

3.2 Pessimistic fuzzy preference relation
multi-granulation decision-theoretic rough sets

Definition 8 Given P(R↑
1 ), P(R↑

2 ), . . ., P(R↑
m) and P(R↓

1 ),

P(R↓
2 ), . . ., P(R↓

m) are upward and downwardm fuzzy gran-
ular structures. For a crisp decision class X ⊆ U , we can
defined as.

Upward pessimistic fuzzy preference relation multi-
granulation lower approximation

m∑
l=1

R↑
l

α(P)

(X) =
{
x ∈ U | I ([x]

R↑
1
, X) ≥ α

∧ I ([x]
R↑
2
, X) ≥ α

∧ · · · ∧ I ([x]
R↑
m
, X) ≥ α

}
,

Upward pessimistic fuzzy preference relation multi-
granulation upper approximation

m∑
l=1

R↑
l

β(P)

(X) = U −
{
x ∈ U | I ([x]

R↑
1
, X) ≤ β

∧ I ([x]
R↑
2
, X) ≤ β

∧ · · · ∧ I ([x]
R↑
m
, X) ≤ β

}
,

Downward pessimistic fuzzy preference relation multi-
granulation lower approximation

m∑
l=1

R↓
l

α(P)

(X) =
{
x ∈ U | I ([x]

R↓
1
, X) ≥ α

∧ I ([x]
R↓
2
, X) ≥ α

∧ · · · ∧ I ([x]
R↓
m
, X) ≥ α

}
,
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Downward pessimistic fuzzy preference relation multi-
granulation upper approximation

m∑
l=1

R↓
l

β(P)

(X) = U −
{
x ∈ U | I ([x]

R↓
1
, X) ≤ β

∧ I ([x]
R↓
2
, X) ≤ β

∧ · · · ∧ I ([x]
R↓
m
, X) ≤ β

}
,

where [x]
R↑
l
and [x]

R↓
l
are the upward and downward fuzzy

preference classes of x induced by the upward and downward
additive fuzzy preference relations R↑

l and R↓
l ; I ([x]R↑

l
, X)

(I ([x]
R↓
l
, X)) is the fuzzy inclusion degree between [x]

R↑
l

([x]
R↓
1
) and X ; α and β are two probability constraints with

0.5 ≤ α ≤ 1 and 0 ≤ β < 0.5.

Then, we call (
∑m

l=1 R
↑
l

α(P)
(X),

∑m
l=1 R

↑
l

β(P)

(X))

and (
∑m

l=1 R
↓
l

α(P)
(X),

∑m
l=1 R

↓
l

β(P)

(X)), the upward pes-
simistic fuzzypreference relationmulti-granulationdecision-
theoretic rough set (UPFPR-MG-DTRS) and downward pes-
simistic fuzzypreference relationmulti-granulationdecision-
theoretic rough set (DPFPR-MG-DTRS). The upward and
downward pessimistic fuzzy preference relation multi-
granulation decision-theoretic boundary regions of X are
defined as

BNDα(P),β(P)∑m
l=1 R

↑
l

(X)

=
m∑
l=1

R↑
l

β(P)

(X) −
m∑
l=1

R↑
l

α(P)

(X)

and

BNDα(P),β(P)∑m
l=1 R

↓
l

(X)

=
m∑
l=1

R↓
l

β(P)

(X) −
m∑
l=1

R↓
l

α(P)

(X).

According to Definition 8, we have the following propo-
sitions

Proposition 4 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ U.

(1)
∑m

l=1 R
↑
l

α(P)
(X) ⊆ R↑,α

l (X), l ≤ m;

(2)
∑m

l=1 R
↑
l

β(P)

(X) ⊆ R
↑,β

l (X), l ≤ m;

(3)
∑m

l=1 R
↓
l

α(P)
(X) ⊆ R↓,α

l (X), l ≤ m;

(4)
∑m

l=1 R
↓
l

β(P)

(X) ⊆ R
↓,β

l (X), l ≤ m;

where

R↑,α
l (X) = {x ∈ U | I ([x]

R↑
l
, X) ≥ α},

R
↑,β

l (X) = {x ∈ U | I ([x]
R↑
l
, X) < β},

R↓,α
l (X) = {x ∈ U | I ([x]

R↓
l
, X) ≥ α}

and

R
↓,β

l (X) = {x ∈ U | I ([x]
R↓
l
, X) < β}.

Proposition 5 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ U.

(1)
∑m

l=1 R
↑
l

α(P)
(X) = ∪m

l=1R
↑,α
l (X);

(2)
∑m

l=1 R
↑
l

β(P)

(X) = ∩m
l=1R

↑,β

l (X);

(3)
∑m

l=1 R
↓
l

α(P)
(X) = ∪m

l=1R
↓,α
l (X);

(4)
∑m

l=1 R
↓
l

β(P)

(X) = ∩m
l=1R

↓,β

l (X);

where

R↑,α
l (X) = {x ∈ U | I ([x]

R↑
l
, X) ≥ α},

R
↑,β

l (X) = {x ∈ U | I ([x]
R↑
l
, X) < β},

R↓,α
l (X) = {x ∈ U | I ([x]

R↓
l
, X) ≥ α}

and

R
↓,β

l (X) = {x ∈ U | I ([x]
R↓
l
, X) < β}.

Proposition 6 Given P(R↑
1 ), P(R↑

2 ), . . ., P( R↑
m) and

P(R↓
1 ), P(R↓

2 ), . . ., P(R↓
m) are upward and downward m

fuzzy granular structures. Then, the following properties hold
for a crisp decision class X ⊆ Y ⊆ U.

(1)
∑m

l=1 R
↑
l

α(P)
(X) ⊇ ∑m

l=1 R
↑
l

α(P)
(Y );

(2)
∑m

l=1 R
↑
l

β(P)

(X) ⊆ ∑m
l=1 R

↑
l

β(P)

(Y );

(3)
∑m

l=1 R
↓
l

α(P)
(X) ⊇ ∑m

l=1 R
↓
l

α(P)
(Y );

(4)
∑m

l=1 R
↓
l

β(P)

(X) ⊆ ∑m
l=1 R

↓
l

β(P)

(Y ).

Similar to the classical decision-theoretic rough sets,when
the thresholds 1 ≥ α > β ≥ 0, we can obtain the decision
rules tie-broke:
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For UPFPR-MG-DTRS

(UPP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↑
l
, X) ≥ α,

decide POS(X);
(UPN1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↑
l
, X) ≤ β,

decide NEG(X);
(UPB1) otherwise, we decide BND(X).

For DPFPR-MG-DTRS

(DPP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↓
l
, X) ≥ α,

decide POS(X);
(DPN1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↓
l
, X) ≤ β,

decide NEG(X);
(DPB1) otherwise, we decide BND(X).

When the thresholds 1 ≥ α = γ = β ≥ 0, we can get the
following decision rules:

For UPFPR-MG-DTRS

(UPP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↑
l
, X) ≥ α,

decide POS(X);
(UPN1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↑
l
, X) ≤ α,

decide NEG(X);
(UPB1) otherwise, we decide BND(X).

For DPFPR-MG-DTRS

(DPP1) if ∃l ∈ {1, 2, . . . ,m} such that I ([x]
R↓
l
, X) ≥ α,

decide POS(X);
(DPN1) if ∀l ∈ {1, 2, . . . ,m} such that I ([x]

R↓
l
, X) ≤ α,

decide NEG(X);
(DPB1) otherwise, we decide BND(X).

4 Uncertainty measures

In this section, several measures are utilized to calculate the
uncertainty of these models which proposed in previous. The
uncertainty of knowledge is caused by the boundary regions,
in the view point of rough set approximation. The larger the
boundary area is, the more uncertainly. According to the
uncertainty measure method in classical rough set, we can
define the accuracy, roughness and approximation quality
for each model as follows.

Definition 9 Given P(R↑
1 ), P(R↑

2 ), . . ., P(R↑
m) and P(R↓

1 ),

P(R↓
2 ), . . ., P(R↓

m) are upward and downward m fuzzy
granular structures. The accuracies degrees of X in terms
of UOFPR-MG-DTRS, DOFPR-MG-DTRS, UPFPR-MG-
DTRS and DPFPR-MG-DTRS are defined, respectively, as

ρ
α(O),β(O)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(O)
(X)

∣∣∣
∣∣∣∣
∑m

l=1 R
↑
l

β(O)

(X)

∣∣∣∣
, (3)

ρ
α(O),β(O)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(O)
(X)

∣∣∣
∣∣∣∣
∑m

l=1 R
↓
l

β(O)

(X)

∣∣∣∣
, (4)

ρ
α(P),β(P)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(P)
(X)

∣∣∣
∣∣∣∣
∑m

l=1 R
↑
l

β(P)

(X)

∣∣∣∣
, (5)

ρ
α(P),β(P)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(P)
(X)

∣∣∣
∣∣∣∣
∑m

l=1 R
↓
l

β(P)

(X)

∣∣∣∣
. (6)

The corresponding roughness degrees of X in terms
of UOFPR-MG-DTRS, DOFPR-MG-DTRS, UPFPR-MG-
DTRS and DPFPR-MG-DTRS are defined, respectively, as

ζ
α(O),β(O)∑m

l=1 R
↑
l

(X) = 1 − ρ
α(O),β(O)∑m

l=1 R
↑
l

(X),

ζ
α(O),β(O)∑m

l=1 R
↓
l

(X) = 1 − ρ
α(O),β(O)∑m

l=1 R
↓
l

(X),

ζ
α(P),β(P)∑m

l=1 R
↑
l

(X) = 1 − ρ
α(P),β(P)∑m

l=1 R
↑
l

(X),

ζ
α(P),β(P)∑m

l=1 R
↓
l

(X) = 1 − ρ
α(P),β(P)∑m

l=1 R
↓
l

(X).

Roughness measure is the well-known Marczewski–
Steinhaus distance between the lower and upper approxi-
mations according to Yao (2001). Because some properties
of expanded model have changed.

Definition 10 Given P(R↑
1 ), P(R↑

2 ), . . . , P(R↑
m) and P(R↓

1 ),

P(R↓
2 ), . . ., P(R↓

m) are upward and downwardm fuzzy gran-
ular structures. The approximated degrees of X in terms
of UOFPR-MG-DTRS, DOFPR-MG-DTRS, UPFPR-MG-
DTRS and DPFPR-MG-DTRS are defined, respectively, as

π
α(O)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(O)
(X)

∣∣∣
|X | , (7)

π
α(O)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(O)
(X)

∣∣∣
|X | , (8)

π
α(P)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(P)
(X)

∣∣∣
|X | , (9)

π
α(P)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(P)
(X)

∣∣∣
|X | . (10)
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Definition 11 Given P(R↑
1 ), P(R↑

2 ), . . ., P(R↑
m) and P(R↓

1 ),

P(R↓
2 ), . . ., P(R↓

m) are upward and downwardm fuzzy gran-
ular structures. The degree of dependency of X in terms
of UOFPR-MG-DTRS, DOFPR-MG-DTRS, UPFPR-MG-
DTRS and DPFPR-MG-DTRS is defined, respectively, as

ω
α(O)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(O)
(X)

∣∣∣
|U | , (11)

ω
α(O)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(O)
(X)

∣∣∣
|U | , (12)

ω
α(P)∑m

l=1 R
↑
l

(X) =
∣∣∣∑m

l=1 R
↑
l

α(P)
(X)

∣∣∣
|U | , (13)

ω
α(P)∑m

l=1 R
↓
l

(X) =
∣∣∣∑m

l=1 R
↓
l

α(P)
(X)

∣∣∣
|U | . (14)

By Definitions 9, 10 and 11, we get the following prop-
erties.

Proposition 7 Given P(R↑
1 ), P(R↑

2 ), . . ., P(R↑
m)and P(R↓

1 ),

P(R↓
2 ), . . ., P( R↓

m) are upward and downwardm fuzzy gran-
ular structures. For any X ⊆ U, the following properties
hold.

(1) ρ
α(P),β(P)∑m

l=1 R
↑
l

(X) ≤ ρ
α(P),β(O)∑m

l=1 R
↑
l

(X);

(2) ρ
α(P),β(P)∑m

l=1 R
↓
l

(X) ≤ ρ
α(P),β(O)∑m

l=1 R
↓
l

(X);

π
α(P)∑m

l=1 R
↑
l

(X) ≤ π
α(O)∑m

l=1 R
↑
l

(X);

(3) π
α(P)∑m

l=1 R
↓
l

(X) ≤ π
α(O)∑m

l=1 R
↓
l

(X);

(4) 0 ≤ ω
α(O)∑m

l=1 R
↑
l

(X),ωα(P)∑m
l=1 R

↑
l

(X),ωα(O)∑m
l=1 R

↓
l

(X),ωα(P)∑m
l=1 R

↓
l

(X) ≤ 1.

5 An illustrative example

Table 1 (Lin et al. 2016) depicts a fuzzymulti-source decision
information system about the evaluation problem of credit
card applicants. Suppose thatU = {x1, x2, . . ., x9} is a set of
nine applicant. Every applicant in each sub-information sys-
tem, denoted by EC1, EC2 and EC3, is described by three
fuzzy conditional attributes. They are a1 = best education,
a2 = better education, a3 = good education, a4 =
high salary, a5 = middle salary, a6 = low salary,
a7 = older age, a8 = middle age, a9 = young age,
respectively. The member ship degrees of every applicant
are given in Table 1. A decision partition is D1 = {x1, x2,
x4, x7} and D2 = {x3, x5, x6, x8, x9}.

In the following, we will describe the process of comput-
ing in detail.

Table 1 A multi-source fuzzy information system

EC1 EC2 EC3 Decision

a1 a4 a7 a2 a5 a8 a3 a6 a9 D

x1 0.8 0.1 0.2 0.1 0.1 0.5 0.1 0.2 0.3 Accept

x2 0.3 0.5 0.2 0.3 0.3 0.7 0.4 0.2 0.1 Accept

x3 0.2 0.1 0.6 0.6 0.3 0.2 0.2 0.6 0.2 Decline

x4 0.6 0.3 0.5 0.2 0.2 0.2 0.2 0.5 0.3 Accept

x5 0.4 0.4 0.3 0.3 0.4 0.3 0.3 0.2 0.4 Decline

x6 0.2 0.3 0.5 0.2 0.3 0.6 0.2 0.4 0.2 Decline

x7 0.3 0.3 0.6 0.3 0.4 0.2 0.3 0.3 0.2 Accept

x8 0.3 0.4 0.3 0.3 0.2 0.2 0.3 0.4 0.5 Decline

x9 0.3 0.2 0.4 0.3 0.4 0.4 0.4 0.4 0.2 Decline

In the following, we will describe the process of comput-
ing in detail.

(1) We make use of Eq. (1) to compute the fuzzy pref-
erence degree of the alternative xi (i = 1, 2, . . ., 9) to the
alternative x j ( j = 1, 2, . . ., 9) by each attribute of every
source. Then for a source EC1 of the multi-source infor-
mation system, one obtains three upward additive consistent
fuzzy preference relations from conditional attributes a1, a4,
and a7, respectively, which represent in Eqs. (15)–(17).

(2) We use Definition 5 to aggregate the three upward
additive consistent fuzzy preference relations R↑

a1 , R
↑
a4 , and

R↑
a7 and gets a upward additive consistent fuzzy preference

relation on three attributes of EC1, which generates a fuzzy
partition called a upward additive fuzzy preference granular
structure on U , represent in Eq. (18).

From the granular structure R↑
EC1

(xi , x j ), one can get nine
fuzzy preference granules on U as follows:

[x1]R↑
EC1

= 0.5000

x1
+ 0.0000

x2
+ 0.0000

x3

+ 0.1250

x4
+ 0.1250

x5
+ 0.1250

x6

+ 0.0000

x7
+ 0.1250

x8
+ 0.2500

x9
;

[x2]R↑
EC1

= 0.0833

x1
+ 0.5000

x2
+ 0.0000

x3

+ 0.1250

x4
+ 0.3750

x5
+ 0.1250

x6

+ 0.0000

x7
+ 0.3750

x8
+ 0.2500

x9
;

[x3]R↑
EC1

= 0.0000

x1
+ 0.0000

x2
+ 0.5000

x3

+ 0.1667

x4
+ 0.1250

x5
+ 0.2500

x6

+ 0.2500

x7
+ 0.1250

x8
+ 0.3750

x9
;

123



Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation 93

[x4]R↑
EC1

= 0.3333

x1
+ 0.2500

x2
+ 0.3750

x3

+ 0.5000

x4
+ 0.3750

x5
+ 0.5000

x6

+ 0.3750

x7
+ 0.3750

x8
+ 0.6250

x9
;

[x5]R↑
EC1

= 0.1667

x1
+ 0.3750

x2
+ 0.1250

x3

+ 0.2500

x4
+ 0.5000

x5
+ 0.2500

x6

+ 0.1250

x7
+ 0.5000

x8
+ 0.3750

x9
;

[x6]R↑
EC1

= 0.0000

x1
+ 0.2500

x2
+ 0.3750

x3

+ 0.1667

x4
+ 0.3333

x5
+ 0.5000

x6

+ 0.3750

x7
+ 0.3750

x8
+ 0.4167

x9
;

[x7]R↑
EC1

= 0.0833

x1
+ 0.2500

x2
+ 0.5000

x3

+ 0.2500

x4
+ 0.3750

x5
+ 0.5000

x6

+ 0.5000

x7
+ 0.3750

x8
+ 0.5000

x9
;

R↑
a1(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.9167 1.0000 0.6667 0.8333 1.0000 0.9167 0.9167 0.9167
x2 0.0833 0.5000 0.5833 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
x3 0.0000 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
x4 0.3333 0.7500 0.8333 0.5000 0.6667 0.8333 0.7500 0.7500 0.7500
x5 0.1667 0.5833 0.6667 0.3333 0.5000 0.6667 0.5833 0.5833 0.5833
x6 0.0000 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
x7 0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
x8 0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
x9 0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

R↑
a4(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.0000 0.5000 0.2500 0.1250 0.2500 0.2500 0.1250 0.3750
x2 1.0000 0.5000 1.0000 0.7500 0.6250 0.7500 0.7500 0.6250 0.87500
x3 0.5000 0.0000 0.5000 0.2500 0.1250 0.2500 0.2500 0.1250 0.3750
x4 0.7500 0.2500 0.7500 0.5000 0.3750 0.5000 0.5000 0.3750 0.6250
x5 0.8750 0.3750 0.8750 0.6250 0.5000 0.6250 0.6250 0.5000 0.7500
x6 0.7500 0.2500 0.7500 0.5000 0.3750 0.5000 0.5000 0.3750 0.6250
x7 0.7500 0.2500 0.7500 0.5000 0.3750 0.5000 0.5000 0.3750 0.6250
x8 0.8750 0.3750 0.8750 0.6250 0.5000 0.6250 0.6250 0.5000 0.7500
x9 0.6250 0.1250 0.6250 0.3750 0.2500 0.3750 0.3750 0.2500 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)
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R↑
a7(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.5000 0.0000 0.1250 0.3750 0.1250 0.0000 0.3750 0.2500
x2 0.5000 0.5000 0.0000 0.1250 0.3750 0.1250 0.0000 0.3750 0.2500
x3 1.0000 1.0000 0.5000 0.6250 0.8750 0.6250 0.5000 0.8750 0.7500
x4 0.8750 0.8750 0.3750 0.5000 0.7500 0.5000 0.3750 0.7500 0.6250
x5 0.6250 0.6250 0.1250 0.2500 0.5000 0.2500 0.1250 0.5000 0.3750
x6 0.8750 0.8750 0.3750 0.5000 0.7500 0.5000 0.3750 0.7500 0.6250
x7 1.0000 1.0000 0.5000 0.6250 0.8750 0.6250 0.5000 0.8750 0.7500
x8 0.6250 0.6250 0.1250 0.2500 0.5000 0.2500 0.1250 0.5000 0.3750
x9 0.7500 0.7500 0.2500 0.3750 0.6250 0.3750 0.2500 0.6250 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

R↑
EC1

(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.0000 0.0000 0.1250 0.1250 0.1250 0.0000 0.1250 0.2500
x2 0.0833 0.5000 0.0000 0.1250 0.3750 0.1250 0.0000 0.3750 0.2500
x3 0.0000 0.0000 0.5000 0.1667 0.1250 0.2500 0.2500 0.1250 0.3750
x4 0.3333 0.2500 0.3750 0.5000 0.3750 0.5000 0.3750 0.3750 0.6250
x5 0.1667 0.3750 0.1250 0.2500 0.5000 0.2500 0.1250 0.5000 0.3750
x6 0.8750 0.8750 0.3750 0.5000 0.7500 0.5000 0.3750 0.7500 0.6250
x7 0.0833 0.2500 0.5000 0.2500 0.3750 0.5000 0.5000 0.3750 0.5000
x8 0.0833 0.3750 0.1250 0.2500 0.4167 0.2500 0.1250 0.5000 0.3750
x9 0.0833 0.1250 0.2500 0.2500 0.2500 0.3750 0.2500 0.2500 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

[x8]R↑
EC1

= 0.0833

x1
+ 0.3750

x2
+ 0.1250

x3

+ 0.2500

x4
+ 0.4167

x5
+ 0.2500

x6

+ 0.1250

x7
+ 0.5000

x8
+ 0.3750

x9

and

[x9]R↑
EC1

= 0.0833

x1
+ 0.1250

x2
+ 0.2500

x3

+ 0.2500

x4
+ 0.2500

x5
+ 0.3750

x6

+ 0.2500

x7
+ 0.2500

x8
+ 0.5000

x9
.

Based on the inclusion measure of fuzzy sets, we get that

I ([x1]R↑
EC1

, D1) = 0.50, I ([x2]R↑
EC1

, D1) = 0.56,

I ([x3]R↑
EC1

, D1) = 0.23, I ([x4]R↑
EC1

, D1) = 0.39,

I ([x5]R↑
EC1

, D1) = 0.34, I ([x6]R↑
EC1

, D1) = 0.28,

I ([x7]R↑
EC1

, D1) = 0.32, I ([x8]R↑
EC1

, D1) = 0.33,

I ([x9]R↑
EC1

, D1) = 0.30.

Similarly, one gets

I ([x1]R↑
EC1

, D2) = 0.50, I ([x2]R↑
EC1

, D2) = 0.44,

I ([x3]R↑
EC1

, D2) = 0.77, I ([x4]R↑
EC1

, D2) = 0.61,

I ([x5]R↑
EC1

, D2) = 0.66, I ([x6]R↑
EC1

, D2) = 0.72,

I ([x7]R↑
EC1

, D2) = 0.68, I ([x8]R↑
EC1

, D2) = 0.67,

I ([x9]R↑
EC1

, D2) = 0.70.

By using the same method, one obtains the other two
upward additive consistent fuzzypreference relations induced
by the attributes of EC2 and EC3, which represent in
Eqs. (19) and (20).

Similarly, based on the inclusion degree from (19), we
have that

I ([x1]R↑
EC2

, D1) = 0.68, I ([x2]R↑
EC2

, D1) = 0.53,

I ([x3]R↑
EC2

, D1) = 0.37, I ([x4]R↑
EC2

, D1) = 0.48,

I ([x5]R↑
EC2

, D1) = 0.45, I ([x6]R↑
EC2

, D1) = 0.52,

I ([x7]R↑
EC2

, D1) = 0.44, I ([x8]R↑
EC2

, D1) = 0.43,

I ([x9]R↑
EC2

, D1) = 0.46. And

I ([x1]R↑
EC2

, D2) = 0.32, I ([x2]R↑
EC2

, D2) = 0.47,

I ([x3]R↑
EC2

, D2) = 0.63, I ([x4]R↑
EC2

, D2) = 0.52,
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I ([x5]R↑
EC2

, D2) = 0.55, I ([x6]R↑
EC2

, D2) = 0.48,

I ([x7]R↑
EC2

, D2) = 0.56, I ([x8]R↑
EC2

, D2) = 0.57,

I ([x9]R↑
EC2

, D2) = 0.54.

Moreover, based on the inclusion degree from Eq. (20),
we have that

I ([x1]R↑
EC3

, D1) = 0.58, I ([x2]R↑
EC3

, D1) = 0.67,

I ([x3]R↑
EC3

, D1) = 0.45, I ([x4]R↑
EC3

, D1) = 0.48,

I ([x5]R↑
EC3

, D1) = 0.52, I ([x6]R↑
EC3

, D1) = 0.49,

I ([x7]R↑
EC3

, D1) = 0.55, I ([x8]R↑
EC3

, D1) = 0.48,

I ([x9]R↑
EC3

, D1) = 0.52.And

I ([x1]R↑
EC3

, D2) = 0.42, I ([x2]R↑
EC3

, D2) = 0.33,

I ([x3]R↑
EC3

, D2) = 0.55, I ([x4]R↑
EC3

, D2) = 0.52,

I ([x5]R↑
EC3

, D2) = 0.48, I ([x6]R↑
EC3

, D2) = 0.51,

I ([x7]R↑
EC3

, D2) = 0.45, I ([x8]R↑
EC3

, D2) = 0.52,

I ([x9]R↑
EC3

, D2) = 0.48.

Based on the above three fuzzy preference granular struc-
tures and the inclusion degree between fuzzy preference
granules [xi ]R↑

ECl

and [x j ]R↑
ECl

and assume that α = 0.60,

β = 0.35, one can get the upward optimistic/pessimistic

fuzzy multi-granulation lower and upper approximations of
the decision concepts D1 and D2, respectively.

A upward optimistic fuzzy multi-granulation lower
approximation of D1:

3∑
l=1

R↑
l

α(O)

(D1) = {x1, x2};

A upward optimistic fuzzy multi-granulation upper
approximation of D1:

m∑
l=1

R↑
l

β(O)

(D1) = {x1, x2, x4};

A upward pessimistic fuzzy multi-granulation lower
approximation of D1:

3∑
l=1

R↑
l

α(P)

(D1) = ∅;

A upward pessimistic fuzzy multi-granulation upper
approximation of D1:

m∑
l=1

R↑
l

β(P)

(D1) = U ;

R↑
EC2

(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.1667 0.0000 0.3333 0.0000 0.1667 0.0000 0.3000 0.0000
x2 0.7000 0.5000 0.2000 0.6000 0.3333 0.5000 0.3333 0.5000 0.3333
x3 0.2000 0.0000 0.5000 0.5000 0.3333 0.1000 0.3333 0.5000 0.3000
x4 0.2000 0.0000 0.1000 0.5000 0.1667 0.1000 0.1667 0.4000 0.1667
x5 0.3000 0.1000 0.2000 0.6000 0.5000 0.2000 0.5000 0.5000 0.4000
x6 0.6000 0.4000 0.1000 0.5000 0.3333 0.5000 0.3333 0.4000 0.3333
x7 0.2000 0.0000 0.2000 0.5000 0.4000 0.1000 0.5000 0.5000 0.3000
x8 0.2000 0.0000 0.2000 0.5000 0.1667 0.1000 0.1667 0.5000 0.1667
x9 0.4000 0.2000 0.2000 0.6000 0.5000 0.3000 0.5000 0.5000 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

R↑
EC3

(xi , x j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.5000 0.0000 0.0000 0.1250 0.1667 0.2500 0.1667 0.1667 0.0000
x2 0.2500 0.5000 0.0000 0.1250 0.1250 0.2500 0.3750 0.0000 0.2500
x3 0.3750 0.1667 0.5000 0.3750 0.2500 0.5000 0.3333 0.1250 0.1667
x4 0.5000 0.1667 0.3750 0.5000 0.3333 0.5000 0.3333 0.2500 0.1667
x5 0.5000 0.3333 0.0000 0.1250 0.5000 0.2500 0.3750 0.2500 0.2500
x6 0.3750 0.1667 0.2500 0.3750 0.2500 0.5000 0.3333 0.1250 0.1667
x7 0.3750 0.3333 0.1250 0.2500 0.2500 0.3750 0.5000 0.1250 0.3333
x8 0.7500 0.3333 0.2500 0.3750 0.5000 0.5000 0.5000 0.5000 0.3333
x9 0.3750 0.5000 0.2500 0.3750 0.2500 0.5000 0.5000 0.1250 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)
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A upward optimistic fuzzy multi-granulation lower
approximation of D2:

3∑
l=1

R↑
l

α(O)

(D2) = {x3, x4, x5, x6, x7, x8, x9};

A upward optimistic fuzzy multi-granulation upper
approximation of D2:

m∑
l=1

R↑
l

β(O)

(D2) = {x3, x4, x5, x6, x7, x8, x9};

A upward pessimistic fuzzy multi-granulation lower
approximation of D2:

3∑
l=1

R↑
l

α(P)

(D2) = ∅;

A upward pessimistic fuzzy multi-granulation upper
approximation of D2:

m∑
l=1

R↑
l

β(P)

(D2) = U .

(3) Decision rules
(a) Upward optimistic decision rules:

(UOP1) if x ∈ ∑3
l=1 R

↑
l

α(O)
(D1) or x ∈U−∑3

l=1 R
↑
l

α(O)

(D2), then decide Accept;

(UON1) if x ∈U−∑3
l=1 R

↑
l

α(O)
(D1) or x ∈ ∑3

l=1 R
↑
l

α(O)

(D2), then Decline;
(UOB1) otherwise, decide Retard.

(b) Upward pessimistic decision rules:

(UPP1) if x ∈ ∑3
l=1 R

↑
l

α(P)
(D1) or x ∈U −∑3

l=1 R
↑
l

α(P)

(D2), then decide Accept;

(UPN1) if x ∈U −∑3
l=1 R

↑
l

α(O)
(D1) or x ∈ ∑3

l=1 R
↑
l

α(P)

(D2), then Decline;
(UPB1) otherwise, decide Retard.

By using the above same method, we can compute the
downward optimistic/pessimistic fuzzy multi-granulation
lower and upper approximations of the decision concepts
D1 and D2, respectively.

A downward optimistic fuzzy multi-granulation lower
approximation of D1:

3∑
l=1

R↓
l

α(O)

(D1) = {x1};

A downward optimistic fuzzy multi-granulation upper
approximation of D1:

m∑
l=1

R↓
l

β(O)

(D1) = {x1, x2, x4, x6, x8};

A downward pessimistic fuzzy multi-granulation lower
approximation of D1:

3∑
l=1

R↓
l

α(P)

(D1) = ∅;

A downward pessimistic fuzzy multi-granulation upper
approximation of D1:

m∑
l=1

R↓
l

β(P)

(D1) = U ;

A downward optimistic fuzzy multi-granulation lower
approximation of D2:

3∑
l=1

R↓
l

α(O)

(D2) = {x2, x3, x4, x5, x6, x7, x8, x9};

A downward optimistic fuzzy multi-granulation upper
approximation of D2:

m∑
l=1

R↓
l

β(O)

(D2) = {x2, x3, x4, x5, x6, x7, x8, x9};

A downward pessimistic fuzzy multi-granulation lower
approximation of D2:

3∑
l=1

R↓
l

α(P)

(D2) = {x3};

A downward pessimistic fuzzy multi-granulation upper
approximation of D2:

m∑
l=1

R↓
l

β(P)

(D2) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}.
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Decision rules

(a) Downward optimistic decision rules:

(DOP1) if x ∈ ∑3
l=1 R

↓
l

α(O)
(D1) or x ∈ U −

∑3
l=1 R

↓
l

α(O)
(D2), then decide Accept;

(DON1) if x ∈ U − ∑3
l=1 R

↓
l

α(O)
(D1) or x ∈

∑3
l=1 R

↓
l

α(O)
(D2), then Decline;

(DOB1) otherwise, decide Retard.

(b) Downward pessimistic decision rules:

(DPP1) if x ∈ ∑3
l=1 R

↓
l

α(P)
(D1) or x ∈ U −

∑3
l=1 R

↓
l

α(P)
(D2), then decide Accept;

(DPN1) if x ∈ U − ∑3
l=1 R

↓
l

α(O)
(D1) or x ∈

∑3
l=1 R

↓
l

α(P)
(D2), then Decline;

(DPB1) otherwise, decide Retard.

If we defined the accuracies degrees of X in terms of
optimistic fuzzy multi-granulation decision-theoretic rough
set (OF-MG-DTRS) (Definition 6, Lin et al. 2016) and pes-
simistic fuzzy multi-granulation decision-theoretic rough set
(PF-MG-DTRS) (Definition 7, Lin et al. 2016) are, respec-
tively, as

ρ
O,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

O,α
(X)

∣∣∣
∣∣∣∣
∑m

i=1 R̃i
O,β

(X)

∣∣∣∣
, (21)

ρ
P,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

P,α
(X)

∣∣∣
∣∣∣∣
∑m

i=1 R̃i
P,β

(X)

∣∣∣∣
, (22)

then from Eqs. (3)–(6) and (21)–(22), the comparison of
our proposed models and the model given in (Lin et al.
2016) according to accuracies degrees of D1 and D2 are

shown in Fig. 1, where
∑m

i=1 R̃i
O,α

(D1),
∑m

i=1 R̃i
O,β

(D1),
∑m

i=1 R̃i
O,α

(D2),
∑m

i=1 R̃i
O,β

(D2),
∑m

i=1 R̃i
P,α

(D1),
∑m

i=1 R̃i
P,β

(D1),
∑m

i=1 R̃i
P,α

(D2) and
∑m

i=1 R̃i
P,β

(D2)

computed in (Lin et al. 2016).
Similarly, if we defined the approximated degrees of X in

terms ofOF-MG-DTRSandPF-MG-DTRSare, respectively,
as

ρ
O,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

O,α
(X)

∣∣∣
|X | , (23)

ρ
P,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

P,α
(X)

∣∣∣
|X | , (24)

Fig. 1 A comparison of the accuracy

then from Eqs. (7)–(10) and (23)–(24), the comparison of
our proposed models and the model given in (Lin et al. 2016)
according to approximated degrees of D1 and D2 are shown
in Fig. 2.

Moreover, if we defined the degree of dependency of X in
terms ofOF-MG-DTRSandPF-MG-DTRSare, respectively,
as

ρ
O,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

O,α
(X)

∣∣∣
|U | , (25)

ρ
P,α,β∑m

i=1 R̃i
(X) =

∣∣∣∑m
i=1 R̃i

P,α
(X)

∣∣∣
|U | , (26)

then from Eqs. (11)–(14) and (25)–(26), the comparison of
our proposed models and the model given in (Lin et al. 2016)
according to degree of dependency of D1 and D2 are shown
in Fig. 3.

6 Conclusions

In this paper, we combined MG-DTRS with FPR in order to
dealing the problems of uncertainty and imprecision easily.
The FPRs can be used to represent the fuzzy and uncertain
preferences of the experts in the process of group decision
making, while MG-DTRSs can be used to multi-source data
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Fig. 2 A comparison of the approximation degree

Fig. 3 A comparison of the degree of dependency

analysis, knowledge discovery from data with high dimen-
sions and distributive information systems.We are combined
use of two ideas, this paper proposed FPR-MG-DTRS,
which can be used to solve multi-criteria preference anal-
ysis problems, where data come from the multi-source fuzzy
information system. The contribution of this paper has con-
structed two different types of FPR-MG-DTRS associated
with granular computing, in which approximation operators
are defined based on multiple additive FPRs. We also dis-
cuss the uncertainty measure of proposed model by using the
concept of the granularity of additive FPR. Finally, we use a
example to illustrate our methods effectiveness in real appli-
cations and compare the our proposed and existing models.
It shows that the propose approach will be helpful for dealing
with multi-criteria preference analysis problems, where data
come from multi-source information system. In future, we
will apply our proposed model for ordinal decision system.
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