
Soft Computing (2019) 23:7359–7373
https://doi.org/10.1007/s00500-018-3382-8

METHODOLOGIES AND APPL ICAT ION

Chinese and windy postman problemwith variable service costs

Muhammed Emre Keskin1 ·Mustafa Yılmaz1

Published online: 11 July 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Given a network G = (V, E) of nodes denoted by V , edges between nodes represented by E , and costs associated with the
edges, postman problem (PP) is to find the route having the minimum cost that begins and ends with a predefined starting point
and spans each edge of the network. PP is a variant of the well-known arc routing problem. Inmany real-life applications of the
PP, costs associated with the edges tend to reduce with each pass on the edges. We propose a new mathematical formulation
to represent the postman problem with variable service costs. If the service costs are symmetric, the problem is named as
the Chinese postman problem (CPP) with variable service costs (CPPVSC), and it is called as the windy postman problem
with variable service costs (WPPVSC), otherwise. CPPVSC turns to be a variant of CPP, and it is an easy problem. We show
that no edge can be traversed more than twice in the optimal solution. Moreover, we propose two heuristics for the solution
of WPPVSC. Based on the extensive numerical experiments, we can say that both heuristics outperform the state-of-the-art
commercial solvers.

Keywords Chinese postman problem · Windy postman problem · Variable service costs · Heuristic approaches

1 Introduction

Arc routing problem (ARP) is one of the well-studied prob-
lems of the operations research literature. There are many
real-life applications of ARP such as garbage collection,
post-delivery, snow plow, salinization of snowy roads (Assad
and Golden 1995; Campbell and Langevin 2000; Eglese and
Li 1992). PP is a variant of ARP in which the postman is
required to pass through each edge of the network starting
and ending with a predefined point with minimum possible
cost. PP is undirected if traversing edges in each direction is
possible, it is directed if traversing is permitted in only one
direction, and it is mixed if a subset of the edges are directed.
Similarly, if service costs do not depend on the traversing
direction, PP is symmetric, and it is asymmetric otherwise.
Finally, there are postman problems in which more than one
vehicle is used (Hertz 2005). We direct interested readers to

Communicated by V. Loia.

B Muhammed Emre Keskin
emre.keskin@atauni.edu.tr

Mustafa Yılmaz
mustafay@atauni.edu.tr

1 Department of Industrial Engineering, Atatürk University,
25030 Erzurum, Turkey

the study by Dror (2012) in which ARP and its variations
(including variants of the postman problem) are analyzed in
detail.

In real-life applications, service costs appointed to the
edges may vary from pass to pass due to the natural condi-
tions, traffic density or the weather conditions. For instance,
service costs are related to the amount of snow on the roads
if the implied application is snow plow. We basically assume
that the roads are closed due to excessive amount of snow
and the snow plow vehicle is required to pass through each
road at least once in order to open them for aminimumextent.
However, all the snow cannot be cleanedwith a single pass of
the vehicle. Hence, the amount of snow decreases with each
pass of the vehicle. Similarly, postman learns the roads bet-
ter with each pass implying that passing times tend to reduce
throughout the post-delivery process. These variations in the
service costs may alter the resulting cost-minimizing routes
as well. Thus, variability of service costs should be taken into
account that we undertake in this study.

PP with symmetric service costs belongs to class P, and
it is easily solvable (Assad and Golden 1995). There is no
need to pass through any edge more than twice for sym-
metric networks. PP with symmetric costs is known as CPP
in the literature. On the other hand, more realistic version
of the PP having asymmetric costs (Ávila et al. 2016),

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3382-8&domain=pdf
http://orcid.org/0000-0001-9381-123X

7360 M. E. Keskin, M. Yılmaz

which is known as windy postman problem (WPP), is shown
to be NP-hard by Guan (1984). It is possible and usually
expected that some edges of the network will be traversed
more than twice if there are nodes with odd degrees for WPP
instances.

In this study, we concentrate on the PP in which ser-
vice costs of the edges vary depending on the number of
passes. Hence, costs do not vary with the time as they are in
time-dependent ARPs (Gendreau et al. 2015), but with the
passing numbers. If the costs are symmetric, i.e., the problem
is CPPVSC, then it still belongs to class P. We show that no
edge can be traversedmore than twice in the optimal solution
of CPPVSC. On the other hand, WPPVSC is naturally a dif-
ficult problem. We propose two heuristic solution strategies
and show their accuracies and efficiencies on four sets of test
instances from the literature and on one set of test instances
we generate that includes relatively denser networks.

The rest of the paper is organized as follows. In the next
section, a brief review of the related literature is given. Next,
we provide the mathematical formulation of the postman
problem with variable service costs (PPVSC). Later on, we
analyze CPPVSC in detail. Heuristic solution strategies for
solution of WPPVSC are given in the solution approaches
section. Moreover, we expose the success of the heuristics
in numerical results section. Finally, we conclude the paper
and point out future research directions.

2 Related studies

Time-dependent routing problems are treated under twomain
titles in the literature which are node routing (traveling sales-
man problem Malandraki and Dial 1996; Li et al. 2005;
Schneider 2002; Cordeau et al. 2012; Taş et al. 2016, vehicle
routing problem Malandraki and Daskin 1992; Ichoua et al.
2003; Donati et al. 2008; Guan 1984; Dussault et al. 2013;
Koç et al. 2016; Setak et al. 2015) and arc routing. One obser-
vation is that there are time-dependent traveling salesman and
vehicle routing studies with deterministic or stochastic ser-
vice costs, but arc routing studies assume only deterministic
service costs. One reason behind this phenomenon may be
the fact that time-dependent node routing problemshave been
studied more than the time-dependent arc routing problems.
We direct the interested readers to the paper by Gendreau
et al. (2015) that represents the state-of-the-art about the time-
dependent routing problems.We provide a brief review of the
time-dependent arc routing studies in the following.

Tagmouti et al. (2007) concentrates on the capacitated
time-dependent arc routing problem. The authors transform
the problem into the node routing problem and propose a
solutionmethod based on column generation. Tagmouti et al.
(2010) also considers the sameproblemand introduces a vari-
able neighborhood descent heuristic. Tagmouti et al. (2011)

follows the same line of research, but the arc routing problem
it takes assumes dynamic arc capacities. The authors adapt
the variable neighborhooddescent heuristic ofTagmouti et al.
(2010) as the solution strategy. Besides, Black et al. (2013)
utilizes variable neighborhood search and tabu search meth-
ods for prize collecting time-dependent arc routing problem.
A variant of WPP is studied by Dussault et al. (2013) in
which a snow plow application is considered. The authors
assume that the service costs of the roads decrease if the
snow plow vehicle has already passed. They offer a heuristic
named cycle permutation local search as the solutionmethod.
Hence, subject of Dussault et al. (2013) is similar to our anal-
ysis, but it is assumed in Dussault et al. (2013) that service
costs decrease only after the first pass while we generalize
the idea and assume that each pass affects the service costs.
Moreover, the authors assume a mixed network but allow
passing through reverse directions by closing the roads dur-
ing snow plow. These special conditions do not apply for our
case. Another study is due to Sun et al. (2015) in which a new
integer program for time-dependent Chinese postman prob-
lem is proposed. The authors generate valid constraints and
employ a cutting plane algorithm as the solution method.
Finally, Vincent and Lin (2015) offers an iterated greedy
heuristic for the solution of prize collecting time-dependent
arc routing problem. The authors illustrate effectiveness of
their method on several test sets.

3 Mathematical model

Before giving the mathematical formulation of PPVSC, we,
respectively, describe the sets, parameters and variables that
are used in the formulation. First of all, we define G = (V, E)

as the graph of the nodes denoted by V and the edges repre-
sentedbyE .Weuse i and j indexes for the nodes and (i, j) for
the edges. Set of times of the passes on the edges is given by
T , andwe let k stand for the order of the pass, while t denotes
the total number of passes. Service cost of edge (i, j) kth time
is given by cki j and we assume that ck1i j ≥ ck2i j if k1 ≤ k2. That
is, service costs do not become more costly as the number
of the passes increases which is intuitive since the postman
is expected to learn the roads better as the number of passes
increases in the post-delivery application. Similarly, if each
pass on the edges represents the shoveling of the accumulated
snow on a specific edge, then the cost of the shoveling should
not increase by the number of the passes on that edge as the
snow becomes less and less at each pass of the snow plow
vehicle.Moreover, we also assume that cki j > 0 for any k, i.e.,
free rides are not allowed. It should be noted that by passing
the edge (i, j), we mean to traverse it by going from i to j .
The service cost of an edge is defined as the traversing cost of
the edge which includes the cost of the shoveling operation
taken place on the edge and the cost of the travel on the edge

123

Chinese and windy postman problem with variable service costs 7361

Table 1 Sets, parameters and decision variables

Definition

Sets

V Set of nodes

E Set of edges

T Set of number of passes

Parameters

cki j Service cost of the edge (i, j) kth time

dti j Total cost of traversing the edge (i, j) t times

Variables

xi j Number of passes on edge (i, j)

yti j Indicates whether or not the number of passes on
edge (i, j) is t

itself. We interchangeably use service cost and the traversing
cost for the same concept throughout the study. We also refer
to the service cost of the edges as the length of the edges
especially in the solution approaches section in which we
embrace the problem in the graph theory context. If service
costs of the edges (i, j) and (j, i) at each pass are identi-
cal, i.e., cki j = ckji (i, j) ∈ E, k ∈ T , then the costs possess a
symmetric structure, and the problem becomes CPPVSC. On
the other hand, if cki j �= ckji for any (i, j) ∈ E, k ∈ T , then
the problem at hand is WPPVSC. It should be noted that the
implied asymmetry among the costs can be easily justified.
For instance, the slopes of the roads may cause traversing
on a specific direction more difficult than the opposite direc-
tion, or as the name of the problem suggests, the wind may
have more effect on specific directions. Another parameter
that is used in the formulation is dti j which denotes the total
cost of traversing the edge (i, j) t times. Mathematically,
dti j = ∑t

k=1 c
k
i j . Note that dt1i j ≤ dt2i j for t1 ≤ t2. It is easy

to see that if the service costs (cki j) are symmetric, then the
total service costs (dti j) are also symmetric, and if the service
costs are asymmetric, then the total service costs are most
likely asymmetric as well. Finally, we use two set of vari-
ables named xi j and yti j . xi j stands for the number of passes
on edge (i, j) and yti j indicates whether or not the number
of passes on edge (i, j) is exactly t , i.e., yti j = 1 if xi j = t

and yti j = 0, otherwise. A summary of the set, parameter
and variable definitions is provided in Table 1 for the sake of
convenience.

Below, we give the mathematical formulation of the post-
man problem with variable service costs.

PPVSC:

min
∑

(i, j)∈E

∑

t∈T
dti j y

t
i j (1)

s.t.
∑

(i, j)∈E
xi j =

∑

(j,i)∈E
x ji i ∈ V (2)

xi j + x ji ≥ 1 (i, j) ∈ E (3)

t yti j ≤ xi j (i, j) ∈ E, t ∈ T (4)

xi j ≤
∑

t∈T
t yti j (i, j) ∈ E (5)

yti j ∈ {0, 1} (i, j) ∈ E, t ∈ T (6)

xi j ≥ 0 and integer (i, j) ∈ E (7)

We minimize the total service cost in the objective func-
tion (1). In the first set of constraints (2), we ensure that total
arrivals to and departures from each node are equal, implying
that the postman, or the snow plow vehicle, should leave each
node asmany as the number of times she visits the node. Con-
straint (3) guarantees that each edge of the network is visited
at least once. It should be noted that although it is possible
to traverse the edges in each direction, it is not required. It
can be, and is expected to be, the case in the solution that
some of the edges are traversed through only one direction.
Constraint (4) makes sure that if yti j is 1, then xi j is at least
t . On the contrary, if xi j = t , then the variable yti j should
be equal to 1 which is achieved by constraint (5). It can be
observed that since the objective is in the direction of mini-
mization, among the variables existing on the right hand side
of constraint (5), only the related yti j variable is set to 1 in
the optimal solution. For instance, suppose that xi j = 6 for a
specific edge (i, j). Then, the right hand side of constraint (5)
written for edge (i, j) should be at least 6. First, setting the
right hand side of the constraint to a value that is larger than
6 increases the objective function unnecessarily. Hence, the
right hand side will be exactly 6 in the optimal solution. This
can be achieved by simply setting y6i j to 1 which increases

the objective function value by d6i j . Observe that any other
solution leads to a larger objective function value. For exam-
ple, if y4i j and y2i j are both set to 1 to achieve a total of 6
at the right hand side of the constraint, then their combined
effect on the objective function value will be d4i j + d2i j which

is greater than or equal to d6i j since d6i j = ∑6
k=1 c

k
i j while

d4i j + d2i j = ∑4
k=1 c

k
i j + ∑2

k=1 c
k
i j and cki j values are nonin-

creasing in k. Therefore, constraint (5) ensure that only the
yti j variable associated with the value of xi j is equal to 1. As a
consequence, if yti j variable takes value 1, then xi j is equated
to t by collaborative efforts of constraints (4) and (5). This
implies that it is possible to take xi j variables as continuous in
the model knowing that its value will always be integral. We
exploit this phenomenon to significantly increase the solu-
tion efficiency as stated in the computational results section.
Finally, constraint (6) and constraint (7) are the usual binary,
nonnegativity and integrality restrictions.

123

7362 M. E. Keskin, M. Yılmaz

4 Analysis of CPPVSC

It is a well-known fact that CPP is polynomially solvable.
A polynomial time algorithm can be described as follows; if
all the nodes have even degrees, then there is an Euler tour
that passes through each edge only once and it is obviously
optimal. If there are vertices with odd degrees, then their
numbers should be even. A new complete graph consisting
only the vertices with odd degrees can be formed in which
the edge lengths correspond to the lengths of the shortest
paths obtained on the original network. In other words, the
length between nodes i and j on the new graph is equal to
the length of the shortest path between nodes i and j on the
original network. Then, a minimumweight perfect matching
problem is solved in polynomial time in the newly formed
complete graph. Edges of the shortest paths corresponding
to the links selected in the perfect matching are then added
to the original network to form a new network in which all
the vertices have even degrees, and length of the Euler tour
on that new network gives the minimum cost.

The algorithm mentioned above that solves classical CPP
in polynomial time also solves CPPVSC as well. Note that
it is not possible to equate arrivals to and departures from
odd degree nodes by traversing the neighboring edges only
once. This implies that there must be paths between the odd
degree nodes including the edges traversed at least two times.
Such paths with minimum possible travel costs can be found
by constructing a complete network with odd degree nodes
and searching for the minimum weight perfect matching on
that network as described above. The only difference is that
shortest paths between nodes should be calculated using c2i j
values for each odd degree node pair. Moreover, although the
passing costs tend to decrease by the number of passes, no
edge is traversed more than twice. This is why we need only
the c2i j values to calculate shortest path lengths. We express
this observation in amore formalway in the proposition given
below.

Proposition 1 If the costs are symmetric, i.e., cki j = ckji for
(i, j) ∈ E, k ∈ T , then xi j ≤ 2 for (i, j) ∈ E in the optimal
solution.

Proof First of all, if all the vertices have even degrees than
the Euler tour that passes each edge only once is optimal
meaning that there is no need to pass any edge more than
once even in the case that second time passes have very low
costs. In that case,

xi j =
{
1 if (i, j) is traversed through i to j,

0 if (i, j) is traversed through j to i .

Here, xi j ≤ 2 for (i, j) ∈ E trivially holds. Now, consider
the case where some of the vertices have odd degrees. Then,

Fig. 1 Illustration of shortest paths between (a, b) and (c, d) pairs

a complete graph including the odd degree vertices can be
formed. By the way of contradiction, assume that the mini-
mum cost perfect matching, say matching 1, obtained on the
complete graph of the odd degree vertices includes two edges
(a, b) and (c, d) such that the shortest paths from a to b and
from c to d on the original network share an edge (e, f) of
the original network as depicted in Fig. 1.

Note that the Euler tour obtained on the network after
adding the edges of the shortest paths corresponding to the
selected links of the minimum cost perfect matching to the
original network includes the edge (e, f) at least three times,
i.e., xe f ≥ 3. For convenience, we let the edge lengths of
the complete graph (which correspond to the lengths of the
shortest paths on the original network) to be denoted by �,
for instance the edge length between a and b is given by �ab.
Total cost of the matching 1 is equal to the sum of the �ab, �cd
and the total remaining cost (TRC). Since we do not know
the exact number and order of passes on edge (e, f), let the
passing costs used for calculation of �ab and �cd be denoted
by cabe f and c

cd
e f , respectively.Obviously, �ab = �ae+cabe f +� f b

and �cd = �ce + ccde f + � f d . Then, total cost of the matching

1 is equal to TRC+�ae + � f b + �ce + � f d + cabe f + ccde f . Now,
suppose that we form another matching, say matching 2, in
which instead of edges (a, b) and (c, d), we select (a, c)
and (b, d) and the remaining edges of the matching are the
samewith the ones of the matching 1. Edges (a, c) and (b, d)

exist since the newly formed network is complete. Observe
that matching 2 is also perfect and its total cost is equal to
TRC+�ac + �bd . We know that there is a path between a and
c which goes through node e having the length of �ae + �ce.
Thus, �ac ≤ �ae+�ce should hold. Similarly, �bd ≤ � f b+� f d

also holds. Nevertheless, this implies that TRC+�ac + �bd ≤
TRC+�ae + �ce + � f b + � f d < TRC+�ae + � f b + �ce +
� f d + cabe f + ccde f which is a contradiction implying that the
minimum cost perfect matching cannot include two edges
such that corresponding shortest paths share an edge of the
original network. Hence, no edge of the original network can
be traversed more than twice in the optimal solution. ��

123

Chinese and windy postman problem with variable service costs 7363

As Proposition 1 suggests, CPPVSC is as much difficult
as CPP which belongs to class P. Therefore, we provide no
numerical results for CPPVSC.

5 Solution approaches

In this section, we provide two heuristic strategies for the
solution of WPPVSC which are, respectively, called as pass
iteration heuristic (PIH) and Lagrangian heuristic (LH).

5.1 Pass iteration heuristic

Observe that if cki j values do not varywith k, i.e., service costs
do not change from pass to pass, then WPPVSC reduces to
WPP which is known to be NP-hard. Hence, WPPVSC is
also NP-hard implying that we must resort to heuristic pro-
cedures for the solution of large instances of WPPVSC. It is
known that traversing an edge more than twice is possible
in WPP and it is even encouraged in WPPVSC since cost
of the passing tends to reduce with each pass. Moreover, as
the costs are asymmetric, known combinatorial algorithms
like the blossom algorithm which finds the minimum cost
perfect matching cannot be used. An examination of the lit-
erature reveals that metaheuristics have been widely used for
solving WPP instances. Another idea for the solution is to
utilize the power of the today’s modern solvers which have
gained significant strength in the last decade. In addition,
the processor and the computer memories have significantly
developed. Therefore, we propose a heuristic strategy which
exploits the state-of-the-art solver Gurobi (2017). Solving
big-sized instances ofWPPVSC is difficult mostly due to the
large number of binary variables included in the model. This
observation calls to mind to decrease the number of binary
decision variables by fixing a subset of them a priori in the
model. As a result, a good quality solution can be found rel-
atively easily since the number of binary variables involved
would be much lower. Moreover, the obtained solution can
be used as a starting point in a further attempt to find a better
solution.

In order to decrease the number of binary variables, we
concentrate on the cardinality of the set of number of the
passes, |T |. We try to compute the lowest possible number
of passes that leads to the minimum cost by the following
pass iteration idea. Suppose a new parameter φ stands for the
number of maximum allowable number of passes and let the
initial value ofφ be 2 at the beginning of the algorithm imply-
ing that traversing any edge more than twice is not permitted.
Hence, values of the yti j variables for (i, j) ∈ E, t ∈ T , t ≥ 3
are set to 0. Similarly, upper bounds of the xi j variables are set
to φ. After fixation of the variables, we have a much smaller
model which is called as the restricted model in the sequel.
We run the solver Gurobi to solve the restricted model for a

predetermined amount of computation time, and the solver
is expected to find good quality solutions since there are
relatively small number of binary variables in the restricted
model, especially for small φ values. In addition, since we
do not aim to prove the optimality but to obtain good feasible
solutions of the restrictedmodel at each iteration,we increase
the rate of the time that Gurobi uses to find primal feasible
solutions. The solution obtained for the restricted model is
also feasible for the original model as well. After finding
the solution obtained for a specific value of φ, its value is
increased by 1, i.e., φ ← φ + 1 and the solver is rerun for
the new value of φ. Namely, we increase the upper bound of
the xi j variables by 1 and yφ+1

i j variables are set free (their
upper bounds are updated from 0 to 1) to form the newly
restricted model. We expect an improvement in the objec-
tive function value since a slightlymore flexible optimization
framework is provided by letting the solver determine the val-
ues of more decision variables. However, at the same time,
the solution of the restricted model becomes harder as the
number of binary variables of the model increases with φ.
Fortunately, we are able to accelerate the solution procedure
of the new restrictedmodel by providing the previously found
solution as a starting point. Suppose the values of the deci-
sion variables coming from the previous restricted model are
represented by x̄i j and ȳti j for (i, j) ∈ E, t ∈ T . We start xi j
and yti j variables of the new restricted model from x̄i j and
ȳti j values using the START attribute of the Gurobi solver.
Namely, the comment line xi, j .Set(GRB. DoubleAttr.Start,
x̄i, j) and yti, j .Set(GRB.DoubleAttr.Start, ȳ

t
i, j) are written for

(i, j) ∈ E, t ∈ T before running Gurobi for the solution of
the new restricted model. Hence, the new restricted model
will start from a good feasible solution coming from the pre-
vious restricted model, and hence, the solution procedure is
likely to be more effective. The process continues until the
improvement in the objective value after a unit increase in
the value of φ becomes less than or equal to a final pre-
cision parameter ε, or the total solution time exceeds the
predetermined time limit. Steps of the algorithm are formally
summarized in Algorithm 1. Note that O(φ) given in Algo-
rithm 1 represents the objective function value of the solution
found for a given value of φ. We name the algorithm as pass
iteration heuristic.

Algorithm 1 PASS ITERATION HEURISTIC
Let φ = 2, DI F = 100 and initiate value of ε

while (DI F > ε and time limit is not exceeded) do
– Let solver run for φth restricted model for a small amount of

time, use solution found at the previous iteration to speed up
the solution process

– Set O(φ) to the best objective value obtained by the solver
– Set DI F = O(φ) − O(φ−1), φ ← φ + 1

end while
Report the final solution and corresponding objective value

123

7364 M. E. Keskin, M. Yılmaz

5.2 Lagrangian heuristic

Another approach suggests relaxing the coupling constraints
in an attempt to ease the solution of the WPPVSC. Observe
that constraints (4) and (5) include both continuous variables
xi j and binary variables yi j . We relax constraints (4) and (5)
in order to decompose the model to easy to solve subprob-
lems one of which only contains continuous variables while
the other solely depends on the binary variables. We carry
the relaxed constraints to the objective function by multiply-
ing with nonnegative Lagrange multipliers α and β. We let
WPPVSC(α, β) denote the Lagrangian subproblem

WPPVSC(α, β):

LB(α, β) = min
∑

(i, j)∈E

∑

t∈T
dti j y

t
i j

−
∑

(i, j)∈E

∑

t∈T
αi j t

(
xi j − t yti j

)
−

∑

(i, j)∈E
βi j

(
∑

t∈T
t yti j − xi j

)

s.t. (2), (3), (6), (7) (8)

where LB(α, β) denotes the optimal objective function value
of the Lagrangian subproblem for a given Lagrange multi-
plier set {α, β}.

5.2.1 Subproblems

Lagrangian subproblemWPPVSC(α, β) can be decomposed
further into two subproblems. The terms of the objective
function including only the continuous variables x together
with the constraints involving only these variables form a
linear programming (LP) subproblem which is easy to solve.
The rest of the objective function along with the remaining
constraints involving only binary variables y constitutes a
binary integer programming subproblem. We call the for-
mer subproblemWPPVSC1(α, β) and the latter subproblem
WPPVSC2(α, β), which are given below. We let Z1 and Z2

denote the optimal objective function values of the subprob-
lems, respectively.

WPPVSC1(α, β):

Z1 = min
∑

(i, j)∈E
γi j xi j (9)

s.t. (2), (3),

xi j ≥ 0 (i, j) ∈ E (10)

where γi j = βi j − ∑

t∈T
αi j t and

WPPVSC2(α, β):

Z2 = min
∑

(i, j)∈E

∑

t∈T
θi j t y

t
i j

s.t. (6) (11)

where θi j t = dti j − t
(
βi j − αi j t

)
.

Note that WPPVSC1(α, β) is an LP and hence easily
solvable. Besides, WPPVSC2(α, β) can also be solved to
optimality easily by inspection as follows. Since yti j is binary,
it can be set to zero or one. If θi j t ≥ 0, then yti j = 0 and
θi j t < 0, then yti j = 1 for (i, j) ∈ E, t ∈ T since the objec-
tive function is in the direction of minimization.

5.2.2 Subgradient algorithm

The value LB(α, β) is a lower bound on the optimal objective
value of the original problem WPPVSC for any Lagrange
multiplier set {α, β}. To find the best (largest) lower bound,
we solve the Lagrangian dual problem

Z = max
α,β≥0

LB(α, β) (12)

by using a subgradient optimization algorithm. At each itera-
tion n of the subgradient optimization procedure, the current
lower bound LBn(α, β) is obtained by optimally solving
subproblems WPPVSC1(α, β) and WPPVSC2(α, β). Then,
Lagrange multipliers αn , βn are updated using the best avail-
able upper boundUB∗. Upper boundsUBn are computed at
each iterationn by constructing a feasible solution of the orig-
inal problem from the solution of the subproblems, details of
which are given in the next subsection. We report the UB∗
and LB∗ as the outputs of the subgradient procedure. We
use three termination criteria for the procedure. The first
one stops the subgradient algorithm if UB∗ − LB∗ < ε1
for a given small positive value. Second termination cri-
terion depends on the size of the step size parameter π ,
which is employed in the subgradient algorithm. If there is
no improvement in the value of best lower bound LB∗ for
consecutive N number of iterations, the value of π is halved.
When π becomes smaller than a threshold level ε2, the algo-
rithm is stopped. An observation reveals that convergence
of the subgradient algorithm slows down toward the end of
the procedure. Hence, another criterion suggests putting an
upper bound on the number of iterations in order not to spend
too much time toward the end of the algorithm. The upper
bound on the number of iterations is called iterlim in the body
of the algorithm given below.

123

Chinese and windy postman problem with variable service costs 7365

Although the subgradient algorithm is theoretically quite
promising, its practical efficiency is prone to serious lim-
itations due to the long computation times required by
WPPVSC1(α, β), especially for large instances. Since
WPPVSC2(α, β) is solvedby inspection, it generally requires
less than 1 minute even for the largest instances with 3000
nodes. On the other hand, the size of the LP subproblem
WPPVSC1(α, β) becomes too large to be solved recur-
rently in the body of the Lagrangian heuristic numerous
times. Hence, we are still in need of making the prob-
lem size smaller. Besides, one can easily observe that if
there is a feasible solution vector x for WPPVSC1(α, β)

with negative objective function value, values of the x vari-
ables can be increased indefinitely to produce an unbounded
objective value. This surpasses Z2 value coming from
WPPVSC2(α, β) and makes LBn minus infinity and con-
sequently slows the convergence rate of the subgradient
algorithm. In order to make the problem size smaller and
to put an upper bound on the x variables, which prevents
WPPVSC1(α, β) from being unbounded, we make use of
the period iteration idea which is explained in the previous
section. Namely, we begin the procedure as if the number of
passes is limited by 2, i.e., φ = 2, and we increase the limit
of the number of passes by one after the convergence of the
inner Lagrangian heuristic, until no improvement is observed
in the reported feasible solution. Moreover, the value of φ is
put as an upper bound for the value of x variables in the body
ofWPPVSC1(α, β)whichwill prevent unbounded solutions,
and speed up the convergence of LBn . Therefore, the pass
iteration idea is the backbone of both heuristics. The steps
of the subgradient algorithm integrated with the pass iter-
ation idea are summarized in Algorithm 2. Note that O(φ)

existing in the body of Algorithm 2 now represents the objec-
tive function value of the best feasible solution found by the
Lagrangian heuristic for step φ.

5.2.3 Generating a feasible solution

As mentioned before, at each iteration, Lagrangian heuris-
tic constructs a feasible solution from the solution of the
Lagrangian problem. Since constraints (4) and (5) are relaxed
in the Lagrangian problem, values of x and y variables
coming from WPPVSC1(α, β) and WPPVSC2(α, β) (say
x̄ and ȳ) are not expected to be feasible for the original
WPPVSC(α, β) problem. Nevertheless, a feasible y variable
vector can be obtained near the solution ofWPPVSC2(α, β).
Once the values corresponding to the ȳ vector is set in the
original problem WPPVSC(α, β), the model reduces to an
LP and can easily be solved to optimality in order to gen-
erate feasible x vector as well. The approach we employ
for finding the feasible solution depends on that idea. First
of all, values of the y variables are set to the ȳ values in
the original WPPVSC(α, β) to reduce it to an LP. If the LP

Algorithm 2 LAGRANGIAN HEURISTIC
Let φ = 2, DI F = 100 and initiate value of ε

while (DI F > ε and time limit is not exceeded) do
Initialization: Set iteration counter n = 0, π0 = 2, LB∗ = 0,
UB∗ = ∞, αn

i j t , β
n
i j = 0 for all i, j, t

while (UB∗ − LB∗ ≥ ε1 and π ≥ ε2 and n ≤ iterlim) do
– Solve WPPVSC1(α, β) and WPPVSC2(α, β), compute

LBn = Zn
1 + Zn

2 and update LB∗ = max{LB∗, LBn}
– If LB∗ is not updated during N iterations, set π ← π/2
– Construct a feasible solution with objective valueUBn and

update UB∗ = min{UB∗,UBn}
– Update Lagrange multipliers α and β:

αn+1
i j t = max

{
0, αn

i j t + κn
(
xi j − t yti j

)}
,

βn+1
i j = max

{

0, βn
i j + κn

(
∑

t∈T
tyti j − xi j

)}

where κn =

π(UB∗−LBn)
A

with A = ∑

(i, j)∈E
∑

t∈T

[
xi j − t yti j

]2

+ ∑

(i, j)∈E

[
∑

t∈T
tyti j − xi j

]2

– n ← n + 1
end while
– Set O(φ) to the best objective value obtained by the inner loop

for step φ

– Set DI F = O(φ) − O(φ−1), φ ← φ + 1
end while
Report the final solution and corresponding objective value

is feasible, then the solution of it (which will give x val-
ues), together with the ȳ values coming from the solution
of WPPVSC2(α, β), constitutes a feasible solution for the
original problem. On the other hand, if the LP is infeasible,
this means it is impossible to satisfy the relaxed constraints
with the ȳ values obtained from WPPVSC2(α, β). In such a
case, instead of setting the values of y variables in the orig-
inal problem WPPVSC(α, β) with the ones coming from
WPPVSC2(α, β), we initiate them from the values coming
from WPPVSC2(α, β) by Gurobi’s START parameter and
we let the solver run for a short time. By doing so, we let the
solver to refine the ȳ values coming fromWPPVSC2(α, β) so
that they become feasible for the original problem. Besides,
since a short computation time is allowed for the solver, it
will probably generate feasible y values that are in a sense
close to the infeasible ones obtained from the solution of
WPPVSC2(α, β). These steps are formally summarized in
Algorithm 3.

6 Computational results

In this section, the selection of the parameters of the PPVSC
formulation is given first, and then the efficiency and accu-
racy of PIH and LH are illustrated on extensive test instances.

123

7366 M. E. Keskin, M. Yılmaz

Algorithm 3 Generation of a feasible solution
– Let ȳ be the vector coming from WPPVSC2(α, β)

– Set yti j ← ȳti j for all (i, j) ∈ E , t ∈ T using
Gurobi.DoubleAttr.Set feature of the Gurobi to reduce
WPPVSC(α, β) to an LP

– If LP is feasible solve it to obtainUBn and xi j values which will
produce a feasible solution with yti j values

– If LP is infeasible, instead of setting the values of yti j variables

(with the ones of ȳti j), let Gurobi initiate them from ȳti j values
using Gurobi.DoubleAttr.Start feature of the Gurobi

– Let Gurobi run for a short time for WPPVSC(α, β) (having yti j
values initiated from the values of ȳti j) to generate a feasible
solution close to the solution of WPPVSC2(α, β) if possible

– Report UBn if a feasible solution is found

6.1 Selection of the parameters

We use 5 different sets of test instances. First set, which
we call test bed 1, is due to Golden et al. (1983) including
23 problems denoted by gdb1,...,gdb23. Second set, named
test bed 2, is given by Benavent et al. (1992). It includes
34 problems which are denoted as val1A,...,val10D. Third
set, entitled as test bed 3, includes 24 problems denoted
by egl-e1-A,...,egl-s4-C and is provided in the paper by Li
and Eglese (1996). Problem size slightly increases as we go
from test bed 1 to test bed 2, and from test bed 2 to test

bed 3. These three sets are originally developed for capac-
itated arc routing problems. We neglect the capacities and
take only the arc traveling costs as the initial service costs.
We generate the fourth set in order to have denser instances
and call it test bed 4. Node places are randomly chosen
so that the resulting network is a connected one. Vertices
that are closer than 15 meters are accepted as neighbors,
and the initial service costs are equated to the length of the
edges. There are 12 problems in test bed 4 that are called
as 100-1,...,400-3. Finally, the fifth set named test bed 5,
generated for WPP, is given in a website (http://www.uv.es/
corberan/instancias.htm) and includes 120 problems denoted
WA0531,...,WB3065. We take values of the first pass costs,
namely c1i j parameters, from the sets. Values of the other cost

parameters, i.e., cki j k ∈ T , k ≥ 2, are generated using the

formula cki j =
⌈
ck−1
i j
2

⌉

+Rand(
ck−1
i j
2) where Rand(n) denotes

a real number randomly generated within the interval (0,n).
Note that cki j values compulsorily possess a nonincreasing

structure, and cki j > 0 for any k by this selection mechanism.

6.2 Accuracy and efficiency of heuristics

In this section, we assess the performance of PIH and LH
by comparing the minimum costs found by them with those

Table 2 Performance of Gurobi,
PIH and LH on test bed 1

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

gdb1 12 22 272 8.54 0.00 272 1.04 272 19.87

gdb2 12 26 296 4.45 0.00 296 0.40 296 16.19

gdb3 12 22 235 3.94 0.00 235 0.42 235 87.49

gdb4 11 19 241 2.27 0.00 241 0.24 241 36.33

gdb5 13 26 318 6.89 0.00 318 2.20 318 65.00

gdb6 12 22 263 2.33 0.00 263 0.28 263 36.08

gdb7 12 22 256 6.18 0.00 256 0.62 256 36.20

gdb8 27 46 239 17.94 0.00 239 3.05 239 640.41

gdb9 27 51 226 43.56 0.00 226 10.91 226 800.00

gdb10 12 25 247 6.07 0.00 247 0.44 247 16.41

gdb11 22 45 341 37.09 0.00 341 7.24 341 378.65

gdb12 13 23 341 12.10 0.00 341 1.29 341 31.62

gdb13 10 28 467 4.27 0.00 467 0.16 467 23.53

gdb14 7 21 91 0.17 0.00 91 0.05 91 0.21

gdb15 7 21 51 0.12 0.00 51 0.05 51 0.10

gdb16 8 28 114 3.69 0.00 114 0.43 114 28.22

gdb17 8 28 81 3.68 0.00 81 3.65 81 58.60

gdb18 9 36 131 0.48 0.00 131 0.11 131 0.19

gdb19 8 11 54 0.17 0.00 54 0.04 54 2.59

gdb20 11 22 109 2.16 0.00 109 0.16 109 6.43

gdb21 11 33 139 2.57 0.00 139 0.21 139 15.37

gdb22 11 44 184 4.70 0.00 184 0.35 184 24.10

gdb23 11 55 200 0.62 0.00 200 0.15 200 0.58

123

http://www.uv.es/corberan/instancias.htm
http://www.uv.es/corberan/instancias.htm

Chinese and windy postman problem with variable service costs 7367

Table 3 Performance of Gurobi,
PIH and LH on test bed 2

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

val1A 24 39 147 22.04 0.00 147 3.98 147 117.65

val1B 24 39 160 42.18 0.00 160 8.88 160 251.89

val1C 24 39 149 23.14 0.00 149 4.69 149 346.14

val2A 24 34 198 14.70 0.00 198 6.19 198 187.63

val2B 24 34 197 15.00 0.00 197 0.49 197 51.37

val2C 24 34 206 15.13 0.00 206 1.01 206 62.80

val3A 24 35 77 6.04 0.00 77 0.75 77 40.32

val3B 24 35 77 12.76 0.00 77 0.89 77 44.02

val3C 24 35 75 7.35 0.00 75 0.49 75 51.19

val4A 41 69 343 58.21 0.00 343 10.76 343 811.89

val4B 41 69 345 63.29 0.00 345 11.17 345 372.92

val4C 41 69 330 55.25 0.00 330 12.83 330 1422.40

val4D 41 69 330 222.67 0.00 330 217.99 330 3602.35

val5A 34 65 340 683.85 0.00 340 322.99 340 1512.14

val5B 34 65 380 1382.08 0.00 380 851.04 380 3299.50

val5C 34 65 365 102.59 0.00 365 70.62 365 834.89

val5D 34 65 363 355.28 0.00 363 296.53 363 2375.12

val6A 31 50 191 28.93 0.00 191 22.51 191 883.63

val6B 31 50 202 28.49 0.00 202 12.34 202 522.85

val6C 31 50 201 32.16 0.00 201 8.59 201 245.58

val7A 40 66 247 19.29 0.00 247 4.87 247 593.66

val7B 40 66 243 23.80 0.00 243 8.07 243 1871.66

val7C 40 66 252 32.13 0.00 252 3.05 252 206.30

val8A 30 63 329 34.59 0.00 329 21.26 329 1049.56

val8B 30 63 349 115.14 0.00 349 148.41 349 1772.29

val8C 30 63 353 228.96 0.00 353 293.17 353 2360.08

val9A 50 92 285 298.19 0.00 285 487.51 285 3605.18

val9B 50 92 288 1130.00 0.00 288 692.44 288 3604.42

val9C 50 92 289 536.19 0.00 289 679.51 289 2976.42

val9D 50 92 292 834.49 0.00 292 519.44 292 3602.25

val10A 50 97 387 654.30 0.00 387 396.99 387 3523.46

val10B 50 97 388 332.85 0.00 388 164.40 388 2495.59

val10C 50 97 374 352.60 0.00 374 559.97 374 2444.45

val10D 50 97 376 2013.45 0.00 376 475.60 376 3608.37

found by the state-of-the-art MILP solver Gurobi (2017) on
the described test sets. We code PPVSC, PIH and LH in
Visual Studio environment by C# language and we carry
out all experiments using a single Intel i7-4770 core. We
let Gurobi, PIH and LH run for at most 1 hour for each
of the test problems instances and the minimum objective
function values found in the allowed computation times are
reported. We, respectively, tabulate the results correspond-
ing to test beds 1, 2, 3 and 4 Tables 2, 3, 4 and 5. Results
corresponding to test bed 5 are tabulated in Tables 6 and 7.
The first column of the tables includes the instance name,
while the second and third columns keep the numbers of
vertices and the edges (which are denoted by |V| and |E |),
respectively. Similarly, the fourth, fifth and sixth columns

keep the objective value of the best solution found byGurobi,
cpu time Gurobi uses, and the percent deviation between the
best solution found by Gurobi and the best possible objec-
tive function value reported by Gurobi (which are denoted by
OG, TG and Gap), respectively. In addition, the seventh and
eighth columns, respectively, keep the objective value of the
best solution found by PIH and the cpu time it uses (which
are denoted by OPIH and T PIH). Finally, the best possible
objective function value found by LH, and the cpu time LH
uses (which are denoted by OLH and T LH) are given under
columns ninth and tenth, respectively.

As can be understood from Table 2, Gurobi, PIH and LH
are able to find the optimal solution for each instance of test
bed 1. However, the average CPU time used by Gurobi is

123

7368 M. E. Keskin, M. Yılmaz

Table 4 Performance of Gurobi,
PIH and LH on test bed 3

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

egl-e1-A 77 98 3245 521.11 0.00 3245 122.84 3245 1402.03

egl-e1-B 77 98 3170 952.39 0.00 3170 147.15 3170 2037.39

egl-e1-C 77 98 2884 2176.99 0.00 2884 231.94 2884 2962.77

egl-e2-A 77 98 3149 110.76 0.00 3149 750.73 3149 3605.55

egl-e2-B 77 98 3185 498.80 0.00 3185 373.34 3185 3207.93

egl-e2-C 77 98 3199 185.68 0.00 3199 21.77 3199 1017.33

egl-e3-A 77 98 3159 259.16 0.00 3159 96.77 3159 3601.11

egl-e3-B 77 98 3087 3600.02 1.36 3077 615.17 3077 3606.81

egl-e3-C 77 98 2885 108.56 0.00 2885 124.90 2885 1416.23

egl-e4-A 77 98 3169 626.68 0.00 3169 484.53 3169 3602.27

egl-e4-B 77 98 3126 1436.33 0.00 3126 160.18 3126 2108.84

egl-e4-C 77 98 3400 153.94 0.00 3400 39.22 3400 1185.61

egl-s1-A 140 190 4977 3600.02 0.44 4977 926.75 4977 3620.54

egl-s1-B 140 190 4805 969.26 0.00 4805 748.08 4805 3603.62

egl-s1-C 140 190 5140 3118.91 0.00 5140 903.73 5140 3616.98

egl-s2-A 140 190 4905 3600.52 0.31 4905 758.82 4905 3625.02

egl-s2-B 140 190 4970 1056.90 0.00 4970 1295.19 4974 3607.69

egl-s2-C 140 190 4710 3600.02 0.42 4710 784.55 4710 3617.10

egl-s3-A 140 190 4679 3600.39 0.49 4679 1587.11 4683 3613.97

egl-s3-B 140 190 4946 3608.86 0.59 4937 873.29 4937 3606.62

egl-s3-C 140 190 4985 3602.55 0.66 4978 808.14 4978 3636.82

egl-s4-A 140 190 4854 3601.72 0.93 4854 1659.16 4855 3615.02

egl-s4-B 140 190 4782 3600.86 1.05 4782 901.80 4782 3652.79

egl-s4-C 140 190 4850 3605.10 0.56 4850 1244.70 4851 3643.07

5.18 times larger than the average CPU time used by PIH.
On the other hand, LH uses 13.36 times larger computation
time than Gurobi uses. This is mainly due to the fact that LH
has to go through thousands of iterations before convergence.
Hence, all three methods can be said to be 100% accurate,
but PIH is the most efficient one.

PerformanceofGurobi, PIHandLHon test bed2 is similar
to their performances on test bed 1. They are all able to find
the optimal solution for each instance and the average time
used byGurobi is 1.55 times of the average time used by PIH,
and the average time used by LH is 5.19 times of the average
time used by Gurobi, as can be observed in Table 3. From
the results of test beds 1 and 2, one may extract that although
LH is able to find the optimal solution for each instance, it
usesmuchmore computation time than the other alternatives,
implying that both Gurobi and PIH are preferable over LH
for small instances.

Story is slightly different for test bed 3. There are 10
instances for which Gurobi is unable to prove the optimality,
and for 3 of them PIH and LH are able to find better solu-
tions. However, results of Gurobi are better than those of LH
four 4 instances, too. If Gurobi and LH are compared on the
basis of the average objective function values, it can be said
that LH edges out. Hence, PIH is the most accurate one in

three solution alternatives for test bed 3. Moreover, PIH is
the most efficient one as well, since the average time Gurobi
requires is 3.08 times larger than the required time by PIH
while the computation time LH requires is 1.52 times larger
than the computation time of Gurobi. These results can be
seen in Table 4.

Performance of PIH andLHgets betterwith the increasing
problem size. This observation becomes clearer in the results
for test bed 4 given in Table 5. Gurobi and LH spend all the
allowable time for each of the instances, while PIH converges
before time limit exceeds for 4 instances. On average, times,
respectively, spent by Gurobi and LH are 1.21 and 1.22 times
more than that of PIH spends. The average objective function
value found by Gurobi is 16.20 and 16.37% larger than those
of the average objective function values, respectively, found
by PIH and LH. Results of LH are slightly better than those
of PIH. Besides, PIH results are better than Gurobi results for
each of the 12 instances, and better than LH for 5 instances
while LH results are better than PIH results for 7 instances
implying that PIH and LH clearly dominate Gurobi.

Dominance of PIH and LH over Gurobi becomes even
clearer for test bed 5. Not only PIH is more successful than
Gurobi for all instances but one of test bed 5 (for one instance
both methods produce the optimal solution), costs found by

123

Chinese and windy postman problem with variable service costs 7369

Table 5 Performance of Gurobi,
PIH and LH on test bed 4

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

100-1 100 2475 317021 3602.38 6.88 305730 3601.89 307333 3602.71

100-2 100 1650 209973 3603.20 6.43 204245 3601.80 205256 3601.24

100-3 100 1237 158425 3604.78 7.27 152457 3602.84 153082 3600.78

200-1 200 9950 209416 3645.88 63.36 173817 3036.61 173769 3607.34

200-2 200 6633 141325 3608.72 20.12 115952 3606.36 116126 3604.16

200-3 200 4975 108805 3608.01 22.11 87379 3603.72 87132 3603.41

300-1 300 22425 481052 3640.60 94.77 403254 1462.02 400912 3610.68

300-2 300 14950 325927 3641.01 94.84 267719 2560.67 268213 3607.86

300-3 300 11212 242387 3643.83 94.81 200275 3608.19 200068 3609.36

400-1 400 39900 846706 3678.43 99.98 726444 2056.62 721338 3625.45

400-2 400 26600 571130 3611.05 94.73 482577 3610.45 481733 3613.70

400-3 400 19950 434758 3698.63 94.78 362852 1310.06 362626 3616.69

Table 6 Performance of
Gurobi, PIH and LH on test bed
5: WA instances

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

WA0531 500 837 526315 3600.09 3.62 522597 3601.08 518980 3600.93

WA0532 500 813 508309 3600.34 6.33 491922 3600.85 490201 3600.61

WA0535 500 837 497432 3604.55 8.61 476078 3601.20 472106 3600.62

WA0541 500 1028 599841 3600.05 9.79 585447 3600.92 581830 3600.85

WA0542 500 1040 590969 3600.23 9.50 576809 3617.58 571395 3600.59

WA0545 500 1036 596434 3600.71 10.55 572662 3237.24 568513 3600.74

WA0551 500 1270 693002 3600.04 8.82 679055 3604.68 673884 3600.62

WA0552 500 1260 2893862 3600.05 77.52 702787 3611.54 696354 3600.78

WA0555 500 1275 2696731 3600.17 77.75 643733 3641.25 641803 3600.72

WA0561 500 1506 829877 3600.08 8.07 811987 3601.36 804740 3604.29

WA0562 500 1518 3279636 3600.06 77.15 799887 3602.26 794791 3600.90

WA0565 500 1506 3395852 3600.05 79.28 757111 3612.56 751686 3600.83

WA1031 1000 1671 1059972 3600.09 11.44 1041916 3603.78 1034520 3603.32

WA1032 1000 1641 3736045 3602.47 75.68 1015864 3600.32 1011364 3602.81

WA1035 1000 1659 5837968 3600.07 85.82 954437 3600.40 932692 3601.77

WA1041 1000 2052 1217486 3600.09 10.75 1211749 3600.93 1186170 3602.25

WA1042 1000 2068 5207878 3600.14 79.63 2987800 3601.42 1171889 3601.62

WA1045 1000 2064 7715237 3600.11 87.26 1131592 3608.23 1094231 3603.02

WA1051 1000 2545 1477959 3600.13 10.73 1463340 3702.16 1432094 3601.97

WA1052 1000 2535 7350097 3600.23 82.50 2480708 3654.91 1393460 3604.64

WA1055 1000 2525 7336528 3600.12 83.92 1322024 3605.25 1295547 3602.08

WA1061 1000 3018 1703625 3600.74 9.53 1677616 3600.54 1654378 3602.95

WA1062 1000 3012 6524686 3600.18 77.66 1590455 3602.29 1579747 3602.22

WA1065 1000 3012 5872427 3600.19 77.71 5425571 2407.16 1418604 3602.13

WA1531 1500 2478 1474932 3600.13 12.04 1461648 3606.66 1433134 3602.71

WA1532 1500 2505 6954940 3600.33 81.45 1459543 3601.11 1443959 3602.90

WA1535 1500 2517 3093363 3600.18 60.44 1411375 3600.97 1377267 3603.61

WA1541 1500 3136 1743176 3600.69 11.93 1699579 3600.64 1689637 3603.23

WA1542 1500 3144 10336634 3602.12 85.63 5918295 1356.45 1649516 3603.08

WA1545 1500 3136 9996651 3600.26 86.66 4551919 3686.20 1497854 3603.11

WA1551 1500 3825 1997436 3600.14 11.60 1950970 3600.94 1957118 3604.15

123

7370 M. E. Keskin, M. Yılmaz

Table 6 continued
Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

WA1552 1500 3805 9592521 3600.26 81.88 5300897 3690.30 1926235 3603.36

WA1555 1500 3805 11209483 3600.14 85.61 5825372 2566.47 1806734 3605.22

WA1561 1500 4518 2287970 3600.34 10.71 2237133 3600.88 2246242 3604.90

WA1562 1500 4518 15360299 3600.28 86.86 7647217 1210.57 6848054 3603.80

WA1565 1500 4530 15331122 3600.17 87.98 6771771 3205.39 2058273 3603.90

WA2031 2000 3330 1708825 3600.15 9.63 1691668 3600.81 1675073 3605.52

WA2032 2000 3324 4981646 3619.67 68.91 1727972 3605.66 1702635 3605.67

WA2035 2000 3303 4679736 3603.65 67.81 1659809 3600.75 1630306 3607.40

WA2041 2000 4164 8026129 3611.92 77.40 5259674 3611.87 1990598 3604.68

WA2042 2000 4156 10912406 3600.18 84.03 3446495 3600.79 1941857 3605.24

WA2045 2000 4124 4651913 3600.72 65.70 4444667 3627.12 1789054 3604.79

WA2051 2000 5065 2318224 3605.51 11.50 2282783 3600.93 2281921 3606.37

WA2052 2000 5100 13571873 3600.18 85.08 6583986 3610.80 5191846 3605.14

WA2055 2000 5085 12705618 3613.07 85.29 7186907 1207.78 2116000 3605.19

WA2061 2000 6030 2647701 3600.50 10.85 2626700 3600.96 2588047 3604.30

WA2062 2000 6018 13895892 3602.27 83.13 7972703 1811.65 7967479 3605.72

WA2065 2000 6036 16774775 3603.37 87.04 8569951 2427.53 8323327 3605.71

WA3031 3000 5046 2197198 3600.18 7.51 2172332 3600.71 2158868 3609.08

WA3032 3000 4986 2755940 3600.16 26.24 2157508 3601.37 2154480 3608.64

WA3035 3000 5007 3748736 3600.40 48.55 2095780 3600.83 2079312 3611.05

WA3041 3000 6200 2483660 3600.25 9.84 2446106 3600.98 2449366 3610.07

WA3042 3000 6184 7107276 3600.24 69.15 4254863 3600.88 2397035 3609.70

WA3045 3000 6228 6562561 3600.31 67.40 4891235 3600.87 2334723 3609.11

WA3051 3000 7580 2914344 3600.67 11.29 2852102 3602.28 2849108 3612.24

WA3052 3000 7575 13953992 3600.31 82.33 7320404 1597.12 2730075 3610.00

WA3055 3000 7585 14421139 3600.35 83.66 7003448 3601.02 2632234 3610.46

WA3061 3000 9066 3197836 3600.55 10.28 3162669 3601.68 3163197 3607.07

WA3062 3000 9036 17578286 3600.27 83.96 7799893 3601.17 8644888 3610.54

WA3065 3000 9042 17428674 3600.74 84.88 8298485 3172.07 8716880 3610.56

Gurobi is more than 3, 4, 5, and even 6 times of the ones
found by PIH for a large number of instances. For example,
costs found by Gurobi are 3.68, 4.12, 5.55 and 6.12 times of
the cost found by PIH, respectively, for instances WA1032,
WA0552, WA1055 and WA1035. On the average, cost of
the results found by Gurobi is 1.94 times larger than the
cost associated with PIH results. Besides, Gurobi uses all the
allowable time for all instances but one while PIH converges
before the allowable time limit for several instances. On the
other hand, LH outperforms PIH for most of the instances.
PIH produces better results for only 6 WA instances and
3 WB instances while LH is better for remaining 54 WA
instances and 57 WB instances. Average costs for respective
WAandWB instances foundbyLHare given by2170222 and
76642, while they are, respectively, 3067783 and 83335.6 for
PIH results implying that LH is much more successful than
PIH for test bed 5 instances. As a concluding remark, we
can say that PIH is more successful than Gurobi for PPVSC
instances and its success becomes clearer with increasing

problem size. In addition, LH is competitive with PIH for
small- and moderate-sized instances, and it becomes more
and more successful as the problem size gets larger.

7 Conclusion and future research paths

This paper presents a mathematical formulation for the post-
man problem with variable service costs. It is assumed that
the travel costs of the edges depend on the number of passes
and they tend to decrease with each pass. The problem is
named Chinese postman problem with variable service costs
if the service costs are symmetric, and it is named as windy
postman problem with variable service costs, otherwise.
CPPVSC is solvable in polynomial time, and it is shown in
the paper that no edge is traversedmore than twice in the opti-
mal solution. On the other hand, WPPVSC is NP-hard since
it can be reduced toWPPwhich is known to beNP-hard. Two
heuristics named PIH and LH are proposed for the solution

123

Chinese and windy postman problem with variable service costs 7371

Table 7 Performance of
Gurobi, PIH and LH on test bed
5: WB instances

Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

WB0531 500 881 37258 3627.97 4.55 36768 2403.44 36600 3600.60

WB0532 500 874 40452 3600.60 21.90 36920 3601.45 36871 3600.97

WB0535 500 887 34752 3601.68 4.58 34528 1802.55 34369 3600.47

WB0541 500 1115 48368 3602.93 10.92 47053 3600.95 46680 3600.97

WB0542 500 1124 69094 3600.23 37.79 47412 3603.50 47016 3600.96

WB0545 500 1121 45567 3601.59 12.17 43354 3608.00 43157 3600.92

WB0551 500 1325 63345 3602.89 9.73 62184 3610.79 61416 3601.36

WB0552 500 1309 87103 3600.32 37.80 59033 3600.90 58556 3600.72

WB0555 500 1319 102448 3601.09 51.37 54557 3601.53 54420 3600.74

WB0561 500 1555 79196 3600.24 7.76 77632 3601.05 77088 3601.46

WB0562 500 1517 245114 3600.46 72.83 71063 3601.34 70600 3601.17

WB0565 500 1526 361310 3600.99 83.15 65613 3600.75 65401 3600.82

WB1031 1000 1757 87352 3602.94 49.16 51768 3601.99 51404 3601.92

WB1032 1000 1743 255903 3603.62 83.28 50901 3601.45 50442 3601.50

WB1035 1000 1752 236405 3657.20 82.93 48195 3604.75 47834 3603.17

WB1041 1000 2243 70643 3610.02 11.58 69218 3611.78 68300 3602.42

WB1042 1000 2182 355016 3604.84 83.27 66368 3610.54 65768 3601.71

WB1045 1000 2252 414237 3625.11 86.59 62313 3602.76 62201 3603.17

WB1051 1000 2659 275569 3607.24 71.44 86235 3631.58 85424 3601.93

WB1052 1000 2670 543570 3660.82 85.74 85518 3603.86 84444 3602.23

WB1055 1000 2653 344386 3606.07 79.74 78810 3602.23 77179 3601.91

WB1061 1000 3098 108016 3693.42 8.26 105606 3602.85 105510 3601.81

WB1062 1000 3088 360918 3614.79 73.09 104675 3725.23 103930 3603.80

WB1065 1000 3110 360574 3600.33 75.93 94128 3605.90 93553 3602.80

WB1531 1500 2631 66616 3642.08 26.19 57043 3862.18 56614 3603.11

WB1532 1500 2647 281796 3605.60 82.41 58054 3606.20 57497 3602.81

WB1535 1500 2654 74193 3610.34 36.43 55779 3602.64 55732 3602.91

WB1541 1500 3352 279758 3627.18 75.90 76054 3602.36 74712 3606.73

WB1542 1500 3334 364169 3629.08 81.61 75346 3606.65 74340 3603.31

WB1545 1500 3346 453199 3732.50 86.30 70851 3600.61 70446 3603.69

WB1551 1500 3983 603453 3868.82 85.45 97263 3635.73 96457 3603.22

WB1552 1500 3999 596189 3669.33 85.63 95482 3600.77 94256 3604.20

WB1555 1500 3998 384511 3602.87 79.64 89730 3618.80 87530 3606.92

WB1561 1500 4585 641210 3629.62 83.28 298495 3612.53 115549 3604.47

WB1562 1500 4656 438045 3614.09 75.89 116087 3603.46 114062 3604.72

WB1565 1500 4670 662906 3728.98 85.42 108206 3600.85 105882 3604.48

WB2031 2000 3503 64439 3661.75 13.17 62753 3604.16 62678 3603.91

WB2032 2000 3467 63848 3620.75 16.03 61392 3010.78 61382 3605.25

WB2035 2000 3498 69739 3651.03 24.16 60433 3600.89 60443 3605.69

WB2041 2000 4399 85890 3645.78 18.86 77887 3600.79 77206 3606.20

WB2042 2000 4406 401985 3608.14 82.82 77357 3600.93 76801 3606.77

WB2045 2000 4445 249878 3603.22 73.67 74553 3600.99 74286 3604.96

WB2051 2000 5288 436244 3635.65 79.78 98074 3601.17 96857 3608.35

WB2052 2000 5301 351784 3630.81 75.52 179479 3601.40 95677 3607.38

WB2055 2000 5296 282865 3687.69 71.65 90808 3600.95 89866 3606.57

WB2061 2000 6090 699231 3701.12 84.86 115859 3601.20 115446 3605.90

WB2062 2000 6129 315699 3761.49 67.08 215765 3601.14 113240 3606.18

123

7372 M. E. Keskin, M. Yılmaz

Table 7 continued
Name |V| |E| OG TG Gap OPIH T PIH OLH T LH

WB2065 2000 6093 678693 3601.94 85.80 107448 3603.71 106749 3606.60

WB3031 3000 5176 61959 2796.42 0.00 61959 1174.07 61960 3605.62

WB3032 3000 5202 61555 3611.40 0.25 61503 1680.15 61503 3600.19

WB3035 3000 5223 63120 3604.97 0.21 63113 1420.17 63128 3622.22

WB3041 3000 6539 161688 3600.43 54.08 81867 3601.03 81845 3608.57

WB3042 3000 6538 82061 3600.61 12.45 78617 3601.48 78533 3609.08

WB3045 3000 6603 81759 3600.39 16.02 75887 3076.89 75865 3611.43

WB3051 3000 7838 100367 3605.52 9.54 98571 3601.09 97806 3613.60

WB3052 3000 7776 105182 3600.61 18.42 94299 3602.03 94085 3611.76

WB3055 3000 7761 109642 3600.48 23.45 92296 3602.04 92219 3610.86

WB3061 3000 8975 113260 3600.41 9.67 110949 3601.24 110287 3611.05

WB3062 3000 9085 142357 3600.65 26.78 115023 3602.70 113568 3611.35

WB3065 3000 8973 333780 3600.72 71.17 106002 3601.26 105826 3617.95

of WPPVSC instances. In PIH, Gurobi runs for a predeter-
mined amount of time and for a given number of allowable
passes at each iteration and the number of allowable passes
is increased by one at the next iteration in which the solu-
tion obtained at the previous iteration is used as a starting
point. In LH, two constraints are relaxed and carried to the
objective function after multiplied by positive Lagrangian
multipliers and the multipliers are optimized through a sub-
gradient algorithm. A feasible solution is obtained in each
step of the algorithm making use of the subproblem solu-
tions. Results of PIH and LH are compared with results of
Gurobi, and it is observed that although using the solver as
the solution method for small sized WPPVSC instances is
possible, PIH dominates Gurobi for instances with moderate
and large sizes, and LH outperforms PIH for large instances.

This work can be extended in several directions. First of
all, variable service cost idea can be imposed on other vari-
ants of PP such as capacitated PP, PP with multiple vehicles,
or hierarchical PP. Another idea is to analyze the PP with
stochastic service costs. Finally, PP with multiple depots can
be addressed under variable service cost assumption.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Assad AA, Golden BL (1995) Arc routing methods and applications.
Handb Oper Res Manag Sci 8:375–483

Ávila T, Corberán Á, Plana I, Sanchis JM (2016) A branch-and-cut
algorithm for the profitable windy rural postman problem. Eur J
Oper Res 249(3):1092–1101

Benavent E, Campos V, Corberán A, Mota E (1992) The capacitated
arc routing problem: lower bounds. Networks 22(7):669–690

Black D, Eglese R, Wøhlk S (2013) The time-dependent prize-
collecting arc routing problem. Comput Oper Res 40(2):526–535

Campbell JF, Langevin A (2000) Roadway snow and ice control. In:
Dror M (ed) Arc routing. Springer, Berlin, pp 389–418

Cordeau JF, Ghiani G, Guerriero E (2012) Analysis and branch-and-
cut algorithm for the time-dependent travelling salesman problem.
Transp Sci 48(1):46–58

Donati AV, Montemanni R, Casagrande N, Rizzoli AE, Gambardella
LM (2008) Time dependent vehicle routing problem with a multi
ant colony system. Eur J Oper Res 185(3):1174–1191

DrorM (2012)Arc routing: theory, solutions and applications. Springer,
Dordrecht

Dussault B, Golden B, Groër C, Wasil E (2013) Plowing with prece-
dence: a variant of the windy postman problem. Comput Oper Res
40(4):1047–1059

Eglese R, Li L (1992) Efficient routeing for winter gritting. J Oper Res
Soc 43(11):1031–1034

Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent routing
problems: a review. Comput Oper Res 64:189–197

GoldenBL,DeArmon JS,Baker EK (1983)Computational experiments
with algorithms for a class of routing problems. Comput Oper Res
10(1):47–59

Guan M (1984) On the windy postman problem. Discrete Appl Math
9(1):41–46

Gurobi optimizer 6.0.: high-end libraries formath programming (2017).
http://www.gurobi.com/. Accessed Jan 2017

HertzA (2005)Recent trends in arc routing. In:GolumbicMC,Hartman
IBA (eds) Graph theory, combinatorics and algorithms. Springer,
Berlin, pp 215–236

Ichoua S, GendreauM, Potvin JY (2003)Vehicle dispatchingwith time-
dependent travel times. Eur J Oper Res 144(2):379–396

Koç Ç, Bektaş T, Jabali O, Laporte G (2016) Thirty years of heteroge-
neous vehicle routing. Eur J Oper Res 249(1):1–21

Li LY, Eglese RW (1996) An interactive algorithm for vehicle routeing
for winter-gritting. J Oper Res Soc 47(2):217–228

Li F, Golden B, Wasil E (2005) Solving the time dependent traveling
salesman problem. In: Golden B, Raghavan S (eds) The next wave
in computing, optimization, and decision technologies. Springer,
Berlin, pp 163–182

Malandraki C, DaskinMS (1992) Time dependent vehicle routing prob-
lems: formulations, properties and heuristic algorithms. Transp Sci
26(3):185–200

123

http://www.gurobi.com/

Chinese and windy postman problem with variable service costs 7373

Malandraki C, Dial RB (1996) A restricted dynamic programming
heuristic algorithm for the timedependent traveling salesmanprob-
lem. Eur J Oper Res 90(1):45–55

Schneider J (2002) The time-dependent traveling salesman problem.
Phys A Stat Mech Appl 314(1):151–155

Setak M, Habibi M, Karimi H, Abedzadeh M (2015) A time-dependent
vehicle routing problem in multigraph with fifo property. J Manuf
Syst 35:37–45

Sun J, Meng Y, Tan G (2015) An integer programming approach for
the chinese postman problem with time-dependent travel time. J
Comb Optim 29(3):565–588

Tagmouti M, GendreauM, Potvin JY (2007) Arc routing problems with
time-dependent service costs. Eur J Oper Res 181(1):30–39

Tagmouti M, Gendreau M, Potvin JY (2010) A variable neighborhood
descent heuristic for arc routing problems with time-dependent
service costs. Comput Ind Eng 59(4):954–963

Tagmouti M, Gendreau M, Potvin JY (2011) A dynamic capacitated
arc routing problem with time-dependent service costs. Transp
Res Part C Emerg Technol 19(1):20–28

Taş D, Gendreau M, Jabali O, Laporte G (2016) The traveling sales-
man problem with time-dependent service times. Eur J Oper Res
248(2):372–383

Test instances for arc routing problems. http://www.uv.es/corberan/
instancias.htm (2017). Accessed Jan 2017

Vincent FY, Lin SW (2015) Iterated greedy heuristic for the time-
dependent prize-collecting arc routing problem. Comput Ind Eng
90:54–66

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.uv.es/corberan/instancias.htm
http://www.uv.es/corberan/instancias.htm

	Chinese and windy postman problem with variable service costs
	Abstract
	1 Introduction
	2 Related studies
	3 Mathematical model
	4 Analysis of CPPVSC
	5 Solution approaches
	5.1 Pass iteration heuristic
	5.2 Lagrangian heuristic
	5.2.1 Subproblems
	5.2.2 Subgradient algorithm
	5.2.3 Generating a feasible solution

	6 Computational results
	6.1 Selection of the parameters
	6.2 Accuracy and efficiency of heuristics

	7 Conclusion and future research paths
	References

