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Abstract
In any competitive and uncertain environment, designing an optimal strategy is a challenging task. The manual hand-coding
of strategy is a tedious job, and its evaluation on all possible situations becomes even more complicated. This paper proposes
a novel distributed framework, named FEASO, based on evolutionary algorithms, for strategy optimization in the domain of
robot soccer. In the context of robot soccer, strategy denotes the critical areas where home team agents should be positioned.
The focus of this study is to optimize the strategic placements of agents that are defending the goal. The presented approach
comprises three modules: evolutionary algorithm execution, parallel fitness evaluation and fitness computation. It executes
matches in parallel on different machines for fitness evaluation. The fitness function takes into account three parameters: the
goal difference, regions occupied by defending players and ball possession by the home team players. The framework has been
successfully implemented in our 3D soccer simulation team that participates in RoboCup event. Experiments are conducted
using binaries of various teams taking part in the competition. A comparison of strategies between teams is conducted and
analyzed. The results clearly demonstrate that the team that executes optimized strategy is able to defend more goals as
compared to the team with hand-coded strategic points.

Keywords Opponent · Strategy optimization · Autonomous robots · Evolutionary algorithms · RoboCup Soccer Simulation
3D

1 Introduction

Strategy development for a team of agents/robots, with
decentralized decision making, is a challenging task in an
uncertain and adversarial domain. An agent playing soc-
cer not only has to score a goal against an opponent team
but also has to defend its own goal. Team strategy, thus,
becomes a collective outcome of individual agents’ strate-
gies. To evaluate a team strategy, a number of variables have
to be considered. For instance, if a team is on defense, the list
of variablesmay include alignment of defenderswith the goal
post, distance maintained between the ball and the defend-
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ers, the alignment of players in a supporting role with the ball
and the distance between the opponents. In contrast, when a
team is on the attack, then the number of players involved in
the attack, their attacking pattern of moving ahead or staying
behind at a certain distance becomes important for devising
a strategy. In situations like these, it becomes difficult for an
expert to design a strategy that works well in every scenario.
In addition, manual evaluation of the strategy on all possible
scenarios becomes evenmore time-consuming. To overcome
these challenges, this paper presents a parallel evolutionary
computation-based framework for producing an optimized
strategy. Parallelization is introduced to reduce the time taken
by a single machine in evaluating all possible strategies. Off-
spring in the evolutionary algorithm is produced by a server,
while the workload is distributed among the clients for strat-
egy evaluation.

It is important to note that in the context of this paper a
strategy denotes the critical areas that should be occupied by
defending players. The alignment of players with the goal
and the ball has been evolved to obtain optimized strategic
points. These optimized points are then executed in real time
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for team performance evaluation. The fitness of a solution
takes into consideration the difference between goals of the
home and the opponent teams, the average ball possession by
the home team and certain regions occupied by home team
agents.

For the experimental purposes, RoboCup Soccer Simula-
tionServer 3Dhas been chosen as a test bed. The environment
provides a promising platform which is truly dynamic and
partially observable in nature. A RoboCup Soccer Simula-
tion 3D League team (Darab and Ebrahimi 2007), namely
Karachi Koalas (Haider et al. 2014), that was developed as
a part of a larger project has been taken as the home team
in this research. This team has been frequently participating
in the RoboCup competitions with the best ranking of being
the fifth ranked team in the year 2013. The base code of this
team has been taken as a benchmark as matches of the base
code team, and the evolved team are executed against a simi-
lar opponent. It is also worth mentioning that much work has
been done in the literature in which other techniques rather
than the evolutionary approaches have been applied such as
reinforcement learning (Salustowicz et al. 1998; Riedmiller
et al. 2009), handcrafted structuring of code (Kazakov and
Kudenko 2001), layered learning (Stone and Veloso 2000;
Cherubini et al. 2007; Urieli et al. 2011). In this paper, we
have compared other approaches with the evolved approach
by executing matches to demonstrate that the evolved strat-
egy works well. The rest of the paper is organized as follows.
Section 2 provides an overview of the existing literature
along with a subsection presenting novelty of FEASO. Sec-
tion 3 briefly describes the technical background of the
RoboCup Soccer domain as well as evolutionary algorithms,
and Sect. 4 gives a comprehensive overview of FEASO with
its implementation details. Experimental setup and results are
discussed in Sect. 5. Section 6 compares FEASO with most
relevant evolutionary approaches proposed previously, while
Sect. 7 concludes the paper and provides future research
directions.

2 Related work

There are various techniques reported in the literature to
incorporate strategies in robot soccer. The list of techniques
includes reinforcement learning, decision trees; handcrafted
rule-based techniques, coordination graphs, layered learning
approaches, evolutionary algorithms. The notion of strategy
varies among each of the specified techniques. This literature
review focuses on learning team strategy and thus techniques
that employ strategy optimization are discussed in detail in
each of the subsections.

2.1 Reinforcement learning techniques

In reinforcement learning, strategy denotes learning a good
policy for a team of agents and concept of collective reward
and punishment was introduced. The earliest approach was
proposed by Salustowicz et al. (1998) who compared several
reinforcement learning algorithms in multi-agent learning
scenarios. Riedmiller et al. (2009) suggested learning strat-
egy at a tactical level, such as moves to intercept the ball,
wait at a position, passing the ball to a teammate, shoot to
goal. Many variants of reinforcement learning such as obser-
vational reinforcement learning, team partitioned opaque
transition reinforcement learning, Q-learning have been pro-
posed in the domain of RoboCup soccer simulation 2D, but in
3D there are many challenges in current reinforcement learn-
ing research. Firstly, with the addition of each new agent, it
becomesmemory expensive. Secondly, similar behaviors are
exhibited in robot soccer and the problem of learning every-
thing all over again exists. Lastly, due to limited perception of
an agent, it is often impossible to fully determine the current
state and this result in loss of performance of the algorithm.
As this study considers an optimized strategy for a team of
agents, reinforcement learning has not been used.

2.2 Rule-based techniques

In contrast to reinforcement learning, rule-based and induc-
tive logic programming-based approaches (ILP) have also
been proposed by different researchers. The inductive learn-
ing agent (Kazakov and Kudenko 2001) uses first-order
formalism and ILP to acquire rules to predict failures. The
agent gathers instance of actions and classifies them. Next
prediction rules are formed that assist soccer agents in decid-
ing each action taken in the game to be good or bad. The
limitations of this approach are that its focus lies on verifica-
tion and validation of knowledge-based system with no new
knowledge acquisition. Consequently, agents cannot adapt
their own behavior using rules or knowledge acquired by ILP.
Murray et al. (2000) developed a multi-agent team based on
script language, where procedural aspects were specified by
state charts and declarative aspects by using decision trees.
The rules have to be designed by an expert and it becomes
a tedious job to think of all sets of possibilities. To over-
come this limitation, the study (Kok et al. 2005) presented
a strategy that was devised by using a few rules provided
by experts and the rest of the coordination rules were com-
puted online using coordination graphs. Bezek (2005) and
Wang et al. (2009) proposed the use of coordination graphs
in the assignment of roles and actions to the players. Svatoň
et al. (2014) proposed amethodology to improve the descrip-
tion of strategy by creating sub-strategies and thus ensuring
a smooth implementation of actions defined by each strat-
egy. The main focus of coordination graphs is to aid humans
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in strategy building. A human modeler analyzes the various
patterns in the graph and designs hand-coded agents to act
under certain circumstances. The focus of this study is not
on rules or graph creation but the generation of an optimized
strategy that works well in an automated fashion. Thus, no
handcrafting of rules is performed but the evolution process
applied has the advantage of givingmultiple strategies,which
are equally good in a specific situation.

2.3 Layered learning technique

Layered learning has also been applied for flexible team
formation in RoboCup Soccer Simulation Leagues. Stone
et al. (2000) pioneered the architecture in which the problem
consisted of breaking into a bottom-up the hierarchy of sub-
problems.The subproblems are solved and they serve as input
to the next layer. The problem usedGenetic Programming for
selection of an action by a team of agents. Urieli et al. (2011)
presented an approach for optimizing interdependent skills
in the 3D domain. This layered architecture has the benefit
that primitive locomotive skills can be learned precisely and
multiple skills are learned in conjunction with each other.
The issue lies in learning strategy because it is a high-level
behavior exhibited by a teamof agents that requires numerous
learning efforts if performed via layered learning approach.

2.4 Evolutionary algorithm-based techniques

Evolutionary algorithms have also been applied to evolve
strategies in robot soccer. Nakashima et al. (2004, 2006) pro-
posed the use of Genetic Algorithms to learn a team strategy
in the domain of 2D simulation league. They divided the
field into 48 subregions and the 10 players of both the teams
excluding the goalkeeper could exist in any of the regions.
The chromosome comprised of the action to be executed in a
certain situation. The fitness of a strategy is computed by run-
ning simulated matches and taking average goal difference.
One limitation of the approach was that a single opponent
was fixed and strategy would not be generalized. Cultural
Algorithms (CA) was applied (Salhieh et al. 2012) to gener-
ate a team strategy for playing robot soccer. A chromosome
contained regions and the corresponding player numbers.
This was a centralized approach where a coach agent was
developed that sent messages to all the agents and only the
intended agent executed the action. Goal difference was used
as the evaluation function. Recent advances in team strategy
were contributed by Ali et al. (2014) in which they inves-
tigated the use of a simplified and adaptive version of CA
to develop defensive and offensive plays and cooperative
strategies in robot soccer. This work was very relevant to the
presented approach, and a detailed comparative discussion
is provided later in Sect. 6. Lekavy (2011) applied evolu-
tionary approach for evolution of pass execution in standard

situations such as kickoff in 2D simulation league. Okada
et al. (2011) utilized particle swarm optimization to evolve
team formation. Cartesian coordinates of the ten players and
15 possible positions of the ball were modeled as elements
of an individual solution, while the initial population was
generated randomly. They reported how well formations for
various team performances (e.g., offensive, defensive, bal-
anced) could automatically be obtained. Ant Intelligence
(Ramani et al. 2008) was utilized for player strategies gener-
ation. Multi-group ant colony optimization algorithm (Chen
et al. 2016) was proposed that used ant pheromone evapo-
ration mechanism to learn offensive strategies in 2D soccer
simulation league. A comparative analysis of this approach
is presented in Sect. 6. Luh et al. (2006) used the immune
system to develop cooperative strategies in robot soccer. The
system selected a behavior for the player such as shot, pass,
kick, chase, track, and guard. The approach was validated
on the SimuroSot Middle League. It is important to note
that all of the above-mentioned techniques using evolution-
ary computation face the challenge of the time needed to
evolve a solution as a large number of fitness evaluations are
needed before a well acceptable solution can be found. In
light of this requirement, distributed evolutionary approaches
are proposed (Gong et al. 2015) and this research also con-
tributes to a distributed approach.

2.5 Novelty

The FEASO framework is a distributed approach for evolu-
tion of defensive strategy that has not been addressed in other
techniques proposed in the literature. The major contribution
of this framework is that it facilitates automatic generation
of optimized strategy against a specific opponent team and
then generalizes it across various similar opponents. This
paper focuses upon the strategic placements of all the agents
in the field, while most of the above-mentioned evolution-
ary techniques consider either subfield or two-three players
in the field to demonstrate the required behavior. Moreover,
the domain of RoboCup Soccer Simulation 2D in which the
above-mentioned approacheswere tested is less complex and
knowledge about the action to be executed is available to
the players that make it easier to exhibit a cooperative strat-
egy. But the domain of RoboCup Soccer Simulation 3D is
highly dynamic and unpredictable in which only positions
of the agents are known and actions have to be inferred by
observational data. The author finds no technique for strat-
egy evolution in the domain of RoboCup 3D. The proposed
framework is both robust and time inexpensive in real-time
strategy execution. This framework can also be applied to
similar competitive domains as well.
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Fig. 1 Two teams playing RoboCup Soccer Simulation 3D

3 Technical background

This section presents an overview of the domain of RoboCup
and also discusses some basics of evolutionary algorithms.

3.1 Domain description

RoboCup Soccer (Kitano et al. 1998) is a scientific ven-
ture that provides an exciting platform that has been used
for the advancement of research in artificial intelligence and
robotics. The competition has a goal that, by the middle of
the twenty-first century, a team of robots would defeat a team
of humans in soccer. This competition is held every year,
and several leagues have been designed to cater for different
problems and challenges in robot coordination, locomotion,
etc. The main leagues in this tournament are a middle-sized
league, small-sized league, simulation 2D league, simula-
tion 3D league, standard platform league and the humanoid
league. In contrast to other leagues, the simulated leagues do
not involve physical robots and instead simulated robots play
soccer on the virtual field. In the simulation 2D league, the
ball and the players are represented by circles on the plane of
the field, while in the simulation 3D League, the players are
represented as articulated, rigid bodies having 22 hinges. In
the 2D league, commands such as move, dash, turn and kick
are available; however, in 3D these commands do not exist
and locomotion is a big challenge there. The 3D game com-
prises of two teams of eleven robots in a field of 21*30 m as
shown in Fig. 1.

This research utilizes RoboCup Soccer Simulation 3D as
a test environment for the development of opponent-specific
strategies. Thematch is divided into two halves of 5min each.
Continuous time is approximated with discrete cycles with
each half being 300 cycles and 1 min equals to 60 cycles.
Each robot has its own local view of the field and is con-
trolled by a separate autonomous program. All robots can
move and act independently as long as they comply with the
league rules. They can freely communicate with each other
via message broadcasting, but their visual and hearing per-
ception is distance limited. Due to humanoid locomotion,
there are chances of robots falling in the field or colliding

Fig. 2 Typical evolutionary algorithm. (Reproduced with permission
from Bäck 1996)

with other robots so the server, in such cases, can penalize
them by throwing them out of the field. The domain is a
complex multi-agent system and is easily understandable by
humans due to its soccer-related content.

3.2 Evolutionary algorithms

In many real-world applications, there exist problems that
are hard to solve such as traveling salesman problem, time
series prediction, bankruptcy prediction, credit scoring. Tra-
ditional algorithms to solve these are either very specialized
or more general. To approach such hard problems, evolu-
tionary algorithms (EA) were introduced a few decades ago.
Evolutionary Algorithms (Bäck 1996) are stochastic search
and optimization heuristics derived from classical evolution
theory. It follows the Darwinist evolution, which is described
as survival of the fittest. EAmethods only need the target (fit-
ness) function for a given problem, which is to be optimized.

A typical evolutionary algorithm passes through the fol-
lowing phases as shown in Fig. 2. At first, the population is
initialized randomly. The fitness of each solution is com-
puted, parents are selected via selection procedure and
offspring are created by variation operators. Next fitness of
the new offspring is computed. Members of the population
die using survival selection and the process continues until a
termination criterion is met.

3.2.1 Parent selection mechanism

Parent selection is used to distinguish among individuals
based on their quality to allow better individuals to become
parents of the next generation. There are various selection
schemas (Bäck 1996), namely fitness proportional selec-
tion (FPS), rank-based selection (RBS), tournament selection
(TS). In FPS, a probability distribution proportional to the fit-
ness is computed and individuals are selected by sampling
the distribution. This schema has high selection pressure.
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Rank-based selection attempts to remove problems of FPS
by computing selection probabilities on relative fitness rather
than absolute fitness. RBS mechanism ranks population
according to fitness and selection probabilities on the basis of
the assigned rank. This schema imposes a sorting overhead
on the algorithm, but this is usually negligible compared to
the fitness evaluation time. The advantage of this schema is
that the selection is independent of actual fitness values and
it preserves a constant selection pressure.

3.2.2 Variation operators

The role of variation operators is to create new individuals
from the old ones. There are two types of variation operators:
mutation and crossover. Mutation is a unary variation oper-
ator and is always stochastic. Crossover is a binary variation
operator that merges information from two parents to gen-
erate two offspring. The two fundamental design concepts
in evolutionary algorithms are exploration and exploitation.
Exploration means discovering promising areas in the entire
search space, while exploitation deals with optimizingwithin
a promising area. Crossover is explorative as it makes a big
jump to an area between the parents. Mutation is exploita-
tive as it creates random diversions while standing near the
parents.

3.2.3 Survival selection mechanism

The role of survivor selection is to distinguish among individ-
uals based on their quality. A survival selection scheme can
be categorized as generational (current population replaced
by its offspring) or steady-state model (few members move
are replaced by its offspring). Truncation is a survival selec-
tion schema in which out of a 2n population of parents and
offspring, the top n survive to the next generation.

3.2.4 Performance indicators

Following are some of the performance indicators for evolu-
tionary algorithms:

• Best-so-far (BSF): The best solution found by the algo-
rithm in each generation.

• Average-so-far (ASF): the average solution found by the
algorithm in each generation.

4 A framework based on evolutionary
algorithm for strategy optimization
(FEASO)

This section provides a comprehensive overview of the entire
system architecture of the proposed framework. The frame-

Fig. 3 Simulated soccer field with arrows denoting optimization vari-
ables (color figure online)

work focuses on devising an optimized strategy in robot
soccer by discovering the key points where the agents should
place themselves under various scenarios.

4.1 Optimization parameters

To develop an understanding of the parameters being opti-
mized, an example from robot soccer is presented. Figure 3
depicts an instance of a simulated soccer field inwhich agents
of both the teams (red and blue) are placed. The red circles
with ‘O’ represent the opposing team, while the blue cir-
cles represent the home team. A small white circle denotes
the ball. The scenario shown is an instance of attack being
executed by the opponent team. There are different roles
associated with the home team players such as goalkeeper
(G), main attacker (MA), left forward (LF), right forward
(RF), left supporter (LS), right supporter (RS), left midfielder
(LM), right midfielder (RM) and finally three defenders left
defender (LD), right defender (RD) and center defender
(CD). Each of these roles occupies certain positions in the
field. These positions are in turn determined by factors such
as the distance of a player from the ball, distance from the
goal posts and distancewith other teammates. The red arrows
highlight the variables (d1, d2,…., d9) that needs to be opti-
mized. Table 1 signifies the relationship of these variables
with the roles.

The variables d1, d2, d3 and d4 represent the distances
of LM, RMF, the x coordinate of LD and x coordinate of
RD with respect to the goal post. The variables d5 and d6
represent the distances maintained between the CD player
and y coordinates of the left and right defense players. CD
also maintains a distance d7 with the ball. The variables d8
and d9 denote the distances between the ball and the left and
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Table 1 Solution Representation LM RM LD (x) RD (x) LD (y) RD (y) CD LS RS

d1 d2 d3 d4 d5 d6 d7 d8 d9

Fig. 4 Proposed modules of FEASO

right supporters. These nine variables form a single tuple Xi.
Attackers, goalkeepers and forward players are not consid-
ered in this representation.

The initial value for Xi that forms the seed is populated
from the code of our home team. The rationale behind the
selection of this seed is that it is a viable solution already
available. If Xi is initialized randomly, then it is possible that
we get distances that are not feasible for a player according
to its role.

4.2 System architecture

FEASOcomprises of three basicmodules, namely evolution-
ary algorithm Execution Module (EAEM), Parallel Fitness
Evaluation Module (PFEM) and Fitness Computation Mod-
ule (FCM) as shown in Fig. 4.

The input to EAEM is a single tuple Xi and its output is a
set of newly generated variables formed by application of an
evolutionary algorithm. These variables are then passed to
the PFEM module which replicates each one turn by turn on
multiple machines. Each of the machines then executes FCM
and sends a fitness value back to PFEM. The PFEM applies
a more complex function on all fitness values to produce
the final fitness that is returned to the EAEM and the cycle
continues. Figure 5 gives the high-level system architecture
depicting all the modules.

Fig. 5 System architecture of FEASO

4.2.1 Module I: evolutionary algorithm execution module
(EAEM)

This module is a vital part of the entire architecture as it runs
on the server machine and is responsible for the generation
of offspring. The process starts with the generation of an ini-
tial population represented by P. It contains a set of Xi that
in turn are produced randomly from Gaussian random muta-
tion of Xseed value. The fitness computation is performed by
PFEM and FCM as shown in the gray box in Fig. 6. The
newly generated population is then sent to the parent selec-
tion phase that selects a set of parents using Rank-Based
Selection Scheme. Crossover and mutation of the parents are
performed and the resultant population along with new off-
spring is sent to the survival selection phase. The proposed
algorithm introduces a random offspring generation phase
for increasing diversity in the population. This phase makes
the algorithm exploratory in nature and different from the
traditional EA.
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Fig. 6 The process flow of EAEM

Table 2 Algorithm for initial population

// Input variables
Xseed← {d1,d2,…,dm} denotes seed 
nsize ← denotes population size
σ ← denotes standard deviation
Procedure GenerateInitialPopulation ( Xseed,
nsize , σ)
1: P←Ø 
// Randomly variable generation and call to PFEM
2: for (i ← 1 to nsize) 
3:   di*←GaussianMutation(di,σ) 
4:   X*← {(d1*,….., dm*)} 
5:   S*←{X*, fitness← PFEM (X*)} 
6:   P←P U {S*}
7:  end for   
8:  return P

The algorithm for initial generation of P is exhibited in
Table 2 and the algorithm for EAEM is depicted in Table 3.

4.2.2 Module II: parallel fitness evaluation module (PFEM)

This module is responsible for the generation of multiple
instances which are executed in parallel. Each instance Ei

Table 3 Algorithm for EAEM

// Input variables
ngen ←denotes number of generations
r ← denotes the number of parents to select
k ←denotes rate of mutation
nrand ←denotes random offsprings 
nsize ← denotes population size
σ ← denotes user defined standard deviation
X←{d1,d2,…,dm} represent set of variables
P ← denotes initial population
Procedure
EvolutionaryAlgorithmExecutionModule 
(ngen , r, k)
1: Offsprings←Ø, RandOffsprings← Ø,
Offsprings*←Ø
// Call to Initial Population Generation
Algorithm
2: P←GenerateInitialPopulation ( X,

nsize , σ)
3: for (i ← 1 to ngen) // Stopping criteria
// Call to Rank based selection method
4: Parents← RBS*(P, r)
5: for (j ← 1 to r/2 )
// Generating Offsprings (Cross over and
Mutation)
6: Offspring j*← CrossoverAndMutation

(Parentsj, Parentsj+1)
7: Offspring j+1* ←CrossoverAndMutation

(Parentsj+1, Parentsj)
8: Offsprings← { Offspring j* U

Offspring j+1* U Offsprings }
9: end for
// Parallel Fitness Evaluation Module is executed
10: foreach (X* ϵ Offsprings)
11: X*.fitness←PFEM (X*)
12: P← P U {X*}
13: P←Truncate(P,nsize – nrand) // Survival
// Random Offsprings generation
14: for (c ← 1 to nrand)
15: dc* ←GaussianMutation(dc,σ)

16: X*←{(d1*,….., dm*)}

17: S*←{X*, fitness← PFEM (X*) }
18: RandOffsprings← RandOffsprings U {S*}

19: end for

// Combining survived population with random
20: P←P U { RandOffsprings }

21: end for
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Table 4 Algorithm for PFEM

// Input variables
Xi ←{d1,d2,….dn} denote optimization variables 
M←{M1,M2,…,Mp} denote set of workstations 
p← denotes the number of client machines

Procedure ParallelFitnessEvaluationModule
(Xi)  

// Create instance Ei
1:  Ei ←CreateEvaluation(Xi, fitnessi←0)
2:  double sumfitness← 0 , avgfitness←0,  

variance←0 
// Parallel Replication
3:  for (i ← 1 to p) , in parallel      
4:  Replicate (Xi, Mi) 
// Fitness Computation Module is executed
5:  fitnessi←FitnessComputationModule (Xi) 
6:  sumfitness←sumfitness+ fitnessi

7: end for 
// Average fitness computation
8: avgfitness←sumfitness/p  
//  Variance computation
9: for (i← 1 to p) 
10:  variance← sqr(fitnessi - avgfitness )+variance
11: end for

// Returning aggregated fitness value
12: Ei.fitness ← avgfitness – variance/p

13:  return Ei .fitness

receives a single tupleXi and is responsible for its replication
across p workstations. After distribution, this module waits
synchronously for receiving fitness values from FCM. Since
FCM is executed on multiple machines in parallel, therefore,
a different fitness value f i is received corresponding to same
Xi. Thus, the PFEM is responsible for aggregation of all f i’s
to form a single one which accounts for noise and variation
in the values received. The consolidated fitness value f i is
then returned to EAEM. The algorithm in Table 4 explains
the working of this module.

Xi

fi

Fig. 7 Phases of fitness computation module

4.2.3 Module III: fitness computation module (FCM)

FCM is responsible for the computation of fitness corre-
sponding to each Xi. This module is deployed on every client
machine and performs the following sequence of steps, also
depicted in Fig. 7:

1) A code adapter configures the variables of Xi into the
developed code of RoboCup Soccer Simulation League
3D team, namely Karachi Koalas (Haider et al. 2014).

2) Simspark (Xu and Vatankhah 2013) server is used to
execute simulation match between two teams, T1 and
T2, and generate a log file.

3) A parser application extracts the required game statistics
from the recorded log file for fitness computation that is
returned back to the PFEM.

The algorithm for Fitness Computation Module is shown
in Table 5.

4.3 Fitness function

This section describes the factors that contribute to the fitness
function of a solution.

4.3.1 Goal scored against defending team

The defending team should be able to reduce the number of
goals scored by the opponent. Equation 1 describes the goal
difference where Scoreh denotes the number of goals scored
by the home team, while Score denotes the goals scored by
the opponent

GoalScored � Scoreh−Scoreo (1)
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Table 5 Algorithm for FCM

// Input variables
T←{T1, T2}  where T1 is the home team and 

T2 is the opponent team
X← {d1,d2,…,dn} denote optimization variables 
S← {X, fitness←0} denote solution in which 
fitness is missing
L← Log file of match
M← {M1,M2,….,Mm} denotes set of workstations
Procedure FitnessComputationModule(S)
1: foreach (m ϵ M)
// Code Adapter
2:  T*1 ←T1 (S)
// Play matches
3:  L←play(T*1 , T2 ) 
// Execute Parser Application with log file as input
4:  fitnessm← ParserApplication(L)
5: end for 

6: return fitnessm

4.3.2 Ball possession by home team players

The defending team should maintain possession of the ball.
For this research, it is assumed that ball possessor is the
player having theminimumdistance from theball. Equation 2
describes ball possession where Cph denotes the number of
cycles ball is with the home team player and T c denotes the
total number of simulation cycles.

BallPos � bp � Cph/Tc (2)

4.3.3 Average time ball out of danger zone

The defending team should be able to keep the ball out of the
danger zone most of the time. For this purpose, the field has
been divided into four regions, namely LeftRegion1, LeftRe-
gion2, RightRegion1 and RightRegion2 as shown in Fig. 8.
The home team in this scenario is initialized on the left-hand
side of the field and the opponent on the right-hand side. The
danger zone for the home team is the LeftRegion1. Equa-
tion 3 describes the average time ball is out of danger where
CLeftRegion2 denotes the number of cycles ball is in LeftRe-

Fig. 8 Regions in a simulated soccer field

gion2 and CLeftRegion1 denotes the number of cycles ball is
in LeftRegion1.

AvgCoutofdanger � CLeftRegion2/
(
CLeftRegion1 + CLeftRegion2

)

(3)

To evolve a good strategy for defense, we focus on
instances where the ball is in the LeftRegion1 and LeftRe-
gion2. However, at times, an uncertain situation may arise
in which ball remains most of the time in the right regions.
Thus, a solution is penalized if the ball is more than delta
cycles in the opponent half. The fitness function that needs
to be maximized is shown in Eq. 4.

f(x) � GoalScored + bp + AvgCoutofdanger − ∂cycles (4)

The range of fitness function comes out to be [−2, +2]. To
visually verify the fitness values, logs of few matches were
manually replayed.

4.4 Parser application

A parser application that extracts the three mentioned factors
has been developed earlier (Larik and Haider 2012) and is
shown in Table 6.

5 Experimental setup and results

Todemonstrate the effectiveness of FEASO, a series of exper-
iments were designed and executed to investigate:

• parameters of evolutionary algorithm,
• the evolved strategy
• performance of the evolved team against some benchmark
scenarios.

The above-mentioned aspects are discussed in subsequent
subsections.
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Table 6 Algorithm for parser application

L←denotes log file of match
Tt ← denotes threshold value
p1← denotes score of the home team
p2← denotes score of the opponent team
Procedure ParserApplication (L)
1: foreach (line ϵ L)
2: Extract Playmode
3: If (Playmode == p1) then
4: Scoreh ← Scoreh + 1
5: else If (Playmode ==p2) then
6: Scoreo ← Scoreo + 1
7: Extract ball position
8: if (ComputeBallRegion(bx,by) == LeftRegion1)
9: CLeftRegion1 ← CLeftRegion1 + 1
10: else if (ComputeBallRegion(bx,by) == 

LeftRegion2)
11: CLeftRegion2 ← CLeftRegion2 + 1

12: else if (ComputeBallRegion(bx,by) ==
RightRegion1)

13: CRightRegion1← CRightRegion1 +1
14: else if (ComputeBallRegion(bx,by) ==

RightRegion2)
15: CRightRegion2← CRightRegion2 +1
16: Extract home team players position in the field
17: Extract position of opponents in the field
18: Compute distances of players with the ball
19: Extract player with minimum distance as bp

20: if (bp == home team player)
21: Cph ← Cph +1
22: Tc ← Tc +1
23: end foreach
24: GoalScored = Scoreh – Scoreo

25: bp = Cph/ Tc 

26: Avg Coutofdanger = CLeftRegion2/ (CLeftRegion1+ 
CLeftRegion2)

27: if ((CRightRegion1 + CRightRegion2) > Tt )
28: ∂cycles ←1 else ∂cycles ←0
27: f(x) = GoalScored+ bp+ Avg Coutofdanger - ∂cycles

28 return f(x)

Table 7 Specifications for FEASO

Operating system Linux Ubuntu 12.04 LTS

Memory 16 GB RAM

Application MonoDevelop, Ruby 1.9

Simulator Simspark version 6.0.6

Workstations 3 (i5)

5.1 Design and analysis of results for parameters
of evolutionary algorithm

Initially, experiments were conducted with a varying popula-
tion size of 5–15. It was observed that with a small population
there was little diversity in the solutions, while with larger
size, the learning process became slow. Next to fitness eval-
uations ranging from 1 to 5 were experimented to determine
the acceptable number that works best. It was found that due
to the noisy environment, single fitness evaluation produced
erratic results, while using more than three evaluations was
very time-consuming. Thus, the population size was set to
10, while a solution was evaluated three times (that is, three
matches were played with the same solution parameters) to
get its final fitness. The hardware and the software specifica-
tions are shown in Table 7.

The teams that participate in the RoboCup event publish
their working code, known as binaries, and after comple-
tion of the tournament, these binaries are made public. For
the experiments, the binary of team RoboCanes, a leading
RoboCup Soccer 3D team from the University of Miami that
has been participating since the beginning of the league, was
chosen. The reason for its selection was its strong attack-
ing capability. The code of the home team, Karachi Koalas,
was deployed on all the workstations which were capable
of executing 20 matches of 10-min duration consecutively.
Extensive shell scripting was performed for the distributed
evolutionary algorithm to minimize the processing time.
Karachi Koalas was initialized on the left-hand side while
RoboCanes on the right-hand side of the simulated field. Dur-
ing the experiments, the evolutionary algorithm was run for
25 generations. Initial population was generated by apply-
ing Gaussian random mutation on the seed solution. For
parent selection, RBS scheme was implemented. One-point
crossover technique was employed because of its simplicity
and also because no obvious advantage was observed in the
initial experiments with different orders of n-point crossover.
The rate of mutation was varied from 0.5 to 0.1, and 0.3 was
selected as the final rate. For survival selection, the truncation
scheme with the steady-state model was used. For injecting
random solutions, a ratio of 20% of the population size was
chosen intuitively. The final features of EA are shown in
Table 8.
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Table 8 Features of evolutionary algorithms

Feature Technique used

Solution representation Floating point

Parent selection Rank-based selection

Mutation Gaussian random

Crossover One-point

Survival selection Truncation

Model Steady state

Table 9 Input parameters for
EAEM

Parameter Value

ngen 25

R 6

K 0.3

nrand 2

nsize 10

Σ 2

Fig. 9 Average-so-far and best-so-far curves

The input parameters for execution ofEAEM, as discussed
in Sect. 4, are presented in Table 9.

To compute the fitness of a solution, a match of 300 cycles
corresponding to 5min was simulated on different machines.
It took almost 40min to complete evolution of a single gener-
ation. Initially, the evaluation function only considered goal
difference but that was not viable as many matches ended
without a goal. Next, the average time the ball was out of dan-
ger regionwas added to the fitness function, but inmany cases
when the ball was moving toward opponent region more fit-
ness value was assigned to those solutions. Thus, a penalty
was imposed to cut down those solutions. Figure 9 depicts
the average-so-far and best-so-far curves where the blue line
represents the best-so-far graph, while the red signifies the
average achieved in each of the 25 generations. As evident
from the graph, the best fitness value of 1.2 was achieved
during the first five generations and the same value domi-
nates toward the end. This signifies that much improvement
has been made in initial generations.

The average-so-far graph, on the other hand, started
initially with a negative fitness value, but due to truncation-

Fig. 10 Best individuals of the fifth generation versus best individuals
of the twenty-fifth generation

based survival mechanism, the average fitness of the pop-
ulation had improved by the end of the experiments. Next,
the best individuals of the fifth generation were compared
with the best individuals of the twenty-fifth generations to
see whether there is significant diversity in the population.
The results shown in Fig. 10 demonstrate the proof of con-
cept where the blue line represents the fifth generation, while
the red line denotes the twenty-fifth generation. Although the
tenth individual of both the populations achieved the best fit-
ness value 1.2, there is diversity in the rest of the individuals.

5.2 Analysis of the evolved strategy

For analyzing the evolved strategy throughout generations,
the factors contributing toward overall fitness of solution
were given due consideration. At first, only the goals scored
against the home team was considered as fitness criteria with
the assumption that if the volume of goals scored is reduced
then the learned strategic positions were better. However, if
the matches ended without a goal, then it was difficult to
infer about the overall team strategy. To overcome this issue,
the ball possession by the home team was considered a met-
ric for good defense. Moreover, the region where the ball
resides also influences the positioning of the agents; thus,
the instances in which the defenders were able to keep the
ball were also incorporated during fitness computation. Since
the log files of matches were available, the best fitness solu-
tion files were replayed to manually verify whether there was
a significant difference between the initial and final genera-
tions. The matches started with the opponent team kicking
the ball in the defensive region of the home team. In the ini-
tial phases of strategy evolution as shown in Fig. 11, if this
kick from opponent team entered the danger zone and five of
the opponent agents rushed toward the defensive half, then
the home team defenders were able to stop the goal.

Later as the generations evolved, it was observed that the
defenders considered their distances with the ball and the
goal post and aligned themselves in such a way that they
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Fig. 11 Initial phases of strategy evolution

Fig. 12 Final phases of strategy evolution

were able to block the path between the ball and goal as
depicted in Fig. 12. The role of defender at the center was of
great importance because if either the ball was coming from
the left or right it should be able to clear the ball toward the
opponent half.

In the evolved strategy, the defending agents were able to
keep the ball out of their danger zone. It was noted that the
placements of both defenders and midfielders when the goal
was on attack were also appropriate in the evolved gener-
ations. Figure 13 shows a bar chart comparing the original
and the evolved strategic points. The blue bar represents orig-
inal points, while the orange bar represents evolved points.
A yellow line shows the difference between the two values.
As evident from the figure, there are two peaks and there
is a substantial difference between the values for optimized
distances, namely d2 and d7.

The distanced2 signifies the rightmidfielder andd7 shows
the position of center defense. Thus, these two play a vital
role in the strategic placements of the team.

5.3 Benchmark scenarios

This section conducts a series of matches for analyzing the
impact of evolution on team performance. A set of bench-
mark scenarios were created to test the applicability of the
FEASO. For this purpose, three variants of Karachi Koalas
team have been devised as follows:

• KKRandom team that decides strategic points randomly

Fig. 13 Bar chart with a line showing the difference between original
and evolved strategic points

Table 10 Summarized results of 40 matches executed between variants
of KK

Performance
measure

KKRandom KKBase KKEvolved

Goals scored against 10 7 2

Time to score goal
against (cycles)

~120 ~120 ~180

% of ball possession
against

66 50 40

• KKBase team that uses the heuristic seed values that was
our viable working strategy in the RoboCup events and

• KKEvolved team that uses the optimized variables
obtained via FEASO approach.

The selected opponent team is the same RoboCanes team
that was used for offline strategy evolution.

5.3.1 Competition among the KKRandom, KKBase
and KKEvolved

In this experiment, approximately 120 matches were exe-
cuted between the three sets of teams. Each match was of
220 cycles amounting to 5-min duration under the same time
constraints and same opponent used in the learning phase.
Table 10 shows the summarized results obtained from 40
matches against each of the teams.

The results demonstrate that the evolved team is able
to defend more goals as compared to the KKRandom and
the KKBase team. Furthermore, it has also been noted that
normally the opponent team scored a goal against both the
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Table 11 Statistical test on the significance of results obtained

Comparison t test Significant

KKEvolved versus
KKBase

p �0.0383<0.05 Yes

KKEvolved versus
KKRandom

p �0.0059<0.05 Yes

KKRandom and KKBase team in around 120 cycles but with
the KKEvolved team, it was either unable to score a goal and
even if it did then it took place after 180 cycles of the match.
The percentage of ball possession against each of the teams
is also observed and provides a proof of concept that the
evolved team defenders are able to retain ball possession as
compared to the other two teams.

Table 11 examines the statistical significance of the dif-
ferences between the KKRandom team, KKBase team and
KKEvolved team on the basis of the attribute, goals scored
against. The p value demonstrates that the KKEvolved team
is significantly better than the other two teams.

5.3.2 Competition with other teams participating
in RoboCup tournament

This section compares the strategy obtained via evolutionary
algorithms with other approaches discussed in the literature
review. Experimentswere conductedwith three sets of teams,
namely A, B, and C. Team A uses reinforcement learning
strategy, team B uses handcrafted strategy, and team C uses
layered learning approach. The entire focus of this paper is
to learn defensive strategy; thus, the objective is not to win
against other strategies but to show that the evolved team
KKEvolved performs better than the benchmarked KKBase
team. The novelty of this comparison is to demonstrate that
the evolved strategy could be generalized to other opponent
teams.

Ten matches each were executed between KKEvolved
versus team A, KKEvolved versus team B and KKEvolved
versus team C for 5 min. Similarly, ten matches were exe-
cuted between KKBase versus team A, KKBase versus team
B and KKBase versus team C with the same time constraint.
Tables 12, 13 and 14 exhibit the summarized results.

It should be mentioned that all the three teams A, B, and C
are strong offensive teams with team C being the champion
team participating in the RoboCup event. The results show a
drastic performance improvement in KKEvolved team prov-
ing this method to indeed be very powerful. The approach
learned against a single opponent was generalized among
other similar opponents.

Table 12 Summarized results of 20 matches executed between team A,
KKBase and KKEvolved

Opponent team Performance
measure

KKBase KKEvolved

Team A (rein-
forcement
learning)

Goals scored
against

2 0

Time to score a
goal against
(cycles)

~180 –

% of ball
possession
against

50 30

Table 13 Summarized results of 20 matches executed between team B,
KKBase, and KKEvolved

Opponent team Performance
measure

KKBase KKEvolved

Team B
(handcrafted
rules)

Goals scored
against

10 0

Time to score a
goal against
(cycles)

~100 –

% of ball
possession
against

60 40

Table 14 Summarized results of 20 matches executed between team C,
KKBase, and KKEvolved

Opponent team Performance
measure

KKBase KKEvolved

Team C
(layered
learning)

Goals scored
against

28 19

Time to score a
goal against
(cycles)

~80 ~130

% of ball
possession
against

80 30

6 Comparison withmost relevant
evolutionary approaches

This section discusses the two evolutionary approaches that
are similar to the presented FEASO framework.

It was highlighted earlier in Sect. 2 that the work of Chen
et al. (2016) and Ali et al. (2014) is more recent and rele-
vant in terms of the evolution of strategy in robot soccer. A
comparison among these approaches and FEASO would be
drawn theoretically to signify the novelty of proposed frame-
work.
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Table 15 Comparison of
FEASO with most relevant
approaches

MACO Adaptive CA FEASO

No. of agents Limited Limited The entire team of 22
agents

Generalized No No Yes

Domain 2D simulation league Simple 2D simulator 3D simulation league

Distributed No No Yes

6.1 FEASO versus MACO

Multi-group ant colony optimization algorithmwas proposed
(Chen et al. 2016) that used ant intelligence to learn offen-
sive strategies in 2D soccer simulation league. In their work,
they learned three models, namely shooting model, passing
model and dribbling model based on the success of foraging
behavior of ants as an effective cooperative strategy. They
divided the field into regions, and their focus was to decide
the best model to pick based on the pheromone evapora-
tion preference value. They simulated the attack environment
by considering two attackers, two defenders and one goal-
keeper in the field. The positions of all the five players were
set randomly and the training was conducted till 15,000
times in a single match. For evaluation of the proposed strat-
egy, matches were conducted among the baseline team and
the evolved team concluding that the evolved MACO team
enjoyed a 100% winning advantage. The approach is sim-
ilar to FEASO as we have also conducted the same set of
experiments with varying opponent teams for performance
evaluation. The approach, however, is different from FEASO
as FEASO utilizes distributed evolutionary algorithm for
learning defense, and the focus is on minimizing the number
of goals scored. Secondly, ACO comes under swarm intelli-
gence in which the leader dictates the behavior of the whole
swarm and in the described approach the leader is the attacker
that takes a decision. However, in FEASO approach, there is
no leader and team strategic positioning is governed by the
optimization algorithm. TheMACOapproach considers only
a smaller version of the team for learning strategy; however,
this paper uses the complete team thatmakes the optimization
process muchmore complex. A known problemwith ACO is
the huge convergence time required by the algorithm; how-
ever, FEASOapproach gets an optimal solution in a couple of
generations.MACOapproach has been tested in a simple, 2D
environment with five players in the field. As described ear-
lier, the domain of 3D is much complex due to its humanoid
locomotion and FEASO provides fruitful results while work-
ing under dynamic, uncertain environment of simulation 3D.

6.2 FEASO versus adaptive CA

The study (Ali et al. 2014) contributed the use of a simpli-
fied and adaptive version of CA to develop defensive and

offensive plays in simulated robot soccer. The agents were
able to develop the most suitable team formation by utiliz-
ing a set of finite state machines in the field. The number of
goals scored was used for fitness. For each individual in the
population, they defined a set of actions and a set of regions.
At the start of CA, all the individuals were initialized ran-
domly. The goalwas to train the team to choose the best states
depending upon the scenario faced. The belief space com-
prised of general behaviors associated with the overall plan
of the team. Experiments were conducted to test the effec-
tiveness of the approach for 150 generations. After every 15
generations, some statistics were computed that indicated the
best regions and the best states. For performance evaluation,
matches were executed with multiple opponent teams that
either played offensively or defensively and the team that
used CA played better in terms of defense as well as offense.
The CA-based approach is very relevant as this paper also
conducts matches against multiple opponent teams and uses
goals scored for fitness evaluation. However, it differs from
the CA-based approach as besides considering goals scored
it also considers other parameters for fitness evaluation. Sec-
ondly, they have stated in their research that the simulator
provides noisy data that affects the performance of CA algo-
rithm so to overcome this limitation they have developed a
simplified version of the simulator in which actions of all the
agents are known. In the FEASO approach, the evolution-
ary algorithm is robust to noise and the approach is learning
strategy in an environment that contains the interactions of
22 agents at a given time instance. In addition, CA-based
approaches require some knowledge in the form of belief
space, whereas this paper starts with a simple heuristic-based
seed value with no prior knowledge required at the time of
evolution. Lastly, FEASO is scalable and less time expensive
due to its distributed nature that is missing in the CA-based
approach. Table 15 highlights the comparison between the
proposed FEASO and the other two evolutionary approaches
discussed in this section.

7 Conclusion

The paper proposes an evolutionary algorithm-based frame-
work for strategy optimization. RoboCup Soccer Simulation
3D has been selected as the test bed for performing these
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experiments. The team evolved using proposed EA produced
better defensive capability as compared to the original team.
The simulation results show enhancements in solutions over
generations which have been very encouraging and provide
initial proof of concept. The performance of the evolved team
was compared against other approaches, and it was found the
evolved team performed better defense in terms of the goals
defended. The future task that needs consideration involves
testing and validation of this optimization process for several
other teams. Furthermore, a similar approach would also be
tested to learn offensive strategies as well. Finally, a multi-
objective evaluation function would be formed to test both
offensive and defensive scenarios.
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