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Abstract
Assistive robots in ambient assisted living environments can be equipped with learning capabilities to effectively learn and
execute human activities. This paper proposes a human activity learning (HAL) system for application in assistive robotics.
An RGB-depth sensor is used to acquire information of human activities, and a set of statistical, spatial and temporal features
for encoding key aspects of human activities are extracted from the acquired information of human activities. Redundant
features are removed and the relevant features used in the HAL model. An ensemble of three individual classifiers—support
vector machines (SVMs), K -nearest neighbour and random forest—is employed to learn the activities. The performance
of the proposed system is improved when compared with the performance of other methods using a single classifier. This
approach is evaluated on experimental dataset created for this work and also on a benchmark dataset—the Cornell Activity
Dataset (CAD-60). Experimental results show the overall performance achieved by the proposed system is comparable to the
state of the art and has the potential to benefit applications in assistive robots for reducing the time spent in learning activities.

Keywords Human activity learning · Feature extraction · Classifier ensemble · Assistive robotics · Activity classification.

1 Introduction

Ambient assisted living (AAL) is an active research area
that has attracted a lot of interest in recent years through
the development of various solutions to enable independent
living and promote quality of life and well-being for an age-
ing human populace (Blackman et al. 2016). AAL solutions
utilise assistive robots and other technologies to aid in daily
routine activities. These robots are incorporated in various
applications which involve human–computer interaction that
traverse humans of all ages. Such applications include care
for older adults (Xiao et al. 2014; Jayawardena et al. 2016).

However, due to the dynamic nature of the environment
in real-world applications, it is quite challenging to have
assistive robots execute functions easily. A specific case is
assistive robots that can interact with older adults as carers.
These robots learn tasks by observing a human carer execute
the tasks. Such robots learn human activities by extracting
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descriptive information of the activities in order to classify
them as they are executed. This process involves a transfer
of knowledge/information of the activity performed which is
referred to as transfer learning (Weiss et al. 2016).

Regardless of the method applied to learning an activity
by a robot, there is a knowledge gap contained in the varied
information acquired of a person executing an activity and a
robot carrying out a similar activity. Transfer learning helps
to bridge this gap by providing faster learning of activities
and better collaboration of assistive robots in AAL environ-
ments (Helwa and Schoellig 2017). A conceptual overview
of the processes involved in learning of human activities for
assistive robotics is given in Fig. 1. It is evident in this context
that the ability to correctly recognise a human activity and
correctly learn (as highlighted in steps 1–3 of Fig. 1) such
activity plays a significant role in the amount of knowledge
which can be transferred to an assistive robot to be used in
learning.

To obtain information of human activities as they are exe-
cuted, recent research has made use of visual sensors (e.g.
RGB-D sensors) (Sung et al. 2011, 2012; Han et al. 2017)
and non-visual sensors (e.g. wearable sensors) (Capela et al.
2015) which make it a lot easier to obtain information of
activities. Although non-visual sensors have certain advan-
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Step 3: Learning Human 
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Fig. 1 A conceptual overview of learning of human activity by an
assistive robot using information from an RGB-depth sensor

tages, they are sometimes invasive and burdensome. The
development of visual sensors like RGB-D sensors provides
a better means to detect human pose used to build human
activity recognition systems (Han et al. 2017). These sensors
provide platforms for identifying body shape, depth maps
and detecting skeleton of human joints in 3D space which
can be exploited in learning activities.

The aim of this paper is to propose a human activity learn-
ing (HAL) system for assistive robotics. This will act as part
of the process of transfer learning for assistive robots. The
research presented in this paper is an extension of the sys-
tem proposed earlier by Adama et al. (2018). The focus is
on the three steps shown in Fig. 1. An RGB-D sensor is
used to obtain 3D skeleton information of body joints dur-
ing activities as they are executed by a human. Descriptive
features are then extracted from the skeleton information
obtained, and the most informative features are selected to
be used in training a classifier model. These features are
extremely valuable in evaluating the performance of the sys-
tem because redundant and noisy features can have negative
effect on the system performance. An ensemble of classifiers
model is used in building the learning model for activities.
The approach presented here employs three classifiers—
multiclass support vector machines (MSVMs), K -nearest
neighbour (K -NN) and random forest (RF)—in creating the
ensemble model. These classifiers are classical algorithms
used in machine learning problems. The proposed approach
is not only focused on using the selected algorithms but a
combination of them in an ensemble. The reason for using
an ensemble of classifiers is to improve performance com-

pared with a single classifier model (Tahir et al. 2012). The
results discussed in subsequent sections show the improved
performance.

The remaining sections of the paper are structured as fol-
lows. Section 2 presents a review of relevant related work
in this area with emphasis on the main contributions. In
Sect. 3, details of the methods applied in 3D data processing
and feature representation are explained. Section 4 explains
the classifier ensemble model approach for human activity
learning. Section 5 presents experimental results and their
evaluation, and Sect. 6 summarises the main results and pro-
vides discussion of the future work.

2 Related work

Learning and classification of human activities using com-
putational intelligence/soft computing techniques is often
referred to as human activity recognition (HAR) (Iglesias
et al. 2010; Jalal and Kamal 2014). One of the main objec-
tives is to extract descriptive information (i.e. features) from
human activities to be able to distinctly characterise and
classify one activity from another. An integral component
of learning an activity is how information of the activity
is obtained or observed. For human activities, information
obtained using visual and non-visual sensors makes it a lot
easier to understand and learn activities as they are per-
formed. Visual sensors such as RGB cameras can be used
to obtain descriptive information of an activity in 2D. How-
ever, this information is limited in effectively characterising
an activity (Han et al. 2017). Additional depth information
using RGB-D sensors provides several advantages as they
are better suited to observing human activities and detecting
human poses used to build activity recognition systems.

To effectively characterise activities from information
obtained using RGB-D sensors, soft computing techniques
such as machine learning and reasoning methods have
been applied by many researchers (Koppula et al. 2013;
Li et al. 2015; Han et al. 2017). These methods provide
an understanding of how activities are learned and relation-
ships between activities. However, there is some uncertainty
regarding how one actor performing an activity would differ
from another actor performing similar activity. This hinders
HAR systems from going mainstream.

Data obtained fromRGB-D sensors give information rele-
vant for a robot to understand an activity. By exploring human
pose detection using RGB-D sensors, activity recognition
has advanced recently (Sung et al. 2011; Faria et al. 2014).
Using RGB-D sensors extracts 3D skeleton data from depth
images and body silhouette for feature generation. In Faria
et al. (2014), the RGB-D sensor is used to generate a human
3D skeleton model with matching of body parts linked by
its joints. They extract positions of individual joints from the
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skeleton in a 3D form x, y, z. The authors in Jalal and Kamal
(2014) use similar RGB-D sensor to obtain depth silhou-
ettes of human activities fromwhich body points information
are extracted for the activity recognition system. Zhou et al.
(2018) also used an RGB-D sensor to capture human skele-
ton information as part of a system for controlling a mobile
robot using human gestures which is also a similar appli-
cation proposed by Chao et al. (2017). Another approach is
shown in the work in Gu et al. (2012) where the RGB-D sen-
sor is used to obtain orientation-based human representation
of each joint to the human centroid in 3D space. Raw data
obtained from these sensors have to be pre-processed. This
process is carried out to reduce redundancy in data for better
representation of features of an activity.

Classification of human activities is carried out by extract-
ing relevant features from data obtained using RGB-D
sensors. In our previous work, a method for activity recogni-
tion using RGB-D data was proposed (Adama et al. 2018).
The 3D joint position information extracted from the sensor
is transformed into feature vectors by applying selected soft
computing techniques to group key postures of an activity.
The posture features are used as input to a learning algo-
rithm for classification of human activities. SVM and KNN
algorithms were used separately in classifying activities and
the results compared. In the work by Faria et al. (2014),
the authors proposed a combination of multiple classifiers
to form a Dynamic Bayesian Mixture Model (DBMM) to
characterise activities using features obtained from distances
between different parts of the body. Hussein et al. (2013)
applied statistical covariance of 3D joints (Cov3DJ) as fea-
tures to encode the skeleton data of joint positions which are
then used as input to an SVM model for activity recogni-
tion. Another approach applied by Wei et al. (2013) used a
sequence of joint trajectories and applied wavelets to encode
each temporal sequence of joints into features used in activ-
ity classification. Deep learning neural networks (Ijjina and
Chalavadi 2017) have also more recently been applied in
activity recognition problems with results showing robust-
ness of the method in activity recognition. However, deep
learning neural network systems require large amount of data
to achieve for concise predictions of activities and in most
cases more resources such as time and reliable processing
architectures.

3 Methodology for human activity data
processing and feature representation

The proposed approach toHALdescribed in this paperworks
by extracting features from3Dskeletal data and applying fea-
ture selection techniques for selecting the most informative
features used in building a learning model for human activi-
ties. The overview of the system architecture shown in Fig. 2

illustrates the main stages within the process. This is divided
into two stages as follows:

Stage 1 Model learning

– Data input into the system from a dataset containing 3D
skeleton information of human joints. These data are cap-
tured using an RGB-D sensor and pre-processed before
it is used in training activity classifier ensemble model.

– Features representing activities are computed from the
data. This step also includes the selection of optimal fea-
tures relevant for learning activities.

– Training selected classifier models through supervised
learning of activities. The output of this step is the learned
classifier ensemble model ready to be utilised in activity
classification.

Stage 2 Activity classification

– Data input in this stage is similar to that described in
the model learning stage. However, this has to be unseen
data in order to validate the performance of the learned
models. The data can be obtained from a dataset or on-
the-fly from an RGB-D sensor.

– Similar features are extracted from the data to be clas-
sified. This stage differs from the model learning stage
in that unlabelled activity data is used, while the model
learning stage is based on labelled activity data. The fea-
tures extracted from unlabelled activity data are passed
into the learned classifier ensemble model for identifica-
tion of activity classes.

3.1 3D activity data pre-processing

Human activity is composed of a continuous transformation
of a series of human poses. Pre-processing the informa-
tion is necessary to reduce irregularities in the data obtained
from the sensor. RGB-D sensors provide information in three
modes, namely RGB image, depth image and skeleton joint
coordinates. However, this work uses only the skeleton joint
coordinates information. A Microsoft Kinect V2 (Microsoft
2017) RGB-D sensor which has a skeleton model consisting
of 25 joints as shown in Fig. 3 is used in this work. From the
information obtained from the kinect sensor, 15 key joints as
outlined in Fig. 3 are selected for use. Data are acquired from
the sensor as frames containing different poses that make up
an activity. 3D skeleton joint coordinates J are obtained from
pose approximation in each frame (Yang and Tian 2014) with
coordinates relative to the sensor position where,

J = [ j1, j2, j3, . . . , ji ], for J ∈ R
3×d (1)
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Fig. 2 Architecture of proposed human activity learning model. Stage
1: Model Learning (top): learning human activities by training a set
of classifiers (SVM, KNN and RF) from 3D skeleton features obtained
from activity frames captured using an RGB-D sensor. Stage 2: Activity

Classification (bottom): observations from human activity are used to
extract/ select relevant features which are fed into the trained classifier
models, and activities performed are detected

ji represents the i th joint with coordinates x, y, z correspond-
ing to horizontal, vertical and depth positions, respectively,
and d is the total number of skeleton joints used.

To make the joint coordinates invariant of the sensor posi-
tion, the origin of the skeleton is translated along the vector−→
so jt , where so is the sensor coordinates origin and jt rep-
resents the torso centroid joint of the skeleton. Each joint
coordinate position

−→
ji ( ji is a vector representing the i th

joint coordinates of the skeleton) is computed with reference
to the new origin of torso centroid

−→
ji -

−→
jt . Thus, the skeleton

is independent of the sensor position as shown in Fig. 4. Each
sample posture of activity is then reformulated to the torso
centroid origin.

Another stage of pre-processing is done to symmetrise the
data in order to eliminate ambiguity in gestures performed
by left- and right-handed people. This ensures each activity
is represented in a variation of its original form as shown in
Fig. 5. The symmetry is computed along the y-axis of the
origin (torso centroid).

3.2 Extraction and representation of 3D features

Extraction of descriptive information from acquired raw sen-
sor information is crucial to any learning system as raw data
do not provide adequate information for learning. This is
carried out after the data are pre-processed. In this work,
the features used are divided into two distinct categories:
joint displacement-based features and statistical features in
the time domain. Joint displacement-based features encode
information relative to position and motion of body joints
(Yang and Tian 2014; Han et al. 2017). This information con-
siders displacement between joints of an activity pose and 3D
position differences of skeleton joints across different time
periods of an activity. Similarly, statistical time domain fea-
tures encode information of variations across a collection of
activity poses within a specified time domain. The following
sections provide details of the features used in this work.

123



Human activity learning for assistive robotics using a classifier ensemble 7031

Joints selected in 
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Fig. 3 Skeleton representation of Microsoft Kinect V2 with 25 joints.
15 key joints are used in this work as shown in the label definition in
the figure

3.2.1 Displacement-based features

1. Spatial displacement between selected joint skeletal joint
coordinates is computed as the Euclidean distance δ

between any two joints described in Eq. 2. The joints
are selected based on relevance to activities.

δ( jm , jn) =
√∑

x,y,z

( jm − jn)2, (2)

for 1 ≤ (m,n) ≤ i and m �= n. jm and jn are any pair of
selected joints with coordinates x, y, z.

2. Temporal joint displacement features consider 3D con-
secutive motion of joints tcp and overall motion dynamic
of joints tci . tcp is computed as the joint coordinates
position difference between the current pose c and its
preceding pose p in Eq. 3 and tci as the temporal differ-
ence between the each joint current pose from the initial
pose i in Eq. 4.

tcp = [ j cm − j pn ]; for j cm ∈ J c and j pn ∈ J p (3)

tci = [ j cm − j in]; for j cm ∈ J c and j in ∈ J i (4)

3.2.2 Statistical features in time domain

This is computed as the projected difference of joint coordi-
nates ji of the current pose c (also referred to as the current
activity frame) from the mean, variance, standard deviation,
skewness and kurtosis of joints coordinates for an activity
sequence. These are computed as follows:

1. Joint coordinate-mean difference;

j(i,mean) = ji − jmean (5)

where the mean of all positions for a joint coordinate
is jmean = 1

N

∑N
c=1 ji and N is the sum of poses in an

activity.
2. Joint coordinate-variance difference;

j(i,var) = ji −
∑N

c=1( ji − jmean)
2

N
(6)

Fig. 4 Translation of skeleton
coordinate system from the
sensor origin to the torso
centroid origin
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Fig. 5 Skeleton symmetrisation
of an activity posture about the
y-axis. a represents the original
activity posture, and b is the
symmetry obtained of same
posture

-2

1

0

2

-1

-0.5-1 0.5 1

(a)

-3

x

y

-2

1

0

2

-1

-0.5-1 0.5 1

(b)

-3

x

y

3. Joint coordinate-standard deviation difference;

j(i,std) = ji −
√∑N

c=1( ji − jmean)2

N
(7)

4. Joint coordinate-skewness difference;

j(i,skw) = ji −
∑N

c=1( ji − jmean)
3

(N − 1)σ 3 (8)

where σ refers to the standard deviation of each joint
coordinate for all poses in an activity.

5. Joint coordinate-kurtosis difference;

j(i,kur) = ji −
∑N

c=1( ji − jmean)
4

(N − 1)σ 4 (9)

All activity feature vectors computed are concatenated to
form a matrix A of extracted activity features in which the
columns correspond to feature vectors and the rows corre-
spond to features extracted fromdifferent frames of activities.
A is represented by the following;

A = [δ, tcp, tci, . . . , j(i,kur)] (10)

3.3 Feature normalisation

HAL systems can be problematic if the extracted features are
not well processed. This is due to heterogeneity in features. A
further pre-processing of extracted features is needed to deal
with the issue of features heterogeneity before classification.
This is done through feature normalisation which is often
applied in many machine learning applications (Sung et al.

2012;Capela et al. 2015).Normalisationof each feature in the
activity features matrix obtained in Eq. 10 is done according
to:

anorm = acf − min(A f )

max(A f ) − min(A f )
(11)

where acf is a feature on the current pose c of the f th column
feature vector. The obtained feature matrix after normalisa-
tion becomes Anorm.

3.4 Feature selection

Feature selection is performed on the normalised activity
features matrix. This is important to any learning model
as it enables faster training, reduces overfitting, improves
accuracy and reduces model complexity (making it easier
to interpret Gupta and Dallas 2014; Capela et al. 2015). In
this paper, a filter method—Relief-F (Kononenko 1994) of
feature selection—is applied. Filter methods are preferred to
other methods such as wrapper methods since they do not
require a fixed learning mechanism and therefore have more
generalisation across different learning models (Gupta and
Dallas 2014).

TheRelief-Fmethod uses a statistical approach rather than
heuristic to provide relevance weights to rank potential fea-
tures. The features ranked above a set threshold are selected
for the model. In this paper, the threshold is determined
from the number of features that provide the best substitution
accuracywith the learningmodel. The performance achieved
using the selected features is presented in the experimental
results in Sect. 5.

123



Human activity learning for assistive robotics using a classifier ensemble 7033

Fig. 6 Overview of weighted
voting architecture of classifier
ensemble
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The final stage in developing an activity learning system is
training a classification model with the selected features to
achieve a good learning performance score. Building on pre-
vious work by Adama et al. (2018) in which a selection
of learning models was used separately to identify activi-
ties, this work employs a combination of different learning
models in a framework referred to as a bagging ensemble
of classifiers in order to achieve an improved performance
of the system. The use of an ensemble of classifiers model
generally allows for better predictive performance than the
performance achievablewith a singlemodel (Diao et al. 2014;
Yao et al. 2016). According to Tahir et al. (2012), ensemble
models are learning models that construct a set of classifiers
used in classifying new information based on a weighted
vote of individual classifier predictions. Three base classi-
fiers are used in this work to construct a bagging ensemble
of classifiers: multiclass support vector machines (MSVMs),
K -nearest neighbour and random forest classifiers. The pic-
torial overview of the bagging ensemble method applied is
shown in Fig. 6.

The weighted votes work by computing the weighted
majority vote q̂ given in Eq. 12 through allocation of weights
ωr to each classifier Cr .

q̂ = argmax
i

3∑
r=1

ωr × (Cr (s) = i), (12)

where Cr (s) is a classifier characteristic function in a set of
unique classifier labels.

The weights assigned to individual classifiers in the
ensemble are computed during the learning phase by
weighted votes. At the initial stage, uniform weights are set
and updated at each iteration of cross-validation. The updated
classifier weights used in succeeding iterations are computed
as ratios of the average precision obtained in the preceding
iteration of each classifier in the ensemble.

The multiclass SVM model follows the configuration
reported in Cippitelli et al. (2016) and Adama et al. (2018)
which is an extension of a binary classifier. A one-against-
one approach based on the construction of several binary
SVM classifiers suitable for M classes contained in a
dataset—where M > 2—is implemented as one of the
base classifiers. The K -NN classifier algorithm is one of
the simplest machine learning algorithms used in classify-
ing observations based on the closest training points in the
feature space. An instance of observation is assigned to a
class most common among its k nearest neighbours by a
majority of votes of its neighbours, where k > 0. Euclidean
distance is used in most cases as a metric in finding nearest
neighbours. In the proposed HAL model, a value of k = 5
nearest neighbour is used in the configuration. Random for-
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est classifier consists of an ensemble of decision trees where
each decision tree is trained from randomly selected samples
of an original training set. In this work, RF is used with 10
decision trees. The configuration used is similar to Nunes
et al. (2017) implementation of RF.

5 Experiments and evaluation

To evaluate the performance of the proposed HAL system,
data collected from our experimental setup are used. This is
used in order to verify the proposed system via a limited test
we performed before it is tested on public datasets. After-
wards, the system is also evaluated using publicly available
benchmark human activity dataset, Cornell Activity Dataset
(CAD-60) (Sung et al. 2011). The following sections describe
the experiments conducted in this work and discussion of the
results obtained.

5.1 Experimental setup

Skeletal data are collected from three actors using aMicrosoft
Kinect V2 RGB-D sensor as mentioned previously in Sect.
3.1. The data are obtained at a frame rate of 30 frames per
second (fps). Four activities are carried out, namely brushing
teeth, pick up object (from the ground), sit on sofa and stand
up. Each actor performs a single activity for a duration of 45–
90 s. Sitting on sofa activity is performed by an actor going
through a sequence of sitting, and getting up poses with more
time spent in sitting, and standing activity is performed in
a similar way with more time spent staying standing. The
summary of the data collected is presented in Table 1.

The data acquired are pre-processed following the pro-
cess earlier mentioned in Sect. 3.1. Key features representing
activities are extracted from the processed data. Table 2
shows the number of activity features computed from the
RGB-D sensor skeleton with 15 joints. The number of joints
used in computing spatial displacement features is selected
based on the importance of the joints while carrying out the

Table 1 Summary of experimental human activity data collected from
3 actors using Microsoft kinect V2 RGB-D sensor

Activity Number of frames

Actor 1 Actor 2 Actor 3

Brushing teeth 2202 1876 1781

Pick up object 1804 1663 1355

Sit on sofa 1489 1672 2736

Stand up 2126 2059 2100

Total 7621 7270 7972

Activities performed comprise: brushing teeth, pick up object, sit on
sofa, stand up

Table 2 Activity features computed from raw RGB-D sensor informa-
tion of skeleton with 15 joints used in this work

Feature description Feature
label

Spatial displacement δ between both hands,
hands and head, hands and feet, shoulders
and feet, hip and feet

1–9

Temporal joint coordinate displacement tcp 10–54

Temporal joint coordinate displacement tci 55–99

Joint coordinate-mean difference j(i,mean) 100–144

Joint coordinate-variance difference j(i,var) 145–189

Joint coordinate-standard deviation difference
j(i,std)

190–234

Joint coordinate-skewness difference j(i,skw) 235–279

Joint coordinate-kurtosis difference j(i,kur) 278–324

Total number of computed features 324

selected activities. Nine features are computed which rep-
resent the Euclidean distance between both left and right
hands, each hand and head, each hand and its correspond-
ing foot, each shoulder and corresponding foot, each hip and
corresponding foot. The other features are obtained for each
joint coordinate—given that 15 joints are used, each feature
description comprises 15 × 3 = 45 features extracted.

Features selected from the experimental dataset are fed
into the learningmodel to test the performance of the system.
AK-fold cross-validation test strategy is appliedwith K = 4.
This involves splitting the data into fourfold in which three-
fold is used as training data for the model and the remaining
fold is left out for validation. This process is repeated using
each fold for validation, and the final result is the average
performance of all test validation folds.

5.2 CAD-60 dataset and experiment

The CAD-60 dataset comprises RGB-D sequence of human
activities acquired using an RGB-D sensor at a frame rate of
15 fps. The dataset contains RGB image, depth image and
skeleton joint coordinates information of 15 skeletal joints
of activities carried out. However, the proposed HAL system
utilises only the skeleton joint coordinates information. Four
different actors perform 12 activities in five different loca-
tions, namely bathroom, bedroom, kitchen, living room and
office. The activities performed are: rinsing mouth, brushing
teeth, wearing contact lens, talking on the phone, drinking
water, opening pill container, cooking (chopping), cooking
(stirring), talking on couch, relaxing on couch, writing on
whiteboard, working on computer and a random+ still activ-
ity. The random+ still contains randommovements sequence
and a still pose performed by each actor. The stages described
in the proposed HAL system are applied, with the CAD-60
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Table 3 Performance of the proposed HAL system on experimental
dataset comprising four activities: brushing teeth, pick up object, sit on
sofa, stand up

Activity Performance result

Precision (%) Recall (%)

Brushing teeth 40.38 62.19

Pick up object 100 94.69

Sit on sofa 100 100

Stand up 54.10 35.13

Average 70.65 68.43

dataset as raw input to the system. The same number of fea-
tures as shown in Table 2 is computed from the dataset.

Learning the activities is done as a grouping of activities
in the various locations. This grouping shown in Table 4
follows the format used by all approaches reported in the
state of the art in Table 6. For testing the trained model, a
method of leave-one-out cross-validation is carried out in
which the model is trained on three actors and tested on the
unseen actor. This is also called a new person test strategy.

5.3 Evaluation and discussion

The proposed HAL system is evaluated on both datasets
mentioned in Sects. 5.1 and 5.2 following the test methods
described. The CAD-60 dataset tests are performed follow-
ing similar test methods described by Sung et al. (2011) and
other approaches by the authors in Table 6. Test results and
discussions are presented in the following sections.

5.3.1 Experimental dataset results and evaluation

Table 3 shows the results obtained from the performance of
the proposedHAL system on the experimental dataset. These
are presented in terms of precision and recall. The system
achieves an overall average precision of 70.65% and recall
of 68.43% with the dataset. In Fig. 7, the confusion matrix
shows the percentage of correctly classified activities along
with the percentage of false classified activities. It can be
noticed that the performance in activities of pick up object
with recall of 94.69% and sit on sofa with recall of 100%
are quite impressive. However, the model did not perform
as impressively in correctly classifying brushing teeth and
stand-up activities. This is due to the fact that both activi-
ties have closely related poses as brushing teeth is performed
while in a stand-up pose. This gives rise to more stand-up
data—i.e. 64.87%—characterised as brushing teeth which
affects the overall performance achieved. In order to ade-
quately test the robustness of a supervised learning system,
the availability of more data samples is required for proper

Fig. 7 Confusion matrix of the proposed HAL system on experimental
data

training and validation of learning models. However, the
experimental dataset collected contains fewer data samples
when compared with other human activity datasets such as
the CAD-60 dataset. This can also be a reason for the perfor-
mance achieved on the experimental dataset. Therefore, we
also tested the HAL system with the CAD-60 dataset which
contains more samples of human activity.

5.3.2 CAD-60 dataset results and evaluation

The results obtained from the performance of the proposed
HAL system on the dataset are shown in Table 4. This
is presented in terms of precision and recall of the HAL
system. The proposed system achieved an overall average
performance of 92.32% precision and 89.66% recall with
features selected using the Relief-F feature selection method
described in Sect. 3.4 and a performance 90.96% preci-
sion and 88.52% recall when all the features extracted are
used. In Table 5, the result from different locations is shown.
When compared with Table 4, the system achieved a better
performance with selected features than with all the fea-
tures as reported in Table 5. Table 6 shows the proposed
system performance compared to the state of the art perfor-
mances on the same dataset (Cornell University 2009). The
table also shows information of the state-of-the-art works
which employ extended modality of RGB-D sensor infor-
mation which is a combination of skeletal joint coordinates
information with either of RGB image and depth image
sensor information modes. The proposed HAL system’s
performance indicates the features extracted in our system
sufficiently discriminate the selected human activities from
skeletal joints information.

Comparison of the proposed HAL system’s performance
with the state of the art on the CAD-60 dataset presented
in Fig. 8 shows the proposed system is able to attain an
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Table 4 Performance of the proposed HAL system with selected fea-
tures on the CAD-60 dataset using a “new person” test in different
locations: bathroom, bedroom, kitchen, living room and office

Location Activity Proposed HAL system

Prec. (%) Rec. (%)

Bathroom Rinsing mouth 100 99.97

Brushing teeth 96.97 75.16

Wearing contact lens 54.48 92.68

Random + still 99.98 100

Average 95.72 93.41

Bedroom Talking on phone 98.58 74.55

Drinking water 91.47 60.99

Opening pill container 15.39 66.55

Random + still 100 100

Average 94.37 84.01

Kitchen Drinking water 92.96 74.81

Cooking (chopping) 31.04 66.67

Cooking (stirring) 78.43 77.52

Opening pill container 74.49 75.49

Random + still 100 100

Average 86.85 84.76

Living room Talking on phone 82.36 88.29

Drinking water 86.93 74.14

Talking on couch 94.27 100

Relaxing on couch 100 100

Random + still 100 100

Average 94.37 94.41

Office Talking on phone 67.06 93.42

Writing on board 87.36 73.19

Drinking water 100 83.84

Working on computer 100 100

Random + still 100 100

Average 93.28 91.71

Overall average 92.32 89.66

Table 5 Performance of the proposed HAL system with all features
extracted from the CAD-60 dataset using a “new person” test. This
shows the average performance from different locations

Location Performance result

Precision (%) Recall (%)

Bathroom 91.36 90.37

Bedroom 86.72 83.43

Kitchen 86.38 83.54

Living room 95.95 94.36

Office 94.41 90.92

Overall average 90.96 88.52

Table 6 Overall average precision and recall of the proposed HAL
systemwith the state of the art on the CAD-60 dataset in a “new person”
setting in order of increasing precision reported by Cornell University
(2009)

Method Prec. (%) Rec. (%) Extended
modality

Sung et al. (2011, 2012) 67.9 55.5 �
Piyathilaka and
Kodagoda (2013)

70.0 78.0 –

Yang and Tian (2014) 71.9 66.6 �
Ni et al. (2013) 75.9 69.5 �
Gaglio et al. (2015) 77.3 76.7 –

Gupta et al. (2013) 78.1 75.4 �
Koppula et al. (2013) 80.8 71.4 �
Nunes et al. (2017) 81.83 80.02 –

Zhang and Tian (2012) 86.0 84.0 �
Proposed HAL system
(with all features)

90.96 88.52 –

Faria et al. (2014) 91.1 91.9 –

Parisi et al. (2015) 91.9 90.2 –

Proposed HAL system
(with selected
features)

92.32 89.66 –

Zhu et al. (2014) 93.2 84.6 �
Shan and Akella (2014) 93.8 94.5 –

Cippitelli et al. (2016) 93.9 93.5 –

The extended modality column indicates the mode of RGB-D sensor
information used by different works, i.e. skeletal joint coordinates only
(–) or skeletal joint coordinates informationwith a combination of either
RGB image and depth image information modes (�)

impressive performance.While someother proposed systems
performance outperforms theHAL systems performance, the
proposed HAL system differs from the other better perfor-
mances in the following ways. The system proposed by Zhu
et al. (2014) reported a performance of 93.2% precision and
84.6% recall. Although their precision exceeds that of the
proposed HAL system, our system performs better in terms
of recall. Also, the system by Zhu et al. (2014) uses a fusion
of spatiotemporal interest point features obtained from com-
bination of RGB-D sensor information modalities, i.e. depth
image, RGB image and skeleton information as indicated
in Table 6. This process can increase computational cost.
The proposed HAL system utilises only the skeleton infor-
mation offered by the RGB-D sensor to achieve such high
performance. This shows that by adding more information
for computer vision processing our system has the potential
to achieve a higher performance.

However, the performance attained by Shan and Akella
(2014) slightly out performs our proposed HAL system
which is observed from the comparison of state-of-the-art
results in Table 6. This approach performed tests excluding

123



Human activity learning for assistive robotics using a classifier ensemble 7037

55

60

65

70

75

80

85

90

95

100

Sung et al
(2011,
2012)

Piyathilaka
et al (2013)

Yang et al
(2014)

Ni et al
(2013)

Gaglio et al
(2015)

Gupta et al
(2013)

Koppula et
al (2013)

Nunes et al
(2017)

Zhang and
Tian (2012)

Faria et al
(2014)

Parisi et al
(2015)

Zhu et al
(2014)

Shan Akella
(2014)

Cippitelli et
al (2016)

Proposed
HAL system

Pe
rc

en
ta

ge
 (%

)
Precision Recall

Fig. 8 Precision and recall performance comparison of proposed HAL system with the state-of-the-art results on the CAD-60 dataset

Table 7 Proposed classifier
ensemble method performance
comparison with single
classifier performance on
CAD-60 dataset

Proposed by Method Prec. (%) Rec. (%)

Yang and Tian (2014) Naive Bayes Nearest Neighbour 71.9 66.6

Ni et al. (2013) Latent SVM 75.9 69.5

Gaglio et al. (2015) SVM 77.3 76.7

Koppula et al. (2013) Structural SVM 80.8 71.4

Nunes et al. (2017) RF 81.83 80.02

Zhang and Tian (2012) SVM 86.0 84.0

Parisi et al. (2015) Neural network 91.9 90.2

Proposed HAL system Classifier ensemble 92.32 89.66

the random + still activity performed by all actors in the
dataset which is included in the tests performed using the
proposed HAL system. This information is relevant in gen-
eralising the robustness of the system across varying human
activities.

The system proposed by Cippitelli et al. (2016) on the
CAD-60 dataset attained a higher performance of both preci-
sion and recall of 93.9 and 93.5%, respectively. Their system
is tested with the dataset in a similar way observed in the sys-
tem by Shan and Akella (2014) which excludes test on the
random + still activity. Another reason could also be due to
the fact that the proposed HAL uses all 15 skeleton joints
of the CAD-60 dataset, whereas Cippitelli et al. (2016) used
11 selected skeleton joints to achieve the high performance.
The selected joints do not include relevant joints such as
the shoulders which are needed for our proposed application
in assistive robots effectively executing human activities via
transfer learning. However, the proposed HAL system with
15 skeletal joints achieves higher performance when com-
pared with Cippitelli et al. (2016)’s performance with 15
skeletal joints of 87.9% precision and 86.7% recall using all
15 skeleton joints.

With the performance achieved using the proposed HAL
system with both experimental and publicly tested CAD-60
datasets, this shows the systems potential in applications of
assistive robots learning of human activities.

5.3.3 Comparison of classifier ensemble with single
classifier performance

The method of using a classifier ensemble as proposed in
this work shows the increase in activity learning accuracy
when compared with other proposed methods which use
single classifiers. Table 7 shows the performance of the pro-
posed classifier ensemble method with other methods which
apply single classifiers in learning human activities. Also, it
can be noticed that majority of the other approaches apply
SVM in recognising human activities which is also used in
the proposed classifier ensemble method and results show
the classifier ensemble outperforms the other single classi-
fier methods. In addition, the proposed classifier ensemble
approach proposed also has the benefit of attaining high
activity learning performance with a small amount of train-
ing samples when compared to other widely used methods
such as deep learning neural networks (Ijjina and Chalavadi
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2017)—which require a lot of data and more time in training
such networks for concise predictions.

6 Conclusion and future work

The work presented here proposes a system for human activ-
ity learning with the use of skeletal data obtained using an
RGB-Dsensor.Wehave shownexplicitly the process of refin-
ing the raw sensor data obtained, computing relevant features
and training the learning model. The main objective of this
work is to have an activity learning system which is able
to distinctly recognise activities as they are performed. The
system can then be incorporated in an assistive robot to aid
learning to perform such human activities. The performance
attained by the proposed system on the CAD-60 bench-
mark dataset shows its reliability if used with an assistive
robot.

Although we used a selection of three base classifiers
in building the ensemble model, this could be extended to
include more classifiers which may improve performance
and also deep learning neural networks which are increas-
ingly used in human activity recognition systems. The system
could also be extended to learning activities on-the-fly as
they are carried out by an actor. We plan to implement this
in future. The direction of research following this work is to
segment different aspects of each learned activity into rep-
resentations that any assistive robot platform can adopt in
reliably executing human activity.
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