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Abstract
Spectral efficiency (SE) and energy efficiency (EE) are both important metrics in massive multiple-input multiple-output
(MIMO) systems. However, maximizing EE and SE is always conflicting with each other, and they can hardly be achieved
simultaneously. In this paper, we focus on the tradeoff optimization between EE and SE in multiuser massive MIMO systems
in terms of the number of transmit antennas and the transmit power. Different from the previous EE-oriented or SE-oriented
method, the EE–SE tradeoff problem is formulated into amulti-objective optimization problem. To efficiently attain the Pareto
optimal front (POF) of EE–SE tradeoff, a multi-objective adaptive genetic algorithm, inspired by the non-dominated sorting
genetic algorithm (NSGA-II), is proposed to improve the convergence speed. Experimental comparisons against several well-
known multi-objective algorithms show that the proposed algorithm can quickly adapt to the true POF of EE–SE tradeoff and
maintain good performance on benchmark functions in terms of the adopted performance metrics.

Keywords EE–SE tradeoff · Massive MIMO · Multi-objective evolutionary algorithm

1 Introduction

The recent increasing ofmultimedia applications has spurred
a massive access of mobile telecom devices, which enables
a quite concern of steadily rising energy costs. According to
the latest data, information and communications technology
(ICT) accounts for about 10% of the world’s energy con-
sumption (Jiang et al. 2016). To this end, the concept of green
communication has been put forward. Specially, in the future
fifth-generation (5G) green communications, apart from pur-
suinghigh spectral efficiency (SE), the energy efficiency (EE)
defined as bits per Joule (bits/J) (Kwon and Birdsall 1986)
becomes another major metric that needs to be considered in
the network design. Massive multiple-input multiple-output
(MIMO) technique, using a large-scale transmit antennas to
serve a much smaller number of users, is recognized as a
promising technology in 5G cellular networks to provide
high SE and EE. Nevertheless, one issue that comes along
with using large number of antennas is the heavy energy con-
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sumption. Since SE-oriented designs are always achieved at
huge power consumption (Tsilimantos et al. 2016; Lin et al.
2014), it is a big challenge to achieve the optimal EE and SE
simultaneously. Therefore, the tradeoff between EE and SE
becomes an urgent but important issue to be addressed.

The existing investigations on the tradeoff of EE–SE can
be mainly divided into three categories: (1) to characterize
the EE–SE relationship as accurately as possible (Onireti
et al. 2011; Verdu 2002; Héilot et al. 2012), (2) to maxi-
mize either EE or SE while imposing constraints on the other
(Mohammed et al. 2014; Huang andQiu 2014) and (3) to for-
mulate the EE–SE tradeoff optimization as a multi-objective
optimization (MOO) problem (Amin et al. 2014, 2016; Deng
et al. 2013).

To exploit the tradeoff relationship between EE and SE,
early works were usually committed to derive the closed-
form expression in terms of system parameters. In Verdu
2002, a novel and generic EE–SE tradeoff expression was
derived in terms of numerous antenna configurations, but
only in the low-SE regime. Compared with Verdu (2002), a
wider range of SE values and antenna configurations were
considered for the closed-form approximation of EE–SE
tradeoff in Héilot et al. (2012). Similarly in Onireti et al.
(2011), the closed-form approximation of EE–SE tradeoff
was proposed based on Wyner model, which showed great
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similaritywithMonteCarlo simulation.Although the closed-
form approximation was not so accurate, it had the advantage
of simple form.

The second category aimed at further characterizing a
unique solution for global maximization. For example, an
analytical method that maximizes EE subject to constrained
SE was investigated in Mohammed et al. (2014). In Huang
and Qiu (2014), the optimal selection of the base station
(BS) antennas was obtained to maximize EE with fixed SE
requirement for random beam-forming multi-antenna sys-
tems.

For the two categories mentioned above, the first one, i.e.,
characterizing the tradeoff relationship of EE–SE, can hardly
provide enough guidance for system design due to the lack
of global optimal solution, while the second category can-
not dynamically track with the design objectives under the
continually changing circumstances efficiently (Amin et al.
2016). Toward this point, the MOO approach is chosen to
deal with the EE–SE tradeoff problems.

In Amin et al. (2014), the EE–SE tradeoff was proved
to be equivalent to the optimization that minimizes the
total energy consumption and maximizes the channel capac-
ity. In Deng et al. (2013), the Pareto optimal for EE–SE
tradeoff set was characterized firstly. Then, the weighted
product scalarization method, similar to the Cobb–Dou-
glas production function in economics (Cobb and Douglas
1928), was applied to convert the MOO problem into a
single-objective optimization (SOO) problem. Furthermore,
the unified EE–SE tradeoff metric was confirmed to be
quasi-concave in terms of the transmit power, yielding a
unique global optimum. Tang et al. (2014) provided an
alternative way to convert theMOO problem into SOO prob-
lem. That is, by introducing an additional concept called
resource efficiency, the tradeoff between EE and SE was
exploited. In addition, the new system metric was optimized
by the power allocation in single-cell OFDMAdownlink sys-
tems.

However, in reality, due to the multi-objectivity, the goal
of solving MOO problems is to find a set of tradeoff solu-
tions instead of a single optimal solution. Thus, in Liu
et al. (2017), Liu first formulated the EE–SE tradeoff MOO
problem into a SOO problem. Afterward, a set of EE–SE
tradeoff solutions were obtained using two developed algo-
rithms, i.e., the weighted-sum particle swarm optimization
(WS-PSO) algorithm and the normal-boundary intersec-
tion particle swarm optimization (NBI-PSO). Although this
method can make tradeoff between EE and SE under var-
ious preferences, it may suffer from not fully exploiting
entire Pareto optimal front. This is because a uniform
spread of weight coefficient can hardly produce a uniform
spread of Pareto front. To overcome this drawback, the most
recently developed multi-objective evolutionary algorithms
were investigated.

In this paper, the optimization of EE–SE tradeoff in
large-scale MIMO system is first formulated into a MOO
problem regarding the number of transmit antennas and trans-
mit power. Inspired by NSGA-II, a multi-objective adaptive
genetic algorithm, called MAGA, is proposed to solve the
complicated MOO problem. In MAGA, a special mating
parent selection is first adopted in the preliminary stage so
that the solutions can be drawn toward the true Pareto front
quickly. Then, amutation among a small part of individuals is
conducted to uniform the distribution. During the evaluation
of solutions, a simple fitness assignment strategy is utilized,
thereby making the proposed algorithm efficient from a bur-
den of computational cost. For the sake of fairness, we also
develop a more rational distribution metric based on Schott’s
spacing metric for the discovered Pareto front. And classical
evolutionary algorithms are simulated to testify the potential
benefits of MAGA. Simulation results indicate that MAGA
outperforms the other algorithms with respect to the conver-
gence, while retains good performance in distribution and
diversity.

The rest of the paper is organized as follows. Section 2
presents the system model for the downlink transmissions
of multiuser massive MIMO systems. Section 3 formulates
the EE–SE tradeoff as a mixed-integer continuous-variable-
based MOO problem; thereby, the POF of EE–SE tradeoff
is characterized. In Sect. 4, MAGA is presented in details to
solve theMOOproblem, togetherwith the other evolutionary
algorithms and performancemetrics. The experimental setup
and simulation results are shown in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Systemmodel

2.1 Massive MIMO systemwith linear precoding

Consider a downlink multiuser massive MIMO system
deployed with Nt transmit antennas and K single antenna
users, which is typical for a cellular network. Assume that
Nt is large and satisfies Nt � K . The channel matrix H,
denoted asH� [hT1 hT2 . . . hTK ]

T , is completely known at the
transmitter. hTk indicates the channel between the BS and kth
user, which is a 1 × Nt vector and has zero-mean complex
Gaussian elements with variance 1/2 for each dimension.

To deal with the interference among users, a sim-
ple but effective zero-forcing beam-forming (ZF-BF)
technique is employed. The ZF-BF precoding matrix
W �[w1 w2 . . .wK ] can be obtained by:

W � HH
(
HHH

)−1
(1)
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where (·)H and (·)−1 are the conjugate transpose and the
inverse operation, respectively. Then, the received signal of
the kth user, yk , can be written as:

yk � 1√
γ
hkwk

√
ρ
/
Kxk +

1√
γ
hk

K∑
j�1, j ��k

w j

√
ρ
/
Kx j + nk

� 1√
γ

√
ρ
/
Kxk + nk (2)

where ρ indicates the total transmit power, and xk denotes
the kth user’s signal. γ is the normalization factor of kth
user’s signal, which is expressed as γ � ‖W‖2F

/
K , where

‖·‖F means the Frobenius norm. nk is the zero-mean com-
plex Gaussian noise at the kth receiver. Without loss of
generality, the noise variance is assumed to be 1/2 for each
dimension.

2.2 Power consumptionmodel

In the previous studies, the total consumed power of BS has
always been calculated as the addition of transmit power and
a constant quantity accounting for the circuit consumption.
However, thismodelmay notwell reflect the actual situations
because circuit power consumption in each radio frequency
chain is also non-negligible in proportion to the number of
transmit antennas through other analog devices. According
to Li et al. (2014) and Björnson et al. (2015), the total power
consumption is the sumof transmit powerρ and circuit power
consumption Pc, i.e., PΣ � ρ + Pc. The circuit power con-
sumption Pc is modeled as:

(3)

Pc ≈ Nt (PDAC + Pmix + Pfilt) + 2Psyn

+ PLNA + Pmix + PIFA + Pfilr + PADC

where PDAC, Pmix, Pfilt, Psyn, PLNA, PIFA, Pfilr and PADC
are the power consumption for the digital-to-analog con-
verter (DAC), the mixer, the active filters at the transmitter
side, the frequency synthesizer, the low-noise amplifier, the
intermediate-frequency amplifier, the active filters at the
receiver side and the analog-to-digital converter (ADC) at
the BS, respectively. To simplify notation, Pc is denoted as:

Pc � P1 + Nt P2 (4)

where P1 � 2Psyn + PLNA + Pmix + PIFA + Pfilr + PADC and
P2 � PDAC + Pmix + Pfilt.

3 Problem statement

In this section, the optimization of EE–SE tradeoff in down-
link massive MIMO system is formulated into a MOO

problem in terms of the number of antennas and transmit
power. Additionally, effects of system parameters on EE and
SE are investigated. On the basis of which, the POF of the
EE–SE tradeoff is characterized.

3.1 EE and SE definition

From (2), the capacity for the kth user over a bandwidth of
B Hz can be expressed as:

Ck � B log2

(
1 +

ρ

‖W‖2F

)
(5)

Then, the sum rate capacity is:

C � KCk � K B log2

(
1 +

ρ

‖W‖2F

)
(6)

According to Jung et al. (2013), ‖W‖2F can be approx-
imated as ‖W‖2F ≈ ∑K

k�1
1

‖hk‖2 and follows Gaussian

distribution for large K and Nt . According to the inequality
relationship between the harmonic average and the arithmetic
average, we have:

1

‖W‖2F
≈ 1

K∑
k�1

1
/‖hk‖2

≤ 1

K 2

K∑
k�1

‖hk‖2

� 1

K 2

Nt∑
l�1

K∑
k�1

∣∣hl,k
∣∣2 (7)

Denoting λl � ∑K
k�1

∣∣hl,k
∣∣2, l � 1, 2, . . . , Nt and λ1 ≥

λ2 ≥ · · · ≥ λN , then λl follows Chi-square distribution for
large Nt . Considering that random transmit antenna selection
(TAS) in massive MIMO systems can achieve near-optimal
performance but with much lower complexity, it is employed
in this paper to choose L antennas from the available Nt ones.
According to Jung et al. (2013), the capacity with TAS is
given by:

CTAS ≈ K B log2

(
1 +

ρ

K 2

L∑
l�1

λl

)
(8)

According to Hesami and Laneman (2011), we have:

E

{
L∑

l�1

λl

}
� K L(1 + ln(Nt

/
L)) (9)

Therefore, the capacity can be further written as:

E{CTAS} � K B log2(1 + (ρL
/
K )(1 + ln(Nt

/
L))) (10)
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The SE is defined as the number of bits per unit of band-
width, which is characterized as:

ηSE � K log2(1 + (ρL
/
K )(1 + ln(Nt

/
L))) (11)

Finally, the EE, defined as the number of bits per unit of
energy, can be obtained from (4) and (11) as:

ηEE � ηSE

P∑ � K log2(1 + (ρL
/
K )(1 + ln(Nt

/
L)))

ρ + P1 + LP2
(12)

3.2 Discussion about the relation of EE–SE

In order to better characterize the EE–SE tradeoff, how the
number of transmit antennas L and transmit power ρ affect
the EE and SE is investigated firstly. From (11), it can be
discovered that ηSE is strictly increasing with ρ when the
number of antennas L is constant. To better characterize the
relationship between the SE and the number of antennas L ,
lets take the first derivativewith respect to L for fixed transmit
power ρ, i.e.,

∂ηSE

∂L
� ρ ln(Nt

/
L)

ln2(1 + (ρL
/
K )(1 + ln(Nt

/
L)))

(13)

Due to the fact that the number of available antennas L
is no more than the maximum number of the antennas Nt ,
we have ∂ηSE

∂L ≥ 0, from which we know the SE is strictly
increasing with L . As for ηEE, two lemmas are presented
below.

Lemma 1: ηEE increases firstly and then decreases with ρ

for fixed L .

The proof is similar to the appendix B in Li et al. (2014),
and details are not provided here for limited space.

Lemma 2: ηEE increases firstly and then decreases with L
for fixed ρ.

Proof: First take the number of transmit antennas as a contin-
uous variable, and then take the derivative operations twice.
Following the proof of Lemmas 1 and 2 can be proved. �

In order to get a comprehensive insight into the impact
of both L and ρ on EE, the achievable EE performance ver-
sus different values of ρ and L is displayed in Fig. 1. It
can be observed that there exists a maximum ηEE. However,
too many antennas or too large transmit power can cause a
decrease in ηEE, which is contrary to the tendency of ηSE
regarding large ρ or L . That is to say, ηSE strictly increases
over the L and ρ, while the ηEE behaved concave shape on
curve when L and ρ increase. Thus, there exists a tradeoff
between the EE and the SE.
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Fig. 1 The EE curve with respect to the number of transmit antennas L
and the transmit power ρ

3.3 Pareto optimal front of EE–SE tradeoff

To maximize the EE and SE simultaneously, the EE–SE
tradeoff is converted to a mixed-integer continuous-variable-
based MOO problem expressed below:

P(1) : max
ηSE � K log2(1 + (ρL

/
K )(1 + ln(Nt

/
L)))

ηEE � K log2(1 + (ρL
/
K )(1 + ln(Nt

/
L)))

ρ + P1 + LP2
s.t. 0 ≤ ρ ≤ ρmax

1 ≤ L ≤ Nt ,L ∈ Z
(14)

where ρmax is the maximum value of transmit power.
In general, the MOO problem owns a set of tradeoff solu-

tions instead of a single optimal solution. For P(1), the POF,
i.e., the image of the Pareto optimal set (POS) in the objec-
tive space is shown in the red curve in Fig. 2, which well
agrees with the conclusion derived in Sect. 3.2 that the POF
of EE–SE tradeoff is neither convex nor concave.

Theoretically, the ideal solution of EE–SE tradeoff is to
get the true POF of the optimization problem P(1). However,
P(1) is a NP-hard problem that does not have closed-form
solution, which means to get the true POF usually suf-
fers from prohibitive computational burden by using the
exhaustive search method. Toward this end, a better way to
implement is to take an approximation of the POF to select
the final preferred solutions.

4 Algorithm design and performancemetric

4.1 The proposedMAGA algorithm

Due to the advantages of simple in concept and fast con-
vergence rate, multi-objective evolutionary algorithms are
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Fig. 2 The true POF with the used antennas L increasing from 1 to 100
and the transmit power ρ increasing from −40 to 40 dBW

extensively employed to handle theMOOproblems. Besides,
the multi-objective evolutionary algorithms are good at
optimizing the mixed integer continuous variable simulta-
neously, as the property of which is particularly suitable for
the optimization problem P(1) in dealing with the number of
transmit antennas and the transmit power. NSGA-II is one of
the potential evolutionary algorithms for solving the MOO
problems and is widely used or extended in many real-world
applications. Considering that the non-dominated sorting of
NSGA-II takes a time-consuming process, in this section,
a multi-objective adaptive genetic algorithm, i.e., MAGA
is proposed based on NSGA-II to further improve the effi-
ciency.

4.1.1 Main framework

The pseudocode of the proposed MAGA algorithm is sum-
marized in Algorithm I. Initially, a random parent population

Pwith N individuals is generated, and the corresponding val-
ues of objective functions for each individual are calculated.
Then, environment selection operation (“Algorithm II”) is
executed on P, producing an archive populationAwhere the
non-dominated individuals are preserved.

From Lu and Yen (2003) and Tiwari et al. (2010), we
know that mating selection is critical to population evolu-
tion since selecting mating parents from P can demonstrate
high population diversity, while selecting parents from A
can significantly speed up the convergence. Inspired by
that, an adaptive procedure is designed based on the num-
ber of non-dominated individuals. Usually, it is supposed to
obtain N non-dominated individuals with the shortest time,
then to guide the solutions toward a uniformly spread-out
POF. Therefore, when the number of non-dominated solu-
tions is small, the non-dominated individuals are used to
guide the evolutionary of dominated individuals via genetic
operators; while when the number of non-dominated indi-
viduals is large enough, apart from the normal crossover,
a novel mutation is performed with small step size among
the members in sparse regions. Detail steps are provided as
follows.

Denote |·| as the cardinality of a set. If |A| is not larger
than the population size N , the generate offspring opera-
tion (“Algorithm III”) is adopted on P and A to produce
N offspring solutions. Then, the environment selection is
implemented among the combined population of P and A,
yielding the new parent population P and the new archive
population A. If |A| is larger than N , apply crossover
operators onPwith crossover probability pc, and applymuta-
tion operators with the mutation probability pm. Specially,
the mutation operator is performed on the least crowded
points with a small mutation step size. Finally, the new
offspring individuals are combined with P and the envi-
ronment selection is implemented to preserve new P and
A.

Repeat the above process until the stopping criterion is
reached .
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4.1.2 Environmental selection

The environment selection procedures are summarized in
“Algorithm II,” which aims to evaluate the individuals and
determine the N non-dominated solutions from the com-
bined population. The fast non-dominated sorting approach
of NSGA-II is rather fine-grained, since each of the individ-
uals is ranked with a non-domination level. Similarly, the
fitness assignment method (Jiang and Yang 2017) defining
the fitness value as the number of individuals that dominates
it is also time-consuming, although it is more concise. In this
paper, the quicknon-dominated sorting algorithm (Q-NDSA)
(Bechikh et al. 2015) is developed for non-dominated sort-
ing. To be different, the individuals are simply categorized
into non-dominated ones and dominated ones without caring
how poor a solution is. This strategy is beneficial because
once an individual is marked as dominated one, and it will
never be compared with the other individuals. Thus, it can
significantly reduce the number of comparisons and improve
the computational efficiency. Detail steps are provided as fol-
lows.

Firstly, a fast non-dominated sorting algorithm is devel-
oped inspired by the Q-NDSA, so that each member of the
population i is assigned to a fitness value F(i). In the pro-
posed algorithm,we extend the fitness value just to determine
whether the member is dominated or not by:

F(i) �
{
0, no solutions dominate it
1, there are members that dominate it

(15)

Afterward, the non-dominated solutions, i.e., themembers
with a fitness value of zero, are preserved to the archiveA. If
|A| is less than or equal to N , the non-dominated solutions in
A together with N−|A| additional random selected solutions
from the parent population are copied to a new parent pop-
ulation P. Otherwise, a crowded-comparison operator (Deb
et al. 2002) is performed to reduce A to N non-dominated
individuals, in order that the best diversity possible is demon-
strated of the truncated A.
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4.1.3 Offspring generation

As illustrated above, when the number of non-dominated
individuals is small, the mating parent can be selected from
the parent population P and the archive population A. The
mating selection and genetic operation are summarized in
“Algorithm III.”

4.1.4 Computational complexity

Next lets discuss the computational complexity of the entire
algorithm. In each iteration, computational complexity is
mainly produced by the offspring generation and environ-
ment selection, including the developed Q-NDSA sorting,

the crowding distance assignment and the sorting according
fitness value. Since the generation of an offspring solution
takes O(M) computations, where M is the number of objec-
tives, then the whole offspring generation requires O(MN )

computations to produce N offspring solutions, where N is
the population size. Due to the simple fitness assignment,
the developed Q-NDSA sorting has a computational com-

plexity of O(N log(N )), which is smaller than the primary
complexity of Q-NDSA (Bechikh et al. 2015) with O

(
N 2

)
computations. Additionally, the crowding distance calcu-
lation takes O(MN log(N )) computations, and the sorting
according fitness value requires O(N log(N )) computations.
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In summary, the overall computational complexity ofMAGA
for each iteration is O(MN log(N )), which is mainly gov-
erned by the crowding distance calculation.

4.2 Compared algorithm

Several well-knownmulti-objective optimization algorithms
are employed for comparison in our studies. They are the
NSGA-II, the multi-objective particle swarm optimization
(MOPSO), the non-dominated sorting chemical reaction
optimization (NCRO) and NSGA-III, representing different
classes of multi-objective evolutionary algorithms.

1. NSGA-II: it is a representative genetic algorithm pro-
posed by Deb et al. (2002). Three benefits of NSGA-II
are a fast non-dominated sorting approachwithO

(
MN 2

)
computational complexity, an elitist mechanism con-
ducted by regarding the combined individuals of the
parent and offspring population as mating pool, as well
as the crowded-comparison operator guiding the selec-
tion process toward a uniform spread-out POF. Due to
its good performance of diversity and convergence in the
obtained non-dominated front, NSGA-II has beenwidely
used in handling MOO problems.

2. MOPSO: the MOPSO is motivated by the simulation
of the food searching activities of a swarm of parti-
cles (Coello Coello et al. 2004). It has been shown
that MOPSO is relatively easy to implement. During
the iterative process, each particle updates its velocity
and the parent position corresponding to both the local
best position and the global best position. In order to
guide the flight of the particles, an external repository is
extended to keep a historical record of the non-dominated
vectors. Different from the elitist mechanism in NSGA-
II, MOPSO extracts the non-dominated solutions from
the parent population firstly. Then these non-dominated
solutions are combined with the repository for another
selection, whichmay cause huge time complexity if there
are many non-dominated solutions.

3. NCRO: chemical reaction optimization (CRO) is a state
of art heuristic algorithm, inspired by the interaction
between molecules during chemical reactions (Lam and
Li 2010). In CRO, a solution in the mathematical domain
is represented by the structure of a molecular. A molec-
ular possesses potential energy (PE) and kinetic energy
(KE) modeled as the vector of objective function values
and the tolerance of the solutions to have worse objec-
tive function values afterward. What’s more, four kinds
of elementary reactions are designed, where two inef-
fective collisions are implemented for local search and
the other two reactions are used to improve the diver-
sity. To exploit the CRO characteristics in solving MOO
problems, NCRO is put forward involving Pareto rank-

ing scheme and crowded-comparison operator in CRO
(Bechikh et al. 2015).

4. NSGA-III: NSGA-III is a reference-point-based multi-
objective evolutionary algorithm following NSGA-
II framework. Different from NSGA-II, NSGA-III
improves the selection operator with a number of well-
spread reference points, which can either be predefined
in a structured manner or supplied preferentially by the
user. The NSGA-III algorithm has been proved to be able
to brilliantly find a well-converged and well-diversified
set of solutions repeatedly over a certain number of iter-
ations.

4.3 Performancemetric

According toZitzler et al. (2000),weknow that there are three
issues that are normally taken into account for a quantitative
assessment of the algorithms:

1. Minimize the discrepancy of the approximated POF pro-
duced by MOO algorithms with respect to the true POF.

2. Maximize the spread achieved among the obtained solu-
tions to keep a rich diversity.

3. Maximize the extent of uniformity, so that a distribution
of vectors as smooth as possible can be obtained.

Based on the above notions, three metrics are employed
to measure the performance of the algorithms as follows:

1. Inverted Generational Distance (IGD): It is used to eval-
uate the diversity and convergence by calculating the
distance between the true POF and the approximated
POF. Denote a set of uniformly spread points along the
true POF as POF, and the approximated POF as POF∗,
respectively, then the IGD is defined as (Yuan et al. 2015):

IGD � 1

nPOF

nPOF∑
i�1

di (16)

where nPOF is the number of individuals in POF, di indi-
cates the Euclidean distance between the i th member in
POF and its nearest member in POF∗.

2. Maximum Spread (MS): It numerically reflects the extent
that the approximated POF covers the true POF as given
by (Goh and Tan 2007):

MS �

√√√√√ 1

M

M∑
k�1

⎡
⎣min

[
POFk ,POF∗

k

]
− max

[
POFk ,POF∗

k

]

POFk − POFk

⎤
⎦
2

(17)

where POFk and POFk are the maximum and the min-
imum values in terms of the kth objective in POF ,
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Table 1 Elementary parameters
of the algorithms Algorithm Symbol Algorithmic meaning Quality

MAGA
NSGA-II
NSGA-III

pc Crossover probability 0.9

pm Mutation probability 0.1

μ Mutation rate 0.5

MOPSO μ Mutation rate 0.5

ω Inertia weight 0.7298

c1 Personal learning coefficient 1.4962

c2 Global learning coefficient 1.4962

nGrid Divisions for the adaptive grid 30

NCRO MoleColl Occurrence ratio of intermolecular reaction 0.2

iniKE The initial KE energy in each molecular 18000

α Threshold defined for decomposition 10

β Threshold defined for synthesis 3600

iniBuffer The initial energy in the buffer 1000

KElossRate Maximum percentage of KE lost at a time 0.2

respectively. Similar definitions are for POF∗
k and

POF∗
k .

3. Spacing Metric (S): the spacing metric measures how
evenly the individuals in POF∗ are distributed. Schott
(Schott 1995) has developed this kind of metric regard-
ing the distance between the i th solution and its nearest
solution. However, it is invalid if partial individuals are
clustered. To overcome this drawback, a new spacing
metric is adopted in this paper. Firstly, the population
is sorted according to the objectives in ascending order,
and then the distance between two adjacent members of
the i th member is calculated. The new spacing metric is
expressed as:

S �
√√√√ 1

nPOF∗ − 1

nPOF∗∑
i�1

(
Di − D̄

)2
(18)

where Di is the normalized Euclidean distance between
the two adjacent solutions of the i th member. For the
boundary solutions, Di indicates the double normalized
Euclidean distance between the solution and its nearest
member. D̄ is the average value of Di .

In addition to the assessment indexes presented above, we
also investigate the number of non-dominated solutions and
time complexity analysis below.

5 Simulation results

In this section, simulations are carried out to validate the
efficiency of the proposed MAGA algorithm. For com-

parison, classical multi-objective optimization algorithms,
such as NSGA-II, NSGA-III, MOPSO and NCRO, are also
employed. Our performed experiments are divided into two
parts. The first one is to deal with the EE–SE tradeoff
optimization problem, while the second is to handle the two-
objective benchmark functions.

5.1 EE–SE Tradeoff Optimization Problem

In this section, simulations are carried out to testify the per-
formance of the proposed MAGA versus other evolutionary
algorithms in dealing with the EE–SE tradeoff problem. The
default parameters for problem P(1) are: P1 � 162.5mW,
P2 � 48.2mW, the number of users K � 20, the maxi-
mum number of antennas Nt � 100 and the transmit power
ρ ∈ [− 40, 20] dBW. For all the simulations, the population
size is set to 300 and the archive (or the repository) size is
the same as the population size. Besides, for all these GA-
based evolutionary approaches, a real-number representation
is adopted, and the simulation binary crossover (SBX) and the
polynomialmutation are chosen as the recombination and the
mutation operators, respectively. All these algorithms termi-
nate after 100 iterations. According to Duan and Gan (2015),
Deb et al. (2002), Coello Coello et al. (2004), Lam and Li
(2010), and Bechikh et al. (2015), the specific parameters for
the algorithms in the simulation are summarized in Table 1.

The obtained approximated POFs of MAGA, NSGA-II,
MOPSO, NCRO and NSGA-III are shown in Fig. 3. The
true POF is also provided for reference. It can be seen that all
those algorithms can find solutions along the true POF. How-
ever, NSGA-II could rarely produce solutions at the high-EE
region, and an uneven distribution of POF is obtained using
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Fig. 4 Number of non-dominated solutions versus the iterations

NSGA-II andMOPSO.By contrast,MAGAandNCRO turns
out to be more competitive, owning good diversity and main-
taining a uniform distribution.

Figure 4 illustrates the required iterations for the algo-
rithms to get 300 non-dominated solutions. It is clear that
NCRO and MOPSO need 6 iterations, thus having the worst
convergence. Owing to the selection of mating parents from

both P and A, the proposed MAGA only needs 3 iterations
and converges faster than other algorithms.

To further testify the computation efficiency of the pro-
posed algorithm, the CPU time required by different algo-
rithms is provided in Table 2, in which a massive MIMO
systemwith available antennas varying from 1 to 100 and the
transmit power varying in range of [0, l] is considered. For
comparison, the CPU time of extracting the true POF by the
exhaustive searchmethod is also provided, which takes about
2165 s to extract all non-dominated solutions. However, the
evolutionary optimization algorithms are more efficient in
handling this problem. Specifically, MAGA and NCRO only
require about 3 s to run out 100 iterations, which is much
less than MOPSO, NSGA-II and NSGA-III. Compared with
NCRO, MAGA requires less running time resulting from its
special fitness assignment. It is important to point out that
MOPSO, NSGA-II and NSGA-III have the computational
complexity of O

(
MN 2

)
for one generational cycle, while

NCRO has a time complexity of O
(
N 2

)
for the worst case.

However, MAGA has O(MN log(N )) computational com-
plexity for each iteration as illustrated in Sect. 4.1.

Since the performance metrics presented in Sect. 4.3 can
statistically reflect the closeness, distribution, coverage and
convergence of the obtained POF to true POF, they are
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Table 2 CPU time/s Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

10 0.4990 37.0200 15.9120 0.6700 45.2450

20 0.8110 72.0580 43.2750 1.0290 88.0060

50 1.7470 177.1240 123.0550 1.9450 214.5530

100 3.2760 352.3310 260.0120 3.4320 426.1000

Table 3 Mean values of MS
metric

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

10 0.9937 0.9835 0.9910 0.9941 0.9854

20 0.9966 0.9861 0.9924 0.9940 0.9653

50 0.9985 0.9893 0.9935 0.9971 0.9760

100 0.9994 0.9925 0.9959 0.9998 0.9720

Table 4 Mean values of S metric Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

10 3.7E−03 6.4E−03 7.3E−03 7.0E−03 7.9E−03

20 3.3E−03 5.7E−03 7.4E−03 4.2E−03 9.0E−03

50 3.3E−03 3.1E−03 6.8E−03 3.2E−03 2.7E−02

100 3.2E−03 3.4E−03 6.6E−03 3.0E−03 1.4E−02

Table 5 Mean values of IGD
metric

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

10 0.1622 0.2080 0.2604 0.2218 0.2570

20 0.1531 0.1716 0.2649 0.1767 0.3280

50 0.1518 0.1606 0.2529 0.1537 1.2785

100 0.1519 0.1588 0.2382 0.1491 0.7339

employed here to testify the performance of different algo-
rithms in dealing with the EE–SE tradeoff optimization. The
best values are highlighted in bold face. The correspond-
ing results of MS metric are provided in Table 3, which can
be considered as the percentage that the objective space of
approximated POF covers that of the true POF. Clearly, all
the algorithms have strong tracking ability to adapt to the
true POF soon. The approximations of MAGA and NCRO
can almost cover the whole true POF at last, while NSGA-III
performs poorly. MOPSO and NSGA-II are not competitive
although they also perform well.

Table 4 presents the spacing metric S obtained by all these
algorithms.The results ofS show thatNSGA-III andMOPSO
have an uneven data distribution, besides the NSGA-III
algorithm performs unsteadily during the evolution. By con-
trast, MAGA outperforms all the other algorithms with good
convergence owing to the small range of mutation among
individuals of the sparse region. Both NSGA-II and NCRO
employ the crowded-comparison operator, providing com-

parable or slightly better performance as MAGA at the later
stage.

Table 5 compares the IGD performance metric values
of different algorithms. Since IGD measures the distance
between approximated POF and uniformly distributed true
POF, it is more comprehensive than the other metrics. The
results indicate that NSGA-III provides the worst results in
this measurement, suggesting its poor search ability. The
MAGA algorithm obtains the best approximations in terms
of the true POF except a slight superiority degradation at the
later stage compared with NCRO. Nevertheless, the differ-
ence between them is slight.

In summary, NSGA-II is passable in convergence, dis-
tribution and diversity; it has the disadvantage of time-
consuming evolution. MOPSO and NSGA-III show obvious
drawbacks in all these aspects. Although NCRO and MAGA
seem equally competitive regarding the distribution, diver-
sity and time complexity, MAGA significantly outperforms
NCRO in convergence due to the guide of non-dominated
solutions.
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Fig. 5 The approximated POFs on ZDT1

5.2 Benchmark functions test

In this part, classical benchmark functions are employed
to evaluate the performance of different algorithms men-
tioned above. Four extensively used bi-objective Zitzler–De-
b–Thiele’s (ZDT) test instances (Zitzler et al. 2000) with
different difficulties are adopted and described in Table 6.
Since more variables are required in the test functions than
in theEE–SE tradeoff problem, 500 individuals are generated
in each population and all these algorithms run for a maxi-
mum number of 300 iterations. Other parameter settings are
the same as in Sects. 5.1.

Note that in order to fully assess our proposed algorithm,
the metrics of S, IGD and CPU time described in Sect. 4.3
are still employed, while the MS metric is canceled since
sometimes it’s extremely difficult for the approximate POFs
to cover the true POF.

5.2.1 Test function ZDT1

In Fig. 5 the approximate POFs on ZDT1 are shown, which
can readily reflect the tracking ability of different algorithms.
It can be seen that both MOSPO and NCRO are capable of
finding the POF, and the solutions obtained by the proposed
algorithm are very close to the true POF, while NSGA-II and
NSGA-III exhibit poor performance in terms of the tracking
ability and the diversity.

To get an insight into the evolutionary process, the num-
ber of non-dominated solutions versus the iterations is also
shown in Fig. 6. Although MOPSO seems to get most non-
dominated solutions, it has an unfair advantage due to the
special non-dominated solutions preservation. That is to say,
the non-dominated solutions produced at each iteration are
collected together to select new non-dominated solutions. In
that case, it is easy to get 500 non-dominated solutions if
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Fig. 6 Number of non-dominated solutions versus the iterations on
ZDT1

there is no better solution. By contrast, the other algorithms
just search non-dominated solutions in the present popula-
tion. In this sense, the proposed algorithmowns a competitive
advantage in fast evolution.

Table 7 provides the statistical mean values of S, IGD
and CPU time required by different algorithms. The best
values obtained by different algorithms are highlighted in
bold. The S metric of MOPSO is much smaller after 200
iterations, which mainly benefits from the large number of
non-dominated solutions. The proposed MAGA algorithm
can achieve a comparable S value as MOPSO after 300 iter-
ations. Besides, MOPSO has the best IGD values, which
measures the Euclidean distance between the approximate
POF and the true POF indicated by Fig. 5. However,MOPSO
takes more CPU time than MAGA and NCRO.

5.2.2 Test function ZDT2

Figure 7 shows the approximated POFs onZDT2 obtained by
different algorithms. It can be discovered that NSGA-II and
NSGA-III perform much worse in dealing with such kind of
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Fig. 7 The approximated POFs on ZDT2
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Fig. 8 Number of non-dominated solutions versus the iterations on
ZDT2

optimization problem. MOPSO exhibits best performance,
which is slightly better than NCRO and MAGA.

Figure 8 provides a graphical view of the number of
non-dominated solutions versus the iterations on ZDT2. It

Table 7 Mean values of
different performance metrics
on ZDT1

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

S 100 6.320E−02 1.800E−02 5.960E−02 3.240E−02 8.440E−02

200 3.820E−02 2.250E−02 5.300E−03 1.130E−02 3.650E−02

300 4.800E−03 1.360E−02 4.700E−03 7.700E−03 2.980E−02

IGD 100 5.999E−01 1.072E+00 5.630E−02 5.970E−02 9.914E−01

200 1.846E−01 4.763E−01 1.700E−03 1.720E−02 4.818E−01

300 4.920E−02 2.369E−01 1.700E−03 9.000E−03 2.746E−01

CPU time/s 100 1.776E+01 2.379E+03 4.190E+01 7.381E+00 1.331E+03

200 3.946E+01 4.747E+03 3.350E+02 1.567E+01 2.651E+03

300 7.336E+01 7.225E+03 9.769E+02 2.539E+01 3.983E+03
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Table 8 Mean values of
different performance metrics
on ZDT2

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

S 100 1.118E+00 3.994E−01 4.700E−03 8.250E−02 2.124E−01

200 6.170E−02 1.405E−01 6.000E−03 3.980E−02 2.432E−01

300 4.970E−02 1.796E−01 4.300E−03 1.910E−02 1.309E−01

IGD 100 8.486E−01 2.470E+00 1.800E−03 1.195E−01 2.539E+00

200 1.298E−01 1.952E+00 2.400E−03 3.130E−02 2.063E+00

300 6.320E−02 1.553E+00 2.500E−03 1.710E−02 1.556E+00

CPU time/s 100 1.430E+01 1.038E+03 2.229E+02 6.846E+00 2.556E+03

200 3.348E+01 2.040E+03 8.479E+02 1.324E+01 5.010E+03

300 6.476E+01 3.039E+03 1.450E+03 2.056E+01 7.402E+03
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Fig. 9 The approximated POFs on ZDT3

reveals very similar results as Fig. 6. The number of non-
dominated solutions produced byMAGAgrows stably and is
relatively high when compared with NCRO, NSGA-II and
NSGA-III.

The statistical mean values of S, IGD and CPU time on
ZDT2 achieved by different algorithms are listed in Table 8,
which shows that MOPSO has the most competitive distri-
bution and coverage of true POF. However, the convergence
speed of MOPSO is much slower when compared with
MAGA and NCRO. In contrast to NSGA-II and NSGA-III,
MAGA provides an acceptable performance in terms of S
and IGD, but has fast convergence speed.

5.2.3 Test function ZDT3

Figure 9 shows the approximate POFs on ZDT3 achieved
by different algorithms. It is clear that the POF is convex
and disconnected. The non-dominated solutions attained by
MOPSOcannot cover thewhole truePOF.NCROhas the best
performance among those algorithms. Our proposed MAGA
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Fig. 10 Number of non-dominated solutions versus the iterations on
ZDT3

algorithm also offers a good performance and performs better
than NSGA-II and NSGA-III.

The number of non-dominated solutions versus the itera-
tions on ZDT3 is illustrated in Fig. 10. It can be noticed that
the number of non-dominated solutions obtained byMOPSO
is a consequence of its reserved accumulations. Besides, due
to the guide of non-dominated solution, the proposedMAGA
algorithm offers a more stable process of evolution.

The statistical mean values of different performance met-
rics on ZDT3 are illustrated in Table 9. MOPSO, NSGA-II
and NSGA-III exhibit poor performance in terms of approx-
imate POFs. From the IGD and CPU time, it is known that
NCRO can achieve much closer POF to true POF with less
time, which is slightly better than MAGA. The results of S
metric indicate that the POF of MAGA is almost as uniform
as that of NCRO.

5.2.4 Test function ZDT4

The benchmark function ZDT4 is a tough optimization prob-
lem with a number of local Pareto optimal fronts, which
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Table 9 Mean values of
different performance metrics
on ZDT3

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

S 100 5.490E−02 3.720E−02 5.870E−02 6.600E−02 4.160E−02

200 3.890E−02 4.410E−02 2.480E−02 4.170E−02 5.550E−02

300 3.330E−02 3.350E−02 2.520E−02 3.090E−02 3.830E−02

IGD 100 3.667E−01 8.810E−01 2.730E−01 8.370E−02 9.372E−01

200 1.510E−01 4.713E−01 2.569E−01 1.280E−02 4.879E−01

300 8.980E−02 2.515E−01 2.571E−01 5.800E−03 2.414E−01

CPU time/s 100 1.701E+01 2.471E+03 3.647E+01 8.695E+00 2.390E+03

200 3.693E+01 4.936E+03 4.525E+02 1.884E+01 4.736E+03

300 5.997E+01 7.440E+03 9.956E+02 3.307E+01 7.079E+03
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Fig. 11 The approximated POFs on ZDT4

easily make the algorithm trapped in the local optimal. Thus,
in order to get out of the local optimum, certain changes
should be made in the decision domain (Deb et al. 2002).
The approximate POFs obtained by different algorithms on
ZDT4 are shown in Fig. 11. It is observed that NSGA-II,
NSGA-III and MAGA can get better solutions than NCRO
andMOPSO, indicating the strong search ability of crossover
and mutation operations in GA-based algorithms. Further-
more, due to the guide of non-dominated solutions, MAGA
exhibits its competitive advantage over the other algorithms
in dealing with this problem.

Figure 12 shows the number of non-dominated solutions
versus the iterations onZDT4.Different from the conclusions
drawn from thefirst three benchmark functionsZDT1-ZDT3,
the advantage of NCRO disappears with only several non-
dominated solutions. For MOPSO, as stated before, it is not
fair to compare it with other algorithms because its non-
dominated solutions are consequences of the accumulation.
Compared with NSGA-II and NSGA-III, MAGA can obtain
most non-dominated solutions. Besides, the big fluctuations
in the curve of MAGA readily reflect the orderly evolution
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Fig. 12 Number of non-dominated solutions versus the iterations on
ZDT4

of MAGA. Specifically, once a new non-dominated solution
appears, more solutions will be attracted to develop non-
dominated solutions; as a result, an expanded non-dominated
population is resulted.

The corresponding statistical mean values of S, IGD and
CPU time are provided inTable 10,which reveals thatMAGA
is able to track the true POF with well-distributed solutions.
Both MAGA and NCRO take less than 60 s to complete 300
iterations of evolution. However, NCRO attains much fewer
solutions than MAGA.

6 Conclusion

In this paper, the tradeoff optimization between EE and SE in
multiusermassiveMIMOsystems has been investigated. The
EE–SE tradeoff relationshipwith respect to the number ofBS
antennas and transmit power has been derived, on the basis of
which the EE–SE tradeoff optimization problem is modeled
as a mixed-integer-continuous-variable MOO problem. To
efficiently solve the MOO problem, a multi-objective adap-
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Table 10 Mean values of
different performance metrics
on ZDT4

Iterations MAGA NSGA-II MOPSO NCRO NSGA-III

S 100 3.550E−01 2.725E−01 7.300E−03 1.761E−01 4.062E−01

200 2.220E−02 1.661E−01 5.100E−03 2.273E−01 1.400E−01

300 3.000E−03 1.105E−01 6.700E−03 1.875E−01 8.560E−02

IGD 100 9.779E−01 4.318E+00 4.742E+00 7.520E+00 3.189E+00

200 1.374E−01 1.882E+00 4.675E+00 3.378E+00 9.006E−01

300 1.040E−02 1.257E+00 4.666E+00 1.272E+00 5.538E−01

CPU time/s 100 1.173E+01 2.949E+03 8.844E+01 8.238E+00 2.607E+03

200 2.845E+01 6.287E+03 6.852E+02 1.671E+01 4.982E+03

300 5.334E+01 9.496E+03 1.356E+03 2.460E+01 7.406E+03

tive genetic algorithm, called MAGA, has been developed,
in which improvement is employed in mating selection and
fitness assignment. Simulation results indicate that MAGA
can search the EE–SE tradeoff POF in massive MIMO sys-
tem with a faster convergence speed when compared with
the other algorithms. Moreover, it shows comparable perfor-
mance as the classical MOO algorithms in terms of quality
evaluation metrics on the benchmark functions.
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