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Abstract
In this paper,we study efficient asymptotically correct a posteriori error estimates for the numerical approximation of first-order
Fredholm–Volterra integro-differential equations. In the first step, we find the deviation of the error for Fredholm–Volterra
integro-differential equations by using defect correction principle. Then we show that for m degree piecewise polynomial
collocation method, our method provides order O(hm+1) for the deviation of the error. Also we improve the piecewise
polynomial collocation method by using the deviation of the error estimation. Numerical results in the last section are
included to confirm the theoretical results.

Keywords Integro-differential equations · Defect correction principle · Collocation · Finite difference · Error analysis

1 Introduction

In this work, we study the deviation of the error estimation
for the linear and nonlinear Fredholm–Volterra integro-
differential equations. The first-order Fredholm–Volterra
integro-differential (FVID) equation is given by the follow-
ing form

y′(t) = F
(
t, y(t), zf [y](t), zv[y](t)

)
, t ∈ I := [a, b],

(1.1)

αy(a) + β y(b) = r , (1.2)
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with

zf [y](t) :=
∫ b

a
Kf

(
t, s, y(s), y′(s)

)
ds, (1.3)

zv[y](t) :=
∫ t

a
Kv

(
t, s, y(s), y′(s)

)
ds, (1.4)

where a, b, α, β, r ∈ R = (−∞,∞), α+β �= 0 and b > a.
Integro-differential equations can be found in many

branches of science and engineering, for example, in the
electrical circuit analysis (Moura and Darwazeh 2005) and
mechanical engineering (Yogi Goswami 2004; Fidlin 2005).
These equations appear in the computer vision and image
processing. In particular, these equations are used in the
image deblurring, denoising and its regularization (Chen
et al. 2016; Huang et al. 2009; Athavale and Tadmor 2011).
In addition, in the pattern recognition and machine intel-
ligence, we can see the application of these equations
(Doroshenko et al. 2011). Therefore, the numerical studies
for the integro-differential equations have important role in
sciences and computer vision. The numerical solution based
on the piecewise polynomial collocationmethod is studied in
Hangelbroek et al. (1977), Brunner (2004), Boor and Swartz
(1973). Also other methods can be found in Volk (1988),
Daşcioğlu and Sezer (2005), Reutskiy (2016). In this work,
improved piecewise polynomial collocation method is intro-
duced. In the previouswork (Parvaz et al. 2016), the deviation
of the error estimation analysis is given for the second-order
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Fredholm–Volterra integro-differential equations. It is shown
that for m degree piecewise polynomial collocation method,
the order of deviation of the error is at leastO(hm+1). In this
study, the first-order Fredholm–Volterra integro-differential
equations are studied. We prove that for m degree piece-
wise polynomial, collocation method provides O(hm+1) as
the order of the deviation of the error. Then according to the
defect correction and the deviation of the error, piecewise
polynomial collocation method can be improved. The gen-
eral studies on the structure of the defect correction principle
can be found in Stetter (1978), Bohmer et al. (1984). The
deviation of the error estimation analysis for boundary value
problemshas beengiven inSaboorBagherzadeh (2011).Also
the error estimation based on locally weighted defect for
linear and nonlinear second-order boundary value problems
can be found in Saboor Bagherzadeh (2011), Auzinger et al.
(2014).

This article is organized as follows: The method is pre-
sented in Sect. 2. A complete analysis of the deviation of the
error for linear and nonlinear cases is given in Sect. 3. In
Sect. 4, numerical results are presented. Finally, we give a
summary of the main conclusions in Sect. 5.

2 Description of themethod

We define W and S as follows

W := {(t, y, zf , zv) | t ∈ I & y, zf , zv ∈ R}, (2.1)

S := {(t, s, y, y′) | t, s ∈ I & y, y′ ∈ R}. (2.2)

In this paper, we shall assume that F and Kl , (l = f, v) are
uniformly continuous in W and S, respectively. We say that
zf [y](t) and zv[y](t) are linear if we can write

zf [y](t) =
1∑

l=0

∫ b

a
�l,f (t, s)y

(l)(s)ds, (2.3)

zv[y](t) =
1∑

l=0

∫ t

a
�l,v(t, s)y

(l)(s)ds. (2.4)

In this paper, when we study linear case we assume that
�l,f (t, s), �l,v(t, s) (l = 0, 1) are sufficiently smooth in
Jf := {(t, s) |t, s ∈ I } and Jv := {(t, s) |a ≤ s ≤ t ≤ b},
respectively. Also we say that F is semilinear if we can write
F(t, y(t), zf [y](t), zv[y](t)) as

F(t, y(t), zf [y](t), zv[y](t)) = a1(t)y(t) + a2(t)

+ zf [y](t) + zv[y](t). (2.5)

In the nonlinear case, we assume that F(t, y, zf , zv),
Fl(t, y, zf , zv) (l = t, y, zf , zv) are Lipschitz-continuous.

Also when zl [y](t) (l = f, v) are nonlinear we assume
that Kl(t, s, y, y′) and (Kl) j (t, s, y, y′) (l = f, v & j =
y, y′) are Lipschitz-continuous. We say FVID equation with
boundary condition (1.2) is linear if we can write (1.1) as
follows

y′(t) = a1(t)y(t) + a2(t) + zf [y](t) + zv[y](t), t ∈ I ,
(2.6)

with linear zl [y](t)(l = f, v). Also in the linear case we
assume that a1(t), a2(t) are sufficiently smooth in I .

2.1 Collocationmethod

In this subsection, we introduce the piecewise polynomial
collocation method for solution of the FVID problem (1.1),
(1.2). Let

a = τ0 < τ1 < · · · < τn = b, (n ≥ 1), (2.7)

0 = ρ0 < ρ1 < · · · < ρm < ρm+1 = 1, (2.8)

and hi := τi+1 − τi . We define Xn, Zn and S(0)
m (Zn) as

follows

Xi := {ti, j := τi + ρ j hi ; j = 1, . . . ,m}, (2.9)

Zn := {ti,0 := τi ; i = 0, . . . , n}, (2.10)

S(0)
m (Zn) := {p ∈ C(I ); p � [τi , τi+1]

∈ �m([τi , τi+1]) (i = 0, . . . , n − 1)}, (2.11)

where �m([τi , τi+1]) is space of real polynomial functions
on [τi , τi+1] of degree � m. Also we define the set of collo-
cation points as

X(n) :=
n−1⋃

i=0

Xi . (2.12)

We define h (the diameter of gird Zn) and h′ as

h := max{hi ; i = 0, . . . , n − 1},
h′ := min{hi ; i = 0, . . . , n − 1}. (2.13)

In this paper, the set X(n) := ⋃n−1
i=0 Xi is called the set of

collocation points. According to the piecewise polynomial
collocation method, we are looking to find a p ∈ S(0)

m (Zn)

so that (1.1), (1.2) hold for all t ∈ X(n). In the collocation
method, since we can not determine exact value for zf [·](t)
and zv[·](t),we use the followingquadraturemethod to deter-
mine zf [·](t) and zv[·](t).
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zf [p](ti, j ) ≈
n−1∑

k=0

m+1∑

z=1

αk,z Kf
(
ti, j , tk,z, p(tk,z),

p′(tk,z)
) =: z̃ f [p](ti, j ), (2.14)

zv[p](ti, j ) ≈
i−1∑

k=0

m+1∑

z=1

αk,z Kv
(
ti, j , tk,z, pk(tk,z), p

′
k(tk,z)

+ (ti, j − τi )

m+1∑

z=1

βz Kv

(
ti, j , t̃

z
i, j , pi

(
t̃ zi, j

)
, p′

i

(
t̃ zi, j

))

=: z̃ v[p](ti, j ), (2.15)

where t̃ zi, j := τi + ρz(ti, j − τi ) and the quadrature weights
are given by

αk,z :=
∫ τk+1

τk

L [τk ,τk+1]
z (s)ds, βz :=

∫ 1

0
Lz(s)ds, (2.16)

where

L j (ρ) :=
m+1∏

i=1
i �= j

ρ − ρi

ρ j − ρi
, L [a′,b′]

j (ρ) := L j

(
ρ − a′

b′ − a′

)
,

a ≤ a′ < b′ ≤ b. (2.17)

In summary, collocation method can be written as Algorithm
1.

Algorithm 1: Collocation method

Input : a, b, r , α, β,m, n, {τi }ni=0, {ti, j }(n,m+1)
(i, j)=(0,0).

Output: p.
1 Consider unknown parameters {c(i+1)m+ j }(n−1,m)

(i, j)=(0,0).

2 Define pi = ∑m
j=0 c(i+1)m+ j x j , i = 0, . . . , n − 1.

3 Find {c(i+1)m+ j }(n−1,m)
(i, j)=(0,0) by using following system,

p0(a) − r = 0,
pi−1(τi ) − pi (τi ) = 0, i = 1, . . . , n − 1,
p′
i − F

(
ti, j , pi (ti, j ), z̃ f [pi ](ti, j )

)
, z̃ v[pi ](ti, j )

) = 0, i =
0, . . . , n − 1, j = 1, . . . ,m.

4 Consider collocation solution for each interval [τi , τi+1] as
pi (i = 0, . . . , n − 1).

By using the interpolation error theorem (see Stoer and
Bulirsch2002, Section2.1),we canfind the following lemma.

Lemma 2.1 For sufficiently smooth f , the following esti-
mates hold

|zl [ f ](ti, j ) − z̃ l [ f ](ti, j )| = O(hm+1), l = f, v. (2.18)

In a similar way to Brunner (2004), for the piecewise
polynomial collocation method, we can find the following
theorem.

Theorem 2.2 Assume that the FVID problem (1.1), (1.2) has
a unique and sufficiently smooth solution y(t). Also assume
that p(t) is a piecewise polynomial collocation solution of
degree≤ m. Then for sufficiently small h, the collocation
solution p(t) is well-defined and the following uniform esti-
mates at least hold:

‖y( j)(t) − p ( j)(t)‖∞ = O(hm), j = 0, 1. (2.19)

Remark 2.3 In special case, we can see that for equidistant
collocation gird points with odd m the following uniform
estimates hold

‖y( j)(t) − p( j)(t)‖∞ = O(hm+1), j = 0, 1. (2.20)

By using Theorem 2.2 and Lemma 2.1, we have the fol-
lowing lemma.

Lemma 2.4 For linear and nonlinear zl [·](t) (l = f, v), we
have

|̃z l [p](ti, j ) − z̃ l [y](ti, j )| = O(hm), l = f, v. (2.21)

2.2 Finite difference scheme

In this section, we define �i, j ,A and B as follows

�i, j := {(l, k); l = 0, . . . , i − 1& k = 0, . . . ,m}
∪ {(i, k); k = 0, . . . , j − 1}, (2.22)

A := {(i, j); ti, j ∈ X(n) ∪ Zn}, (2.23)

B := A − {(n, 0)}. (2.24)

Also we define

(
L(1)
A η

)

i, j
:= ηi, j+1 − ηi, j

δi, j
, (2.25)

χ f [η]i, j :=
∑

(l,v)∈B
δl,vKf

(
ti, j , tl,v, ηl,v,

(
L(1)
A η

)

l,v

)
,

(2.26)

χv[η]i, j :=
∑

(l,v)∈�i, j

δl,vKv

(
ti, j , tl,v, ηl,v,

(
L(1)
A η

)

l,v

)
,

(2.27)

where δi, j := ti, j+1 − ti, j .
We write a general one-step finite difference scheme as

(
L(1)
A η

)

i, j
= F(ti, j , ηi, j , χ

f [η]i, j , χv[η]i, j ), (i, j) ∈ B,

(2.28)

α η0,0 + β η n,0 = r . (2.29)
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Definition 2.5 For any function u, we define

R(u) := {u(ti, j ) ; (i, j) ∈ A},

also we define

η := {ηi, j ; (i, j) ∈ A}, L(1)
A η :=

{(
L(1)
A η

)

i, j
; (i, j) ∈ A

}
.

By using Taylor expansions, the following lemma is
obtained easily.

Lemma 2.6 For sufficiently smooth f , the following esti-
mates hold

|χ l [ f ]i, j − zl [ f ](ti, j )| = O(h), l = f, v. (2.30)

By using Taylor expansion and Lemma 2.6, we can find
the following estimates

‖η − R(y)‖∞ = O(h), (2.31)

‖L(1)
A η − R(y′)‖∞ = O(h), (2.32)

where η and L(1)
A η is defined in the Definition 2.5.

2.3 Deviation of the error estimation

In this subsection, we study the deviation of the error estima-
tion for (1.1), (1.2) by using the defect correction principle.
In the first step, we consider y′(t) = f (t), a ≤ t ≤ b, where
f (t) is permitted to have jump discontinuities in the points
belonging to Zn . Using the Taylor expansion, we can find
“exact finite difference scheme” for y′(t) = f (t), which is
satisfied by the exact solution.

(
L(1)
A y

)

i, j
=

∫ 1

0
f (ti, j + ξδi, j )dξ := IA( f , ti, j ). (2.33)

Therefore, we can say that a solution of problem (1.1), (1.2)
satisfies in the following exact finite difference scheme

(
L(1)
A y

)

i, j
= IA

(
F(·, y, zf [y], zv[y]), ti, j

)
. (2.34)

According to the collocation method, we have

p′(ti, j ) − F
(
ti, j , p(ti, j ),

zf [p](ti, j ), zv[p](ti, j )
) ≡ 0, (i, j) ∈ X(n). (2.35)

Now in this step we define defect at ti, j as

Di, j :=
(
L(1)
A p

)

i, j
− IA

(
F(·, p, zf [p],

zv[p]), ti, j
)
, (i, j) ∈ B. (2.36)

We use quadrature formula to compute integral in (2.36)

IA
(
F(·, p, zf [p], zv[p]), ti, j

)

≈ QA
(
F(·, p, z̃ f [p], z̃ v[p]), ti, j

)

:=
m+1∑

k=1

γ k
i, j F

(
ti,k, p(ti,k), z̃ f [p](ti,k), z̃ v[p](ti,k)

)
,

(2.37)

where

γ k
i, j :=

∫ 1

0
Lk

(
ρ j + ξδi, j

hi

)
dξ. (2.38)

For sufficiently smooth f , the following error holds

IA
(
f , ti, j

) − QA
(
f , ti, j

) = O(hm+1). (2.39)

Also when m is odd and the nodes ρi are symmetrically, we
can find the following relation.

IA
(
f , ti, j

) − QA
(
f , ti, j

) = O(hm+2). (2.40)

Then we consider defect at ti, j as follows

Di, j ≈
(
L(1)
A p

)

i, j
− QA

(
F(·, p, zf [p],

zv[p]), ti, j
)
, (i, j) ∈ B. (2.41)

In this step, we define π = {πi, j ; (i, j) ∈ A} as the solution
of the following finite difference scheme

(
L(1)
A π

)

i, j
= F(ti, j , πi, j , χ

f [π ]i, j , χv[π ]i, j )
+ Di, j , (i, j) ∈ B, (2.42)

α π0,0 + β πn,0 = r . (2.43)

We define D := {Di, j ; (i, j) ∈ B}. For small value D, we
can say that

π − R(p) ≈ − R(y), (2.44)

where η can be found in (2.28), (2.29). We define ε and e as
follows

ε := π − η ≈ R(p) − R(y) := e. (2.45)

An estimate for the error e can be found in Theorem 2.2. We
consider the deviation of the error in the following form

θ := e − ε. (2.46)

By using above discussion, improved collocationmethod can
be written as Algorithm 2.
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Algorithm 2: Improved collocation method

1 Find collocation solution by using Algorithm 1.
2 Find defect by using (2.41).
3 Solve finite difference scheme (2.28), (2.29).
4 Solve finite difference scheme (2.42), (2.43).
5 Consider ε := π − η.
6 Improve collocation solution by using R(p) − ε.

In the next section, wewill study the order of the deviation
of the error estimate for FVID equation. We can easily find
the following lemmas.

Lemma 2.7 The defined defect in (2.41) has order O(hm).

Lemma 2.8 The π − η has order O(hm).

3 Analysis of the deviation of the error

Definition 3.1 In this section, we define ε and ε̂ as follows

ε := π − R(p), (3.1)

ε̂ := η − R(y). (3.2)

Definition 3.2 We define

χ f [ε]i, j :=
∑

(l,v)∈B
δl,v

(
ϒ

f
0 (ti, j , tl,v)εl,v

+ ϒ
f
1 (ti, j , tl,v)

(
L(1)
A ε

)

l,v

)
, (3.3)

χ v[ε]i, j :=
∑

(l,v)∈�i, j

δl,v

(
ϒ

v
0 (ti, j , tl,v)εl,v

+ ϒ
v
1 (ti, j , tl,v)

(
L(1)
A ε

)

l,v

)
, (3.4)

where ( l = f, v )

ϒ
l
0(ti, j , tl,v) =

{
�0,l(ti, j , tl,v), when zl is linear ,∫ 1
0 (Kl)y

(
ti, j , tl,v, p(tl,v) + νεl,v,

(
L(1)
A π

)

l,v

)
dν, when zl is nonlinear ,

(3.5)

ϒ
l
1(ti, j , tl,v) =

{
�1,l(ti, j , tl,v), when zl is linear ,∫ 1
0 (Kl)y′

(
ti, j , tl,v, p(tl,v),

(
L(1)
A p

)

l,v
+ ν

(
L(1)
A ε

)

l,v

)
dν, when zl is nonlinear .

(3.6)

Also we consider χ̂ l [̂ε ]i, j (l = f, v) as follows

χ̂ f [̂ε ]i, j :=
∑

(l,v)∈B
δl,v

(
ϒ̂ f
0 (ti, j , tl,v )̂εl,v

+ ϒ̂ f
1 (ti, j , tl,v)

(
L(1)
A ε̂

)

l,v

)
, (3.7)

χ̂ v [̂ε ]i, j :=
∑

(l,v)∈�i, j

δl,v

(
ϒ̂ v
0 (ti, j , tl,v )̂εl,v

+ ϒ̂ v
1 (ti, j , tl,v)

(
L(1)
A ε̂

)

l,v

)
, (3.8)

where ( l = f, v )

ϒ̂ l
0(ti, j , tl,v) =

{
�0,l(ti, j , tl,v), when zl is linear ,∫ 1
0 (Kl)y

(
ti, j , tl,v, y(tl,v) + νε̂l,v,

(
L(1)
A η

)

l,v

)
dν, when zl is nonlinear ,

(3.9)

ϒ̂ l
1(ti, j , tl,v) =

{
�1,l(ti, j , tl,v), when zl is linear ,∫ 1
0 (Kl)y′

(
ti, j , tl,v, y(tl,v),

(
L(1)
A y

)

l,v
+ ν

(
L(1)
A ε̂

)

l,v

)
dν, when zl is nonlinear .

(3.10)
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By using Theorem 2.2, (2.31), (2.32) and Lemma 2.8, we
can find the following lemma.

Lemma 3.3 The ε and the ε̂ have order O(h).

Lemma 3.4 We have

||ε − ε̂ ||∞ = O(hm). (3.11)

Proof By using Lemma 2.8 and Theorem 2.2, we can write

||ε − ε̂||∞ ≤ ||π − η||∞︸ ︷︷ ︸
O(hm)

+ ||R(p) − R(y)||∞︸ ︷︷ ︸
O(hm )

= O(hm).

(3.12)

�

By using Definition 3.2, we can say that

χ l [π ] − χ l [p] = χ l [ε ], (l = f, v), (3.13)

χ l [η] − χ l [y] = χ̂ l [̂ε ], (l = f, v). (3.14)

Lemma 3.5 For linear and nonlinear zl [·](t) (l = f, v), we
have

|χ l [y]i, j − z̃ l [y](ti, j )| = O(h), (3.15)

|χ l [p]i, j − z̃ l [p](ti, j )| = O(h), (3.16)

|χ l [η]i, j − χ l [π ]i, j | = O(hm), (3.17)

|χ l [y]i, j − χ l [p]i, j | = O(hm), (3.18)

|χ l [̂ε ]i, j − χ l [ε ]i, j | = O(hm), (3.19)

|χ l [̂ε ]i, j | = O(h). (3.20)

Proof For (3.15) by using Lemmas 2.1 and 2.6 we have

|χ l [y]i, j − z̃ l [y](ti, j )| = | χ l [y]i, j − zl [y](ti, j )︸ ︷︷ ︸
O(h)

+ zl [y](ti, j ) − z̃ l [y](ti, j )︸ ︷︷ ︸
O(hm+1)

| = O(h). (3.21)

Similarly, we can prove (3.16). Now we prove (3.17) for
l = f . When zl [·](t) is linear, we find
χ f [η]i, j − χ f [π ]i, j = χ f [η − π ]i, j

=
∑

(l,v)∈B
δl,v�0,f (ti, j , tl,v)εl,v

+
∑

(l,v)∈B
δl,v�1,f (ti, j , tl,v)

(
L(1)
A ε

)

l,v

≤ (b − a)(m + 1)
h

h′
(

max
(l,v)∈B�0,f (ti, j , tl,v) εl,v︸︷︷︸

O(hm )

+ max
(l,v)∈B�1,f (ti, j , tl,v)

(
L(1)
A ε

)

l,v︸ ︷︷ ︸
O(hm )

)
= O(hm ). (3.22)

Also for nonlinear case we can get

χ f [π ]i, j − χ f [η]i, j
=

∑

(l,v)∈B
δl,v

(
Kf

(
ti, j , tl,v, πl,v,

(
L(1)
A π

)

l,v

)

− Kf

(
ti, j , tl,v, ηl,v,

(
L(1)
A η

)

l,v

))

≤ (b − a)(m + 1)
h

h′ max
(l,v)∈B

(
Kf

(
ti, j , tl,v, πl,v,

(
L(1)
A π

)

l,v

)

− Kf

(
ti, j , tl,v, ηl,v,

(
L(1)
A η

)

l,v

))
, (3.23)

from the Lipschitz condition for Kf and Lemma 2.8, we get

|Kf

(
ti, j , tl,v, πl,v,

(
L(1)
A π

)

l,v

)

− Kf

(
ti, j , tl,v, ηl,v,

(
L(1)
A η

)

l,v

)
|

≤ C |πl,v − ηl,v| + |
(
L(1)
A π

)

l,v
−

(
L(1)
A η

)

l,v
| = O(hm).

(3.24)

In the same way, we can find (3.17) for l = v. Similarly, we
can prove (3.18),(3.19) and (3.20). �


In this step, we study linear case.

Theorem 3.6 Assume that the FVID problem (2.6) with
boundary conditions (1.2) has a unique and sufficiently
smooth solution. Then the following estimate holds

||θ ||∞ = ||e − ε||∞ = O(hm+1), (3.25)

where e is error, ε is the error estimate and θ is the deviation
of the error estimate.

Proof Since F is linear then by using (2.28) and (2.42) we
get

(
L(1)
A ε

)

i, j
= a1(ti, j )εi, j + χ f [ε]i, j + χv[ε]i, j + Di, j .

(3.26)

Also we can write

(
L(1)
A e

)

i, j
= (L(1)

A p)i, j −
(
L(1)
A y

)

i, j

= Di, j + QA(a1e + z̃ f [e] + z̃ v[e], ti, j )
+ O(hm+1). (3.27)

From (3.26) and (3.27), we have
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(
L(1)
A θ

)

i, j
= (L(1)

A e)i, j −
(
L(1)
A ε

)

i, j

= a1(ti, j )θi, j +
∑

l=f&v

χ l [θ ]i, j

+ QA(a1e, ti, j ) − a1(ti, j )e(ti, j )︸ ︷︷ ︸
S1

+
∑

l=f&v

(
QA(̃z l [e], ti, j ) − χ l [e]i, j

)

︸ ︷︷ ︸
S2

+ O(hm+1). (3.28)

Since
∑m+1

k=1 γ k
i, j = 1, then we rewrite S1 as

S1 =
m+1∑

k=1

γ k
i, j

(
a1(ti,k)e(ti,k) − a1(ti, j )e(ti, j )

)
, (3.29)

and by using Taylor expansion, we have

a1(ti,k)e(ti,k) − a1(ti, j )e(ti, j )

= (ti,k − ti, j )︸ ︷︷ ︸
O(h)

(
a′
1(ξi ) e(ξi )︸︷︷︸

O(hm )

+a1(ξi ) e′(ξi︸︷︷︸
O(hm )

)
)

= O(hm+1), (3.30)

where ξi ∈ [τi , τi+1]. By using Theorem 2.2 and (3.30), we
can get S1 = O(hm+1). For S2 by using the Lemma 2.1, we
get

1∑

r=0

∫ b

a
�r ,f (ti, j , s)e

(r)(s)ds − χ f [e]i, j + O(hm+1)

≤ O(hm)(b − a)(m + 1)
h

2h′ h
1∑

r=0

max
s∈[a,b]

(
∂�r ,f (ti, j , s)

∂s

)
+ O(hm+1)

= O(hm+1). (3.31)

In a similar way, we can find

1∑

r=0

∫ ti, j

a
�r ,v(ti, j , s)e

(l)(s)ds − χv[e]i, j = O(hm+1).

(3.32)

By using (3.31), (3.32), we obtain

S2 =
∑

w=f&v

(
QA (̃z w[e], ti, j ) − χw[e]i, j

)

= QA (̃z f [e], ti, j ) − χ f [e]i, j + QA (̃z v[e], ti, j ) − χv[e]i, j

=
1∑

r=0

m+1∑

k=1

γ k
i, j

∫ b

a

(
�r ,f (ti,k , s) − �r ,f (ti, j , s)

)
e(r)(s)ds

+
1∑

r=0

m+1∑

k=1

γ k
i, j

( ∫ ti,k

a
�r ,v(ti,k , s)e

(r)(s)ds

−
∫ ti, j

a
�r ,v(ti, j , s)e

(r)(s)ds
)

= (b − a)

1∑

r=0

m+1∑

k=1

γ k
i, j (ti,k − ti, j )

∂�r ,f

∂t
(ζ ik,r , ζ

′
k,r )e

(r)(ζ ′
k,r )

+
1∑

r=0

m+1∑

k=1

γ k
i, j

( ∫ ti,k

ti, j
�r ,v(ti, j , s)e

(r)(s)ds

+ (ti,k − ti, j )
∫ ti,k

a

∂�r ,v(ξ
k
i, j , s)

∂t
e(r)(s)ds

)

= O(hm+1), (3.33)

where ξ ki, j , ζ ik,r , ζ ′
k,r ∈ [a, b]. Therefore, we can rewrite

(3.28) as

(
L(1)
A θ

)

i, j
= a1(ti, j )θi, j +

∑

l=f&v

χ l [θ ]i, j + O(hm+1).

(3.34)

By using stability of forward Euler scheme, we find

||θ ||∞ = ||e − ε||∞ = O(hm+1). (3.35)

�

For nonlinear case we have the following theorem.

Theorem 3.7 Consider the FVID equation (1.1) with bound-
ary conditions (1.2), where F(t, y, zf , zv), Fl(t, y, zf , zv)
(l = t, y, zf , zv) are Lipschitz-continuous. Also when zf
and zv are nonlinear, we assume that Kl(t, s, y, y′) and
(Kl) j (t, s, y, y′) (l = f, v& j = y, y′) are Lipschitz-
continuous. Assume that the FVID problem has a unique
and sufficiently smooth solution. Then the following estimate
holds

||θ ||∞ = ||e − ε||∞ = O(hm+1), (3.36)

where e is error, ε is the error estimate and θ is the deviation
of the error estimate.

Proof For nonlinear case, we have
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(
L(1)
A θ

)

i, j
= −

(
F(ti, j , πi, j , χ

f [π ]i, j , χv[π ]i, j ) − F(ti, j , p(ti, j ), χ
f [p]i, j , χv[p]i, j )︸ ︷︷ ︸

I1

)

−
(
F(ti, j , p(ti, j ), χ

f [p]i, j , χv[p]i, j ) − F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j )︸ ︷︷ ︸
I2

)
)

− F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j ))
+ QA

(
F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j ))

)

+ F(ti, j , ηi, j , χ
f [η]i, j , χv[η]i, j ) − F(ti, j , y(ti, j ), χ

f [y]i, j , χv[y]i, j )︸ ︷︷ ︸
I3

+ F(ti, j , y(ti, j ), χ
f [y]i, j , χv[y]i, j ) − F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))︸ ︷︷ ︸

I4

+ F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))
− QA

(
F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))

)

+ O(hm+1). (3.37)

We can rewrite I1, I2, I3 and I4 as

I1 = �1
i, jεi, j + �

1,f
i, j χ

f [ε ]i, j + �
1,v
i, j χ

v[ε ]i, j , (3.38)

I3 = �2
i, j ε̂i, j + �

2,f
i, j χ̂

f [̂ε ]i, j + �
2,v
i, j χ̂

v [̂ε ]i, j , (3.39)

I2 = R1,f
i, j (χ

f [p]i, j − z̃ f [p](ti, j ))
+ R1,v

i, j (χ
v[p]i, j − z̃ v[p](ti, j )), (3.40)

I4 = R2,f
i, j (χ

f [y]i, j − z̃ f [y](ti, j ))
+ R2,v

i, j (χ
v[y]i, j − z̃ v[y](ti, j )), (3.41)

with

�1
i, j :=

∫ 1

0
Fy(ti, j , p(ti, j ) + εν, χ f [π ]i, j , χv[π ]i, j )dν,

(3.42)

�
1,f
i, j :=

∫ 1

0
Fzf (ti, j , p(ti, j ), χ

f [p]i, j
+ χ f [ε ]i, jν, χv[π ]i, j )dν, (3.43)

�
1,v
i, j :=

∫ 1

0
Fzv(ti, j , p(ti, j ), χ

f [p]i, j , χv[p]i, j
+ χ v[ε ]i, jν)dν, (3.44)

�2
i, j :=

∫ 1

0
Fy(ti, j , y(ti, j ) + ε̂ν, χ f [η]i, j , χv[η]i, j )dν,

(3.45)

�
2,f
i, j :=

∫ 1

0
Fzf (ti, j , y(ti, j ), χ

f [y]i, j
+ χ f [̂ε ]i, jν, χv[η]i, j )dν, (3.46)

�
2,v
i, j :=

∫ 1

0
Fzv(ti, j , y(ti, j ), χ

f [y]i, j , χv[y]i, j
+ χ̂ v [̂ε ]i, jν)dν, (3.47)

R1,f
i, j :=

∫ 1

0
Fzf (ti, j , p(ti, j ), z̃ f [p](ti, j )

+ (χ f [p]i, j − z̃ f [p](ti, j ))ν, χv[p]i, j )dν, (3.48)

R1,v
i, j :=

∫ 1

0
Fzv(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j )

+ (χv[p]i, j − z̃ v[p](ti, j ))ν)dν. (3.49)

By using the Lipschitz condition for Fy, Fzf , Fzv , Lemma
3.4 and Lemma 2.8, we get

|�1
i, j − �2

i, j | = O(hm), (3.50)

|�1,l
i, j − �

2,l
i, j | = O(hm), l = f, v, (3.51)

|R1,l
i, j − R2,l

i, j | = O(hm), l = f, v. (3.52)

We can get

�2
i, j ε̂i, j = �1

i, j ε̂i, j + (�2
i, j − �1

i, j )̂εi, j

= �1
i, j ε̂i, j + O(hm+1). (3.53)

Analogously we can get

�
2,l
i, j χ̂

l [̂ε ]i, j = �
1,l
i, j χ̂

l [̂ε ]i, j + O(hm+1), l = f, v,

(3.54)

R2,l
i, j (χ

l [y]i, j − z̃ l [y](ti, j )) = R1,l
i, j (χ

l [p]i, j
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− z̃ l [p](ti, j )) + O(hm+1), l = f, v. (3.55)

Then based on the above discussion, we rewrite (3.37) in the
following form
(
L(1)
A θ

)

i, j
= �1

i, j θi, j +
∑

l=f,v

�
1,l
i, jχ

l [θ ]i, j

+ F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))
− F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))
+ F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))
− F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j ))
+ F(ti, j , p(ti, j ), zf [p](ti, j ), zv[p](ti, j ))
− F(ti, j , p(ti, j ), zf [p](ti, j ), zv[p](ti, j ))
+ QA

(
F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j ))

)

− QA
(
F(ti, j , p(ti, j ), zf [p](ti, j ), zv[p](ti, j ))

)

+ QA
(
F(ti, j , p(ti, j ), zf [p](ti, j ), zv[p](ti, j ))

)

− QA
(
F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))

)

+ QA
(
F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))

)

− QA
(
F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))

)

+ O(hm+1). (3.56)

By using the Lipschitz condition for F and lemma 2.1, we
have

|F(ti, j , y(ti, j ), z̃ f [y](ti, j ), z̃ v[y](ti, j ))
− F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))| = O(hm+1),

(3.57)

|F(ti, j , p(ti, j ), z̃ f [p](ti, j ), z̃ v[p](ti, j ))
− F(ti, j , p(ti, j ), zf [p](ti, j ), zv[p](ti, j ))| = O(hm+1).

(3.58)

Therefore, we can write (3.56) as

(
L(1)
A θ

)

i, j
= �1

i, jθi, j +
∑

l=f,v

�
1,l
i, jχ

l [θ ]i, j

+ �(ti, j ) − QA
(
�(ti, j )

) + O(hm+1), (3.59)

where

�(ti, j ) := F(ti, j , y(ti, j ), zf [y](ti, j ), zv[y](ti, j ))
− F(ti, j , y(ti, j ), zf [p](ti, j ), zv[p](ti, j )). (3.60)

By using the Taylor expansion we have

|�(ti, j ) − QA
(
�(ti, j )

)| ≤ Chmax |�′(t)|. (3.61)

We can find

||�′(t)||∞ = ||Ft
(
t, p(t), zf [p](t), zv[p](t)

)

− Ft
(
t, y(t), zf [y](t), zv[y](t)

)

+ Fy

(
t, p(t), zf [p](t), zv[p](t),

)
p′(t)

− Fy

(
t, y(t), zf [y](t), zv[y](t)

)
y′(t)

+ Fzf

(
t, p(t), zf [p](t), zv[p](t)

)
z′f [p](t)

− Fzf

(
t, y(t), zf [y](t), zv[y](t)

)
z′f [y](t)

+ Fzv
(
t, p(t), zf [p](t), zv[p](t)

)
z′v[p](t)

− Fzv
(
t, y(t), zf [y](t), zv[y](t)

)
z′v[y](t)||∞

≤ C1||p − y||∞ + C2||p′ − y′||∞
+ C3||z′f [p](t) − z′f [y](t)||∞
+ C4||z′v[p](t) − z′v[y](t)||∞

= O(hm). (3.62)

In this step based on the above discussion, we have

(
L(1)
A θ

)

i, j
= �1

i, jθi, j +
∑

l=f,v

�
1,l
i, jχ

l [θ ]i, j + O(hm+1).

(3.63)

By stability of forward Euler scheme, we can find

||θ ||∞ = ||e − ε||∞ = O(hm+1). (3.64)

�


4 Numerical illustration

In this section to illustrate the theoretical results, some
numerical results are presented. For all examples, we choose
n collocation intervals of length 1/n. Alsowe have computed
the numerical results by using Mathematica-9.0 program-
ming.

Example 4.1 To checkTheorem3.6,we consider FVID equa-
tion as follows

y′(t) = t2y(t) + a(t) +
1∑

l=0

(∫ 1

0
s cos(t)y(l)(s)ds

+
∫ t

0
t l sin(s)y(l)(s)ds

)
.

In this example, we assume that α = 1, β = 0 and I :=
[0, 1]. Also a(t) is chosen so that exact solution is y(t) =
exp(2t). In Tables 1 and 2, we choose m = 2 and m =
3 and assume that ρi (i = 0, . . . ,m + 1) are equidistant.
Also in Table 3, we choose m = 3 and {ρ0, ρ1 ρ2, ρ3} =
{0, 0.15, 0.80, 1}.
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Table 1 Numerical results for Example 4.1

n ||e||∞ Order ||θ ||∞ Order

8 5.18351e−2 – 1.05863e−2 –

16 1.29503e−2 2.00094 1.48574e−3 2.83295

32 3.22797e−3 2.00429 1.97595e−4 2.91056

Table 2 Numerical results for Example 4.1

n ||e||∞ Order ||θ ||∞ Order

8 1.34073e−4 – 4.02249e−5 –

16 8.90314e−6 3.91256 2.09700e−6 4.26169

32 5.73520e−7 3.95640 1.15804e−7 4.17857

Table 3 Numerical results for Example 4.1

n ||e||∞ Order ||θ ||∞ Order

8 7.29175e−4 – 1.07691e−4 –

16 9.80916e−5 2.89406 8.18102e−6 3.71848

32 1.27122e−5 2.94792 5.79682e−7 3.81895

Table 4 Numerical results for Example 4.2

n ||e||∞ Order ||θ ||∞ Order

4 8.93866e−7 – 1.31189e−7 –

8 6.38549e−8 3.80719 1.38742e−9 6.56309

16 4.13234e−9 3.94977 3.13338e−11 5.46854

Example 4.2 Now we consider nonlinear case as follows

y′(t) = y2(t) + a(t) +
∫ 1

0
st

(
y(s)y′(s)

+ 1
)
ds +

∫ t

0
s
(
y2(s) + t

)
ds.

We assume that I = [0, 1]. Also a(t) chosen so that exact
solution is y(t) = cos(t). In Table 4, we choose α = 1, β =
0 and m = 4. In Tables 5 and 6, we choose m = 2 and
α = β = 1. Also in Tables 4 and 5, we assume that ρi (i =
0, . . . ,m + 1) are equidistant, and in Table 6 we choose
{ρ0, ρ1 ρ2, ρ3} = {0, 0.2, 0.7, 1}. By using this example, we
reveal Theorem 3.7.

Table 5 Numerical results for Example 4.2

n ||e||∞ Order ||θ ||∞ Order

8 8.73973e−5 – 1.65205e−6 –

16 2.16178e−5 2.01537 2.03184e−7 3.02340

32 5.37139e−6 2.00885 2.52772e−8 3.00688

Table 6 Numerical results for Example 4.2

n ||e||∞ Order ||θ ||∞ Order

8 4.11799e−5 – 1.04019e−6 –

16 9.58895e−6 2.10250 1.38138e−7 2.91266

32 2.31859e−6 2.04813 1.64964e−8 3.06588

Table 7 Numerical results for Example 4.3

n ||e||∞ Order ||e∗||∞ Order

8 3.65601e−4 – 8.76254e−5 –

16 9.44401e−5 1.95280 1.24567e−5 2.81443

32 2.40446e−5 1.97369 1.67629e−6 2.89357

Table 8 Numerical results for Example 4.3

n ||e||∞ Order ||e∗||∞ Order

8 2.62394e−6 – 1.91045e−6 –

16 1.72034e−7 3.93097 1.23454e−7 3.95186

32 1.10406e−8 3.96180 8.00212e−9 3.94745

Table 9 Numerical results for Example 4.3

n ||e||∞ Order ||e∗||∞ Order

8 2.82533e−8 – 1.36136e−8 –

16 1.38928e−9 4.34601 4.34162e−10 4.97067

32 7.52022e−11 4.20742 1.36821e−11 4.98788

Example 4.3 We consider here the numerical results for
Algorithm 2. In this example, Eq. (1.1) is considered as fol-
lows

y′(t) = y2(t) + a(t) +
∫ 1

0
st2

(
y(s) + y′(s)

)
ds

+
∫ t

0
s3

(
y2(s) + t

)
ds,

in the interval [0, 1]. a(t) chosen so that exact solution is
y(t) = exp(−t). Tables 7, 8 and 9 compare our numeri-
cal results with collocation method. In the numerical results,
e∗ denotes the error of the improved collocation method.
Table 7 is obtained by using α = 1, β = 0, m =
2, {ρ0, ρ1 ρ2, ρ3} = {0, 0.2, 0.7, 1}. In Table 8, we con-
sider α = 1, β = 0, m = 3, ρi = i/4 (i = 0, . . . , 4).
Also α = β = 1, m = 4, ρi = i/5 (i = 0, . . . , 5) are
considered for Table 9.

Example 4.4 Consider FVID equation as

y′(t) + y(t) = a(t) + 1

4

∫ 1

0
t y3(s)ds

− 1

2

∫ t

0
sy2(s)ds, I = [0, 1], y(0) = 0,
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Table 10 Comparison of point wise absolute errors for Example 4.4

x n Present method Method in
Siraj-ul-
Islam et al.
(2014)

Method in
Babolian
et al. (2009)

Method in
Maleknejad
et al. (2011)

0.5 16 1.97715e−6 4.9e−4 1.6e−4 3.4e−3

32 2.48900e−7 1.2e−4 4.1e−5 1.0e−3

1 16 4.66373e−6 9.1e−4 1.5e−4 1.5e−3

32 5.78028e−7 2.2e−4 3.7e−5 3.4e−4

where

a(t) = 1

10
t6 + t2 + 2t − 1

32
.

The exact solution of this problem is y(t) = t2. We choose
m = 2 and assume that ρi (i = 0, . . . ,m+1) are equidistant.
In Table 10, the improved collocation method has been com-
pared with methods in Siraj-ul-Islam et al. (2014), Babolian
et al. (2009), Maleknejad et al. (2011). Note that 1/n repre-
sents the length of the partition interval. By using the results,
it can be seen that the results of the proposed method are
more accurate than others.

5 Conclusion

In this paper, we study the deviation of the error for the lin-
ear and nonlinear first-order FVID equations. It is shown
that the order of the deviation of the error estimation is at
least O(hm+1), where m is the degree of piecewise poly-
nomial. Also the piecewise polynomial collocation method
is improved by using the defect correction principle and
the deviation of the error estimation. In numerical section,
examples confirming the theoretical results are given. There-
fore, based on theoretical results and numerical examples,
improvedmethod can be applied to linear and nonlinear first-
order Fredholm–Volterra integro- differential equations.
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