
Soft Computing (2018) 22:5867–5877
https://doi.org/10.1007/s00500-018-3337-0

FOCUS

A newmethod of level-2 uncertainty analysis in risk assessment based
on uncertainty theory

Qingyuan Zhang1 · Rui Kang1 ·Meilin Wen1

Published online: 19 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The objective of this study is to present a novel method of level-2 uncertainty analysis in risk assessment by means of
uncertainty theory. In the proposedmethod, aleatory uncertainty is characterized byprobability distributions,whose parameters
are affected by epistemic uncertainty. These parameters are described as uncertain variables. For monotone risk models, such
as fault trees or event trees, the uncertainty is propagated analytically based on the operational rules of uncertain variables. For
non-monotone risk models, we propose a simulation-based method for uncertainty propagation. Three indexes, i.e., average
risk, value-at-risk and bounded value-at-risk, are defined for risk-informed decision making in the level-2 uncertainty setting.
Two numerical studies and an application on a real example from literature are worked out to illustrate the developed method.
A comparison is made to some commonly used uncertainty analysis methods, e.g., the ones based on probability theory and
evidence theory.

Keywords Uncertainty theory · Uncertainty analysis · Epistemic uncertainty

1 Introduction

Uncertainty modeling and analysis is an essential part of
probabilistic risk assessment (PRA) and has drawn numerous
attentions since 1980s (Apostolakis 1990; Parry and Winter
1981). Two types of uncertainty are usually distinguished:
aleatory uncertainty, which refers to the uncertainty inherent
in the physical behavior of a system, and epistemic uncer-
tainty, which refers to the uncertainty in the modeling caused
by lackof knowledgeon the systembehavior (Kiureghian and
Ditlevsen 2009). In practice, uncertaintymodeling and analy-
sis involving both aleatory and epistemic uncertainty is often
formulated in a level-2 setting: aleatory uncertainty is consid-
ered by developing probabilistic models for risk assessment,
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while the parameters in the probabilistic models might sub-
ject to epistemic uncertainty (Aven et al. 2014).

In general, it has been well acknowledged that aleatory
uncertainty should be modeled using probability theory.
However, there appears to be no consensus on which math-
ematical framework should be used to describe epistemic
uncertainty, since its modeling usually involves subjective
information from human judgements. Indeed, various math-
ematical frameworks have been proposed in the literature to
model the epistemically uncertain variables, e.g., probability
theory (subjective interpretation), evidence theory, possibil-
ity theory (Aven 2013; Aven and Zio 2011; Helton et al.
2010). As a result, different methods for level-2 uncertainty
analysis are developed. Aven et al. (2014) systematically
elaborate on level-2 uncertainty analysis methods and devel-
oped a purely probabilistic for level-2 uncertainty analysis.
Limbourg and Rocquigny (2010) apply evidence theory to
both level-1 and level-2 uncertainty modeling and analysis,
and the two settings were compared through a benchmark
problem.Someexplanations of the results are discussed in the
context of evidence theory. Considering the large calculation
cost for level-2 uncertainty analysis, Limbourg et al. (2010)
develop an accelerated method for monotonous problems
using the monotonous reliability method (MRM). Pedroni
et al. (2013) and Pedroni and Zio (2012) model the epis-
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temic uncertainty using possibility distributions and develop
a level-2 Monte Carlo simulation for uncertainty analysis,
which is then compared to a purely probabilistic approach
and an evidence theory-based (ETB) approach. Pasanisi et al.
(2012) reinterpret the level-2 purely probabilistic frame-
works in the light of Bayesian decision theory and apply the
approach to risk analysis. Hybrid methods based on proba-
bility theory and evidence theory are also presented (Aven
et al. 2014). Baraldi et al. (2013) introduce the hybrid level-2
uncertainty models to consider maintenance policy perfor-
mance assessment.

In this paper, we enrich the research of level-2 uncertainty
analysis by introducing a new mathematical framework, the
uncertainty theory, tomodel the epistemically uncertain vari-
ables. Uncertainty theory has been founded in 2007 by Liu
(2007) as an axiomatic mathematical framework to model
subjective belief degrees. It is viewed as a reasonable and
effective approach to describe epistemic uncertainty (Kang
et al. 2016). To simulate the evolution of an uncertain phe-
nomenonwith time, concepts of uncertain process (Liu 2015)
and uncertain random process (Gao and Yao 2015) are pro-
posed. The uncertain differential equation is also developed
as an effective tool to model events affected by epistemic
uncertainty (Yang and Yao 2016). After these years of devel-
opment, uncertainty theory has been applied in various areas,
including finance (Chen and Gao 2013; Guo and Gao 2017),
decision making under uncertain environment (Wen et al.
2015a, b), game theory (Yang andGao 2013, 2016; Gao et al.
2017; Yang and Gao 2014). There are also considerable real
applications in reliability analysis and risk assessment con-
sidering epistemic uncertainties. For example, Zeng et al.
(2013) propose a new concept of belief reliability based on
uncertainty theory accounting for both aleatory and epis-
temic uncertainties. Wen et al. (2017) develop an uncertain
optimization model of spare parts inventory for equipment
system, where the subjective belief degree is adopted to
compensate the data deficiency. Ke and Yao (2016) apply
uncertainty theory to optimize scheduled replacement time
under block replacement policy considering human uncer-
tainty. Wen and Kang (2016) model the reliability of systems
with both random components and uncertain components.
Wang et al. (2017) develop a new structural reliability index
based on uncertainty theory.

To the best of our knowledge, in this paper, it is the
first time that uncertainty theory is applied to level-2 uncer-
tainty analysis. Through comparisons to some commonly
used level-2 uncertainty analysis methods, new insights are
brought with respect to strength and limitations of the devel-
oped method.

The remainder of the paper is structured as follows. Sec-
tion 2 recalls some basic concepts of uncertainty theory.
Level-2 uncertainty analysis method is developed in Sect. 3,
for monotone and non-monotone risk models. Numerical

case studies and applications are presented in Sect. 4. The
paper is concluded in Sect. 5.

2 Preliminaries

In this section, we briefly review some basic knowledge on
uncertainty theory. Uncertainty theory is a new branch of
axiomatic mathematics built on four axioms, i.e., normal-
ity, duality, subadditivity and product axioms. Founded by
Liu (2007) and refined by Liu (2010) , uncertainty theory
has been widely applied as a new tool for modeling subjec-
tive (especially human) uncertainties. In uncertainty theory,
belief degrees of events are quantified by defining uncertain
measures:

Definition 1 (Uncertain measure Liu 2007) Let Γ be a
nonempty set, and L be a σ -algebra over Γ . A set function
M is called an uncertain measure if it satisfies the following
three axioms,

Axiom 1 (Normality Axiom)M{Γ } = 1 for the universal set
Γ .

Axiom 2 (Duality Axiom)M{Λ}+M{Λc} = 1 for any event
Λ ∈ L.

Axiom 3 (Subadditivity Axiom) For every countable seq-
uence of events Λ1,Λ2, . . ., we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M {Λi }

Uncertain measures of product events are calculated fol-
lowing the product axiom (Liu 2009):

Axiom 4 (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, . . .. The product uncertain measure M
is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk}

whereLk are σ -algebras over Γk , andΛk are arbitrarily cho-
sen events from Lk for k = 1, 2, . . ., respectively.

In uncertainty theory, if an uncertain measure of one event
can take multiple reasonable values, a value as close to 0.5 as
possible is assigned to the event so as to maximize the uncer-
tainty (maximum uncertainty principle) (Liu 2009). Hence,
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the uncertain measure of an arbitrary event in the product
σ -algebra L is calculated by

M {Λ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Λ1×Λ2×···⊂Λ

min
1≤k≤∞Mk {Λk} ,

if sup
Λ1×Λ2×···⊂Λ

min
1≤k≤∞Mk {Λk} > 0.5

1 − sup
Λ1×Λ2×···⊂Λc

min
1≤k≤∞Mk {Λk} ,

if sup
Λ1×Λ2×···⊂Λc

min
1≤k≤∞Mk {Λk} > 0.5

0.5, otherwise.

(1)

Definition 2 (Uncertain variable Liu 2007) An uncertain
variable is a function ξ from an uncertainty space (Λ,L,M)

to the set of real numbers such that {ξ ∈ B} is an event for
any Borel set B of real numbers.

Definition 3 (Uncertainty distribution Liu 2007) The uncer-
tainty distribution Φ of an uncertain variable ξ is defined by
Φ(x) = M {ξ ≤ x} for any real number x .

For example, a linear uncertain variable ξ ∼ L(a, b) has
an uncertainty distribution

Φ1(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x < a
x − a

b − a
, if a ≤ x ≤ b

1, if x > b

(2)

and a normal uncertain variable ξ ∼ N (e, σ ) has an uncer-
tainty distribution

Φ2(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

, x ∈ � (3)

An uncertainty distribution Φ is said to be regular if it is
a continuous and strictly increasing with respect to x , with
0 < Φ(x) < 1, and lim

x→−∞ Φ(x) = 0, lim
x→+∞ Φ(x) = 1.

A regular uncertainty distribution has an inverse function,
and this inverse function is defined as the inverse uncertainty
distribution, denoted by Φ−1(α), α ∈ (0, 1). It is clear that
linear uncertain variables and normal uncertain variables are
regular, and their inverse uncertainty distributions are written
as:

Φ−1
1 (α) = (1 − α)a + αb, (4)

Φ−1
2 (α) = e + σ

√
3

π
ln

α

1 − α
. (5)

Inverse uncertainty distributions play a central role in
uncertainty theory, since the uncertainty distribution of a
function of uncertain variables is calculated using the inverse
uncertainty distributions:

Theorem 1 (Operational law Liu 2010 Let ξ1, ξ2, . . . , ξn
be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, . . . , Φn, respectively. If f (ξ1, ξ2, . . . ,
ξn) is strictly increasing with respect to ξ1, ξ2, . . . , ξm and
strictly decreasing with respect to ξm+1, ξm+2, . . . , ξn, then
ξ = f (ξ1, ξ2, . . . , ξn)has an inverse uncertainty distribution

Ψ −1(α) = f
(
Φ−1

1 (α), . . . , Φ−1
m (α), Φ−1

m+1(1 − α), Φ−1
n (1 − α)

)
.

(6)

Definition 4 (Expected valueLiu 2007) Let ξ be an uncertain
variable. Then the expected value of ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx . (7)

It is clear that, if ξ has an uncertainty distribution Φ(x),
the expected value of ξ can be calculated by (Liu 2015):

E[ξ ] =
∫ +∞

0
(1 − Φ (x)) dx −

∫ 0

−∞
Φ(x)dx . (8)

For ξ with a regular uncertainty distribution, the expected
value E [ξ ] is given by (Liu 2015)

E [ξ ] =
∫ 1

0
Φ−1(α)dα. (9)

3 Level-2 uncertainty analysis based on
uncertainty theory

In this section, a new method for level-2 uncertainty analysis
is presented based on uncertainty theory. Sect. 3.1 formally
defines the problem of level-2 uncertainty analysis. Then, the
uncertainty analysis method is introduced for monotone and
non-monotone models in Sects. 3.2 and 3.3, respectively.

3.1 Problem definition

Conceptually, uncertainty analysis of a risk model can be
represented as:

z = g(x),

p = h (g(x), zth), (10)

where z is the safety variable of the system of interest, x =
(x1, x2, . . . , xn) is a vector of input parameters, p is the risk
indicator expressed in probabilistic terms and calculated by
a distance function h(·) between the value of z and safety
threshold zth :

p = Pr {z > zth} or p = Pr {z < zth}. (11)

In practice, g(·) could be logical models, e.g., fault trees,
event trees, Bayesian networks, or physical models of failure
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dynamics, e.g., see Baraldi and Zio (2008) and Ripamonti
et al. (2013).

Uncertainty in (10) is assumed to come from the input
parameters x, i.e., model uncertainty (e.g., see Nilsen and
Aven (2003)) is not considered in the present paper. Aleatory
and epistemic uncertainty are considered separately.Depend-
ing on the ways the uncertainty in the model parameters is
handled, level-1 and level-2 uncertainty models are distin-
guished.

Level-1 uncertainty models separate the input vector
into x = (a, e), where a = (x1, x2, . . . , xm) repre-
sents the parameters affected by aleatory uncertainty while
e = (xm+1, xm+2, . . . , xn) represents the parameters that
are affected by epistemic uncertainty (Limbourg and Roc-
quigny 2010). In level-1 uncertainty models, probability
theory is used to model the aleatory uncertainty in a =
(x1, x2, . . . , xm) by identifying their probability density
functions (PDF) f (xi |θi ). These PDFs are assumed to be
known, i.e., the parameters in the PDFs, denoted by � =
(θ1, θ2, . . . , θn), are assumed to have precise values. In
practice, however, � = (θ1, θ2, . . . , θn), are subject to epis-
temic uncertainty, and the corresponding uncertainty model
is called level-2 uncertainty model.

In this paper, we consider the generic model in (10) and
develop a newmethod for level-2 uncertainty analysis, based
on uncertainty theory. More specifically, it is assumed that:

(1) The aleatory uncertainty in the input parameters is
described by the PDFs f (xi |θi ), i = 1, 2, . . . , n.

(2) � = (θ1, θ2, . . . , θn) are modeled as independent
uncertain variableswith regular uncertainty distributions
Φ1, Φ2, . . . , Φn .

The uncertainty distributions Φ1, Φ2, . . . , Φn describe
the epistemic uncertainty in the parameter values of � =
(θ1, θ2, . . . , θn) and can be determined based on expert
knowledge, using uncertain statistical methods such as inter-
polation (Liu 2015), optimization (Hou2014) and themethod
of moments (Wang and Peng 2014). The problem, then,
becomes: givenΦ1, Φ2, . . . , Φn , how to assess the epistemic
uncertainty in the risk index of interest p. In the following
sections, we first develop the uncertainty analysis method
for monotone models in Sect. 3.2, where p is a monotone
function of the parameters �, and, then, discuss a more gen-
eral case in Sect. 3.3, where there are no requirements on the
monotony of the risk model.

3.2 Monotone risk model

3.2.1 Uncertainty analysis using operational laws

In monotone uncertainty models, the risk index of interest
can be explicitly expressed as:

p = h(�), (12)

where � = (θ1, θ2, . . . , θn) is the vector of the parameters
in the PDFs whose values are subject to epistemic uncer-
tainty and h is a strictly monotone function with respect
to �. According to Assumption (2) in Sect. 3.1, the risk
index of interest p is also an uncertain variable. Given regular
uncertainty distributions Φ1, Φ2, . . . , Φn for θ1, θ2, . . . , θn ,
the epistemic uncertainty in p can be represented by an
uncertainty distributionΨ (p). Without loss of generality, we
assume h is strictly increasing with respect to θ1, θ2, . . . , θm ,
and strictly decreasing with respect to θm+1, θm+2, . . . , θn .
Then, the inverse uncertainty distribution of p can be calcu-
lated based on Theorem 1, i.e.,

Ψ −1
p (α) = h(Φ−1

1 (α), . . . , Φ−1
m (α),

Φ−1
m+1(1 − α), . . . , Φ−1

n (1 − α)), 0 ≤ α ≤ 1.
(13)

The uncertainty distribution Ψ (p) can be obtained from the
inverse function Ψ −1

p (α).
Two risk indexes are defined for risk-informed decision

making, considering the level-2 uncertainty settings pre-
sented.

Definition 5 Let p represent a probabilistic risk index and
Ψ (p) be the uncertainty distribution of p. Then

p̄ =
∫ +∞

0
[1 − Ψ (p)] dp (14)

is defined as the average risk, and

VaR(γ ) = sup {p|Ψ (p) ≤ γ } (15)

is defined as the value-at-risk.

It should be noted that the average risk can be also calcu-
lated using the inverse distribution of p:

p =
∫ 1

0
Ψ −1(α)dα, (16)

and the value-at-risk can also be calculated by

VaR(γ ) = Ψ −1(γ ). (17)

According to Definition 5, the average risk is the expected
value of the uncertain variable p, which reflects our average
belief degree of the risk index p. A greater value of the aver-
age risk indicates that we believe the risk is more severe. The
physical meaning of value-at-risk is that, with belief degree
γ , we believe that the value of the risk index is p. It is clear
that, for a fixed value of γ , a greater VaR(γ ) means that the
risk is more severe.
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Fig. 1 Simple fault tree for the case study

3.2.2 Numerical case study

We take a simple fault tree (shown in Fig. 1) as a numerical
case study to demonstrate the application of the developed
method. The fault tree represents a top event A as the union
(logic gate OR) of the two basic events B1 and B2. The risk
index of interest is the probability that event A occurs before
time t0, determined by

p = Pr {tA < t0} , (18)

where tA denotes the occurrence time of A. Let tB1 and tB2 be
the occurrence times of events B1 and B2, respectively. Then,
tA = min(tB1, tB2). Assume that tB1 and tB2 follow expo-
nential distributions with parameters λ1 and λ2, respectively.
Thus, (5) can be further expressed as:

p = Pr {tB1 < t0, tB2 < t0}
= pB1 + pB2 − pB1 · pB2
= 1 − e−(λ1+λ2)t0 (19)

It is assumed that λ1 and λ2 are subject to epistemic uncer-
tainty. The developed methods in Sect. 3.2.1 are used for
level-2 uncertainty analysis based on uncertainty theory. In
accordance with expert experience, linear uncertainty distri-
butions are used to model the epistemic uncertainty in λ1 and
λ2, i.e., λ1 ∼ L(a1, b1) and λ2 ∼ L(a2, b2). From (13), the
inverse uncertainty distribution of the risk index p is calcu-
lated as

Ψ −1
p (α) = 1 − exp [−(1 − α)(a1 + a2)t0 − α(b1 + b2)t0] ,

0 ≤ α ≤ 1 (20)

and the uncertainty distribution of p is

Ψ (p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if p ≤ Ψ −1

p (0)
− 1

t0
ln(1 − p) − (a1 + a2)

(b1 + b2) − (a1 + a2)
, if Ψ −1

p (0) ≤ p ≤ Ψ −1
p (1)

1, if p ≥ Ψ −1
p (0).

(21)

Table 1 Time threshold and distributions for level-2 uncertain param-
eters

λ1(10−5/h−1) λ2(10−5/h−1) t0 γ

UTB method L(0.8, 1.2) L(0.5, 0.8) 104h 0.9

PB method U (0.8, 1.2) U (0.5, 0.8)

According to (16) and (17), p and VaR can be calculated by

p =
∫ 1

0
Ψ −1(α)dα

=
∫ 1

0
1dα−

∫ 1

0
exp [(a1+a2−b1−b2)t0α − (a1 + a2)t0] dα

= 1 − 1

(a1 + a2 − b1 − b2)t0

[
e−(b1+b2)t0 − e−(a1+a2)t0

]
,

(22)

VaR(γ ) =Ψ −1
p (γ )

= 1 − exp
[−(1 − γ )(a1 + a2)t0 − γ (b1 + b2)t0

]
. (23)

Assuming the parameter values in Table 1, we have p =
0.1519 and VaR(0.9) = 0.1755. The results are compared
to those from a similar method based on probability the-
ory, hereafter indicated as probability-based (PB) method,
whereby the belief degrees on λ1, λ2 and p are modeled by
randomvariables. In this paper, we assume that λ1 and λ2 fol-
low uniform distributions whose parameter values are given
in Table 1. Monte Carlo (MC) sampling is used to gener-
ate samples from the probability distribution of p. Average
risk and value-at-risk can, then, be calculated using the MC
samples:

p = 1

n

n∑
i=1

pi , (24)

VaR(γ ) = sup {pi |pi ≤ γ, i = 1, 2, . . . , n} (25)

where pi , i = 1, 2, . . . , n are the samples obtained by MC
simulation.

Figure 2 compares the distributions of the risk indexes
obtained from the two methods. Both distributions have the
same supports, but the uncertainty distribution has more
weights on high values of the risk index than the probability
theory. This means that the uncertainty theory-based (UTB)
method is more conservative than the PB method, since it
tends to evaluate a higher risk. This is obtained also from the
values in Table 2: although both methods have roughly the
same p, the UTB method yields a higher VaR(0.9), which
indicates a high risk.
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Fig. 2 Level-2 propagation results from uncertainty theory-based
(UTB, solid line) and probability-based (PB, dashed line) methods

Table 2 Risk indexes of the monotone risk model

Method p VaR(0.9)

UTB method 0.1519 0.1755

PB method 0.1520 0.1685

3.3 Non-monotone risk model

3.3.1 Uncertainty analysis using uncertain simulation

In many practical situations, the risk index of interest cannot
be expressed as a strictly monotone function of the level-
2 uncertain parameters. For such cases, we cannot obtain
the exact uncertainty distributions for p by directly apply-
ing the operational laws. Rather, the maximum uncertainty
principle needs to be used to derive the upper and lower
bounds for the uncertainty distribution based on an uncertain
simulation method developed by (Zhu 2012). The uncertain
simulation can provide a reasonable uncertainty distribution
of a function of uncertain variables and does not require the
monotonicity of the function with respect to the variables. In
this section, themethod is extended to calculate the upper and
lower bounds of an uncertainty distribution for risk assess-
ment.

Definition 6 (Zhu 2012) An uncertain variable ξ is common
if it is from the uncertain space (�,B,M) to � defined by
ξ(γ ) = γ , whereB is the Borel algebra over�. An uncertain
vector ξ = (ξ1, ξ2, . . . , ξn) is common if all the elements of
ξ are common.

Theorem 2 (Zhu 2012) Let f : �n → � be a Borel function,
and ξ = (ξ1, ξ2, . . . , ξn) be a commonuncertain vector. Then
the uncertainty distribution of f is:

Ψ (x) = M { f (ξ1, ξ2, . . . , ξn) ≤ x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Λ1×Λ2×···×Λn⊂Λ

min
1≤k≤n

Mk {Λk} ,

if sup
Λ1×Λ2×···×Λn⊂Λ

min
1≤k≤n

Mk {Λk} > 0.5

1 − sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk {Λk} ,

if sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk {Λk} > 0.5

0.5, otherwise.

(26)

In (26), Λ = f −1(−∞, x), {Ai } denotes a collection of all
intervals of the form (−∞, a], [b,+∞), ∅ and �, and each
Mk{Λk} is derived based on (27):

M{B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
B⊂⋃

Ai

∞∑
i=1

M{Ai },

if inf
B⊂⋃

Ai

∞∑
i=1

M{Ai } < 0.5

1 − inf
Bc⊂⋃

Ai

∞∑
i=1

M{Ai },

if inf
Bc⊂⋃

Ai

∞∑
i=1

M{Ai } < 0.5

0.5, otherwise,

(27)

where B ∈ B, and B ⊂ ⋃∞
i=1 Ai .

From Theorem 2, it can be seen that (27) gives a
theoretical bound of each Mk{Λk} in (26). Let m =
infB⊂⋃

Ai

∑∞
i=1M{Ai }, n = infBc⊂⋃

Ai

∑∞
i=1M{Ai }. It is

clear that any values within m and 1 − n is a reasonable
value for M{B} . Hence, we use m as the upper bound and
1−n as the lower bound ofMk{Λk} and develop a numerical
algorithm for level-2 uncertainty analysis.
Algorithm 1. (Level-2 uncertainty analysis for non-
monotone models)

step 1 Set m1(i) = 0 and m2(i) = 0, i = 1, 2, . . . , n.

step 2 Randomly generate uk =
(
γ

(1)
k , γ

(2)
k , . . . , γ

(n)
k

)
with 0 < Φi

(
γ

(i)
k

)
< 1, i = 1, 2, . . . , n, k =

1, 2, . . . , N .
step 3 From k = 1 to k = N , if f (uk) ≤ c, m1(i) =

m1(i) + 1, denote x (i)
m1(i)

= γ
(i)
k ;

otherwise, m2(i) = m2(i) + 1, denote y(i)
m2(i)

=
γ

(i)
k , i = 1, 2, . . . , n.

step 4 Rank x (i)
m1 and y(i)

m2 from small to large, respec-
tively.

step 5 Set

a(i) = Φ
(
x (i)
m1(i)

)
∧

(
1 − Φ

(
x (i)
1

))
∧
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(
Φ

(
x (i)
1

)
+ 1 − Φ

(
x (i)
2

))
∧(

Φ
(
x (i)
m1(i)−1

)
+ 1 − Φ

(
x (i)
m1(i)

))
;

b(i) = Φ
(
y(i)
m2(i)

)
∧

(
1 − Φ

(
y(i)
1

))
∧(

Φ
(
y(i)
1

)
+ 1 − Φ

(
y(i)
2

))
∧(

Φ
(
y(i)
m2(i)−1

)
+ 1 − Φ

(
y(i)
m2(i)

))
.

step 6 L(i)
1U = a(i), L(i)

1L = 1 − b(i), L(i)
2U = b(i), L(i)

2L =
1 − a(i).

step 7 If aU = L(1)
1U ∧L(2)

1U ∧· · ·∧L(n)
1U > 0.5, LU = aU ;

if bU = L(1)
2L ∧ L(2)

2L ∧ · · · ∧ L(n)
2L > 0.5, LU =

1 − bU ; otherwise, LU = 0.5.
If aL = L(1)

1L ∧L(2)
1L ∧· · ·∧L(n)

1L > 0.5, LL = aL ; if

bL = L(1)
2U ∧L(2)

2U ∧· · ·∧L(n)
2U > 0.5, LL = 1−bL ;

otherwise, LL = 0.5.

Through this algorithm, the upper and lower bounds for
the uncertainty distribution of p can be constructed, denoted
by [ΨL(p), ΨU (p)]. Similar to the monotone case, we define
two risk indexes considering the level-2 uncertainty:

Definition 7 Let p described by (11) be the probability that a
hazardous eventwill happen, and letΨL (p) andΨU (p) be the
lower bound and upper bound of the uncertainty distribution
of p, respectively. Then

p =
∫ +∞

0

[
1 − ΨL(p) + ΨU (p)

2

]
dp (28)

is defined as average risk, and

[VaRL ,VaRU ] (γ ) =[
sup {p|ΨL(p) ≤ γ } , sup {p|ΨU (p) ≤ γ }] (29)

is defined as bounded value-at-risk.

The defined average risk is a reflection of the average
belief degree of the risk index p, and a greater value of
p means more severe risk that we believe we will suffer.
The meaning of the bounded value-at-risk is that, with belief
degree γ , we believe that the value of risk index is within the
interval [VaRL ,VaRU ] (γ ). Obviously, if we fix the value of
γ , a wider bounded value-at-risk means a more conservative
assessment result.Meanwhile, we believe a greater VaRU (γ )

reflects that the risk is more severe.

Table 3 Distributions of level-1 and level-2 parameters

Parameter Level-1 Level-2

UTB method ETB method

x1 N (μ1, 5) μ1 ∼ L(9, 11) μ1 ∼ U (9, 11)

x1 N (μ2, 5) μ2 ∼ N (10, 0.3) μ2 ∼ N (10, 0.3)

3.3.2 Numerical case study

We consider a problem of structural reliability in Choi et al.
(2007) to further elaborate on the developed method. Let the
limit-state function of a structure be

g(x1, x2) = x41 + 2x42 − 20. (30)

where x1 and x2 are random variables, and the risk index of
interest is the probability that the structure fails, which can
be written as

p f = Pr {g(x1, x2) < 0} . (31)

Assume that x1 and x2 follow normal distributions with
parameters (μ1, σ1) and (μ2, σ2), respectively. The parame-
ters μ1 and μ2 are not precisely known due to the epistemic
uncertainty, whereas σ1 and σ2 are known as crisp val-
ues. Based on experts knowledge, the belief degree of μ1

is modeled by a linear uncertainty distribution and μ2 is
described by a normal uncertainty distribution (see Table 3).
The bounded uncertainty distribution can, then, be obtained
through Algorithm 1.

The solid line and dashed line in Fig. 3 show the upper and
lower uncertainty distributions of the risk index p f , respec-
tively. Average risk and bounded value-at-risk are calculated
using the numerical method based on (28) and (29), i.e., p =
0.001980 and [VaRL ,VaRU ] (0.9) = [0.001689, 0.003548].

Since the developed method offers a bounded uncertainty
distribution of p f , it is then compared with an evidence
theory-based (ETB) method, in which the belief degree of
p f is also given as upper and lower distributions called plau-
sibility (Pl) and belief (Bel) function, respectively. In this
paper, the ETB method models the belief degrees of μ1 and
μ2 using probability distributions (see Table 3). A double
loop Monte Carlo simulation combined with a discretization
method for getting basic probability assignments (BPAs) is
used to obtain Bel

(
p f

)
and Pl

(
p f

)
(Limbourg and Roc-

quigny 2010; Tonon 2004). In Fig. 3, the dotted line and
dot–dash line represent Bel and Pl, respectively. It should
be noted that although we use Bel and Pl as mathematical
constructs, they are not strictly the concepts of belief and
plausibility defined by Shafer (i.e., the degree of truth of a
proposition Shafer 1976). The two functions only represent
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Fig. 3 Results of level-2
uncertainty analysis (CDF
cumulative distribution function,
Bel belief function, Pl
plausibility function, UDL
lower uncertainty distribution,
UDU upper uncertainty
distribution)
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Table 4 Risk indexes of the non-monotone risk model

Method p [VaRL ,VaRU ] (0.9)

UTB method 0.001980 [0.001689, 0.003548]

ETB method 0.002012 [0.002440, 0.003140]

bounds on a true quantity. To illustrate this, a cumulative den-
sity function (CDF) of p f is calculated via a double loopMC
simulation method, shown as the crossed line in Fig. 3. It is
seen that the CDF is covered by the area enclosed by Bel and
Pl. In this sense, the CDF obtained in PB method is a special
case of the ETB model, and the Bel

(
p f

)
and Pl

(
p f

)
give

a reasonable bound of the probability distribution of p f .
Given Bel

(
p f

)
and Pl

(
p f

)
, the two risk indexes can be

calculated by

p =
∫ ∞

0

(
1 − Bel(p f ) + Pl(p f )

2

)
dp, (32)

and

[VaRL ,VaRU ] (γ ) =[
sup

{
p f |Bel(p f ) ≤ γ

}
, sup

{
p f |Pl(p f ) ≤ γ

}]
, (33)

and the results are tabulated in Table 4.
Figure 3 shows a comparison of the distributions of belief

degrees on p f in UTB method and ETB method. The distri-
butions have the same supports, whereas the upper and lower
uncertainty distributions fully cover the CDF and the area
enclosed by Bel and Pl, which indicates that the developed

method is more conservative. This is because the subjective
belief described by uncertainty distributions usually tends to
be more conservative and is more easily affected by epis-
temic uncertainty. This phenomenon is also reflected by the
two defined risk indexes: the average risk ps are nearly the
same on different theory basis, while the bounded value-at-
risk of ETB method is within that of the UTB method.

We also find that the bounded value-at-risk obtained by the
developed UTB method may be too wide for some decision
makers. This may be a shortcoming of the proposed method.
Therefore, when choosing a method for risk analysis from
the PB method, ETB method and UTB method, we need to
consider the attitude of decision maker. For a conservative
decision maker, the bounded uncertainty distribution is an
alternative choice.

4 Application

In this section, the developed level-2 uncertainty analysis
method is applied to a real application of flood risk assess-
ment. In Sect. 4.1, we briefly introduce the system of interest.
Sections 4.2 and 4.3 show the process of level-2 uncertainty
analysis based on uncertainty theory, to illustrate the effec-
tiveness of the method.

4.1 System description

In this case study, we consider a residential area located near
a river, which is subject to potential risks of floods, as shown
in Fig. 4. As a mitigation and prevention measure, a dike is
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Fig. 4 Flooding risk system (Limbourg and Rocquigny 2010)

constructed to protect this area. The final goal is to calculate
the risk of floods to determine whether the dike needs to be
heightened. A mathematical model is develop in (Limbourg
and Rocquigny 2010) which calculates the maximal water
level Zc:

Zc = g(Q, Ks, Zm, Zv, l, b)

= Zv +
(

Q

Ks · b · √
(Zm − Zv)/l

)3/5

, (34)

where Zm denotes the riverbed level at the upstream part of
the river, Zv denotes the riverbed level at the downstream
part of the river, Ks denotes the friction coefficient of the
riverbed, Q denotes the yearly maximal water flow, l denotes
the length of river, and b denotes thewidth of river (Limbourg
et al. 2010). The risk of floods can, then, be calculated as the
probability that the annual maximumwater level exceeds the
dike height:

pflood = Pr{Zc > H}. (35)

4.2 Parameter setting

The input variables in 34 are assumed to be random vari-
ables and the form of their PDFs are assumed to be known, as

Table 5 Uncertainty description
of level-1 and level-2 parameters

Parameter Probability distribution Level-2 uncertainty distribution Theoretical bounds

Q Gum(α, β) α Nα(1013, 48) [10, 10000]

β Nβ(558, 36)

Ks N (μKs , σ
2
Ks

) μKs L(22.3, 33.3) [5, 60]

σKs L(2.5, 3.5)

Zm N (μZm , σ 2
Zm

) μZm L(54.87, 55.19) [53.5, 57]

σZm L(0.33, 0.57)

Zv N (μZv , σ
2
Zv

) μZv L(50.05, 50.33) [48, 51]

σZv L(0.28, 0.48)

l 5000 (constant) –

b 30 (constant) –

Fig. 5 Result for level-2
uncertainty propagation based
on UTB method
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Table 6 Risk indexes for the flood system

Index Value

pflood 0.0161

[VaRL ,VaRU ] (0.9) [0.0073, 0.0476]

shown in Table 5 (Limbourg andRocquigny 2010). However,
due to limited statistical data, the distribution parameters
of these PDFs cannot be precisely estimated using statistic
methods and, therefore, are affected by epistemic uncertainty,
which should be evaluated based on experts knowledge. In
this paper, the experts knowledge on the distribution of these
parameters is obtained by asking the experts to give the uncer-
tainty distributions of the parameters, as shown in Table 5.
For example, the yearly maximal water flow, denoted by Q,
follows a Gumbel distribution Gum(α, β), and according to
expert judgements, α and β follow normal uncertainty dis-
tributions Nα(1013, 48) and Nβ(558, 36), respectively. In
addition, considering some physical constraints, the input
quantities also have theoretical bounds, as given in Table 5.

4.3 Results and discussion

Uncertain simulation method is used to propagate the level-
2 uncertainty using Algorithm 1. The theoretical bounds in
Table 5 are considered by truncating the probability distri-
butions at these bounds. The lower and upper bounds for the
uncertainty distributions of pflood are shown in Fig. 5, which
represents the belief degrees on pflood considering the level-2
uncertainty. Average risk and bounded value-at-risk are cal-
culated based on (28) and (29) and presented in Table 6.

It follows that the average yearly risk is pflood, which cor-
responds to an average return period of 62 years. This is
unacceptable in practice, because it is too short when com-
pared to a commonly required 100-year-return period. To
solve this problem, one measure is to heighten the dike for a
more reliable protection. Another solution might be increas-
ing the friction coefficient of the riverbed Ks , noting from 34
that Zc decreases with Ks .

The bounded value-at-risk is relatively wide, which indi-
cates that due to the presence of epistemic uncertainty, we
cannot be too confirmed on the calculated risk index. The
same conclusion is also drawn from Fig. 5: the difference
between the upper and lower bounds of the uncertainty dis-
tributions are large, indicating great epistemic uncertainty.
To reduce the effect of epistemic uncertainty, more historical
data need to be collected to support a more precise estima-
tion of the distribution parameters in the level-1 probability
distributions.

5 Conclusions

In this paper, a new level-2 uncertainty analysis method is
developed based on uncertainty theory. The method is dis-
cussed in two respects: for monotone risk models, where the
risk index of interest is expressed as an explicit monotone
function of the uncertain parameters, and level-2 uncertainty
analysis is conducted based on operational laws of uncer-
tainty variables; for non-monotone risk models, an uncertain
simulation-basedmethod is developed for level-2 uncertainty
analysis. Three indexes, i.e., average risk, value-at-risk and
bounded value-at-risk, are defined for risk-informed deci-
sionmaking in the level-2 uncertainty setting. Two numerical
studies and an application on a real example from litera-
ture are worked out to illustrate the developed method. The
developed method is also compared to some commonly used
level-2 uncertainty analysis methods, e.g., PB method and
ETB method. The comparisons show that, in general, the
UTB method is more conservative than the methods based
on probability theory and evidence theory.
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