Soft Computing (2019) 23:6921-6935
https://doi.org/10.1007/s00500-018-3331-6

METHODOLOGIES AND APPLICATION

@ CrossMark

Solving reverse emergence with quantum PSO application to image

processing
S. Djemame' - M. Batouche? . H. Oulhadj? - P. Siarry3

Published online: 28 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

A quantum-inspired PSO (QPSO) algorithm for solving reverse emergence is proposed that is a hybridization of the particle
swarm optimization (PSO) algorithm and quantum computing principles. For potential applications, we review specific
image processing problems including image denoising and edge detection. Taking cellular automata as a modeling tool, an
evolutionary process carried out by the QPSO algorithm attempts to extract the rules resulting in satisfactory image denoising
and edge detection. Experimental results demonstrate the feasibility, the convergence and robustness of the QPSO algorithm
for solving reverse emergence in the specific application of image processing.

Keywords Metaheuristics - Quantum computing - Quantum PSO - Reverse emergence - Complexity - Cellular automata -

Optimization - Image processing

1 Introduction and motivations

Emergent computing is a growing field of research and is
based on three principles: simplicity, large parallelism and
locality. The main principle of an emergent system is that a
large group of basic individuals following only simple rules
can together build something more complex without the need
for a global controller or centralized chain of command. The
challenge with emergent systems is discovering the rules that
give rise to a desired complex behavior. This is called reverse
emergence which has become more topical in the last few

Communicated by V. Loia.

X P. Siarry
siarry @upec.fr
S. Djemame

djemame @univ-setif.dz

M. Batouche
mohamed.batouche @univ-constantine2.dz

H. Oulhadj
oulhadj@upec.fr

Computer Science Department, Faculty of Sciences,
University of Ferhat Abbas - Setif 1, Sétif , Algeria

Computer Science Department, College of NTIC, Constantine
2 University, Constantine, Algeria

LISSI Laboratory, Paris-Est Creteil University, Créteil,
France

years and has itself now been categorized as a research field.
A disadvantage with the emergent systems cited above is
that the rules had to be carefully and laboriously generated
by hand. However, this is a slow and tedious process and it
does not scale well to large problems. Furthermore, this is
not a convenient way to build an image processing system,
so a more automated approach is required (Fig. 1).

Traditionally, rigorous approaches (also called determin-
istic) are based on hypotheses, characterizations, deduc-
tions and experiments. They are used for solving many
optimization problems and allow the finding of optimal
solutions, but they are often time-consuming when solving
real-world problems (i.e., problems with large dimensions,
hard constrained problems, multimodal and/or time-varying
problems). Besides conventional algorithms, stochastic tech-
niques, as metaheuristics, are widely used as resolution
methods for a large range of optimization problems. They
are powerful and flexible search methodologies that have suc-
cessfully tackled practical difficult problems. Metaheuristic
algorithms seek to produce good quality solutions in reason-
able computation times and are good enough for practical
purposes.

Therefore, and more recently, there has been a start to
automating rule generation using optimization techniques
such as evolutionary algorithms (EAs), neural networks and
metaheuristics.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3331-6&domain=pdf
http://orcid.org/0000-0002-5722-4115

6922 S.Djemame et al.
Macro level: e Blind, undirected search: it is difficult to direct a GA

Global emergent

Reverse complex pattern toward an optimal solution area if known a priori.
Emergence e GA is sensitive to initial parameters, mutation and

Emergence L. .
crossover can significantly influence the search.
e It is a stochastic process, there is no guarantee that the
Micro level:

Local interaction rules
between elements of the
system

Fig.1 Complex system and the concept of reverse emergence

This introduced the term of metaheuristics which refers to
general techniques that are not specific to a particular prob-
lem. Metaheuristics are approximate algorithms, and each of
them has its own historical background. A metaheuristic is a
set of algorithmic concepts used for defining heuristic meth-
ods that can be applied to a variety of optimization problems,
without requiring substantive modifications to adapt them to
particular optimization problems. Metaheuristics have suc-
cessfully found high-quality solutions for a wide spectrum
of “NP-hard” optimization problems.

From the literature, we have recensed a few works about
searching techniques for solving reverse emergence and
automating rule generation, particularly in the image pro-
cessing domain. (Mitchell etal. 1996) used a standard genetic
algorithm (GA) to solve the density classification task. (Sip-
per 1997) used evolving rules to perform thinning and gap
filling in isothetic rectangles. Although the tasks were fairly
simple, and the results were only mediocre, his work demon-
strates that the approach is feasible. (Adorni et al. 1998)
generated CAs to perform pattern classification. (Rosin 2006)
used a deterministic feature selection method called the
sequential floating forward search (SFFS) for training cellu-
lar automata to perform image processing tasks with a high
level of performance. In Batouche et al. (2006), the authors
present a solution to the problem of reverse emergence by
applying a genetic algorithm as an optimization method,
where the resulting evolutionary cellular automata are trained
to extract contours from simple images. In Chavoya and
Duthen (2006), the authors presented an algorithm for gener-
ating 2D and 3D simple binary forms from cellular automata.
The transition function and the number of generations giv-
ing rise to the desired form are determined using a genetic
algorithm.

Most of these approaches use genetic algorithms to search
for a transition function and thereby solve reverse emergence.

However, GA presents some limitations. The main disad-
vantages are:

e Computationally expensive: some problems require many
days or weeks to be solved.
e The learning procedure is very time-consuming.

@ Springer

optimal solution will be found, but there is only a high
probability of finding it.

Our interest focused on another population-based meta-
heuristic which is particle swarm optimization.

PSO and GA share many similarities. Both techniques
begin with a randomly generated population and utilize a
fitness value to evaluate the population individuals. They
update the population and search for the optimum with
stochastic techniques.

The main difference between PSO and GA is that PSO has
no evolution operators such as crossover and mutation in GA,
potential solutions fly through the problem space by follow-
ing the current optimum particles. Another difference resides
in autonomy. PSO comes from an agent-oriented paradigm,
but genes are not agent-like. Particles are semiautonomous
agents which see the status of each other and decide to change
their status toward the best-observed particle in their local-
ity. On the contrary, genes do not have any abilities to sense
their surrounding environment. Although there are discrete
variants of PSO, it emerged as a continuous optimization
approach, while GA has mainly been used for discrete opti-
mization.

In many papers, authors claim that PSO outperforms GA
when applied to various problems and PSO yields better qual-
ity and faster performance compared to GA. PSO has many
advantages in comparison with GA, which can be summa-
rized as follows:

(1) PSO is easiest in implementation.

(2) PSO has few parameters to adjust.

(3) PSO does not need evolution operators. The potential
solutions emerge very simply from the search space of
the problem, moving iteratively in the direction of the
current optimal solutions.

(4) PSO is faster in convergence and mostly provides better
solution.

In this scope, we explored the possibilities of PSO to
evolve CA rules in a prior work (Djemame and Batouche
2012). The algorithm has proven effective and got sat-
isfactory results. The experiments were encouraging and
demonstrated the feasibility, the convergence and the robust-
ness of PSO for evolving CA rules and solving reverse
emergence.

Despite the success of metaheuristics (PSO, GA, ACO,
etc), it became evident that the focus on pure metaheuristics
is restrictive when tackling particular optimization problems,

Solving reverse emergence with quantum PSO application to image processing 6923

such as real-world and large-scale optimization problems.
A skilled combination of a metaheuristic with components
from other metaheuristics or with other optimization algo-
rithms, such as operations research techniques (mathematical
programming), artificial intelligence techniques (constraint
programming) or other research areas (quantum computing),
can lead to getting much better solutions for these optimiza-
tion problems.

The main motivation behind these combinations is to get
better performing system that exploits and includes advan-
tages of the combined algorithms and techniques. These
advantages should be complementary to each other so that
the resulting hybrid metaheuristic can benefit from them.

In this context, the QPSO algorithm was developed from
research in the field of the hybridization of metaheuristics and
quantum computing, which began near the end of the 1990s.
The goal of this combination was to enhance the benefit from
each approach by mutually inspiring one another. QPSO
is combining the concepts of classical PSO and quantum
mechanics to improve performance of PSO. QPSO inher-
its the advantages of the PSO algorithm along with further
improvements. Besides, unlike PSO, QPSO needs no veloc-
ity vectors for particles and also has fewer parameters to
adjust, making it easier to implement. The new algorithm
(QPSO) outperforms most of the time the classic one (PSO)
in convergence speed and achieves better levels for the fitness
function. It also demonstrates superior search performance
compared to PSO and has a strong global search ability and
high efficiency. Other versions of QPSO have been devel-
oped to overcome its shortcomings, such as the cooperative
QPSO algorithm (Li et al. 2012).

Despite the fact that the quantum computer does not exist
yet, there has been a resurgence in interest in the properties
of quantum computing without focusing on massively par-
allel hardware implementations, i.e., they are simulated on
standard serial computers.

QPSO has been applied in many areas such as image
color segmentation (Zhang et al. 2009), training network traf-
fic prediction based on a back-propagation neural network
(Wang and Liu 2009) and solving mixed integer nonlinear
programming (Zhang and Xing 2010). In addition, QPSO has
been successfully coupled with other metaheuristics, such as
the firefly algorithm, for solving discrete optimization prob-
lems (Zouache et al. 2016).

In Batouche et al. (2009), the authors proposed the use
of the quantum-inspired evolutionary (QEA) algorithm for
training CAs to perform image denoising. In Laboudi and
Chikhi (2009), the authors used a quantum genetic algorithm
to solve the density classification problem.

Within this area, we are interested in solving the inverse
problem by using the QPSO algorithm and applying it to
image segmentation and image denoising. The key idea is to
use cellular automata (CA) as a complex system for model-

ing an image and then apply QPSO as a search strategy to
discover the rules or subset of rules which perform the image
processing tasks most efficiently. To the best of our knowl-
edge, no one has used QPSO for solving reverse emergence,
particularly in the image processing domain.

Therefore, we provide the following contributions:

— Solving an inverse problem, which consists in specifying
the transition function that allows CA to obtain a specific
structure in a certain generation when initial and final
configurations are known. This type of problem has been
described as “extremely difficult” (Ganguly et al. 2003).

— For this purpose, we use the QPSO algorithm, which is
based on the hybridization of quantum computing princi-
ples and the PSO metaheuristic. This approach has never
been previously used to solve reverse emergence.

— Our method allows the efficient extraction of a subset of
rules, which perform the desired effect. The use of QPSO
for solving reverse emergence was found to be suitable
for selecting these rules as it is simple to use and results
are obtained quickly.

— The extracted rules are then applied on images in a simple
way to solve a range of image processing tasks, such as
denoising and edge detection. Our results were satisfac-
tory and confirmed the robustness and the effectiveness
of our approach.

— Once an appropriate rule was extracted by the QPSO
algorithm, we then apply it directly to images and obtain
a result with good quality in minimal time.

— The rules produced by the QPSO algorithm for edge
detection and noise filtering provided reasonable results
compared to other algorithms previously presented in the
literature.

— The further application of this work may have interesting
uses in the augmented reality domain and unsupervised
segmentation.

The remaining of the paper is organized as follows: in
Sect. 2, we introduce the basic concepts used in this research
such as PSO and QPSO algorithms. The proposed approach
is described in Sect. 3, and the algorithm development is
detailed in Sect. 3.2.2. Experimental results and comparisons
with related work are shown in Sect. 3.2.4 with concluding
remarks in Sect. 4.

2 Basic concepts
2.1 Particle swarm optimization (PSO)
Particle swarm optimization is a population-based evolution-

ary optimization technique originally introduced by Kennedy
and Eberhart (1995) and was inspired by the metaphor of

@ Springer

6924

S.Djemame et al.

social interaction and communication such as bird flocking
and fish schooling. A PSO system simulates the knowl-
edge evolution of a social organism in which individuals
(labeled as particles) representing the candidate solutions are
processed through a multi-dimensional search space where
they exchange information to find an optimal solution. This
method has been used to solve a range of optimization prob-
lems, including network training and function minimization
(Van den Bergh and Engelbrecht 2000; Shi and Eberhart
1999). Furthermore, PSO has proven its efficiency for the
resolution of multi-objective optimization problems (Wang
et al. 2017). PSO has also been successfully hybridized with
other optimization algorithms, like the cuckoo search algo-
rithm for parameter optimization (Li and Yin 2016).

2.2 Quantum-behaved PSO

Inspired by quantum mechanics and the trajectory analysis
of PSO (Clerc and Kennedy 2002), Sun et al. recently used a
strategy based on a quantum 6 potential well model to sam-
ple around the previous best points (Sun et al. 2004a). They
later introduced into the algorithm the mean best position
and proposed a new version of PSO, called quantum-behaved
particle swarm optimization (QPSO) (Sun et al. 2004b). The
iterative equation of QPSO is very different from that of PSO.
Specifically, QPSO does not require velocity vectors for par-
ticles, as does PSO, and is also easier to implement because it
uses fewer adjustable parameters. The QPSO algorithm has
proven its ability to solve a wide range of continuous opti-
mization problems. In addition, QPSO outperforms PSO on
several aspects, such as simple evolution equations, fewer
control parameters, fast convergence and simple operation
among other features (Sun et al. 2004b, 2011, 2012).

In the quantum model of PSO, each particle exhibits quan-
tum behavior, so we can only measure the probability of the
particles appearing in position x from probability density
function, | (x, #)|>, which depends on the potential field
the particle lies in. The state of a particle is depicted by
a wave function ¥ (x, t), instead of position and velocity.
The dynamic behavior of the particle is significantly different
from that of the particle in traditional PSO systems in that the
exact values of position and velocity cannot be determined
simultaneously. Solving the Schrodinger equation, we obtain
the normalized probability density function Q,

1)
0 = leMI* = Ze—z'”“ (1

where L is the most important variable as it determines the
search scope of each particle. Employing a Monte Carlo
method, for y = x — p, we can obtain the position of the
particle,

@ Springer

x=p=x(L/2)*xIn(1/u), u=rand(0,1) 2)
where u is a random number distributed uniformly on [0, 1]
and p is a stochastic point between pbest (the position giving
the best fitness value) and gbest (the best among all the pbest
in the swarm). p is the local attractor of the particle, and L
is evaluated with

L(t) = 2 % B % |mbest — x(1)] A3)
1 M

mbest = P;
=1

<

i

1 J 1 J 1 J
—N'P,—N"Py....—N"P
M; il M; i2 M; tD)

Il
S

“

where mbest (mean best position or mainstream through
point) is defined as the mean value of all the particles’ best
positions and M 1is the population size. L may be interpreted
as the strength of “creativity” or “imagination” because it
characterizes the knowledge-seeking scope of the particle.
Therefore,with a larger value of L, it is more likely the
particle finds new knowledge. The parameter 8, called the
contraction—expansion coefficient, is the only parameter in
the QPSO algorithm. From the results of stochastic simula-
tions, QPSO has relatively better performance by varying the
value of B from 1.0 at the beginning of the search to 0.5 at the
end of the search to balance the exploration and exploitation
(Sun et al. 2005a,b). Therefore, Eq. (2) may be written as:

x(t 4+ 1) = p £ B * |mbest — x(1)] * In(1/u) (5)

The QPSO algorithm operates as follows:

Firstly, the QPSO process is initialized: population size M
and dimension D of particles. The particles P; are randomly
initialized in the search space. For each iteration ¢, the mean
best position mbest is computed, using Eq. (4). Coefficient
beta is linearly decreased from 1.0 to 0.5. For each particle of
the swarm, the fitness function f(X;) is calculated, and the
local best position is saved in P;. The global best position
is saved in G. ¢ and u denote random numbers generated
uniformly and distributed on [0, 1]. The new position X;;
is computed according to Eq. (5). The process is repeated
until reaching stopping criterion: T, the predefined number
of iterations. The procedure for implementing the QPSO is
given by “Algorithm 17 (Sun et al. 2004a).

3 The proposed approach

We propose the use of the quantum-behaved particle swarm
optimization (QPSO) algorithm for training cellular automata

Solving reverse emergence with quantum PSO application to image processing 6925

Algorithm 1 Pseudo-code of QPSO Algorithm

Initialize the population size M;
Initialize P; with the corresponding initial position X;;
Initialize the dimensions D of the particles;
for = 1 to Maximum Iteration T do
Compute the mean best position mbest by Eq.(4);
Beta linearly decreases from 1.0 to 0.5;
for i =1 to population size M do
if f(X;) < f(P;) then
P = X;;
end if
G = argmin(f(P}));
for j=1toD do
¢ =rand(0, 1);
u =rand(0, 1);
Pij =¢*Pij+(1—¢)xG;
if rand(0, 1) > 0.5 then
Xij = pij + beta x abs(mbest; — X;;) x log(1/u);
else
Xij = pij—beta x abs(mbest; — X;;) x log(1/u);
end if
end for
end for
end for

(CA) to perform several standard image processing tasks,
including noise filtering and image segmentation. CA is used
as a modeling tool of the image, and QPSO is the search
strategy which extracts the appropriate rules through reverse
emergence.

CA is comprised of a grid of cells which interact locally
by simple rules and evolve toward a global complex behav-
ior (Wolfram 1984). Interactions between cells are defined
only with local rules, and the set of all these rules forms the
transition function of the CA.

3.1 Problem statement

In image processing, CA is used efficiently to model an
image. A state of a cell is the color of the pixel. The transition
rule is defined by the actual state of the cell along with the
state of the neighborhood. The initial configuration of CA
is the input image to be processed, and the final configura-
tion is the output image (segmented and filtered). The CA
evolves from its known initial configuration to a final global
state through several iterations using a limited subset of rules.
Extracting this subset from the micro-level is defined as the
reverse emergence problem. The number of transition func-
tions (TF) increases with the number of cell states and the
size of the neighborhood. This is represented by the equation:
TF = |0™¢|, where Nc = |¢"| is the number of combina-
tions of the states of neighborhood cells and |o | is the number
of states. For example, using a Moore neighborhood and 2-
cell states, the size of the transition function is 512 and the
number of possible transition functions is 23'2.

In the case of image processing, when dealing with binary
images, using a Moore neighborhood and 2 cell states (black
and white), the number of possible transition functions is
2312 For grayscale images, a cell having 256 states and
Moore neighborhood, the number of possible transition rules
is 256256

This is a huge space to explore. So, for the sake of sim-
plicity, the QPSO approach for evolving cellular automata
is tested on binary images which are derived from grayscale
and color images.

In general, simulating a system by cellular automata
consists of creating the closest environment to that of the
phenomenon studied, including initial conditions, parame-
ters and evolution rules. This kind of problems is said to
be “direct” because we want to find the future state of the
CA when its initial configuration and the rules which gov-
ern the evolution are known. Inversely, in certain cases, it is
important to determine the transition function which allows
the CA to obtain a particular structure in a given generation.
This kind of problem is called an inverse problem. Ganguly
et al. (2003) distinguished different kinds of inverse prob-
lems, including

1. Specifying the transition function of the CA, which
allows finding particular dynamic structures of the CA.

2. Specifying the transition function of the CA, knowing its
initial and final configurations.

3. Finding the initial configuration of the CA, knowing its
transition function and its final configuration.

In this study, we are interested in the second inverse prob-
lem listed above. (Ganguly et al. 2003) qualified this specific
problem as “extremely difficult.”

To address this question, we propose to solve the reverse
emergence problem by the use of a hybrid quantum algorithm
with a population-based metaheuristic. The goal is to extract
the CA rules which perform image processing tasks, such as
contour detection and noise filtering, with good quality.

3.1.1 Transition function rules

The class of CAs used here is called fotalistic CAs. This
is defined where the state of each cell is represented by a
number (usually an integer value drawn from a finite set) and
the value of a cell at time ¢ depends only on the sum of the
values of the cells in its neighborhood (possibly including
the cell itself) at time ¢+ — 1 (Wolfram 2002). Totalistic CA
does not take into account the position of the cells.

Cellular automata and its transition function are defined
such that each cell has two states (0 or 1) and a cell is said
to be “alive” if its value is equal to one or “dead” if its value
is zero. The neighborhood considered is the extended Moore

@ Springer

6926

S.Djemame et al.

Fig.2 Transition function rule

Rule 120
1|10]1
0101
1110

neighborhood (8 neighboring cells + the central cell). The
total number of decision rules determines the number of pos-
sible states (1 and 0) and the number of “living” neighbors
can vary between 0 and 9. This is a rather large number of
possible rules to be tested, so it is important to recognize
that not all the rules are considered interesting. The process
will select only the rules that present more efficiency for the
desired task. Let I be the original image to be processed by
the evolved CA. For each pixel of the image I, the following
process is executed. Let us take the central pixel P and its
8-neighbors (Moore’s neighborhood). The number of alive
cells (NAC) is counted. The interval of all possible values of
NAC is [0.9].

On the other hand, a rule is randomly drawn and converted
into the binary representation. For example, if we select rule
120, a matching is established between the binary represen-
tation of the rule and all the possible values of NAC (Fig. 2).
The transition rule is expressed as follows:

if (NAC = 5), then the central pixel in the result image is
setto 1.

3.1.2 Fitness functions

Whichever optimization method is used, an objective func-
tion is required, and its quality obviously has a crucial effect
on the final results. The fitness function used to drive the rule
selection process has an important effect on the final results.
We considered three fitness functions: the structural simi-
larity index (SSIM), root-mean-square error (RMSE) and
Hamming distance (HD). The role of these functions is to
measure the quality difference between the resulting image
and the reference image.

For binary images, the simplest objective function is the
Hamming distance. For images with more intensity values,
the root-mean- square error (RMSE) between the input and
target image is a straightforward measure. However, it is
well known that RMSE values have limitations. In particular,
given that they do not involve inter-pixel relationships, they
often do not capture perceptual similarity. SSIM measures the
image similarity taking into account three independent chan-
nels including luminance, contrast and structure (Wang et al.
2004). It is the well-suited measure for gray-level images.

@ Springer

=== [ofo o]t [a]t]t]ofo]o]

[o]oJo]s [s]t]t]ofolo |

Binary representation

I—> NAC=5

the pixel in the result
image is setto 1

lo]1]2]3[¢]s]s]7[s]o]

Values of NAC: [0..9]

The SSIM metric between two images x and y is defined
as:

(ZI’LXMy + Cl)(zaxy + C2)
(u)% +u3 + Cl) (axZ +o2+ C2>

SSIM(x, y) = (6)

where iy, iy, axz, 03, oy are the mean of x, the mean of y,
the variance of x, the variance of y and the covariance of x
and y, respectively. Following (Wang et al. 2004), C is set
to (0.01 % 255)? and C, = (0.03 * 255).

The Hamming distance calculates the number of different
pixels between two images, where the RMSE is calculated
according to Eq. (7)

1 M—-1N-1
_ - _ 2
RMSE= |- ; C:O[E(r,o o(r, o] (7

where O (r, ¢) is the original image (in our case, the ground-
truth image) and E (7, c¢) is the reconstructed image (in our
case, the QPSO result).

The three objective functions are used simultaneously to
strengthen the quality of the results. Each fitness function
reinforces the others, as far as a fitness incorporates spatial
information and provides significant benefits over the others.

3.2 Quantum PSO algorithm for edge detection
3.2.1 Edge detection in image processing

Edge detection is a fundamental tool used in most image pro-
cessing applications to obtain information from the frames
as a precursor step to feature extraction and object segmenta-
tion. The edge detection has been used by object recognition,
target tracking, segmentation, data compression and also
helps for well matching, such as image reconstruction.
Edge detection refers to the process of identifying and
locating sharp discontinuities in an image. The discontinu-
ities are abrupt changes in pixel intensity which characterize
boundaries of objects in a scene. Classical methods of edge
detection involve convolving the image with an operator (a
2-D filter), which is constructed to be sensitive to large gra-
dients in the image while returning values of zero in uniform

Solving reverse emergence with quantum PSO application to image processing 6927

regions. There are numerous edge detection operators avail-
able, each designed to be sensitive to certain types of edges.
Variables involved in the selection of an edge detection oper-
ator include edge orientation, noise environment and edge
structure. The geometry of the operator determines a char-
acteristic direction in which it is most sensitive to edges.
Operators can be optimized to look for horizontal, vertical or
diagonal edges.

There are many ways to perform edge detection. However,

the majority of methods may be grouped into two categories:
Gradient-based edge detection The gradient method detects
the edges by looking for the maximum and minimum in the
first derivative of the image.
Laplacian-based edge detection The Laplacian method
searches for zero crossings in the second derivative of the
image to find edges. An edge has the one-dimensional shape
of a ramp, and calculating the derivative of the image can
highlight its location.

The main techniques used in the literature for edge
detection are Canny, Sobel, Deriche, Prewitt, Roberts edge
detectors and Laplacian of Gaussian (LoG).

3.2.2 Application of QPSO for edge detection

In this work, the validation of the proposed solution to the
reverse emergence problem is done through the problem of
edge detection on images. We take advantage of the calculat-
ing faculties of the CA, to transform the initial configurations
defined by a numerical image lattice as discrete input data
in order to find its edges. The search space is defined by
all the transition rules of the CA. The evolutionary process
trained by QPSO has the effect of extracting the subset of
rules which leads to an edge detection with good quality. In
this context, a rule is a particle of the swarm, and the best
rule which gives rise to a good segmentation corresponds
to the particle with the best fitness. In this algorithm, the
input image and the ground-truth image are uploaded. The
QPSO process is initialized by setting the number of itera-
tions and the swarm size. At the beginning of the process,
the value of parameter beta is set to 1.0; then, it is linearly
decreased during the execution of the algorithm. Beta is the
only parameter tuned automatically in the QPSO process.
QPSO has relatively better performance by varying linearly
the value of beta from 1.0 to 0.5 in order to balance between
exploration and exploitation. The particles are randomly ini-
tialized in the search space. Each particle of the swarm (a
rule) is converted in binary representation and applied on the
input image pixel by pixel, according to the transition func-
tion defined in (Sect. 5). For each particle, an output image is
obtained. The quality of edge detection is measured by eval-
uating three fitness functions: SSIM, Hamming distance and
RMSE. The best position is identified. The mean of the best
positions mbest is computed, using Eq. (4). For each particle,

the new position X;; is computed according to Eq. (5). The
fitness of the new particle is evaluated, and the new rule is
applied on the image. The process is repeated until reach-
ing a predefined maximum number of iterations. At the end
of the algorithm, the best rule, the best segmentation and the
best fitness are displayed. “Algorithm 2” outlines how QPSO
operates for edge detection.

Algorithm 2 QPSO Algorithm for edge detection

- Read the input image and the ground-truth image;
- Initialize swarm size and iteration number;
- Set Beta=1.0;
- Randomly initialize the particles in the search space;
- Initialize all particles fitnesses to zero;
for p=1 to swarm-size do
- Convert the particle (rule number) to a binary representation;
- Apply the rule on the input image pixel by pixel according to the
transition function defined in (3.1);
- Compute the fitness;
- Identify the best position Py;
- Compute the mean of the best positions mbest, using equation
(COF
end for-/*end step swarm initialization */
/*application of the QPSO algorithm™*/
for t= 1 to Maximum iterations number T do
- Compute the mean best position mbest by eq.(4);
- Decrease Beta linearly from 1.0 to 0.5;
for i = 1 to population size M do
if f(X;) < f(P;) then
P = Xi;
end if
G = argmin(f(F));
¢ =rand(0, 1); u = rand(0, 1);
pij=¢*Pij+(1—-¢)xGj;
if rand(0, 1) > 0.5 then
Xij = int16(p;j + Betaxabs(mbest(j)—X;;)*log(1/u));
else
Xij = int16(p;; — Betaxabs(mbest(j)—X;;)*log(1/u));
end if
- Apply the new rule X; to the image;
- Update the fitness of the new particles;
end for
end for
- Display the best rule, best edge detection and best fitness.
END.

3.2.3 Computational complexity

The most efficient way to compare algorithms is knowing
their time and space requirements through computational
complexity theory. However, this is very difficult with
stochastic algorithms, such as metaheuristics, and they tackle
a class of problems called “NP-hard,” where it is not possible
to obtain an exact solution in reasonable time; thus, we use
methods which give an optimal solution in a rather acceptable
time. For this kind of algorithms, computational complexity
is of “polynomial” order.

@ Springer

6928

S.Djemame et al.

Regarding the QPSO algorithm, the computational com-
plexity is O(T * M x D), T is the maximum number of
iterations, M is the swarm size, and D is the dimension of
the particles. For the developed QPSO for edge detection, the
computational complexity is O(T * M « S), T is the max-
imum number of iterations, M is the swarm size, and S is
the size of the image. The dimension D of particles is taken
equal to 1.

3.2.4 Experimental results

This section presents results of the application of the QPSO
algorithm on several images. QPSO has proven its effective-
ness in efficiently extracting the best rules providing good
edge detection.

e Image datasets Our evaluation of QPSO compares its
results for edge detection with that of other well-known
edge detectors (Canny, Sobel and Prewitt) and the hand-
made reference contours, from the Berkeley database.

e Parameter settings The QPSO approach is inspired by
the PSO algorithm and only has one adjustment parame-
ter, the beta coefficient (8), which is automatically tuned
in the algorithm. The coefficient beta (8) decreases lin-
early from 1.0 to 0.5 during the execution. The choice
of this range of values is justified by recommendations
throughout the QPSO literature which suggest linearly
decreasing 8 from 1.0 to 0.5 leads to good performance
in the QPSO.

The particle’s position X; represents the CA transition rule
and is an integer value varying from O to 1023. At the start
of the algorithm, it is randomly initialized. When computing
the values of mbest, P;, G; and X;, the particle position X;
is considered in its integer value, then when applying the
rule on the image for extracting edges, it is transformed to
its binary form. In the following steps, the values of position
X; are calculated by Eq. (5).

At the beginning of the execution, the user is asked to
determine the iteration number and population size. Several
experiments were conducted, with varying population sizes
in the range [150, 300] and iteration numbers in the range
[200, 500]. From these trials, we collected the best rules and
the best fitness.

In a second set of experiments, we reduced the values with
population sizes in the range [10, 30] and iteration numbers
in the range [30, 50]. We concluded that the QPSO algorithm
performs well even with a smaller size in population and with
only a few iterations.

The best fitness values were achieved after approximately
40 generations. Beyond this threshold, no improvement in
the results was noticed. So, it was not required to further
increase the iterations number and population size, which

@ Springer

only increased the execution time even when no amelioration
in fitness value was observed.

e Best packet of rules The evolutionary process guided by
the QPSO algorithm on a set of cellular automata rules
demonstrated efficient extraction of the subset of rules
that produced the desired final result, which suggests an
optimal solution to the reverse emergence problem.

Experiments were carried on several test images from
Mathworks and the database of Berkeley University. In this
paper, we illustrate some examples: moon, coins from Math-
works and bird, swan, woman from Berkeley database. After
dozens of experiments, we observed that four rules appeared
most frequently than others and allowed extracting good
edges after only one application on the input image. The
rules identified were rule 56, rule 120, rule 112 and rule 116.

It is important to note that once the best rules emerge, they
may be directly applied to an image quickly leading to the
desired result.

e Visual results The results in Fig. 3(Moon) clearly demon-
strate that rule 112, extracted by the QPSO algorithm,
produces a satisfactory result when compared to Canny,
Sobel and Prewitt. Edges are continuous, clean and fine.

In Fig. 4(Coins), the edge detection by rule 112 also shows
acceptable results when compared to Canny, Sobel and Pre-
witt. The external contour of the coins is accurate, continuous
and without noise. However, the internal details in the coins
do not appear, except for one case.

In Figs. 5(Bird), 6(Swan) and 7(Woman), where the
ground-truth edge is a handmade edge obtained from the
Berkeley database, we can clearly see that rule 112 as is
extracted by the QPSO algorithm provides good edges with
a fine level of details, particularly in the body of the bird and
the shadow of the swan. In the image of the Woman, rule 112
gives more accuracy and better contour outlines of the edge
(nose and hands of the pullover).

Table 1 shows the best fitness values obtained for the
Coins, Bird, Swan and Woman input images. The best val-
ues are highlighted in bold. For each, Canny and Sobel edge
detectors are tested using the fitness functions Hamming dis-
tance, SSIM and RMSE. For Canny and Sobel, only one
iteration is sufficient to collect the fitness values. The QPSO
algorithm is tested with over 25 runs and 40 generations, and
the best fitness values are collected in the table. The numer-
ical results clearly show that QPSO provides performances
equal or superior to Canny and Sobel.

e Comparison with related works Considering the result in
Naidu et al. (2015), the authors used two approaches to
find edges on the Lena image: a neural network with a

Solving reverse emergence with quantum PSO application to image processing 6929

Fig.3 Visual results of QPSO
and comparison. a Original
image; b Canny edge; ¢ Sobel
edge; d Prewitt edge; e QPSO
edge rule 112

Fig.4 Visual results of QPSO
and comparison. a Original
image; b Canny edge; ¢ Sobel
edge; d Prewitt edge; e QPSO
edge rule 112

@ Springer

6930

S.Djemame et al.

Fig.5 Visual results of QPSO
and comparison. a Original
image; b Berkeley edge; ¢
Canny edge; d Sobel edge; e
Prewitt edge; f QPSO edge rule
112

general back-propagation algorithm (BP-NN) and a neu-
ral network with PSO (PSO-NN). The outputs for the
Lena image are shown in Fig. 8.

These results clearly demonstrate that the QPSO algorithm
produced a good contour outline for edge detection in the hat,
face and mouth.

In Table 2, entropy is used to differentiate the efficiency
of these three algorithms. This is a statistical measure of
randomness that may be used to characterize the texture of
the input image and is calculated by

Entropy = —X'p;log(p;)

where p; is the probability of difference between two adja-
cent pixels, i.

The entropy value using QPSO is very low when compared
to that of BP-NN and PSO-NN (as seen in Table 3) indicat-
ing that the noise is removed and edges are better detected
with the additional information in the algorithm. Rule 68,
extracted by the QPSO algorithm, produces a fewer number
of edges than BP-NN and PSO-NN.

The authors Veni and Suresh (2015) used the ant colony
optimization (ACO) algorithm to extract features in face
images. In comparison, as is seen in Fig. 9, the QPSO algo-
rithm can optimally extract illumination invariant features
from face image as seen in how the eyes, nose and mouth
appear more accurate in the QPSO result. QPSO has good
detection effect on eyebrows, eyes, nose and mouth. It fairly

@ Springer

detects the edges with improved quality and captures pre-
cisely the most important features in the face.

3.3 Quantum PSO algorithm for image denoising
3.3.1 Image denoising

A very large field of digital image processing includes image
restoration which is a method of removal or reduction of
degradations that are incurred during the image capturing.
Degradation comes from blurring as well as noise due to the
electronic and photometric sources. Noise is an unwanted
signal that interferes with the original signal and degrades
the visual quality of digital image. The main sources of
noise in digital images are imperfect instruments, problem
with data acquisition process, interference natural phenom-
ena, transmission and compression. Image denoising forms
the preprocessing step in the field of photography, technol-
ogy and medical science, where somehow image has been
degraded and needs to be restored before further processing.
Image denoising is still a challenging problem for researchers
as image denoising causes blurring and introduces artifacts.
Different types of images inherit different types of noise and
different noise models are used to represent different noise
types. Denoising method tends to be problem specific and
depends on the type of image and noise model (Patil and
Jadhav 2013).

Solving reverse emergence with quantum PSO application to image processing

6931

Fig.6 Visual results of QPSO
and comparison. a Original
image; b Berkeley edge; ¢
Canny edge; d Sobel edge; e
Prewitt edge; f QPSO edge rule
112

Fig.7 Visual results of QPSO
and comparison. a Original
image; b Berkeley edge; ¢
Canny edge; d Sobel edge; e
Prewitt edge; f QPSO edge rule
112

@ Springer

6932

S.Djemame et al.

Table 1 Best fitness results for

4 images Image QPSO CANNY SOBEL
HD SSIM RMSE HD SSIM RMSE HD SSIM RMSE
Bird 1482 0.99933 0.194428 1968 0.99934 0.2240 1677 0.99944 0.2068
Woman 1322 0.9985 0.2482 3586 0.9716 0.2751 2136 0.9992 0.2413
Swan 3894 09994 0.1580 5476 0.9993 0.1874 4043 0.9994 0.1610
Coins 1575 0.9997 0.1450 2037 0.9995 0.1649 2030 0.9995 0.1646

The best values are highlighted in bold

(b)

Fig.8 Visual results of QPSO and comparison. a Original image; b edges using BP-NN; ¢ edges using PSO-NN; d edges using QPSO rule 68

Table2 Comparison of BP-NN, PSO-NN and QPSO edge detectors

Table 3 Best fitness results for 3 images

Edge detector Entropy Number of edges
BP-NN 1.2335 50625
PSO-NN 0.2892 50625
QPSO 0.2411 10502

The best values are highlighted in bold

3.3.2 Application of QPSO for image denoising

The QPSO algorithm for edge detection was modified to deal
with image denoising. Here, we present examples illustrating
the effectiveness of our proposed method. Binary images are
used to train the QPSO algorithm for the denoising task.

The original image is taken as the reference, and the
“noisy” image is obtained by adding “Salt and Pepper 0.05”
noise to this image. As before, many experiments are com-
pleted by varying the number of iterations and population
size. The parameter settings are the same as for edge detec-
tion algorithm with QPSO.

Figure 10 illustrates the results of applying QPSO on the
three images Cameraman, Pout and Coins, and a comparison
is made with the Median Filter.

From these results, we can see that QPSO allowed for the
extraction of rules which perform as good as the Median Fil-
ter. Rule 31 provides good results on the Cameraman image,
while rule 63 works well on the Pout and Coins images. Noise
is filtered successfully with each of these simple rules 31 and
63 that emerged from the algorithm. This suggests our pro-

@ Springer

Image QPSO Median filter

HD SSIM HD SSIM
Cameraman 367 0.9986 370 0.9986
Pout 300 0.9997 300 0.9997
Coins 252 0.9997 278 0.9999

The best values are highlighted in bold

posed approach has the ability to discover the appropriate
rules governing the dynamics of CA.

Table 3 shows the best fitness results for the three images
Cameraman, Pout and Coins. QPSO is executed for 10 runs
where the number of iterations is fixed at 50 and a popula-
tion size at 30. A comparison is performed with the Median
Filter, which is known to be one of the best noise removal
filters available. The fitness functions used here are SSIM
and Hamming distance (HD).

For the Pout image, we obtained the same values from
SSIM and Hamming distance, which suggests resulting
images from the Median Filter and rule 63 are very close.
For the Cameraman image, the values of SSIM are the same
for the Median Filter and rule 31, while the HD value shows
an improvement in the rule 31 result. For the Coins image,
the value of HD is better for the rule 31, while the result
of SSIM is better for the Median Filter, suggesting the two
results are close.

Solving reverse emergence with quantum PSO application to image processing 6933

Fig.9 Visual results of QPSO
and comparison. a Original
image; b Features using ACO; ¢
Features using QPSO rule 21

Fig. 10 Visual results of QPSO and comparison. a Original image; b Noisy image; ¢ Result of median filter; d QPSO result (rule 63 and rule 31)

4 Conclusion

Our goal is to develop a new and efficient solution to
solve the difficult problem of reverse emergence. It was cast
as an optimization problem and handled using a quantum
PSO algorithm for solving image processing tasks. Cellular
automata is used to model an image and then evolves from an
initial configuration (the original image) to final configura-
tion (the resulting image) after applying several rules, which
produce a desired processing task, either edge detection or
denoising. The solution of inverse emergence is equivalent

to finding or extracting the appropriate small subset of rules
from a large search space that accomplish the desired task.

QPSO presents many advantages compared to classical
PSO: parallelism in searching solutions within a large space,
the model uses only one iterative equation, and there is only
one parameter to tune. QPSO process reveals very suitable
for training a cellular automata in an evolutionary process to
identify the good rules which perform the desired tasks.

We demonstrated the validity and adequacy of the QPSO
algorithm to select the appropriate rules within a large search
space. Our iterative process allowed the extraction of sim-

@ Springer

6934

S.Djemame et al.

ple and efficient rules. Applied to different kinds of images,
the rules yielded acceptable results in comparison with edge
based image segmentation algorithms using the best filter-
ing operators, such as Canny, Sobel or Prewitt. Comparisons
were made with other approaches based on neural net-
works and ant colony optimization. QPSO revealed very
competitive, robust and performed better than the previous
algorithms.

Once the rules emerge (revealed by the QPSO algorithm),
we process them on images directly and obtain contours
or filtered images in minimal time. This suggests a power-
ful flexibility and key advantage of our proposed method.
We can explore additional interesting applications of this
work in the augmented reality domain, particularly for the
analysis of scenes, to restore missing data after variation
of shooting conditions (bad weather, poor lighting, etc), as
well as in medicine, digital angiography and scintigraphy
where the contrast medium has disappeared. For all of these
applications, we can first extract previously the best rules of
segmentation from a set of sample images (supervised seg-
mentation with learning) with which they may be used later
to segment new images that are considered worse than the
sample images.

For unsupervised segmentation (segmentation without
learning, which does not involve reference images), we have
to automatically find the best rule that provides the best
segmentation. For future work, we plan to study the autom-
atization of the rule choice in order to determine which rule
should be used for which kind of images.

This study represents a step toward the use of quantum
metaheuristics to overcome the obstacles of reverse emer-
gence.

For example, further work will focus on improving the
QPSO algorithm for solving reverse emergence by introduc-
ing a mutation operator and a Cauchy distribution to ensure
a better exploration of the search space and to increase the
global search ability. Furthermore, an interesting issue to
this work will be the use of generalized island models for
optimization. For example, combining several optimization
algorithms, such as GA, PSO and QPSO and processing in
parallel, may provide further improvements to the optimiza-
tion process.

Another interesting issue is testing larger neighborhoods
for the modeling cellular automata, for example, a 55 neigh-
borhood, and its impact on the optimization of search space.

Possible future research direction could be extended to
test QPSO with more complex images, such as color images.
This is still a challenging problem, since the search space
will drastically increase.

@ Springer

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Adorni G, Bergenti F, Cagnoni S (1998) A cellular-programming
approach to pattern classification. In: European conference on
genetic programming. Springer, New York, pp 142-150

Batouche M, Meshoul S, Al Hussaini A (2009) Image processing using
quantum computing and reverse emergence. Int J Nano Biomater
2:136-142

Batouche M, Meshoul S, Abbassene A (2006) Advances in applied
artificial intelligence. In: Chapter on solving edge detection by
emergence. Springer, Berlin, pp 800-808

Chavoya A, Duthen Y (2006) Evolving cellular automata for 2D form
generation. In: Proceedings of the ninth international conference
on computer graphics and artificial intelligence GECCO’06, Seat-
tle, pp 129-137

Clerc M, Kennedy J (2002) The particle swarm: explosion, stability and
convergence in a multi-dimensional complex space. IEEE Trans
Evolut Comput 6:58-73

Djemame S, Batouche M (2012) Combining cellular automata and par-
ticle swarm optimization for edge detection. Int J] Comput Appl
57(14):16-22

Ganguly N, Sikdar BK, Deutsch A, Canright G, Chaudhuri P (2003) A
survey on cellular automata. In: Technical report, Centre for high
performance computing, Dresden University of Technology

Kennedy J, Eberhart RC (1995) Particle Swarm Optimization. In: Pro-
ceedings of international conference on neural networks, Perth,
Australia, pp 1942-1948

Laboudi Z, Chikhi S (2009) Evolving cellular automata by parallel
quantum genetic algorithm. In: First international conference on
networked digital technologies, 2009. NDT’09. IEEE, pp 309-314

Li X, Yin M (2016) A particle swarm inspired cuckoo search algorithm
for real parameter optimization. Soft Comput 20(4):1389-1413

LiY, Xiang R, Jiao L, Liu R (2012) An improved cooperative quantum-
behaved particle swarm optimization. Soft Comput 16(6):1061-
1069

Mitchell M, Crutchfield JP, Das R, et al (1996) Evolving cellular
automata with genetic algorithms: a review of recent work. In:
Proceedings of the first international conference on evolutionary
computation and its applications (EvCA?96). Moscow

Naidu DL, Rao CS, Satapathy S (2015) A hybrid approach for image
edge detection using neural network and particle swarm optimiza-
tion. In: Advances in intelligent systems and computing. Springer,
New York

Patil J, Jadhav S (2013) A comparative study of image denoising tech-
niques. Int J Innov Res Sci Eng Technol 2(3):787-794

Rosin PA (2006) Training cellular automata for image processing. IEEE
Trans Image Process 15(7):2076-2087

Shi Y, Eberhart RC (1999) Empirical study of Particle Swarm Opti-
mization. In: Proceedings of congress evolutionary computation,
Washington, pp 1927-1930

Sipper M (1997) The evolution of parallel cellular machines: toward
evolware. Biosystems 42:29-43

Sun J, Fang W, Palade V, Wua X, Xu W (2011) Quantum-behaved par-
ticle swarm optimization with Gaussian distributed local attractor
point. Appl Math Comput 218:3763-3775

Solving reverse emergence with quantum PSO application to image processing 6935

SunJ, Fang W, Wu X, Palade V, Xu W (2012) Quantum-behaved particle
swarm optimization: analysis of individual particle behavior and
parameter selection. Evol Comput 20(3):349-393

Sun J, Feng B, Xu W (2004) Particle Swarm Optimization with particles
having quantum behavior. In: Proceedings of IEEE congress on
evolutionary computation, Portland, pp 325-331

Sun J, Wenbo X, Bin F (2005) Adaptive parameter control for Quantum-
behaved Particle Swarm Optimization on individual level. In:
Proceedings of IEEE conference on systems, man and cybernetics,
Hawaii, pp 3049-3054

Sun J, Xu W, Feng B (2004) A global search strategy of Quantum-
behaved Particle Swarm Optimization. In: Proceedings of IEEE
conference on cybernetics and intelligent systems, Singapore, pp
111-116

SunJ, Xu W, LiuJ (2005) Parameter selection of Quantum-behaved Par-
ticle Swarm Optimization. In: Advances in natural computation.
Springer, Berlin, pp 543-552

Van den Bergh E, Engelbrecht AP (2000) Cooperative learning in neural
networks using Particle Swarm Optimizers. South Afr Comput J
26:84-90

Veni SH Krishna, Suresh L Padma (2015) An analysis of various edge
detection techniques on illuminant variant images. In: Advances
in intelligent systems and computing, vol 325, Springer, Berlin

Wang P, Liu Y (2009) Network traffic prediction based on BP neural
network trained by improved QPSO. Appl Res Comput 26(1):299—
301

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans Image Process 13(4):600-612

Wang D, Tan D, Liu L (2017) Particle Swarm Optimization algorithm:
an overview. Soft Computing, pp 1-22

Wolfram S (1984) Universality and complexity in cellular automata,
Physica 10D. Elsevier, New York

Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

Zhang L, Xing Z (2010) Quantum-behaved Particle Swarm Optimiza-
tion for mixed-integer nonlinear programming. Comput Eng Appl
9:49-50

Zhang H, Ming L, Zhang Y, Long H (2009) Image color segmenta-
tion based on Quantum-behaved Particle Swarm Optimization data
clustering. Control Autom 25:304-305

Zouache D, Nouioua F, Moussaoui A (2016) Quantum-inspired firefly
algorithm with Particle Swarm Optimization for discrete optimiza-
tion problems. Soft Comput 20(7):2781-2799

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Solving reverse emergence with quantum PSO application to image processing
	Abstract
	1 Introduction and motivations
	2 Basic concepts
	2.1 Particle swarm optimization (PSO)
	2.2 Quantum-behaved PSO

	3 The proposed approach
	3.1 Problem statement
	3.1.1 Transition function rules
	3.1.2 Fitness functions

	3.2 Quantum PSO algorithm for edge detection
	3.2.1 Edge detection in image processing
	3.2.2 Application of QPSO for edge detection
	3.2.3 Computational complexity
	3.2.4 Experimental results

	3.3 Quantum PSO algorithm for image denoising
	3.3.1 Image denoising
	3.3.2 Application of QPSO for image denoising

	4 Conclusion
	References

