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Abstract
Titanium and its alloys possess numerous inherent qualities such as high corrosion resistance, temperature resistance, bio-
compatibility and high strength-to-weight ratio. These alloys are extensively used in widespread areas viz. spacecraft,
aerospace, marine, medical, oil and gas, chemical processing industries, etc. around the globe. In spite of the aforesaid
popularity, machining of titanium alloys is very costly and difficult due to their poor thermal conductivity and high chemical
affinity. Low thermal conductivity causes rapid tool wear owing to excessive machining zone temperature. Tool failure at its
pre-mature stage considerably curtails the surface quality of the end product. This situation necessitates an appropriate set
of machining variables so that one can achieve high productivity without compromising the quality. Keeping these facts in
mind, the present paper proposes fuzzy coupled with TOPSIS method to identify an optimal combination of process variables
during turning of commercially pure titanium. Spindle speed, feed and depth of cut were selected as three input parameters,
whereas surface roughness (Ra), cutting force (Fc) and flank wear (VBc) were the major responses. Experiments were per-
formed according to Taguchi’s L27 orthogonal array. Analysis of variance (ANOVA) test was performed to identify the most
significant machining parameter and to verify the potential application of the proposed methodology. The results indicated
that the fuzzy-TOPSIS method is capable of deal with both qualitative and quantitative criteria to reach at the best parametric
combination during turning operation.

Keywords ANOVA · Surface roughness · Cutting force · Flank wear · Fuzzy-TOPSIS

1 Introduction

Machining operation, particularly turning process, has been
the core of the production industry since the industrial
revolution (Rao 2006). It is most widely used in aircraft,
aerospace, automotive and medical industries. Good surface
finish, higher tool life and lower cutting forces are primarily
acknowledged as the basic manufacturing desires for turning
operation (Davim and Antonio 2001). It is also observed that
lower cutting force essentially results in an enhanced tool
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life and surface quality. These three responses are signified
as the leading quality attributes of a turning process. Lower
cutting force, good surface finish and appreciable tool per-
formance are crucial to achieve due to increased demand of
low-cost products along with virtuous dimensional accuracy.
The aforesaid objectives can be accomplished by adopting
an optimization technique or process modeling. In general,
turning operation comprises of different interactive process
variables which strongly affects the responses discussed
above. Therefore, modeling of these responses viz. surface
roughness (Ra), cutting force (Fc) and tool wear (VBc) is
quite difficult. On the other hand, several statistical, simu-
lation and experimental studies using design of experiment
(DOE)-based layout have been reported for the modeling of
afore-discussed turning responses while machining a wide
range of materials. Asiltürk and Neşeli (2012) determined
optimal parametric combination of process variables when
turningAISI 304 austenitic stainless steelwith coated carbide
inserts. Further, they extended the investigation by develop-
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ing a mathematical quadratic model for the estimation of
different surface roughness characteristics, i.e., arithmetic
mean roughness (Ra) and maximum peak-to-valley height
(Rz) using response surfacemethodology (RSM). The results
indicated that the proposed model was capable of producing
satisfactory results and can be implemented to other metal
machining operation. Lalwani et al. (2008) investigated the
effects of cutting variables on cutting forces and surface
roughness during turning of MDN 250 steel using coated
ceramic inserts. They concluded that the studied performance
measures largely affected by varied nature of cutting vari-
ables. In a different study conducted by Aouici et al. (2012),
optimal cutting condition was obtained to get minimum sur-
face roughness and cutting force while hard turning of AISI
H11 steel with cubic boron nitride (CBN) tools. They also
developed a mathematical model using RSM approach to
predict the aforesaid turning responses. The results indi-
cated that the estimated values were in good agreement with
experimentallymeasured values. Rao et al. (2013) also inves-
tigated the influence of various machining parameters on Ra

and Fc. In this study, feed rate was observed as the most
prominent machining variable affecting both the responses.
Hashmi et al. (2016) developed a quadratic model for the
prediction of surface roughness using response surface anal-
ysis method. The suggested model showed that the surface
quality of a turned part mainly depended on selected depth of
cut. On the contrary, feed rate and spindle speed were found
to be insignificant parameters. However, the observations
might be limited to the selected range of cutting variables
and cutting conditions. Tebassi et al. (2017) in their experi-
mental investigation proposed two distinct prediction model
for the estimation of surface roughness and cutting force
while turning of Inconel 718. They developed and compared
RSM-based quadratic model and artificial neural network
(ANN)-based model in terms of their prediction efficiency.
The results indicated that the ANN model was more precise
by 10.1 and 24.83% in predicting Fc and Ra, respectively,
than that of quadratic model.

It is evidently observed from the literature than an exten-
sive research work has already been dedicated on statistical
modeling of turning responses. However, the vague nature
of the cutting variables and turning responses were not
addressed adequately so far. This might be a reason behind
a complex and unclear solution of several optimization
problems dealing with multiple attributes in a real-time man-
ufacturing system. In this situation, fuzzy set theory plays a
key role in attaining themost suitable solution. Fuzzy linguis-
tic variables allow the conversion of verbal expression into
numerical quantities. In this way, the relationship between
process variables and output responses can be described
using fuzzy rules which consists of fuzzy linguistic vari-
ables rather than a complex mathematic model. Keeping all
the above-discussed points in mind, the present paper adopts

three input variables viz. cutting speed, feed and depth of
cut with three distinct levels (low, medium and high) to opti-
mize a turning process having multiple attributes like surface
roughness, cutting force and tool wear. Experiments were
performed according to Taguchi’s L27 orthogonal array. The
fuzzy control rules were developed for each of the aforesaid
attribute considering seven linguistic grades. An amalgama-
tion of fuzzy with TOPSIS is introduced to obtain an optimal
parametric setting during turning of CP-Ti grade II using
uncoated carbide inserts in dry cutting environment.

2 Materials andmethods

2.1 Design of experiment

Selection of an appropriate parametric combination has been
identified as a complex issue in real-time manufacturing
systems due to the interaction effects among various cut-
ting variables. In this situation, optimization method plays
key role in order to confirm the quality of the product in
combination with production efficiency. An orthogonal array
design (OAD) proposed by Taguchi has been widely imple-
mented and suggested bymany researchers around the globe.
It helps in optimizing the quality characteristics through
offering optimal parametric combinations (Huh et al. 2003;
Anastasiou 2002; Dhavlikar et al. 2003; Kim et al. 2003).
Moreover, Taguchi’s OA investigates the influence of input
variables on the specified performance measures in order
to attain their best or optimal settings. In addition to that
these arrays provide the best possible solution with reduced
number of experimental trials without compromising the
quality.

In the present investigation, three controllable factors, i.e.,
cutting speed, feed rate and depth of cut with three varied
levels were selected to construct an orthogonal array as listed
in Table 1.

2.2 Workpiece and cutting tool material

The work material selected in the present investigation was a
cylindrical bar of commercially pure titanium (CP-Ti) grade
II. The chemical composition of this material is 0.08% C,
0.03% N, 0.25% O, 0.30% Fe, 0.015% H and 99.3% Ti.

Table 1 Domain of the present investigation

S. no. Parameter Unit Level

Low Medium High

1. Cutting speed (v) m/min 35 70 105

2. Feed rate (f ) mm/rev 0.05 0.10 0.15

3. Depth of cut (d) mm 0.1 0.2 0.3
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Fig. 1 Photographic view of workpiece, cutting insert and tool holder

Square-shaped carbide inserts were used during machining
of the work part. The selected cutting tools were manufac-
tured byKennametal having ISOdesignation: SNMG120408
(Grade:K313).These insertswere rigidlymountedon a right-
handed tool holder: PSBNR 2020K12. Figure 1 depicts the

photographic view of the workpiece, tool holder and cutting
tool material.

2.3 Experimental procedure

A round bar of CP-Ti grade II having diameter 50 mm and
length 500 mm was turned on a heavy duty lathe manufac-
tured by Hindustan Machine Tools (HMT), India. A series
of experiments were conducted as per Taguchi’s 3-factor-
3-level L27 orthogonal array (OA). The machining length
for each trial was fixed as 250 mm. Three distinct turning
responses viz. cutting force (Fc), surface roughness (Ra) and
flank wear (VBc) were investigated after each experimen-
tal run. The schematic view of the current investigation is
shown in Fig. 2. Themain cutting forcewasmeasured using a
three-dimensional piezoelectric dynamometer manufactured
by Kistler Instrument Corporation. In order to confirm the
measurement accuracy, the force value was noted at three

Fig. 2 Schematic view of the
present investigation
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Table 2 Experimental results Run Input parameters Responses

v (m/min) f (mm/rev) d (mm) Fc (N) VBc (mm) Ra (µm)

1 35 0.05 0.1 64.307 0.081 0.448

2 35 0.05 0.2 112.433 0.099 0.658

3 35 0.05 0.3 96.482 0.222 0.886

4 35 0.10 0.1 132.488 0.103 0.728

5 35 0.10 0.2 107.529 0.086 0.628

6 35 0.10 0.3 75.353 0.231 0.930

7 35 0.15 0.1 123.480 0.098 1.303

8 35 0.15 0.2 75.103 0.098 1.028

9 35 0.15 0.3 93.527 0.165 1.375

10 70 0.05 0.1 73.654 0.193 0.648

11 70 0.05 0.2 113.966 0.240 0.673

12 70 0.05 0.3 98.077 0.224 0.761

13 70 0.10 0.1 135.287 0.156 0.982

14 70 0.10 0.2 109.733 0.092 0.950

15 70 0.10 0.3 65.606 0.229 0.846

16 70 0.15 0.1 126.140 0.145 1.030

17 70 0.15 0.2 76.727 0.110 1.428

18 70 0.15 0.3 94.791 0.195 1.154

19 105 0.05 0.1 74.663 0.109 0.770

20 105 0.05 0.2 115.807 0.123 0.835

21 105 0.05 0.3 99.532 0.281 0.828

22 105 0.10 0.1 136.277 0.141 1.129

23 105 0.10 0.2 110.800 0.216 0.771

24 105 0.10 0.3 67.400 0.230 0.547

25 105 0.15 0.1 126.932 0.224 0.999

26 105 0.15 0.2 81.371 0.238 1.073

27 105 0.15 0.3 96.908 0.252 0.942

different locations along the machining length and the aver-
age valuewas considered as finalFc value.On the other hand,
a roughness testing device namely Taylor Hobson (Model:
Surtronic 3+)was used tomeasure the value of arithmetic sur-
face roughness of the machined part. Ra measurements were
taken with a cut-off length and sampling length of 0.8 mm
and 5 mm, respectively, and were recorded at eight different
locations (roughly 45° apart) along the circumference of the
turned part. Flank wear of the selected inserts was measured
and examined under a stereo zoommicroscopemanufactured
by Carl Zeiss (Model: Axio Cam ERc 5 s). Table 2 shows the
domain adopted during this investigation along with the cor-
responding outcomes.

2.4 Fuzzy set theory: fuzzy interface system
and fuzzy numbers

Fuzzy interface system (FIS) has been recognized as an effi-
cient tool to deal with both numerical data and linguistic

knowledge, simultaneously. In fact, FIS is an effective rou-
tine in which the mapping from a given input to an output is
performed with the help of certain fuzzy logics. In general,
a fuzzy inference system comprises of four distinct compo-
nents namely fuzzifier, inference engine, knowledge base and
defuzzifier. The membership functions are primarily used by
the fuzzifier to convert the crisp input to a linguistic vari-
able, stored in the fuzzy knowledge base. Secondly, these
fuzzy inputs are further converted to fuzzy output by per-
forming fuzzy reasoning into the inference engine. Finally,
the defuzzifier converts these fuzzy outputs attained from
the aforesaid inference system, to a crisp value, utilizing
the membership functions analogous to the ones used by the
fuzzifier. Figure 3 depicts the schematic viewof a fuzzy infer-
ence system.

In addition, selection of an appropriate membership func-
tion is of paramount importance in the fuzzification process.
As alreadydescribed in the aboveparagraph that fuzzification
is a process of converting crisp values into fuzzy numbers.
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Fig. 3 Schematic view of fuzzy interface system

The conversion of fuzzy numbers is denoted with the help
of membership function. A membership function is a curve
which describes themembership value (which lies between 0
and 1) of each point,mapped in the input space. The aforesaid
membership functions are usually constructed using plenty
of basic functions viz. linear, quadratic and cubic polyno-
mial curves, sigmoid curve, Gaussian distribution function,
etc. On the other hand, the simplest membership function is
constructed using straight lines. The triangular membership
function is identified as the modest among all and portrayed
by a center-based triplet tactic. In this approach, the triangles
are formed by keeping an equal allowance between the low-
est and highest points attached to the adjacent center. In this
way, each input value belongs to not more than two fuzzy
sets, and the summation of their membership degrees always
remains equal to one. Thus, the above-discussed approach
is also categorized as a simple, easily understandable, time-
saving along with very less computational work, which in
turn makes it an appropriate technique for wide application
in real-time manufacturing system. In addition to that it has
also been recognized as an efficient and capable approach
for solving various multi-criteria decision-making problems.
Figure 4 exemplifies a triangular fuzzymembership function.
Some basic definitions of fuzzy numbers and fuzzy sets are
described below.

Definition 1 A fuzzy set Ã in a universe of discourse X is
characterized by a membership function µ Ã(x) which is
termed as the grade of membership of x in Ã.

Definition 2 The triangular fuzzy numbers (TFNs) can be
represented as Ã= (l, m, n), and the membership function of
the fuzzy number Ã can be described as below (Eq. 1):

Fig. 4 A triangular fuzzy membership function

µ Ã(x) �

⎧
⎪⎪⎨

⎪⎪⎩

0 x < 1,
x−l
m−l l ≤ x ≤ m,
n−x
n−m m ≤ x ≤ n,
0 x > n

(1)

Definition 3 Further, the addition, subtraction and division
of any two triangular fuzzy numbers are also triangular
fuzzy numbers. Let two triangular fuzzy numbers Ã1 �
(l1,m1, n1) and Ã2 � (l2,m2, n2), then the arithmetic oper-
ation between these two TFNs are defined as follows:

(1) Addition of fuzzy numbers

Ã1(+) Ã2 � (l1 + l2, m1 + m2, n1 + n2) (2)

(2) Subtraction of fuzzy numbers

Ã1(−) Ã2 � (l1 − l2, m1 − m2, n1 − n2) (3)
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(3) Multiplication of fuzzy numbers

Ã1(×) Ã2 � (l1l2, m1m2, n1n2) (4)

(4) Division of fuzzy numbers

Ã1(/) Ã2 � (l1/l2, m1/m2, n1/n2) (5)

(5) Multiplication by a scalar number r

Ã1(×)r � (l1r , m1r , n1r ) (6)

Definition 4 Let a triangular fuzzy number Ã � (l,m, n),
then the defuzzified valuem( Ã) can be evaluated by the equa-
tion given below (Eq. 7):

m( Ã) � l + m + n

3
(7)

Definition 5 Let two triangular fuzzy numbers are Ã1 �
(l1,m1, n1) and Ã2 � (l2,m2, n2), then the distance
between these two TFNs can be computed as follows:

d( Ã1, Ã2) �
√
1

3
(l1 − l2)2 + (m1 − m2)2 + (n1 − n2)2 (8)

2.5 Fuzzy-TOPSIS method

Fuzzy embedded with a multi-criteria decision-making
(MCDM) technique has attracted many researchers toward
decision science community. The effectiveness of fuzzy
interface system (FIS) has also helped in the development of
several MCDM-based techniques. Technique for order per-
formance by similarity to ideal solution (TOPSIS) has been
identified as one of the most appropriate approaches to deal
with complexMCDM-based problems. TOPSISmethod was
initially introduced by Tzeng and Huang (2011) and is based
on the assumption that the selected alternative should be the
nearest to the positive ideal solution and farthest from the
negative ideal solution (Tzeng and Huang 2011; Chen and
Hwang 1992). In addition to that the concepts, computations
and mathematical form of this method are simple and easily
understandable (Byun and Lee 2005; Yang and Hung 2007).
Thus, in the current investigation an amalgamation of fuzzy-
TOPSIS is reported to exhibit the application potential of the
approach in solving multi-attribute problems like turning.
The proposed methodology utilizes a set of linguistic data
to express the opinions of a decision maker. These linguistic
data sets were further exploited for the construction of fuzzy
decision matrix as well as normalized fuzzy decision matrix.
In the next step, fuzzy positive and fuzzy negative ideal solu-
tions were calculated by adopting a suitable weightage for

each output criteria. Finally, the distances of each alterna-
tive from the fuzzy positive and fuzzy negative ideal solution
were calculated and the preference order of the alternatives
is obtained (Zimmermann 2011). The steps involved in the
proposed methodology are summarized below (Gok 2015;
Khan and Maity 2016; Khan et al. 2017):

Step 1 Formation of a fuzzy decision matrix in which each
row represents one alternative and each column represents
one attribute.

D̃ �

A1

A2

.

Ai

.

Am

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃11 x̃12 . x̃1 j x̃1n
x̃21 x̃22 . x̃2 j x̃2n
. . . . .

x̃i1 x̃i2 . x̃i j .

. . . . .

x̃m1 x̃m2 . x̃m j x̃mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where each horizontal row (Ai) denotes the possible alterna-
tives (i=1, 2,….,m) and each column represents the attributes
(j=1, 2,…., n). Similarly, the performance of alternative Ai

and attribute Xj is represented by xij.
Step 2 Obtain the normalized fuzzy decision matrix R̃.

This can be represented as:

R̃ � [
r̃i j

]

m×n (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

(10)

for the beneficial criteria, the value of r̃i j can be calculated
as

r̃i j �
(
li j
n+j

,
mi j

n+j
,
ni j
n+j

)

(11)

Similarly, the normalized value r̃i j for a non-beneficial cri-
teria can be calculated as

r̃i j �
(
l−j
ni j

,
l−j
mi j

,
l−j
li j

)

(12)

where n+j � maxni j and l
−
j � minli j .

Step 3 Identify the weighted normalized fuzzy decision
matrix Ṽ . This can be done by considering a user-defined
weight for each criterion and multiplying them with the cor-
responding normalized fuzzy value.

Ṽ � [
ṽi j

]

m×n (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

(13)

ṽi j � r̃i j × w̃ j (14)
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Step 4 Calculate the best fuzzy (positive ideal) and
worst fuzzy (negative ideal) solution using Eqs. (15) and
(16).

AB � { (
maxñi j | j ∈ J

)
;

(
minñi j | j ∈ J ,

) }
Or

AB � {
ṽ+1 , ṽ

+
2 , . . . . . . . . . , ṽ

+
n

}
(15)

AW � {(
minñi j | j ∈ J

)
;

(
maxñi j | j ∈ J ,

)}
Or

AW � {
ṽ−
1 , ṽ

−
2 , . . . . . . . . . , ṽ

−
n

}
(16)

where ṽ+j � (1, 1, 1), ṽ−
j � (0, 0, 0); j=1, 2,…., n, J is the

set of positive attributes and J , is the set of negative attributes.
Step 5 Compute the separation measure corresponding to

each alternative using Eqs. (17) and (18)

SBi �
n∑

j�1

d
(
ṽi j − ṽ+j

)
i � 1, 2, . . . ,m; j � 1, 2, . . . , n

(17)

SWi �
n∑

j�1

d
(
ṽi j − ṽ−

j

)
i � 1, 2, . . . , m; j � 1, 2, . . . , n

(18)

where SB
i and SWi are the distances of each alternative form

the best and worst fuzzy solution, respectively.
Step 6 Obtain the relative closeness to the ideal solution

using Eq. (19)

C+
i � SWi

SB
i + SWi

i � 1, 2, . . . ,m; 0 ≤ C+
i ≤ 1 (19)

Step 7 Prepare a set of alternative by indicating the pref-
erence order according to the value of relative closeness in
descending order. An alternative with maximum C+

i is the
most preferred and vice versa.

3 Results and discussion

3.1 The fuzzy-TOPSIS analysis

In the present study, fuzzy technique for order performance
by similarity to ideal solution (fuzzy-TOPSIS) method was
employed to attain the most appropriate parametric setting
with an aim to achieve improved productivity without com-
promising the quality. The major attention was given to
minimize surface roughness, cutting force and tool wear
during machining of CP-Ti grade II using uncoated carbide
inserts. It is quite difficult to recommend the best paramet-
ric combination while turning the work material, due to
the interactive effects between process variables and vague
information about the performancemeasures. The aforemen-
tioned performancemeasures are designated as themost vital

Table 3 Linguistic variables used for each criterion

Linguistic variable Triangular fuzzy numbers
(TFNs)

Very very low (VVL) (0, 0, 0.1)

Very low (VL) (0, 0.1, 0.3)

Low (L) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

High (H) (0.5, 0.7, 0.9)

Very high (VH) (0.7, 0.9, 1.0)

Very very high (VVH) (0.9, 1.0, 1.0)

Table 4 Relative weights of each criterion

Criteria Decision maker Fuzzy numbers

Surface roughness
(Ra)

VH (0.7, 0.9, 1.0)

Cutting force (Fc) VH (0.7, 0.9, 1.0)

Tool wear (VBc) VVH (0.9, 1.0, 1.0)

Table 5 Linguistic variables used for each alternative

Linguistic variable Triangular fuzzy numbers
(TFNs)

Very very poor (VVP) (0, 0, 1)

Very poor (VP) (0, 1, 3)

Poor (P) (1, 3, 5)

Fair (F) (3, 5, 7)

Good (G) (5, 7, 9)

Very good (VG) (7, 9, 10)

Very very good (VVG) (9, 10, 10)

qualitative parameters of turning operation which strongly
influences the cost and productivity. In such situations, the
decision maker uses linguistic terms viz. poor, good, very
good, excellent, etc., to assess aforesaid quality measures
in a real-time manufacturing system. In addition to that,
the relative weights of various performance measures are
also often described with the help of such linguistic val-
ues.

Thus, each alternative experiment was initially converted
into the linguistic variables as listed in Table 3. Thiswas done
to identify the relative weights of all the reported criterion,
i.e., Ra, Fc and VBc, respectively (Table 4).

In the next step, an assessment was performed of all the
alternatives according to the linguistic variables shown in
Table 5. Seven different linguistic variables such as very
very poor, very poor, good, very good, very very good were
used. The results of the assessment process are portrayed in
Table 6.
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Table 6 Results of the
assessment

Alternative Responses Fuzzy linguistic variables

Fc (N) VBc (mm) Ra (µm) Fc VBc Ra

1 64.307 0.081 0.448 VVG VVG VVG

2 112.433 0.099 0.658 P VVG VG

3 96.482 0.222 0.886 F P F

4 132.488 0.103 0.728 VVP VVG VG

5 107.529 0.086 0.628 P VVG VG

6 75.353 0.231 0.930 VG VP F

7 123.480 0.098 1.303 VP VVG VVP

8 75.103 0.098 1.028 VG VVG P

9 93.527 0.165 1.375 G G VVP

10 73.654 0.193 0.648 VVG F VG

11 113.966 0.240 0.673 P VP VG

12 98.077 0.224 0.761 F P G

13 135.287 0.156 0.982 VVP G F

14 109.733 0.092 0.950 P VVG F

15 65.606 0.229 0.846 VVG VP G

16 126.140 0.145 1.030 VVP G P

17 76.727 0.110 1.428 VG VG VVP

18 94.791 0.195 1.154 F F VP

19 74.663 0.109 0.770 VG VG G

20 115.807 0.123 0.835 VP VG G

21 99.532 0.281 0.828 F VVP G

22 136.277 0.141 1.129 VVP G P

23 110.800 0.216 0.771 P P G

24 67.400 0.230 0.547 VVG VP VVG

25 126.932 0.224 0.999 VVP VP F

26 81.371 0.238 1.073 VG VP P

27 96.908 0.252 0.942 F VVP F

Further, these assessment results were used to construct
the fuzzy decision matrix by converting them into an appro-
priate fuzzy triangular number. Table 7 depicts the fuzzy
decision matrix achieved after the aforesaid conversion pro-
cess.

Fuzzy decision matrix, as illustrated in Table 7, was
normalized using Eqs. (2–4) and the results are listed in
Table 8. In the next step, the relevant weights of every per-
formance criterion were multiplied with their corresponding
values to obtain weighted normalized fuzzy decision matrix
(Table 9).

The separation measures were calculated using
Eqs. (9–10). These separation measures, i.e., SB

i and
SWi represent the distance of each alternative from fuzzy
positive ideal solution (AB) and fuzzy negative ideal solution
(AW ), respectively. The separation matrix consisting of
separation measure of each of the alternative experiment
is shown in Table 10. Afterward, the relative closeness

was evaluated using Eq. (11). Finally, preference ranking
was assigned to each alternative by arranging the C+

i
value in descending order. From the aforesaid table, it can
be visualized that, trial number 1 is the best alternative
to attain minimum surface roughness, cutting force and
tool wear. On the contrary, trial number 25 can be said
as the worst alternative among 27 selected alternatives
of this investigation. Thus, the lowest value of cutting
speed (35 m/min), feed rate (0.05 mm/rev) and depth
of cut (0.1 mm) offer the best parametric combination
according to the proposed fuzzy-TOPSIS method. How-
ever, this might be limited to the studied range of cutting
parameters.

3.2 Analysis of variance (ANOVA)

A statistical test also known as analysis of variance was
conducted to identify which cutting variables were signif-
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Table 7 Fuzzy decision matrix

Alternative Responses

Fc VBc Ra

1 9, 10, 10 9, 10, 10 9, 10, 10

2 1, 3, 5 9, 10, 10 7, 9, 10

3 3, 5, 7 1, 3, 5 3, 5, 7

4 0, 0, 1 9, 10, 10 7, 9, 10

5 1, 3, 5 9, 10, 10 7, 9, 10

6 7, 9, 10 0, 1, 3 3, 5, 7

7 0, 1, 3 9, 10, 10 0, 0, 1

8 7, 9, 10 9, 10, 10 1, 3, 5

9 5, 7, 9 5, 7, 9 0, 0, 1

10 9, 10, 10 3, 5, 7 7, 9, 10

11 1, 3, 5 0, 1, 3 7, 9, 10

12 3, 5, 7 1, 3, 5 5, 7, 9

13 0, 0, 1 5, 7, 9 3, 5, 7

14 1, 3, 5 9, 10, 10 3, 5, 7

15 9, 10, 10 0, 1, 3 5, 7, 9

16 0, 0, 1 5, 7, 9 1, 3, 5

17 7, 9, 10 7, 9, 10 0, 0, 1

18 3, 5, 7 3, 5, 7 0, 1, 3

19 7, 9, 10 7, 9, 10 5, 7, 9

20 0, 1, 3 7, 9, 10 5, 7, 9

21 3, 5, 7 0, 0, 1 5, 7, 9

22 0, 0, 1 5, 7, 9 1, 3, 5

23 1, 3, 5 1, 3, 5 5, 7, 9

24 9, 10, 10 0, 1, 3 9, 10, 10

25 0, 0, 1 0, 1, 3 3, 5, 7

26 7, 9, 10 0, 1, 3 1, 3, 5

27 3, 5, 7 0, 0, 1 3, 5, 7

icantly affecting the performance characteristics. The test
was performed for a significance level of 95%. Table 11
describes the P values (Probability of significance) acquired
during the aforesaid test for all cutting variables. In gen-
eral, the model is said to be statistically significant, if the
P value of a term seems≤0.05 (for a significance level
of 95%). From the ANOVA table, it is evident that depth
of cut is the most influencing cutting variable on cutting
force and tool wear, contributing 17.48 and 40.89%, respec-
tively. However, the combined effect of feed rate and depth
of cut was identified as the most prominent factor affect-
ing the main cutting force with a percentage contribution of
77.77%. Similarly, feed rate was observed as the most effec-
tive machining parameter for attaining good surface finish
due to its greater contribution (56.74%) in comparison with
the other two factors, i.e., cutting speed and depth of cut. The
ANOVA test was further extended to examine which cut-
ting parameters were significantly influencing the multiple

Table 8 Normalized fuzzy decision matrix

Alternative Responses

Fc VBc Ra

1 0.9, 1.0, 1.0 0.9, 1.0, 1.0 0.9, 1.0, 1.0

2 0.1, 0.3, 0.5 0.9, 1.0, 1.0 0.7, 0.9, 1.0

3 0.3, 0.5, 0.7 0.1, 0.3, 0.5 0.3, 0.5, 0.7

4 0, 0, 0.1 0.9, 1.0, 1.0 0.7, 0.9, 1.0

5 0.1, 0.3, 0.5 0.9, 1.0, 1.0 0.7, 0.9, 1.0

6 0.7, 0.9, 1.0 0, 0.1, 0.3 0.3, 0.5, 0.7

7 0, 0.1, 0.3 0.9, 1.0, 1.0 0, 0, 0.1

8 0.7, 0.9, 1.0 0.9, 1.0, 1.0 0.1, 0.3,0.5

9 0.5, 0.7, 0.9 0.5, 0.7, 0.9 0, 0, 0.1

10 0.9, 1.0, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0

11 0.1, 0.3, 0.5 0, 0.1, 0.3 0.7, 0.9, 1.0

12 0.3, 0.5, 0.7 0.1, 0.3, 0.5 0.5, 0.7, 0.9

13 0, 0, 0.1 0.5, 0.7, 0.9 0.3, 0.5, 0.7

14 0.1, 0.3, 0.5 0.9, 1.0, 1.0 0.3, 0.5, 0.7

15 0.9, 1.0, 1.0 0, 0.1, 0.3 0.5, 0.7, 0.9

16 0, 0, 0.1 0.5, 0.7, 0.9 0.1, 0.3, 0.5

17 0.7, 0.9, 1.0 0.7, 0.9, 1.0 0, 0, 0.1

18 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0, 0.1, 0.3

19 0.7, 0.9, 1.0 0.7, 0.9, 1.0 0.5, 0.7, 0.9

20 0, 0.1, 0.3 0.7, 0.9, 1.0 0.5, 0.7, 0.9

21 0.3, 0.5, 0.7 0, 0, 0.1 0.5, 0.7, 0.9

22 0, 0, 0.1 0.5, 0.7, 0.9 0.1, 0.3, 0.5

23 0.1, 0.3, 0.5 0.1, 0.3, 0.5 0.5, 0.7, 0.9

24 0.9, 1.0, 1.0 0, 0.1, 0.3 0.9, 1.0, 1.0

25 0, 0, 0.1 0, 0.1, 0.3 0.3, 0.5, 0.7

26 0.7, 0.9, 1.0 0, 0.1, 0.3 0.1, 0.3, 0.5

27 0.3, 0.5, 0.7 0, 0, 0.1 0.3, 0.5, 0.7

performance measure, i.e., relative closeness value. Results
of test (Table 11) indicate that feed rate is the most promi-
nent factor followed by depth of cut and cutting speed. On
the other hand, interactive effect of feed rate and depth of
cut (f*d) was noticed to be more effective when compared
to individual factor (v, f, and d) counterpart. Furthermore,
high value of determination coefficient (R2) also explains
the goodness of fit for the model at selected confidence
level.

4 Conclusions

The present paper aimed at investigating the feasibility
of fuzzy embedded TOPSIS method in attaining an opti-
mal parametric combination while turning CP-Ti grade II
using uncoated carbide inserts in dry cutting environment.
Three distinct qualitative machinability aspects viz. cut-
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Table 9 Weighted normalized fuzzy decision matrix

Alternative Responses

Fc VBc Ra

1 0.63, 0.9, 1.0 0.81, 1.0, 1.0 0.63, 0.9, 1.0

2 0.7, 0.27, 0.5 0.81, 1.0, 1.0 0.49, 0.81, 1.0

3 0.21, 0.45, 0.7 0.9, 0.3, 0.5 0.21, 0.45, 0.7

4 0, 0, 0.1 0.81, 1.0, 1.0 0.49, 0.81, 1.0

5 0.7, 0.27, 0.5 0.81, 1.0, 1.0 0.49, 0.81, 1.0

6 0.49, 0.81, 1.0 0, 0.1, 0.3 0.21, 0.45, 0.7

7 0, 0.9, 0.3 0.81, 1.0, 1.0 0, 0, 0.1

8 0.49, 0.81, 1.0 0.81, 1.0, 1.0 0.7, 0.27,0.5

9 0.35, 0.63, 0.9 0.45, 0.7, 0.9 0, 0, 0.1

10 0.63, 0.9, 1.0 0.27, 0.5, 0.7 0.49, 0.81, 1.0

11 0.7, 0.27, 0.5 0, 0.1, 0.3 0.49, 0.81, 1.0

12 0.21, 0.45, 0.7 0.9, 0.3, 0.5 0.35, 0.63, 0.9

13 0, 0, 0.1 0.45, 0.7, 0.9 0.21, 0.45, 0.7

14 0.7, 0.27, 0.5 0.81, 1.0, 1.0 0.21, 0.45, 0.7

15 0.63, 0.9, 1.0 0, 0.1, 0.3 0.35, 0.63, 0.9

16 0, 0, 0.1 0.45, 0.7, 0.9 0.7, 0.27, 0.5

17 0.49, 0.81, 1.0 0.63, 0.9, 1.0 0, 0, 0.1

18 0.21, 0.45, 0.7 0.27, 0.5, 0.7 0, 0.9, 0.3

19 0.49, 0.81, 1.0 0.63, 0.9, 1.0 0.35, 0.63, 0.9

20 0, 0.9, 0.3 0.63, 0.9, 1.0 0.35, 0.63, 0.9

21 0.21, 0.45, 0.7 0, 0, 0.1 0.35, 0.63, 0.9

22 0, 0, 0.1 0.45, 0.7, 0.9 0.7, 0.27, 0.5

23 0.7, 0.27, 0.5 0.9, 0.3, 0.5 0.35, 0.63, 0.9

24 0.63, 0.9, 1.0 0, 0.1, 0.3 0.63, 0.9, 1.0

25 0, 0, 0.1 0, 0.1, 0.3 0.21, 0.45, 0.7

26 0.49, 0.81, 1.0 0, 0.1, 0.3 0.7, 0.27, 0.5

27 0.21, 0.45, 0.7 0, 0, 0.1 0.21, 0.45, 0.7

ting force, tool wear and surface roughness were the major
attention. The following conclusions may be drawn after
successful completion of afore-discussed machining oper-
ation.

1. ANOVA test was applied to Fc, Ra, VBc and C+
i , to

discover the individual and interaction effects of cutting
variables. The results of the test indicated that depth of
cut was the most prominent individual factor affecting
Fc and VBc, whereas feed rate was found to be a signifi-
cant factor affecting Ra andC+

i . However, the interaction
effect of feed and depth of cut (f*d) was observed more
significant than that of any other individual factor for Fc

and C+
i .

2. The optimal combination of machining parameters was
perceived at cutting speed of 35 m/min, feed rate of
0.05 mm/rev and depth of cut of 0.1 mm, which appeared
in trial number 1. Thus, the above combination offered

Table 10 Separation matrix and relative closeness

Alternative SB
i SWi C+

i Remarks

1 0.552 2.656 0.828 Best alter-
native

2 0.963 2.257 0.701

3 1.664 1.610 0.492

4 1.392 1.794 0.563

5 0.963 2.257 0.701

6 1.772 1.473 0.454

7 1.785 1.546 0.464

8 0.963 2.257 0.701

9 1.770 1.431 0.447

10 1.075 2.173 0.669

11 1.729 1.498 0.464

12 1.518 1.780 0.540

13 1.916 1.261 0.397

14 1.231 1.957 0.614

15 1.533 1.706 0.527

16 1.874 1.286 0.407

17 1.503 1.710 0.532

18 1.829 1.564 0.461

19 0.971 2.318 0.705

20 1.364 2.071 0.603

21 1.986 1.219 0.380

22 1.874 1.286 0.407

23 1.475 1.805 0.550

24 1.318 1.898 0.590

25 2.426 0.736 0.233 Worst alter-
native

26 1.729 1.498 0.464

27 2.132 1.049 0.330

minimum Fc, Ra and VBc according to the proposed
methodology. However, this might be limited to the stud-
ied range of machining parameters.

3. The proposed methodology, i.e., fuzzy coupled with
TOPSIS approach, was found to be effective, modest and
certainly comprehensible to solve the problems having
multiple criteria.

4. The determination coefficients during the statistical anal-
ysis were acquired as 0.99, 0.87, 0.91 and 0.93 for Fc,
VBc, Ra and C+

i , respectively. Higher values of the coef-
ficients (i.e., close to unity) indicated the fitness for good
of the suggested model.

5. The combination of fuzzy-TOPSIS was found to be an
efficient and satisfactory effort in achieving an optimal
parametric setting within a specified cutting conditions.
This may be useful to resolve other MCDM-based prob-
lems associated with different academic and industrial
sectors.
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Table 11 Results of ANOVA
test

Source DOF SS MS F value P value Contribution
(%)

Fc

v 2 46.8 23.39 4.36 0.050 0.34

f 2 465.6 232.82 43.42 0.000 3.44

d 2 2359.9 1179.95 220.05 0.000 17.48

v*f 4 36.9 9.23 1.72 0.238 0.27

v*d 4 49.6 12.41 2.31 0.145 0.36

f*d 4 10,500.0 2625.00 489.55 0.000 77.77

Error 8 42.9 5.36 0.32

Total 26 13,501.8 R2 �99.7% 100.00

VBc

v 2 0.0225 0.0113 6.55 0.021 21.80

f 2 0.0004 0.0002 0.13 0.884 0.39

d 2 0.0422 0.0211 12.24 0.004 40.89

v*f 4 0.0155 0.0038 2.25 0.153 15.02

v*d 4 0.0047 0.0011 0.69 0.621 4.55

f*d 4 0.0040 0.0010 0.58 0.684 3.88

Error 8 0.0138 0.0017 13.37

Total 26 0.1032 R2 �86.9% 100.00

Ra

v 2 0.021 0.0107 0.60 0.572 1.36

f 2 0.8738 0.4369 24.36 0.000 56.74

d 2 0.0039 0.0019 0.11 0.899 0.25

v*f 4 0.1504 0.0376 2.10 0.173 9.77

v*d 4 0.2259 0.0564 3.15 0.047 14.67

f*d 4 0.1211 0.0303 1.69 0.245 7.86

Error 8 0.1434 0.0179 9.31

Total 26 1.5401 R2 �90.7%

C+
i

v 2 0.0687 0.0344 8.71 0.010 14.48

f 2 0.1008 0.0504 12.78 0.003 21.25

d 2 0.0691 0.0346 8.76 0.010 14.57

v*f 4 0.0224 0.0056 1.42 0.311 4.72

v*d 4 0.0402 0.01006 2.55 0.121 8.47

f*d 4 0.1415 0.0354 8.97 0.005 29.83

Error 8 0.0316 0.0039 6.66

Total 26 0.4744 R2 �93.3% 100
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