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Abstract
In the literature, there are two different approaches to define entropy of Atanassov intuitionistic fuzzy sets (AIFS, for short).
The first approach, given by Szmidt and Kacprzyk, measures how far is an AIFS from its closest crisp set, while the second
approach, given byBurrillo andBustince, measures how far is anAIFS from its closest fuzzy set. On the other hand, divergence
measures are functions that measure how different two AIFSs are. Our work generalizes both types of entropies using local
measures of divergence. This results in at least two benefits: depending on the application, one may choose from a wide
variety of entropy measures and the local nature provides a natural way of parallel computation of entropy, which is important
for large data sets. In this context, we provide the necessary and sufficient conditions for defining entropy measures under
both frameworks using divergence measures for AIFS. We show that the usual examples of entropy measures can be obtained
as particular cases of our more general framework. Also, we investigate the connection between knowledge measures and
divergence measures. Finally, we apply our results in a multi-attribute decision-making problem to obtain the weights of the
experts.

Keywords Atanassov intuitionistic fuzzy sets · Divergence measures · Entropy

1 Introduction

Fuzzy sets were introduced by Zadeh (1965) to model situa-
tions where the available information is vague or incomplete.
A fuzzy set is characterized by amembership function,which
indicates the degree to which an element belongs to the set or
satisfies the property described by the fuzzy set. The theory
of fuzzy sets has been widely studied both from the theoret-
ical and applied points of view (see Dubois and Prade 2000;
Kacprzyk andPedrycz 2015;Zimmermann2001, amongoth-
ers).
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Over the years, several extensions of fuzzy sets have
been proposed: interval valued fuzzy sets, type-2 fuzzy sets
Zadeh (1975), hesitant fuzzy sets Torra (2010), and so on.
Atanassov (1986) proposed the notion of intuitionistic fuzzy
set (AIFS, for short). The idea is quite simple: for any ele-
ment, an AIFS assigns a membership and a non-membership
degree. The former represents the degree towhich an element
belongs to the set or complies with the property described by
the set, while the latter represents the degree to which the
element does not belong to the set. The membership and
non-membership degrees satisfy a mathematical constraint:
their sum cannot exceed one. The difference between one
and the sum of both degrees is called hesitation index, which
represents the lack of knowledge about whether the element
belongs or not to the set. In recent past, research work on
the theory of AIFSs has exponentially grown, and it has been
successfully applied in decision making (Joshi and Kumar
2017; Szmidt and Kacprzyk 2006; Xu 2007), pattern recog-
nition (Hung and Yang 2004; Liang and Shi 2003) and image
segmentation (Melo-Pinto et al. 2013), among others.

For developing useful applications, two important lines
of research have attracted the attention of the researchers.
One of the approaches involves comparison of AIFSs. In
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this context, many different measures of comparison have
been suggested in the literature, such as distances or dis-
similarities. However, it can be argued that these measures
could be inadequate in some contexts. For this reason, we
have introduced divergence measures in our previous work
(Montes et al. 2011, 2015), and we have shown many inter-
esting mathematical properties as well as their usefulness
in many applications (Montes et al. 2012, 2016). The other
approach involves the study of entropy measures for AIFSs.
In this framework, two different trends can be found: (i)
the Szmidt and Kacprzyk (2001) approach, which considers
entropy as a measure of fuzziness: it measures how distant is
anAIFS to be a crisp set. (ii) TheBurrillo andBustince (1996)
approach, which interprets entropy as a measure of intuition-
ism: it measures how different is an AIFS to be a fuzzy
set.

Our aim in this paper is to define entropies, both Szmidt
andKacprzyk (SK) type andBurrillo andBustince (BB) type,
using divergences. For this, after introducing some prelim-
inary notations in Sect. 2, in Sects. 3 and 4 we study how
measures of divergence can be used to define entropies under
both frameworks. In Sect. 5, we investigate the connection
between divergences and knowledge measures (Guo 2016).
We provide some concluding remarks in Sect. 7. Some pre-
liminary results of this investigation have been reported in
Montes et al. (2018).

2 Preliminaries

In this section, we introduce the main notions used thro-
ughout the paper. First of all, we introduce fuzzy sets and
AIFSs. We also explain a graphical interpretation of AIFSs
and define some usual operations between these sets. Then,
we recall the definition of divergences for fuzzy sets (Montes
et al. 2002) and AIFSs (Montes et al. 2015), emphasizing
the property of locality (Montes et al. 2016). We conclude
this section explaining in detail the primary objective of this
paper.

Throughout this paper, we consider a finite universe X
whose cardinality will be denoted by n, that is, |X | = n.

2.1 Atanassov intuitionistic fuzzy sets

Fuzzy sets were introduced by Zadeh (1965) as an extension
of crisp sets to model vague or linguistic information. While
a crisp set A allows only two possibilities x ∈ A or x /∈ A, a
fuzzy set A allows, for any x ∈ X , a degree ofmembership of
the element x to the set. This membership degree, formally
defined as a function μA : X → [0, 1], represents the degree
to which an element belongs to A, or the degree to which
it satisfies the property described by the set A. In this way,

νA(x)

μA(x)0 1

1

μ →

ν
↑

Fig. 1 Graphical representation of AIFSs

1− μA(x) represents the degree to which x does not belong
to A.

Atanassov (1986) suggested that the non-membership
degree could be different from 1 − μA(x) due to lack of
knowledge. To account for this, he proposed an extension
of fuzzy sets allowing two degrees: the membership and
non-membership degrees, which correspond to the degree
to which an element belongs and does not belong to the
set, respectively. Formally, an intuitionistic fuzzy set, AIFS
for short, is defined by A = 〈(x, μA(x), νA(x)) | x ∈
X〉, where μA(x) and νA(x) denote the membership and
non-membership degrees of x to A, respectively. An AIFS
associates, for every x ∈ X , a hesitation index, denoted by
πA, and defined by πA(x) = 1 − μA(x) − νA(x). It mea-
sures the lack of knowledge about whether x belongs to or
not belongs to A.

Any fuzzy set A can be expressed as an AIFS, just by
taking νA = 1 − μA. In particular, for fuzzy sets it holds
that πA = 0. Also, a crisp set is a particular case of an AIFS
where for any x ∈ X , either μA(x) = 1 and νA(x) = 0, if
x ∈ A, or μA(x) = 0 and νA(x) = 1, if x /∈ A. From now
on, we denote by AIFS(X) the set of all AIFSs on X , and by
FS(X) the set of all fuzzy sets on X .

Every element x ∈ X of any AIFS can be graphically
depicted by a pair (μA(x), νA(x)), as Fig. 1 shows. The seg-
ment that goes from (1,0) to (0,1) corresponds to the pairs
(μA(x), νA(x)) where νA(x) = 1 − μA(x). If for every
x ∈ X , the element (μA(x), νA(x)) belongs to this segment,
A is a fuzzy set. Moreover, the further (μA(x), νA(x)) is
from the segment ((1,0), (0,1)), the greater is the hesitation
index πA(x). Also, the case of total ignorance, that is when
πA(x) = 1, corresponds to the pair (0, 0).

To conclude this subsection, let us recall some basic oper-
ations between AIFSs. Given A, B ∈ AIFS(X), we consider
the following operations:
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– The union of A and B, denoted by A ∪ B, is an AIFS
whose membership and non-membership degrees are
given by:

μA∪B(x) = max{μA(x), μB(x)},
νA∪B(x) = min{μA(x), μB(x)}.

– The intersection of A and B, denoted by A ∩ B, is an
AIFS whose membership and non-membership degrees
are given by:

μA∩B(x) = min{μA(x), μB(x)},
νA∩B(x) = max{μA(x), μB(x)}.

– A is included in B, denoted by A ⊆ B, if μA ≤ μB and
νA ≥ νB .

– The complement of A, denoted by Ac, is defined by:

Ac = 〈(x, νA(x), μA(x)) | x ∈ X〉.

We note here that more general families of unions and inter-
sections can be defined using a T-norm formin and T-conorm
(S-norm) for max.

2.2 Divergences for AIFSs

Oneverypopular topic of researchwithinAIFSs theory is that
of measuring how different two AIFSs are. To compare this
kind of sets, although there are many different approaches,
for instance similarities or distances, in Montes et al. (2015)
we have introduced a new family of measures called AIF-
divergences.Wehave also argued that, fromour point of view,
AIF-divergences are more appropriate than other measures
of comparison existing in the literature.

Definition 1 (Montes et al. 2015)A function D defined from
AIFS(X)×AIFS(X) toR+ is anAIF-divergence if it satisfies
the following properties:

(Div.1) D(A, B) = D(B, A) for any A, B ∈ AIFS(X).
(Div.2) D(A, A) = 0 for any A ∈ AIFS(X).
(Div.3) D(A ∩ C, B ∩ C) ≤ D(A, B) for any A, B,C ∈

AIFS(X).
(Div.4) D(A ∪ C, B ∪ C) ≤ D(A, B) for any A, B,C ∈

AIFS(X).

Hence, an AIF-divergence is symmetric and it takes the value
0 when comparing an AIFS with itself. And the closer two
AIFSs are, the smaller is the AIF-divergence between them.

In (Montes et al. 2015, Lemma 3.2), we proved that any
AIF-divergence satisfies the following property:

A ⊆ B ⊆ C ⇒ D(A,C) ≥ max{D(A, B), D(B,C)}. (1)

This propertywill be used later.Wenext consider one particu-
lar family ofAIF-divergences that satisfies the local property:

D(A ∪ {x}, B ∪ {x}) − D(A, B)

= hIF(μA(x), νA(x), μB(x), νB(x));

where hIF satisfies five locality properties in Theorem 1.
This means that if we modify the membership and non-
membership degrees of only one element of the sets, the
change in the AIF-divergence between the sets depends only
on what has been changed.

In Montes et al. (2016), we characterized local AIF-
divergences, using the following notation1:

D = {(u1, u2, v1, v2) ∈ R
4+ | u1 + u2 ≤ 1, v1 + v2 ≤ 1}.

(2)

Theorem 1 Montes et al. (2015) An AIF-divergence D is
local if and only if there exists a function h : D → R

+
such that

D(A, B) =
∑

x∈X
hIF(μA(x), νA(x), μB(x), νB(x))

and h satisfies the following properties:

(AIF-loc.1) hIF(u, v, u, v) = 0 for any (u, v, u, v) ∈ D.
(AIF-loc.2) hIF(u1, u2, v1, v2) = hIF(v1, v2, u1, u2) for

any (u1, u2, v1, v2) ∈ D.
(AIF-loc.3) If (u1, u2, v1, v2) ∈ D, ω ∈ [0, 1] and u1 ≤

ω ≤ v1, it holds that

hIF(u1, u2, v1, v2) ≥ hIF(u1, u2, ω, v2).

Moreover, if max{u2, v2} + ω ≤ 1, it holds that

hIF(u1, u2, v1, v2) ≥ hIF(ω, u2, v1, v2).

(AIF-loc.4) If (u1, u2, v1, v2) ∈ D, ω ∈ [0, 1] and u2 ≤
ω ≤ v2, it holds that

hIF(u1, u2, v1, v2) ≥ hIF(u1, u2, v1, ω).

Moreover, if max{u1, v1} + ω ≤ 1, it holds that

hIF(u1, u2, v1, v2) ≥ hIF(u1, ω, v1, v2).

1 The notationwe are using here is slightly different from that inMontes
et al. (2015), where the set D was defined by D = {(u, v) ∈ R

2+ |
u+v ≤ 1}, and thenwe consideredD2. In this paper,wehave considered
an alternative expression for D in Eq. (2) for the sake of mathematical
convenience. However, both approaches are equivalent.
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(AIF-loc.5) If (u1, u2, v1, v2) ∈ D and ω ∈ [0, 1], then if
max{u2, v2} + ω ≤ 1 it holds that:

hIF(ω, u2, ω, v2) ≤ hIF(u1, u2, v1, v2);

and if max{u1, v1} + ω ≤ 1, it holds that:

hIF(u1, ω, v1, ω) ≤ hIF(u1, u2, v1, v2).

Let us prove a useful property of the function hIF associated
with a local AIF-divergence.

Proposition 1 Let D be a local AIF-divergence with asso-
ciated function hIF. Then, hIF(u, v, 1, 0) is decreasing on u
and increasing on v, and hIF(u, v, 0, 1) is increasing on u
and decreasing on v, whenever u + v ≤ 1.

Proof Let us prove that hIF(u, v, 1, 0) is decreasing in u. For
this, take u1 ≤ u2 such that u2 + v ≤ 1. Taking property
(AIF-loc.3) into account, it holds that:

hIF(u1, v, 1, 0) ≥ hIF(u2, v, 1, 0).

On the other hand, let us see that hIF(u, v, 1, 0) is increasing
in v. For this, take v1 ≤ v2. Define the AIFSs A, B, M on
{x} by:

A = 〈(x, u, v1)〉, B = 〈(x, u, v2)〉, M = 〈(x, 1, 0)〉.

From property (Div.4), D(A, M) = D(A ∪ B, A ∪ M) ≤
D(B, M), which means that:

hIF(u, v2, 1, 0) ≥ hIF(u, v1, 1, 0).

Let us now study the function hIF(u, v, 0, 1). First of all, we
show that that it is increasing in the first component. Take
u1 ≤ u2, and define the AIFSs A, B, N on {x} by:

A = 〈(x, u2, v)〉, B = 〈(x, u1, v)〉, N = 〈(x, 0, 1)〉.

Using property (Div.3), we obtain that

D(B, N ) = D(A ∩ B, N ∩ B) ≤ D(A, N ),

which means that:

hIF(u2, v, 0, 1) ≥ hIF(u1, v, 0, 1).

Next we show that hIF(u, v, 0, 1) is decreasing in v. Taking
v1 ≤ v2 and using (AIF-loc.4) it holds that:

hIF(u, v1, 0, 1) ≥ hIF(u, v2, 0, 1).

�

Divergences for fuzzy sets have already been introduced in
Montes et al. (2002). A function D : FS(X) × FS(X) → R

is a divergence for fuzzy sets if it satisfies conditions (Div.1)
to (Div.4) when we restrict them to FS(X). The property of
locality has also been defined for divergences between fuzzy
sets, and it was characterized in the following way:

Theorem 2 (Montes et al. 2002, Prop. 3.4) A function D :
FS(X)×FS(X) → R

+ is a local divergence for fuzzy sets if
and only if there exists a function hFS : [0, 1]×[0, 1] → R

+
such that:

D(A, B) =
∑

x∈X
hFS(μA(x), μB(x))

and it satisfies the following properties:

(loc.1) hFS(u, v) = hFS(v, u) for any (u, v) ∈ [0, 1]2.
(loc.2) hFS(u, u) = 0 for any u ∈ [0, 1].
(loc.3) hFS(u, z) ≥ max{hFS(u, v), h(v, z)} for any

u, v, z ∈ [0, 1] such that u < v < z.

2.3 Divergence-based entropies of AIFS

For fuzzy sets, the notion of entropy or fuzziness was
introduced by Luca and Termini (1972). Since then, many
researchers continued working on this topic, such as (Bhan-
dari and Pal 1993; Kosko 1986; Liu 1992; Pal and Bejdek
1994; Trillas and Riera 1978; Yager 1982), among others.
In particular, Montes et al. (1998) used local divergences for
fuzzy sets as a measure of entropy or fuzziness.

Our objective here is to define entropies for AIFSs by
using local AIF-divergences. As we shall explain later, there
are twodifferent types of entropies: the onedefinedbySzmidt
andKacprzyk (2001), that measures how different is anAIFS
from its nearest crisp set, and the one defined by Burrillo and
Bustince (1996) that measures how different is an AIFS from
its closest fuzzy set. As Pal et al. (2013) have explained, the
two types of entropies are different and can be interpreted as
complementary.

From now on, we consider a local AIF-divergence D with
associated function hIF, and we investigate the additional
properties that must be imposed on hIF to define entropies,
with respect to both interpretations, the interpretation of
Szmidt and Kacprzyk (SK) and that of Burrillo and Bustince
(BB).

For this we make two assumptions: (i) the local AIF-
divergence can be expressed by:

D(A, B) = 1

n

∑

x∈X
hIF(μA(x), νA(x), μB(x), νB(x))

for any A, B ⊆ AIFS(X); and (ii) hIF takes values in [0, 1],
meaning that for any pair of AIFSs the maximal difference
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is 1. Here D is upper bounded and the previous assumptions
can be simply understood as a rescaling of the divergence.
Therefore, these assumptions are onlymade formathematical
convenience.

3 SK-Entropies

Here we deal with entropies that measure how far is an AIFS
to be a crisp set, which will be called SK-entropies. Follow-
ing the definition of entropy given by Szmidt and Kacprzyk
(2001), we introduce the notion of closest crisp set to anAIFS
and then use local AIF-divergences to define SK-entropies.

3.1 Szmidt and Kacprzyk’s entropy

We first introduce the definition of entropy for AIFSs given
by Szmidt and Kacprzyk (2001): it measures how far is an
AIFS from its closest crisp set.

Definition 2 (Szmidt and Kacprzyk (2001)) A function E :
AIFS(X) → [0, 1] is an entropy if it satisfies the following
axioms:

(ISK1) E(A) = 0 if and only if A is a crisp set.
(ISK2) E(A) = 1 if and only if μA(x) = νA(x) for every

x ∈ X .
(ISK3) E(A) = E(Ac).
(ISK4) E(A) ≤ E(B) if μA(x) ≤ μB(x) < νB(x) ≤

νA(x) or νA(x) ≤ νB(x) ≤ μB(x) ≤ μA(x) for
every x ∈ X .

Let us discuss the previous conditions. The condition (ISK1)
implies that the entropy is zero (nonexistent) if, and only if,
the set is crisp. (ISK3) says that the entropy is closed with
respect to the complement. According to Property (ISK2), the
entropy takes the maximum value if, and only if, the mem-
bership and non-membership degrees coincide. However, in
some applications this property can be argued to be rather
soft: given two AIFSs A and B satisfying μA = νA and
μB = νB , both sets have the same entropy, regardless of the
exact values of the membership degrees μA and μB (or πA

and πB). Hence, property (ISK2) does not take into account
the hesitation associated with the AIFSs. For example, con-
sider the AIFSs A and B defined by:

A = 〈(x, 0.1, 0.1) | ∀x ∈ X〉,
B = 〈(x, 0.45, 0.45) | ∀x ∈ X〉. (3)

From (ISK2), E satisfies E(A) = E(B), but the lack of
information associated with A seems to be greater than that
with B, becauseπA(x) = 0.8 > 0.1 = πB(x) for any x ∈ X .
These AIFSs are graphically depicted in Fig. 2.

νA(x)

νB(x)

μA(x) μB(x) 10

1

μ →

ν
↑

Fig. 2 Graphical representation of the AIFSs in Eq. (3)

Property (ISK2) can be slightly modified in order to over-
come this drawback as follows:

(ISK2’) E(A) = 1 if and only if μA(x) = νA(x) = 0 for
every x ∈ X .

This is more plausible as it implies that E(A) = 1 when we
have no knowledge about membership and non-membership
for every element. Thismodified property can be equivalently
expressed in terms of the hesitation index, since E(A) = 1
if and only if πA = 1. For the AIFSs defined in Eq. (3),
if we consider the property (ISK2’), an entropy must satisfy
E(A) ≥ E(B), but the equality is not required.

Finally, condition (ISK4) says that the closer is the set to
a crisp set, the lower is its entropy.

Taking into account Definition 2 as well as the previous
discussion, we consider the following definition of an SK-
entropy.

Definition 3 A mapping E : AIFS(X) → [0, 1] is a SK-
entropy if it satisfies the properties (ISK1), (ISK2’), (ISK3)
and (ISK4).

3.2 SK-entropies based on local AIF-divergences

Throughout this subsection, we aim to investigate how SK-
entropies can be built using local AIF-divergences. For this,
we first introduce the notion of the closest crisp set to an
AIFS.

Definition 4 Given A ∈ AIFS(X),wedefine the closest crisp
set to A, denoted by CA, by:

x ∈ CA if μA(x) ≥ νA(x), and x /∈ CA otherwise.

This notion had already been considered for fuzzy sets in
Montes et al. (1998).
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νA(x)

μA(x)0 1

1 CA(x)

νB(x)

μB(x)0 1

1

CB(x)

μ →

ν
↑

μ →

ν
↑

Fig. 3 Example of the closest crisp set to an AIFS

Since any crisp set is an AIFS with zero hesitation index,
we can express the closet crisp set to A as:

μCA (x) =
{
1 if μA(x) ≥ νA(x),

0 otherwise,

and

νCA (x) =
{
0 if μA(x) ≥ νA(x),

1 otherwise.

In Fig. 3, we depict an example of the closest crisp set to an
AIFS. In the left panel of the picture, we show an exam-
ple where μA(x) < νA(x), so x /∈ CA, or equivalently,
μCA (x) = 0, νCA (x) = 1. The opposite happens in the right
panel of the picture, where μB(x) > νB(x), so x ∈ CB , or
equivalently, μCB (x) = 1, νCB (x) = 0. As we can see in the
picture, as long as (μA(x), νA(x)) is above the dotted line
which represents the pairs (t, t), x /∈ CA, while as long as
(μB(x), νB(x)) is on or below the dotted line, x ∈ CB .

Next proposition shows two simple but useful properties
of the closest crisp set to an AIFS.

Proposition 2 Consider A ∈ AIFS(X), and let CA be its
closest crisp set. The following statements hold:

1. A is a crisp set if and only if A = CA.
2. For any x ∈ X, if μA(x) �= νA(x), then Cc

A(x) =
CAc (x), where CAc denotes the closets crisp set to Ac.

Proof Let us prove the first item. Obviously, if A = CA, A is
a crisp set. On the other hand, if A is a crisp set, for any x ∈ X
either x ∈ A, which implies μA(x) = 1, or x /∈ A, which
implies νA(x) = 1. In the former case, μA(x) > νA(x), and
therefore x ∈ CA, while in the second case μA(x) < νA(x),
which implies x /∈ CA. We conclude that A = CA.

Let us now turn to the second item. SinceμA(x) �= νA(x),
we only have two possibilities, either μA(x) > νA(x) or
μA(x) < νA(x). Assume we are in the former case. By def-
inition of CA, it holds that μCA (x) = 1, νCA (x) = 0, which

A(x)

0 1

1

CA(x)

CAc(x)

Ac(x)

0

1

CA(x) = CAc (x)

A(x) = Ac(x)

μ →

ν
↑

μ →

ν
↑

Fig. 4 Graphical representation of the second item in Proposition 2.
In this figure, A(x) and Ac(x) represent the pairs (μA(x), νA(x)) and
(νA(x), μA(x)), respectively

implies that x ∈ CA, and consequently x /∈ Cc
A. Also, since

μA(x) > νA(x), it holds that:

μAc (x) = νA(x) < μA(x) = νAc (x),

so x /∈ CAc .
On the other hand, if νA(x) > μA(x), following a sim-

ilar reasoning we obtain that x ∈ Cc
A and x ∈ CAc , so we

conclude that Cc
A(x) = CAc (x). �

From the second item, we deduce that if μA(x) �= νA(x)
then μCAc (x) = νCA (x) and νCAc (x) = μCA (x).

The second item of Proposition 2 is graphically explained
in Fig. 4. As the left-side panel shows, whenμA(x) > νA(x),
CA(x) andCAc (x) are just at the opposite corner, soCc

A(x) =
CAc (x). On the other hand, note that the second item requires
μA(x) �= νA(x). The reason is that if μA(x) = νA(x) holds,
as in the right-side panel, the closest crisp set to A and Ac

for x coincide and is equal toμCA (x) = 1, νCA (x) = 0. That
is why condition μA(x) �= νA(x) is required in the second
item of the Proposition 2.

So far we have investigated the properties of the closest
crisp set to an AIFS. Now, we use this notion to define an
SK-entropy in terms of localAIF-divergences. Recall that the
aim of an SK-entropy is to measure how different is an AIFS
from a crisp set. Therefore, it seems reasonable to measure
the entropy of an AIFS as the AIF-divergence between the
AIFS and its closest crisp set. Note that, when comparing
A ∈ AIFS(X) with CA by means of a local AIF-divergence
D induced by the function hIF, the domain of hIF is no longer
D, but

D1 = {(x, y, 1, 0) ∈ D | x ≥ y}
∪{(x, y, 0, 1)) ∈ D | x < y}. (4)

For this, only the conditions imposed on hIF in the next the-
orem need to be satisfied in the domain D1.
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Theorem 3 Consider a local AIF-divergence D induced by
a function hIF, and define E : AIFS(X) → [0, 1] by:

E(A) = D(A,CA)

= 1

n

∑

x∈X
hIF(μA(x), νA(x), μCA (x), νCA (x))

for any A ⊆ X. Then, E is an SK-entropy if and only if the
function hIF satisfies the following additional properties on
D1:

(AIF-loc.1’) hIF(u1, u2, v1, v2) = 0 for (u1, u2, v1, v2) ∈
D1 if and only if u1 = v1, u2 = v2.

(AIF-loc.5) hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1) for
any (u1, u2, v1, v2) ∈ D1 such that u1 �= u2.

(AIF-loc.6) hIF(u1, u2, v1, v2) = 1 for (u1, u2, v1, v2) ∈
D1 if and only if u1 = u2 = 0 and v1 = 1, v2 =
0.

Proof Let us first prove that if hIF satisfies these additional
properties, then E is an SK-entropy.

(ISK1) : E(A) = 0 if and only if for any x ∈ X :

hIF(μA(x), νA(x), μCA (x), νCA (x)) = 0.

According to (AIF-loc.1’), this is equivalent to μA(x) =
μCA (x) and νA(x) = νCA (x), which from Proposition 2 hap-
pens if and only if A is a crisp set.

(ISK2′) : E(A) = 1 if and only if

hIF(μA(x), νA(x), μCA (x), νCA (x)) = 1

for any x ∈ X . From (AIF-loc.6), this happens if and
only if (u1, u2, v1, v2) = (0, 0, 1, 0), which is equivalent to
μA(x) = 0 and νA(x) = 0, that is, if and only if πA(x) = 1
for any x ∈ X .

(ISK3) : In order to check that E(A) = E(Ac), it is enough
to check whether the following equality holds for any x ∈ X :

hIF(μA(x), νA(x), μCA (x), νCA (x))

= hIF(μAc (x), νAc (x), μCAc (x), νCAc (x)).

On the one hand, if μA(x) �= νA(x), from Proposition 2,
Cc

A(x) = CAc(x), and therefore:

hIF(μA(x), νA(x), μCA (x), νCA (x))

= hIF(νA(x), μA(x), νCA (x), μCA (x))

= hIF(μAc (x), νAc (x), μCAc (x), νCAc (x)),

where the first equality follows from property (AIF-loc.5).
On the other hand, if μA(x) = νA(x), it trivially holds that

hIF(μA(x), νA(x), 1, 0) = hIF(νA(x), μA(x), 1, 0).

(ISK4) :Assume thatμA(x) ≤ μB(x) < νB(x) ≤ νA(x),
which implies that μCA (x) = μCB (x) = 0 and νCA (x) =
νCB (x) = 1. Define the following AIFSs on {x} by:

A∗ = 〈(x, μA(x), νA(x))〉, B∗ = 〈(x, μB(x), νB(x))〉,
N = 〈(x, 0, 1)〉.

It holds that N ⊆ A∗ ⊆ B∗, and therefore from Eq. (1),
D(A∗, N ) ≤ D(B∗, N ), which implies that

hIF(μA(x), νA(x), μCA (x), νCA (x))

= hIF(μA(x), νA(x), 1, 0)

≤ hIF(μB(x), νB(x), 1, 0)

= hIF(μB(x), νB(x), μCB (x), νCB (x)).

On the other hand, assume μB(x) ≥ νB(x) and νA(x) ≤
νB(x) ≤ μB(x) ≤ μA(x), which implies that μCA (x) =
μCB (x) = 1 and νCA (x) = νCB (x) = 0.

Now define the following AIFSs on {x}:

A∗ = 〈(x, μA(x), νA(x))〉, B∗ = 〈(x, μB(x), νB(x))〉
M = 〈(x, 1, 0)〉.

It holds that B∗ ⊆ A∗ ⊆ M , which implies, from Eq. (1),
that D(B∗, M) ≥ D(A∗, M), and therefore

hIF(μA(x), νA(x), μCA (x), νCA (x))

= hIF(μA(x), νA(x), 0, 1)

≤ hIF(μB(x), νB(x), 0, 1)

= hIF(μB(x), νB(x), μCB (x), νCB (x)).

We conclude that if hIF satisfies the additional conditions, E
is an SK-entropy.

Nowwe assume that E is an SK-entropy.We need to prove
that hIF satisfies the additional conditions.

(AI F − loc.1′) : Take (u1, u2, v1, v2) ∈ D1, and define
the AIFS A on {x} by A = 〈(x, u1, u2)〉. Note that:

E(A) = hIF(u1, u2, v1, v2).

Hence, from (ISK1), it holds that

E(A) = hIF(u1, u2, v1, v2) = 0

if and only if A is a crisp set, which from Proposition 2
is equivalent to A = CA. For this equality, it must hold
that either u1 = 1 and u2 = 0, which in turn implies that
v1 = 1 and v2 = 0, or u1 = 0 and u2 = 1, which implies
that v1 = 0 and v2 = 1. In both cases, we conclude that
hIF(u1, u2, v1, v2) = 0 if and only if u1 = v1 and u2 = v2.
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(AI F − loc.5) : Take (u1, u2, v1, v2) ∈ D1, and define
the AIFS A on {x} by A = 〈(x, u1, u2)〉. It holds that:

E(A) = hIF(u1, u2, v1, v2).

Let us assume that u1 �= u2. This means that Ac =
〈(x, u2, u1)〉 and, from the second item in Proposition 2,
Cc

A = CAc . Hence:

E(Ac) = hIF(u2, u1, v2, v1).

Finally, from (ISK3), E(A) = E(Ac), and we deduce that
hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1).

(AI F − loc.6) : Take (u1, u2, v1, v2) ∈ D1, and define
the AIFS A on {x} by A = 〈(x, u1, u2)〉. Then, it holds that:

E(A) = hIF(u1, u2, v1, v2).

Therefore, hIF(u1, u2, v1, v2) = 1 if and only if E(A) = 1,
which from (ISK2′), is equivalent to u1 = u2 = 0 and v1 =
1, v2 = 0.

We conclude that if E is an SK-entropy, hIF must satisfy
the additional conditions. �

In Montes et al. (2016), we have shown how an AIF-
divergence can be built from a divergence for fuzzy sets.
In particular, given a divergence D for fuzzy sets and a
component-wise increasing function f : [0, 1] × [0, 1] →
[0, 1] satisfying f (0, 0) = 0, the function

DAIF(A, B) = f (D(μA, μB), D(νA, νB))

for any A, B ∈ AIFS(X) is an AIF-divergence, where μA,
νA, μB , νB are considered fuzzy sets (Montes et al. 2015,
Prop. 4.7). Furthermore, if D is local, DAIF is local if and
only if f (x, y) = αx +β y for some α, β > 0 (Montes et al.
2016, Prop. 5.2).

Following a similar reasoning, we can define an SK-
entropy using a local divergence for fuzzy sets, just imposing
some additional conditions on f and on the fuzzy divergence.
For this, we consider the following domain where the func-
tion hFS will be defined:

D2 =
{
(x, y) | y = 1

}
∪

{
(x, y) | x ≤ 1

2
, y = 0

}
.

Proposition 3 Consider a local divergence D for fuzzy sets
induced by the function hFS and let f : [0, 1] × [0, 1) →
[0, 1] be a function satisfying

(f1) f (u, v) = 0 if and only if u = v = 0.
(f2) f is component-wise increasing.
(f3) f (u, v) = 1 if and only if u = 1 and v = 0.

(f4) f (u, v) = f (v, u).

Then, the function E defined by:

E(A) = 1

n

∑

x∈X
f
(
hFS(μA(x), μCA (x)),

hFS(νA(x), νCA (x))
)

(5)

is an SK-entropy if and only if hFS satisfies the following
additional conditions in D2:

(loc.1’) For (u, v) ∈ D2, hFS(u, v) = 0 if and only if u = v;
(loc.4) For (u, v) ∈ D2, hFS(u, v) = 1 if and only if u =

0, v = 1.

Proof First we assume that hFS satisfies the additional con-
ditions and prove that E is an SK-entropy.

(ISK1) : E(A) = 0 if and only if

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

) = 0

for any x ∈ X . From (f1), f (u, v) = 0 if and only if u =
v = 0, which is equivalent to

hFS(μA(x), μCA (x)) = hFS(νA(x), νCA (x)) = 0,

but from (loc.1’) this happens if and only ifμA(x) = μCA (x)
and νA(x) = νCA (x), which from Proposition 2 is equivalent
to A = CA. So A is a crisp set.

(ISK2′) : E(A) = 1 if and only if

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

) = 1

for any x ∈ X . From (f3), this happens if and only if
hFS(μA(x), μCA (x)) = 1 and hFS(νA(x), νCA (x)) = 0.
Also, from (loc.4) it holds that hFS(u, v) = 1 if and only
if u = 0, v = 1. However, this happens if and only if
μA(x) = 0 and μCA (x) = 1, which is equivalent to
νA(x) = 0.

(ISK3) : In order to prove E(A) = E(Ac), we see that:

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

)

= f
(
hFS(μAc (x), μCAc (x)), hFS(νAc (x), νCAc (x))

)

for any x ∈ X . First of all, since μAc (x) = νA(x) and
νAc (x) = μA(x), we only need to prove that:

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

)

= f
(
hFS(νA(x), μCAc (x)), hFS(μA(x), νCAc (x))

)
. (6)

If μA(x) = νA(x), this means that μCA (x) = μCAc (x) = 1
and νCA (x) = νCAc (x) = 0, which implies that the equality
in Eq. (6) holds.
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Assume now that μA(x) �= νA(x). From Proposition 2,
Cc

A(x) = CAc (x), which means that μCA (x) = νCAc (x) and
νCA (x) = μCAc (x). Also, note that μA(x) = νAc (x) and
νA(x) = μAc (x). Using these facts, as well as property (f4),
it holds that:

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

)

= f
(
hFS(νAc (x), νCAc (x)), hFS(μAc (x), μCAc (x))

)

= f
(
hFS(μAc (x), μCAc (x)), hFS(νAc (x), νCAc (x))

)

= f
(
hFS(νA(x), μCAc (x)), hFS(μA(x), νCAc (x))

)
.

(ISK4) :Assume thatμA(x) ≤ μB(x) < νB(x) ≤ νA(x).
In this case, it holds that μCA (x) = μCB (x) = 0 and
νCA (x) = νCB (x) = 1. By the property (loc.3) of hFS, it
follows that:

hFS(μA(x), 0) ≤ hFS(μB(x), 0) and

hFS(νA(x), 0) ≤ hFS(νB(x), 0),

and by (f2), it follows that

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

)

= f
(
hFS(μA(x), 0), hFS(νA(x), 1)

)

≤ f
(
hFS(μB(x), 0), hFS(νB(x), 1)

)

= f
(
hFS(μB(x), μCB (x)), hFS(νB(x), νCB (x))

)
.

Assume now that νA(x) ≤ νB(x) ≤ μB(x) ≤ μA(x), which
implies thatμCA (x) = μCB (x) = 1 and νCA (x) = νCB (x) =
0. Using the property (loc.3) of hFS, it holds that:

hFS(μA(x), 1) ≤ hFS(μB(x), 1) and

hFS(νA(x), 0) ≤ hFS(νB(x), 0).

Also, (f2) implies that:

f
(
hFS(μA(x), μCA (x)), hFS(νA(x), νCA (x))

)

= f
(
hFS(μA(x), 1), hFS(νA(x), 0)

)

≤ f
(
hFS(μB(x), 1), hFS(νB(x), 0)

)

= f
(
hFS(μB(x), μCB (x)), hFS(νB(x), νCB (x))

)
.

On the other hand, let us now assume that E is an SK-entropy
and we prove that f and hFS must satisfy the additional con-
ditions.

(loc.1′) : Consider (u, v) ∈ D2 such that v = 1, and
define the AIFS A on {x} by A = 〈(x, u, 0)〉. Then,CA(x) =
1, hence:

E(A) = f
(
hFS(u, 1), hFS(0, 0)

)
.

Also, from (ISK1), E(A) = 0 if and only if A is a crisp set,
which by Proposition 2 is equivalent to A = CA. This holds
if and only if u = 1. Finally, E(A) = 0 is equivalent to:

f
(
hFS(u, 1), hFS(0, 0)

) = 0,

but from (f1) this happens if and only if hFS(u, 1) =
hFS(0, 0) = 0. We therefore conclude that u = 1 if and
only if hFS(u, 1) = 0.

Now consider (u, v) ∈ D2 such that v = 0 and define
the AIFS A on {x} such that A = 〈(x, 1 − u, u)〉. Note that
since (u, 0) ∈ D2, this implies that u ≤ 1

2 , or equivalently,
1 − u ≥ 1

2 . Then, CA(x) = 1, hence:

E(A) = f
(
hFS(1 − u, 1), hFS(u, 0)

)
.

Now, from (ISK1), E(A) = 0 if and only if A is a crisp
set, which by Proposition 2 is equivalent to A = CA. This
happens if and only if u = 0. Finally, E(A) = 0 is equivalent
to

f
(
hFS(1 − u, 1), hFS(u, 0)

) = 0,

but from (f1) this happens if and only if hFS(1 − u, 1) =
hFS(u, 0) = 0. We conclude that u = 0 if and only if
hFS(u, 0) = 0.

(loc.4) : First of all, take (u, v) = (0, 1) ∈ D2 and define
the AIFS A on {x} by A = 〈(x, 0, 0)〉. From (ISK2′):

E(A) = f
(
hFS(0, 1), hFS(0, 0)

) = 1.

However, using (f3), this happens if and only if hFS(0, 1) = 1
and hFS(0, 0) = 0. We conclude that hFS(0, 1) = 1.

On the other hand, let us see that if hFS(u, v) = 1, it must
hold that u = 0, v = 1. First of all, assume that (u, v) ∈ D2

such that v = 0 and hFS(u, v) = 1. This means that u <

1−u. Let us define theAIFS A on {x} by A = 〈(x, u, 1−u)〉.
Using the definition of E and (f2), it holds that:

E(A) = f
(
hFS(u, 0), hFS(1 − u, 1)

)

= f (1, hFS(1 − u, 1)) ≥ f (1, 0) = 1,

where the last equality follows from (f3). We conclude that
E(A) = 1. However, from (ISK2′) this is equivalent to u =
1 − u = 0, a contradiction.

Therefore, take (u, v) ∈ D2 such that v = 1, and define
the AIFS A on {x} by A = 〈(x, u, 0)〉. Then, it holds that:

E(A) = f
(
hFS(u, 1), hFS(0, 0)

) = f (hFS(u, 1), 0),

where the last equality follows from (loc.1). Now, from (f3),
f (hFS(u, 1), 0) = 1 if and only if hFS(u, 1) = 1. However,
from (ISK2′), E(A) = 1 if and only if u = 0. Therefore, we
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conclude that u = 0 and hFS(u, 1) = 1 are equivalent when
v = 1. �

Remark 1 From (loc.4), hFS(u, v) = 1 if and only if u =
0, v = 1.Thismeans thathFS(νA(x), νCA (x)) cannot take the
value 1 because νA(x) = 0 and νCA (x) = 1 cannot happen at
the same time. That is why the function f in Proposition 3 is
defined in the domain [0, 1] × [0, 1), not including the value
1 in the second component.

3.3 Examples of SK-entropies based on
AIF-divergences

In the literature, several different measures of comparison
have been introduced. In an earlier work (Montes et al. 2016,
Section III-C),we showed someexamples of localAIF-diver-
gences, like the Hamming distance (Szmidt and Kacprzyk
2000) andHausdorff distance (Grzegorzewski 2004, denoted
by lAI F and dH , respectively, and the twomeasures proposed
by Hong and Kim (1999),2 denoted by DC and DL . In this
subsection, we consider these four local AIF-divergences
and we investigate whether they satisfy the conditions of
Theorem 3 and can therefore be used to define SK-entropy
measures. Recall that these AIF-divergences are defined by:

lAI F (A, B) = 1

2n

∑

x∈X
|μA(x) − μB(x)|

+ |νA(x) − νB(x)| + |πA(x) − πB(x)|. (7)

dH (A, B) = 1

n

∑

x∈X
max

{|μA(x) − μB(x)|, |νA(x) − νB(x)|}.

(8)

DC (A, B) = 1

n

∑

x∈X
|μA(x) − μB(x)|

+ |νA(x) − νB(x)|. (9)

DL (A, B) = 1

2n

∑

x∈X
|μA(x) − νA(x) − μB(x) + νB(x)|

+ |μA(x) − μB(x)| + |νA(x) − νB(x)|. (10)

In the next example, we show that both Hamming and Haus-
dorff distances satisfy the conditions of Theorem 3 and,
surprisingly, they both induce the same SK-entropy. On the
contrary, we show that the Hong and Kim divergences do not
induce an SK-entropy.

2 The original definitions of DC and DL are slightly different from
those of Eqs. (9) and (10). The difference is that in Hong and Kim
(1999), DC was divided by 2 and DL by 4, instead of 2. In this paper,
we consider the definitions of Eqs. (9) and (10) just to make DC and
DL to satisfy the normalization property mentioned in Sect. 2.3.

Example 1 Consider first the Hamming and Hausdorff dis-
tances defined in Eqs. (7) and (8). We shall show that their
associated functions, that will be denoted by hl and hd , sat-
isfy the conditions of Theorem 3. First of all, note that the
functions hl and hd inducing the Hamming and Hausdorff
distances are given by:

hl(u1, u2, v1, v2) = 1

2

(
|u1 − v1| + |u2 − v2|

+ |u1 + u2 − v1 − v2|
)
.

hd(u1, u2, v1, v2) = max{|u1 − v1|, |u2 − v2|}.

Also:

hl(u, v, 1, 0) = 1

2

(
(1 − u) + v + (1 − u − v)

) = 1 − u.

hl(u, v, 0, 1) = 1

2

(
u + (1 − v) + (1 − u − v)

) = 1 − v.

hd(u, v, 1, 0) = max{1 − u, v} = 1 − u.

hd(u, v, 0, 1) = max{u, 1 − v} = 1 − v.

Therefore, we can see that hl and hd coincide in D1. Now,
let us prove that hl , and consequently also hd , satisfy the
required properties:

(AI F−loc.1′) hl(u, v, 1, 0) = 0 if and only if 1−u = 0,
or equivalently, if andonly ifu = 1.But also,u = 1 is equiva-
lent to v = 0, because u+v ≤ 1. Similarly, hl(u, v, 0, 1) = 0
if and only if 1−v = 0, or equivalently, if and only if v = 1.
But this is equivalent to u = 0 because u + v ≤ 1.

(AI F − loc.5) In (Montes et al. 2016, Section IV), we
have proven that hl is symmetric.

(AI F − loc.6) Finally, hl(u, v, 1, 0) = 1 if and only if
u = 0, but this happens if and only if v = 0. On the other
hand, hl(u, v, 0, 1) = 1 is not possible, because this would
mean that v = 0, but in that case we would compare (u, v)

with (1, 0), not with (0, 1).
We conclude that both hl and hd satisfy the additional

conditions of Theorem 3, so each of lAI F and dH induces an
SK-entropy. Furthermore, since hl = hd in the domain D1

that we are considering in the definition of the entropy, we
conclude that they induce the same SK-entropy.

Let us now show the SK-entropy that they induce:

E(A) = 1 − 1

n

∑

x∈X
max

{
μA(x), νA(x)

}
. (11)

Now if μA(x) ≥ νA(x), then μCA (x) = 1, νCA (x) = 0 so:

hl(μA(x), νA(x), μCA (x), νCA (x))

= hl(μA(x), νA(x), 1, 0) = 1 − μA(x).

On theother hand, ifμA(x) < νA(x),μCA (x) = 0,νCA (x) =
1, and then:

123



Entropy measures for Atanassov intuitionistic... 5061

hl(μA(x), νA(x), μCA (x), νCA (x))

= hl(μA(x), νA(x), 0, 1) = 1 − νA(x).

Substituting these values, we obtain the following:

E(A) = 1

n

⎛

⎝
∑

x |μA(x)≥νA(x)

1 − μA(x)

+
∑

x |μA(x)<νA(x)

1 − νA(x)

⎞

⎠

= 1 − 1

n

⎛

⎝
∑

x |μA(x)≥νA(x)

μA(x)

+
∑

x |μA(x)<νA(x)

νA(x)

⎞

⎠

= 1 − 1

n

∑

x∈X
max

{
μA(x), νA(x)

}
.

Let us now see that the local AIF-divergences of Hong and
Kim defined in Eqs. (9) and (10) do not satisfy the conditions
of Theorem 3. It can be easily seen that the functions hC and
hL associated with DC and DL , respectively, are given by:

hC (u1, u2, v1, v2) = |u1 − v1| + |u2 − v2|.
hL(u1, u2, v1, v2) = 1

2

(|u1 − u2 − v1 + v2|
+ |u1 − v1| + |u2 − v2|

)
.

However, these functions do not satisfy one of the conditions
of Theorem 3 because for α = μA(x) = νA(x) > 0, it
happens that μCA (x) = 1, νCA (x) = 0 and:

hC (μA(x), νA(x), μCA (x), νCA (x)) = hC (α, α, 1, 0) = 1,

butα �= 0. Therefore, neither hC nor hD satisfies (AIF-loc.6).
Hence, neither DC nor DL induces an SK-entropy.

Next example shows that the SK-entropy defined by Guo
and Song Guo and Song (2014) by:

E(A) = 1

n

∑

x∈X
(1 − |μA(x)

− νA(x)|) ·
(
2 − μA(x) − νA(x)

2

)

can also be defined as in Theorem 3 through a local AIF-
divergence.

Example 2 Consider now the function D given for any
A, B ∈ AIFS(X) is:

D(A, B) = 1

n

∑

x∈X

(|μA(x) − μB(x)|

+ |νA(x) − νB(x)|) ·
(
1 + |πA(x) − πB(x)|

2

)
.

It can be easily proven that this function is a local AIF-
divergence with associated function:

hIF(u1, u2, v1, v2)

= (|u1 − v1| + |u2 − v2|
) ·

(
1+|u1+u2−v1−v2|

2

)
.

The function hIF also satisfies the additional conditions of
Theorem 3; hence, it induces an SK-entropy. Note that when
u ≥ v, we obtain:

hIF(u, v, 1, 0) = (1 − u + v) ·
(
2 − u − v

2

)
,

while for u < v, we obtain:

hIF(u, v, 0, 1) = (1 − v + u) ·
(
2 − u − v

2

)
.

Therefore, the SK-entropy induced by D is given by:

E(A) = 1

n

( ∑

x |μA(x)≥νA(x)

(
1 − μA(x)

+ νA(x)
) ·

(
2 − μA(x) − νA(x)

2

)

+
∑

x |μA(x)<νA(x)

(1 + μA(x)

− νA(x)) ·
(
2 − μA(x) − νA(x)

2

))

= 1

n

∑

x∈X
(1 − |μA(x)

− νA(x)|) ·
(
2 − μA(x) − νA(x)

2

)
.

To conclude this section, let us consider two examples of
SK-entropies built using the procedure in Proposition 3.

Example 3 Consider the Hamming distance for fuzzy sets,
which is defined for any A, B ∈ FS(X) by:

lFS(A, B) = 1

n

∑

x∈X
|μA(x) − μB(x)|, (12)

where μA and μB denote the membership function of two
fuzzy sets A and B. The Hamming distance for fuzzy sets is
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known to be a local divergence for fuzzy sets, and its associ-
ated function h is given by h(u, v) = |u−v|. This function h
satisfies the additional conditions required in Proposition 3.
Here, h(u, v) = 0 if and only if u = v = 0; on the other
hand, h(u, v) = |u−v| = 1 if and only if either u = 1, v = 0
or u = 0, v = 1. However, (u, v) = (1, 0) /∈ D2. Hence,
h(u, v) = 1 for (u, v) ∈ D2 if and only if u = 0, v = 1.Also,
we consider the function f given by f (u, v) = u + v − uv,
which is usually called the product t-conorm (see Klement
et al. (2000) for details in t-norms and t-conorms). As any t-
conorm, f satisfies conditions (f1), (f2) and (f4). Also, since
f is the t-conorm associated with a strict t-norm (algebraic
product), it also satisfies (f3).3

Therefore, applying Proposition 3 we can define an SK-
entropy by using Eq. (5). Note that, if μA(x) ≥ νA(x),
μCA (x) = 1, νCA (x) = 0, and it holds that:

f
(
h(μA(x),μCA (x)), h(νA(x), νCA (x))

)

= f
(
h(μA(x), 1), h(νA(x), 0)

)

= f
(
1 − μA(x), νA(x)

)

= 1 − μA(x) + νA(x) − (1 − μA(x))νA(x)

= (1 − μA(x))(1 − νA(x)) + νA(x).

Also, ifμA(x) < νA(x),μCA (x) = 0, νCA (x) = 1, and then:

f
(
h(μA(x),μCA (x)), h(νA(x), νCA (x))

)

= f
(
h(μA(x), 0), h(νA(x), 1)

)

= f
(
μA(x), 1 − νA(x)

)

= 1 − νA(x) + μA(x) − (1 − νA(x))μA(x)

= (1 − μA(x))(1 − νA(x)) + μA(x).

Therefore, the SK-entropy defined using Eq. (5) is given by:

E(A) = 1

n

⎛

⎝
∑

x |μA(x)≥νA(x)

(1 − μA(x))(1 − νA(x)) + νA(x)

+
∑

x |μA(x)<νA(x)

(1 − μA(x))(1 − νA(x)) + μA(x)

⎞

⎠

= 1

n

∑

x∈X
(1 − μA(x))(1 − νA(x)) + min{μA(x), νA(x)}.

Example 4 Consider again the Hamming distance for fuzzy
sets defined in Eq. (12) and take the function f given by

3 Recall that any t-conorm f satisfies f (u, v) = 1 if and only if either
u = 1 or v = 1. However, remember that in the statement of Proposi-
tion 3 we are restricting the domain of f to the set [0, 1]× [0, 1), hence
f (u, v) = 1 if and only if u = 1.

f (u, v) = max{u, v}. This function is also a t-conorm satis-
fying (f1) to (f4), so using the Hamming distance for fuzzy
sets and the maximum t-conorm, we can apply Proposition 3
to define an SK-entropy. Let us note that forμA(x) ≥ νA(x),
μCA (x) = 1, νCA (x) = 0, so:

f
(
h(μA(x),μCA (x)), h(νA(x), νCA (x))

)

= f
(
h(μA(x), 1), h(νA(x), 0)

)

= max{1 − μA(x), νA(x)} = 1 − μA(x),

and if μA(x) < νA(x), μCA (x) = 0, νCA (x) = 1, therefore:

f
(
h(μA(x),μCA (x)), h(νA(x), νCA (x))

)

= f
(
h(μA(x), 0), h(νA(x), 1)

)

= max{μA(x), 1 − νA(x)} = 1 − νA(x).

However, taking Example 1 into account, the SK-entropy
defined using the Hamming distance for fuzzy sets and the
maximum t-conorm coincides with the SK-entropy defined
from the Hamming andHausdorff distances for AIFSs, given
in Eq. (11).

4 BB-entropies

We now investigate the other type of entropies, which mea-
sures howdifferent is anAIFS frombeing a fuzzy set. For this
we consider the definition of entropy given by Burrillo and
Bustince (1996) and we investigate whether we can define
an entropy using local AIF-divergences.

4.1 Burrillo and Bustince’s entropy

To the best of our knowledge, the first proposal of entropy
for AIFSs was given by Burrillo and Bustince (1996).

Definition 5 (Burrillo and Bustince (1996)) A mapping I :
AIFS(X) → [0, 1] is called entropy if it satisfies the follow-
ing properties:

(IBB1) I (A) = 0 if and only if A ∈ FS(X).
(IBB2) I (A) = 1 if and only if μA = νA = 0.
(IBB3) I (A) = I (Ac).
(IBB4) I (A) ≥ I (B) if μA ≤ μB and νA ≤ νB .

This type of entropymeasures how intuitionistic is andAIFS,
or in other words, how different is an AIFS from a fuzzy set.
The first property (IBB1) says that the entropy is zero if, and
only if, the hesitation index is zero, or equivalently, if and
only if the AIFS is a fuzzy set. (IBB2) says that the entropy is
maximal if and only if the hesitation index is 1, which means
that there is a total lack of information. The third condition
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νA(x)

μA(x) 1

1

νA∗ (x)

μA∗ (x)
μ →

ν
↑

Fig. 5 Closest fuzzy set to an AIFS

says that the entropy is closed under complementaries, while
(IBB4) means that the greater the hesitation index, the greater
the entropy.

In what follows, a function I satisfying properties (IBB1)
to (IBB4) will be called BB-entropy.

4.2 BB-entropies based on local AIF-divergences

Our aim is now to define BB-entropies using local AIF-
divergences in a similar manner as we did in Sect. 3.2. For
this, we define the closest fuzzy set to an AIFS.

Definition 6 Given A ∈ AIFS(X),wedefine the closest fuzzy
set to A, denoted by A∗, by μA∗(x) = μA(x) + πA(x)

2 .

It can be seen that 1 − μA∗(x) = νA(x) + πA(x)
2 . The inter-

pretation of A∗ can be easily seen in Fig. 5. In this figure,
the fuzzy sets are those elements that belong to the line from
(1,0) to (0,1). In order to define the closest fuzzy set to an
AIFS, we find the point having the shortest distance from the
point (μA(x), νA(x)) on the (0, 1) − (1, 0) line. This results
in an equal distribution of the hesitation index into the mem-
bership and non-membership values.

Now, we define the BB-entropy of an AIFS as the AIF-
divergence between the AIFS and its closest fuzzy set.
Therefore, the domain of the function hIF associated with
the local AIF-divergence D will be

D3 =
{(

u, v,
1 + u − v

2
,
1 + v − u

2

)
| u + v ≤ 1

}
.

Theorem 4 Consider a local AIF-divergence D with associ-
ated function hIF and define the function I by:

I (A) = D(A, A∗)

= 1

n

∑

x∈X
hIF(μA(x), νA(x), μA∗(x), 1 − μA∗(x)).

(13)

Then, I is a BB-entropy if and only if hIF satisfies the follow-
ing additional properties:

(AIF-loc.1”) For (u, v, 1+u−v
2 , 1+v−u

2 ) ∈ D3, it holds that
hIF(u, v, 1+u−v

2 , 1+v−u
2 ) = 0 if and only if u+

v = 1.
(AIF-loc.7) The function h∗ defined by

h∗(u, v)=hIF

(
u, v,

1+u−v

2
,
1+v−u

2

)
,

for u + v ≤ 1, is symmetric and decreasing in
both u and v.

(AIF-loc.8) hIF(u, v, 1+u−v
2 , 1+v−u

2 ) = 1 for u + v ≤ 1 if
and only if u = v = 0.

Proof (IBB1) : By definition, I (A) = 0 if and only if
hIF(μA(x), νA(x), μA∗(x), 1−μA∗(x)) = 0 for any x ∈ X ,
but from (AIF-loc.1”) this is equivalent toμA(x)+νA(x) = 1
for any x ∈ X , or in other words, A is a fuzzy set.

(IBB2) : By definition, I (A) = 1 if and only if

hIF(μA(x), νA(x), μA∗(x), 1 − μA∗(x)) = 1

for any x ∈ X , and by (AIF-loc.8) this is equivalent to
μA(x) = νA(x) = 0 for any x ∈ X .

(IBB3) : In order to prove that I (A) = I (Ac), it is enough
to realize that, by (AIF-loc.7), it holds that:

hIF(μA(x), νA(x), μA∗(x), 1 − μA∗(x))

= hIF(νA(x), μA(x), μAc∗(x), 1 − μAc∗(x)),

and that

μAc∗(x) = μAc (x) + πAc (x)

2

= νA(x) + πA(x)

2
= νA∗(x).

νAc∗(x) = νAc (x) + πAc (x)

2

= μA(x) + πA(x)

2
= μA∗(x).

(IBB4) : Assume that μA(x) ≤ μB(x) and νA(x) ≤
νB(x). Then:
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hIF(μA(x), νA(x), μA∗ (x), 1 − μA∗ (x))

= hIF

(
μA(x), νA(x),

1 + μA(x) − νA(x)

2
,
1 + νA(x) − μA(x)

2

)

≥ hIF

(
μB(x), νA(x),

1 + μB(x) − νA(x)

2
,
1 + νA(x) − μB(x)

2

)

≥ hIF

(
μB(x), νB(x),

1 + μB(x) − νB(x)

2
,
1 + νB(x) − μB(x)

2

)

= hIF (μB(x), νB(x), μB∗ (x), 1 − μB∗ (x)) ,

where the inequalities follows from (AIF-loc.7).
Now assume that I is a BB-entropy and let us prove that

hIF satisfies the additional conditions.
(AI F−loc.1′′): Take u, v such that u+v ≤ 1, and define

the AIFS A on {x} by A = 〈(x, u, v)〉. Then, it holds that:

I (A) = hIF

(
u, v,

1 + u − v

2
,
1 + v − u

2

)
,

but from (IBB1), I (A) = 1 if and only if u = v = 0.
(AI F − loc.7): Let us prove that h∗ is symmetric. Take

u, v such that u + v ≤ 1, and define A = 〈(x, u, v)〉. From
(IBB3), it holds that:

h∗(u, v) = hIF

(
u, v,

1 + u − v

2
,
1 + v − u

2

)

= I (A) = I (Ac)

= hIF

(
v, u,

1 + v − u

2
,
1 + u − v

2

)
= h∗(v, u).

Let us now see that h∗ is decreasing in the first compo-
nent. Take u1, u2, v such that u1 ≤ u2 and u2 + v ≤ 1
and define the AIFSs A, B on {x} by A = 〈(x, u1, v)〉 and
B = 〈(x, u2, v)〉. Then, from (IBB4) it holds that:

h∗(u1, v) = hIF

(
u1, v,

1 + u1 − v

2
,
1 + v − u1

2

)

= I (A) ≥ I (B)

= hIF

(
u1, v,

1 + u2 − v

2
,
1 + v − u2

2

)
= h∗(u2, v).

With a similar reasoning we can proof that h∗ is also decreas-
ing in the second component.

(AIF-loc.8): Take u, v such that u + v ≤ 1, and define the
AIFS A on {x} by A = 〈(x, u, v)〉. Then:

I (A) =
(
u, v,

1 + u − v

2
,
1 + v − u

2

)
.

But from (IBB2), I (A) = 1 if and only if u = v = 0. �
There is an alternative way of defining a BB-entropy using
AIF-divergences. This second approach is based on the
comparison of the AIFS A with the fuzzy sets A+, with

νA(x)

μA(x) 1

1

A+

A−

μ →

ν
↑

Fig. 6 Graphical representation of the sets A+ and A−

membership functionμA+(x) = μA(x), and A−, with mem-
bership function μA−(x) = νA(x). We first compute the
AIF-divergence between A and A+ and between A and A−,
and then aggregate them. The fuzzy sets A+ and A−, as well
as their associated AIFS A, are graphically shown in Fig. 6.

For the next result, the domain D4 of the function hIF is
given by:

D4 = {(u, v, u, 1 − u) | u + v ≤ 1}
∪{(u, v, 1 − v, v) | u + v ≤ 1}.

Proposition 4 Consider a local AIF-divergence D with asso-
ciated function hIF satisfying the following additional prop-
erties on D4:

(AIF-loc.1”’) hIF(u1, u2, v1, v2) = 0 for (u1, u2, v1, v2) ∈
D4 if and only if u1 + u2 = 1.

(AIF-loc.5) hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1) for
any (u1, u2, v1, v2) ∈ D4.

(AIF-loc.9) hIF(u, v, u, 1− u) and hIF(u, v, 1− v, v) are
decreasing in both u and v, for u + v ≤ 1.

(AIF-loc.10) hIF(u1, u2, v1, v2) = 1 for (u1, u2, v1, v2) ∈
D4 if and only if u1 = u2 = 0.

Consider also a function f : [0, 1] × [0, 1] → [0, 1] such
that

(f1) f (u, v) = 0 if and only if u = v = 0.
(f2) f is component-wise increasing.
(f5) f (u, v) = 1 if and only if u = v = 1.
(f6) f (u, v) = f (v, u).
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The function I : AIFS(X) → [0, 1] defined by:

I (A) = 1

n

∑

x∈X
f
(
hIF(μA(x), νA(x), μA(x), 1 − μA(x)),

hIF(μA(x), νA(x), 1 − νA(x), νA(x))
)

(14)

is a BB-entropy.

Proof (IBB1) : I (A) = 0 if and only if

f
(
hIF(μA(x), νA(x), μA(x), 1 − μA(x)),

hIF(μA(x), νA(x), 1 − νA(x), νA(x))
) = 0

for any x ∈ X . From (f1), I (A) = 0 is equivalent to

hIF(μA(x), νA(x), μA(x), 1 − μA(x)) = 0

and

hIF(μA(x), νA(x), 1 − νA(x), νA(x)) = 0,

which by (AIF-loc.1”’) is equivalent to μA(x) + νA(x) = 1
for any x ∈ X , or equivalent, if A is a fuzzy set.

(IBB2) : I (A) = 1 if and only if

f
(
hIF(μA(x), νA(x), μA(x), 1 − μA(x)),

hIF(μA(x), νA(x), 1 − νA(x), νA(x))
) = 1,

for any x ∈ X . Also, from (f5), I (A) = 1 is equivalent to

hIF(μA(x), νA(x), μA(x), 1 − μA(x)) = 1

and

hIF(μA(x), νA(x), 1 − νA(x), νA(x)) = 1,

which by (AIF-loc.10) holds if and only ifμA(x) = νA(x) =
0 for any x ∈ X .

(IBB3) : In order to check the equality I (A) = I (Ac), we
only need to prove that

f
(
hIF(μA(x), νA(x), 1 − μA(x), νA(x)),

hIF(μA(x), νA(x), 1 − νA(x), μA(x))
) =

f
(
hIF(μAc (x), νAc (x), μAc (x),

1 − μAc (x)), hIF(μAc (x), νAc (x), 1 − νAc (x), νAc (x))
)

for any x ∈ X . For this, note that from (AIF-loc.5), it holds
that:

hIF(μAc (x), νAc (x), μAc (x), 1 − μAc (x))

= hIF(νA(x), μA(x), νA(x), 1 − νA(x))

= hIF(μA(x), νA(x), 1 − νA(x), νA(x)).

hIF(μAc (x), νAc (x), 1 − νAc (x), νAc (x))

= hIF(νA(x), μA(x), 1 − μA(x), μA(x))

= hIF(μA(x), νA(x), νA(x), 1 − μA(x)).

Therefore, taking (f6) into account, it holds that:

f
(
hIF(μA(x), νA(x), μA(x), 1 − μA(x)),

hIF(μA(x), νA(x), 1 − νA(x), νA(x))
)

= f
(
hIF(μAc (x), νAc (x), 1 − νAc (x), νAc (x)),

hIF(μAc (x), νAc (x), μAc (x), 1 − μAc (x))
)

= f
(
hIF(μAc (x), νAc (x), μAc (x), 1 − μAc (x)),

hIF(μAc (x), νAc (x), 1 − νAc (x), νAc (x))
)
.

(IBB4) : Take A, B ∈ AIFS(X) such that μA ≤ μB and
νA ≤ νB . By property (AIF-loc.9), it holds that:

hIF(μA(x),νA(x), μA(x), 1 − μA(x))

≥ hIF(μB(x), νA(x), μB(x), 1 − μB(x))

≥ hIF(μB(x), νB(x), μB(x), 1 − μB(x)).

hIF(μA(x),νA(x), 1 − νA(x), νA(x))

≥ hIF(μB(x), νA(x), 1 − νA(x), νA(x))

≥ hIF(μB(x), νB(x), 1 − νB(x), νB(x)).

Therefore, using (f2) we conclude that:

f
(
hIF(μA(x), νA(x), μA(x), 1 − μA(x)),

hIF(μA(x), νA(x), 1 − νA(x), νA(x))
) ≥

f
(
hIF(μB(x),νB(x), μB(x), 1 − μB(x)),

hIF(μB(x), νB(x), 1 − νB(x), νB(x))
)
.

So, I (A) ≥ I (B). �

At a first glance, one may think that the converse implica-
tion in the previous proposition also holds. That is, given a
function f satisfying (f1), (f2), (f5) and (f6), and I as defined
in Eq. (14), then I is a BB-entropy, if and only if, hIF satisfies
properties (AIF-loc.1”’), (AIF-loc.5), (AIF-loc.9) and (AIF-
loc.10).However, as the next example shows, the equivalence
cannot be guaranteed.
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Example 5 Consider the function D given by:

D(A, B) = 1

n

∑

x∈X
|μA(x) − μB(x)| + |νA(x) − νB(x)|2.

This function is a local AIF-divergence whose associated
function hIF is given by:

hIF(u1, u2, v1, v2) = |u1 − v1| + |u2 − v2|2.

Applying Eq. (14) to this function hIF, I (A) is given by:

I (A)

= 1

n

∑

x∈X
f
(|μA(x) − μA(x)| + |1 − μA(x) − νA(x)|2,

|μA(x) − 1 + νA(x)| + |νA(x) − νA(x)|2)

= 1

n

∑

x∈X
f
(|1−μA(x)−νA(x)|2, |1−μA(x) − νA(x)|)

= 1

n

∑

x∈X
f
(
πA(x)2, πA(x)

)
. (15)

Consider the function f : [0, 1] × [0, 1] → [0, 1] given
by f (x, y) = x+y

2 , which satisfies (f1), (f2), (f5) and (f6).
Substituting in Eq. (15), we obtain the following:

I (A) = 1

n

∑

x∈X

πA(x) + πA(x)2

2

= 1

2n

∑

x∈X
πA(x)(1 + πA(x)).

Now we show that this function is a BB-entropy:
(IBB1) : I (A) = 0 if and only if πA(x)(1 + πA(x)) = 0

for any x ∈ X , but this is equivalent to π(A) = 0 for any
x ∈ X , so A is a fuzzy set.

(IBB2) : I (A) = 1 if and only if 1
2πA(x)(1+ πA(x)) = 1

for any x ∈ X , but this is equivalent to πA(x) = 1 for any
x ∈ X , so μA = νA = 0.

(IBB3) : Trivially, I (A) = I (Ac) holds.
(IBB4) : Take μA ≤ μB and νA ≤ νB . This implies that

πA ≥ πB , and therefore πA(1 + πA) ≥ πB(1 + πB), which
implies that I (A) ≥ I (B).

So I is a BB-entropy. However, the function hIF does
not satisfy property (AIF-loc.5): take (0.6, 0.1, 0.6, 0.4),
(0.1, 0.6, 0.4, 0.6) ∈ D4. It holds that:

hIF(0.6, 0.1, 0.6, 0.4) = |0.6 − 0.6| + |0.1 − 0.4|2 = 0.09.

hIF(0.1, 0.6, 0.4, 0.6) = |0.1 − 0.4| + |0.6 − 0.6|2 = 0.3.

Since both values do not coincide, hIF does not satisfy prop-
erty (AIF-loc.5).

We conclude that the sufficient conditions given in Proposi-
tion 4 are not necessary.

4.3 Examples of BB-entropies based on
AIF-divergences

We consider again the four local AIF-divergences defined in
Sect. 3.3, the Hamming and Hausdorff distances lAI F , dH
and the AIF-divergences defined by Hong and Kim DC , DL .
In order to make them to satisfy the normalization properties
mentioned in Sect. 2.3, in this section we consider also d∗

H ,
which is defined by d∗

H = 2dH . We first apply Theorem 4 to
these four local AIF-divergences.

Proposition 5 Consider the AIF-divergences lAI F , d∗
H , DC

and DL. They satisfy the conditions in Theorem 4, so each
of them induces a BB-entropy. Also, the BB-entropies they
induce coincide and it is given by:

I (A) = 1

n

∑

x∈X
πA(x). (16)

Proof First of all, let us see that hl , hd∗, hC and hL coincide
in the domain D3:

hl

(
u, v,

1 + u − v

2
,
1 + v − u

2

)

= 1

2

(∣∣∣∣
1 − u − v

2

∣∣∣∣ +
∣∣∣∣
1 − u − v

2

∣∣∣∣ + |1 − u − v|
)

= 1 − u − v.

hd∗
(
u, v,

1 + u − v

2
,
1 + v − u

2

)

= 2max

{
1 − u − v

2
,
1 − u − v

2

}
= 1 − u − v.

hC

(
u, v,

1 + u − v

2
,
1 + v − u

2

)

=
∣∣∣∣
1 − u − v

2

∣∣∣∣ +
∣∣∣∣
1 − u − v

2

∣∣∣∣ = 1 − u − v.

hL

(
u, v,

1 + u − v

2
,
1 − u + v

2

)

= 1

2

(∣∣∣∣u − 1 + u − v

2
− v + 1 − u + v

2

∣∣∣∣

+
∣∣∣∣
1 − u − v

2

∣∣∣∣ +
∣∣∣∣
1 − u − v

2

∣∣∣∣

)
= 1 − u − v.

Thus, we see that all hl , hd∗, hC , hL coincide in D3. Now,
let us see that they satisfy the conditions on Theorem 4.
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(AI F − loc.1′′) : It holds that:

hl

(
u, v,

1 + u − v

2
,
1 − u + v

2

)
= 1 − u − v = 0

if and only if u + v = 1.
(AI F − loc.7) : h∗

l (u, v) = 1 − u − v, so obviously h∗
l

is symmetric and decreasing in both u, v.
(AI F − loc.8) : It holds that:

hl

(
u, v,

1 + u − v

2
,
1 − u + v

2

)
= 1 − u − v = 1

if and only if u = v = 0.
Therefore, hl , hd∗, hC , hL , all satisfy the conditions of

Theorem 4, so each of Hamming and Hausdorff distances,
DC , and DL , induces a BB-entropy measure. Furthermore,
since hl , hd∗, hC , hL coincide in D3, all of them induce the
same BB-entropy. Using Eq. (13), we obtain the following
formula:

I (A) = 1

n

∑

x∈X
h(μA(x), νA(x), μA∗(x), 1 − μA∗(x))

= 1

n

∑

x∈X
πA(x).

�
The BB-entropy obtained in the previous proposition has
already been proposed in Burrillo and Bustince (1996) and
used in other papers, such as in Szmidt et al. (2014).

Let us now apply the procedure described in Proposition 5
to the four local AIF-divergences. As the next result shows,
the four measures induce again the same BB-entropy.

Proposition 6 Consider the four local AIF-divergences lAI F ,
dH , DC, DL and a function f : [0, 1] × [0, 1] → [0, 1]
satisfying properties (f1), (f5) and (f6). Then, these four local
AIF-divergences satisfy the conditions of Proposition 5, so
each of them induces a BB-entropy. Indeed, they induce the
same BB-entropy, given by:

I (A) = 1

n

∑

x∈X
f (πA(x), πA(x)).

Proof First of all, let us see that hl , hd∗, hC , hL coincide in
D4 and that they take the value 1 − u − v.

hl(u, v, u, 1 − u)

= 1

2
(|u − u| + |1 − u − v| + |1 − u − v|)

= 1 − u − v.

hd∗(u, v, u, 1 − u) = max{|u − u|, |1 − u − v|}

= 1 − u − v.

hC (u, v, u, 1 − u) = |u − u| + |1 − u − v| = 1 − u − v.

hL(u, v, u, 1 − u)

= 1

2

(|u − u − (1 − u) + v| + |u − u| + |1 − u − v|)

= 1 − u − v.

Similarly, it can be seen that:

hl(u, v, 1 − v, v) = hd∗(u, v, 1 − v, v)

= hC (u, v, 1 − v, v)

= hL(u, v, 1 − v, v) = 1 − u − v.

Next we show that they satisfy the conditions on Proposi-
tion 5:

(AI F−loc.1′′′) : hl(u, v, u, 1−u) = hl(u, v, 1−v, u) =
1 − u − v = 0 if and only if u + v = 1.

(AI F−loc.5) : hl is trivially symmetric in the domainD4

since both hl(u, v, u, 1 − u) and hl(u, v, 1 − v, v) coincide
and take the value 1 − u − v.

(AI F − loc.9) : Again, since

hl(u, v, u, 1 − u) = hl(u, v, 1 − v, v) = 1 − u − v,

so it is decreasing in both u and v.
(AI F−loc.10) : hl(u, v, u, 1−u) = hl(u, v, 1−v, v) =

1 − u − v = 1 if and only if u = v = 0.
We can see that hl , and in a similar manner also hd∗, hC ,

hL , satisfy the properties of Proposition 5, and therefore they
define a BB-entropy which is given by:

I (A) = 1

n

∑

x∈X
f
(
hl(μA(x), νA(x), μA(x), 1 − μA(x)),

hl(μA(x), νA(x), 1 − νA(x), νA(x))
)

= 1

n

∑

x∈X
f (πA(x), πA(x)).

�
In particular, now consider the functions:

f1(u, v) = √
u · v, f2(u, v) = 1 − (1 − √

u · v)k,

f3(u, v) = 1

e

√
u · v · e

√
u·v,

where k is an integer. It is easy to see that all three satisfy (f1),
(f2), (f5) and (f6). So we obtain the following BB-entropies:

I1(A) = 1

n

∑

x∈X
πA(x).

I2(A) = 1

n

∑

x∈X
(1 − (1 − πA(x))k).

123



5068 I. Montes et al.

I3(A) = 1

en

∑

x∈X
πA(x)eπA(x).

The former has already been obtained in Proposition 6, while
the second and the third were already presented as examples
of BB-entropies in Burrillo and Bustince (1996).

5 Knowledgemeasures

In a recent paper Guo (2016), the notion of knowledge mea-
sure was introduced by Guo. The aim of this measure is to
quantify the amount of knowledge conveyed by an AIFS.

Definition 7 (Guo (2016)) A mapping K : AIFS(X) →
[0, 1] is called a knowledge measure if K has the follow-
ing properties:

(KP1) K (A) = 1 if and only if A is crisp.
(KP2) K (A) = 0 if and only if πA = 1.
(KP3) K (Ac) = K (A).
(KP4) K (A) ≥ K (B) if μA(x) ≤ μB(x) < νB(x) ≤

νA(x) or νA(x) ≤ νB(x) ≤ μB(x) ≤ μA(x) for
any x ∈ X .

We notice that a knowledge measure is nothing but the com-
plement of an SK-entropy: K is a knowledge measure if and
only if E = 1 − K is a SK-entropy. In this way, we can
simply adapt our results from Sect. 3 to build knowledge
measures using local AIF-divergences. For instance, we can
easily write Theorem 3 in terms of knowledge measures:

Corollary 1 Consider a local AIF-divergence D with associ-
ated function hIF, and define the function K by:

K (A) = 1 − D(A,CA)

= 1 − 1

n

∑

x∈X
hIF(μA(x), νA(x), μCA (x), νCA (x))

for any A ∈ AIFS(X). Then, K is a knowledgemeasure if and
only if hIF satisfies the conditions (AIF-loc.1’), (AIF-loc.5)
and (AIF-loc.6).

The proof is analogous to that of Theorem 3 and therefore,
omitted. Also, we can adapt other results from this section,
as well as the examples given in Sect. 3.3, which give rise to
the following knowledge measures:

K1(A) = 1

n

∑

x∈X
max{μA(x), νA(x)}.

K2(A) = 1 − 1

n

∑

x∈X

(
1 − |μA(x)

− νA(x)|)
(
2 − μA(x) − νA(x)

2

)
.

K3(A) = 1 − 1

n

∑

x∈X

(
(1 − μA(x))(1 − νA(x))

+ min{μA(x), νA(x)}
)
.

K1 is a knowledge measure that can be built using the Ham-
ming and Hausdorff distances. K2 is a knowledge measure
already mentioned in Guo (2016) and Guo and Song (2014),
while K3 is another knowledge measure that can built using
the Hamming distance for fuzzy sets as we did in Example 3.

6 Application tomulti-attribute group
decisionmaking

In this section, we present an application of our results in a
multi-attribute decision-making (MADM, for short) prob-
lem. In detail, we continue with the approach given in
(Nguyen 2015, Section 6), where knowledge measures were
used to obtain the weights of the experts.

We first introduce the main notations. In MADM prob-
lems, X = {x1, . . . , xn} denotes a set of alternatives and
A = {a1, . . . , am} are the attributes with a weight vector
w = (w1, . . . , wm). The alternatives are evaluated by a set
of experts {e1, . . . , el}. Their evaluations are given as IFSs
in a matrix form: S(k), which is an n × m matrix such that
s(k)
i, j = 〈xi , μ(k)

i, j , ν
(k)
i, j 〉 denotes the AIFS that represents the

evaluation of the expert ek of the alternative xi on the attribute
a j .

In Nguyen (2015), knowledge measures are used to deter-
mine weight vector for the experts, following these steps:

– Step 1 For each expert ek , we compute the individual
overall evaluation values of alternative xi by using the
following intuitionistic fuzzy weighted averaging opera-
tor Xu and Cai (2010):

z(k)i =
〈
xi , 1 −

m∏

j=1

(
1 − μ

(k)
i, j

)w j ,

m∏

j=1

(
ν

(k)
i, j

)w j

〉
,

– Step 2 For each expert ek , we compute the knowledge of
its overall evaluation zi , denoted by K (z(k)).

– Step 3We define the weights of the experts by normaliz-
ing the values K (z(i)):

λk = K (z(k))
∑l

i=1 K (z(i))
.

From our comments in Sect. 5, we deduce that this approach
is made in terms of SK-entropies, which means that it
determines the weights of experts by measuring the lack
of information of any expert about whether the alternative
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is adequate or not. Then, the smaller is the lack of infor-
mation, the greater is the weight. However, as we have
explained before, we could also use BB-entropies instead
of SK-entropies to measure the indecision of the experts.

Hence, we propose to modify the previous procedure as
follows:

– Step 2* Let us fix a local AIF-divergence and the SK-
and BB-entropies it defines, denoted by ESK and EBB .
For each expert ek , we compute the SK- and BB-entropy
of its overall evaluation: ESK (z(k)) and EBB(z(k)).

– Step 3* We define the weight of each expert by normal-
izing the entropies:

αk = 1 − ESK (z(k))
∑l

i=1(1 − ESK (z(i)))
,

βk = 1 − EBB(z(k))
∑l

i=1(1 − EBB(z(i)))
.

Once that we have obtained these values, we can proceed as
follows:

1. The weights αk are computed by measuring the lack of
information of any expert about whether the alternative
is adequate or not. Thus, the weight decreases as the lack
of information decreases.

2. The weights βk are computed by measuring the deter-
mination of the experts, in the sense that more the
indeterminacy of an expert, the closer s(k)

i, j is to be a crisp
set, and so the greater is the expert’s weight.

Following the first interpretation and taking into account our
comments in Sect. 5, our framework includes the approach
of Nguyen (2015) as a particular case. We next apply this
approach in the following example, which first appeared in
(Nguyen 2015, Example 4).

Example 6 Consider an MADM problem that consists of
choosing an air-conditioning system between three alterna-
tives x1, x2, x3. In order to make the decision, five attributes
are analyzed: good quality (a1), easiness to operate (a2),
being economical (a3), good service (a4) and price (a5),
where their weight vector is w = (0.2, 0.299, 0.106,
0.156, 0.239). Three experts e1, e2, e3 evaluate the alterna-
tives, and they give the following IFSs:

S(1) =
⎛

⎝
〈0.8, 0.1〉 〈0.7, 0.1〉 〈0.7, 0.2〉 〈0.9, 0〉 〈0.5, 0.4〉
〈0.7, 0.1〉 〈0.8, 0.2〉 〈0.6, 0.4〉 〈0.7, 0.1〉 〈0.4, 0.6〉
〈0.8, 0.2〉 〈0.9, 0.1〉 〈0.7, 0〉 〈0.7, 0.2〉 〈0.5, 0.5〉

⎞

⎠

S(2) =
⎛

⎝
〈0.9, 0.1〉 〈0.8, 0.1〉 〈0.7, 0〉 〈0.9, 0.1〉 〈0.7, 0.3〉
〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.7, 0.3〉 〈0.7, 0.2〉
〈0.7, 0.1〉 〈0.9, 0〉 〈0.8, 0〉 〈0.8, 0.2〉 〈0.3, 0.6〉

⎞

⎠

S(3) =
⎛

⎝
〈0.8, 0〉 〈0.7, 0.1〉 〈0.9, 0〉 〈0.8, 0.1〉 〈0.6, 0.4〉

〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.3, 0.6〉
〈0.9, 0.1〉 〈0.8, 0〉 〈0.8, 0.1〉 〈0.9, 0〉 〈0.4, 0.5〉

⎞

⎠

Using Step 2, the individual overall evaluation of the experts
is given by:

z1 = 〈(x1, 0.737, 0), (x2, 0.677, 0.219), (x3, 0.775, 0)〉.
z2 = 〈(x1, 0.82, 0), (x2, 0.701, 0.217), (x3, 0.7625, 0)〉.
z3 = 〈(x1, 0.752, 0), (x2, 0.727, 0.245), (x3, 0.797, 0)〉.

Now, consider the Hamming distance lAI F and the SK- and
BB-entropies they induce, denoted by ESK and EBB , which
are computed using Eqs. (11) and (16). Then, following Step
2* we obtain the following values:

z1 z2 z3

ESK (zi ) 0.271 0.239 0.241
EBB(zi ) 0.204 0.167 0.160

Thus, following Step 3*, we obtain the final weight vec-
tors:

α = (0.324, 0.339, 0.337), β = (0.322, 0.338, 0.340).

Let us compare the two weight vectors. On the one hand, the
weight vector α is given in terms of the amount of knowledge
of the experts. This means that expert e2 has a slightly greater
weight than e3, and the least informative expert is e1. On
the other hand, the weight vector β is given in terms of the
determination of each expert. With respect to this second
approach, e3 is the most determined expert, so she has a
slightly greater weight than e2 and e1.

Finally, if we want to take into account the amount of
information that experts have, we should use the weights αk ,
while if we want to take into account the determination of
the experts, we should use the weights βk . If we want to
take into account both standpoints, we could aggregate both
weights bymeans of any appropriate aggregation operator. In
any case, we have to notice that both weights come from the
same divergence measure, so they have a common starting
point and they are related in all the cases.

As soon as we determine the weights, we can use the usual
procedures fromMADM to determinewhich is themost ade-
quate alternative.

7 Conclusions

In the framework of AIFSs, two different ways of defining
entropies can be found in the literature. Szmidt andKacprzyk
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defined entropy as a measure of how far an AIFS is from a
fuzzy set, while Burrillo and Bustince defined entropy as a
measure of how far an AIFS is from its closest fuzzy set.

In this work, we have generalized both approaches using
local AIF-divergence measures, which are functions that
measure how different two AIFSs are, to define entropies of
AIFSs. In the framework of Szmidt and Kacprzyk, we have
defined the closets crisp set to an AIFS and then we have
defined the SK-entropy as the AIF-divergence between an
AIFS and its closest crisp set. In the framework of Bustince
and Burrillo, we have defined its closest fuzzy set, and
then we have defined the BB-entropy as the AIF-divergence
between the AIFS and its closest fuzzy set.

In both approaches, we have studied the properties that
must be imposed in theAIF-divergence to guarantee that they
define either an SK-entropy or a BB-entropy. We have also
seen that the usual examples of SK- and BB-entropies can be
obtained using local AIF-divergences. Measures of entropy
have many applications in areas like image segmentation and
multi-attribute decision making. Our generalizations offer a
few distinct benefits. First, depending on an application, a
user can choose an appropriate measure from a large set of
possibilities. Second, the local nature of divergence makes it
a trivial task to parallelize the computation of entropy, which
is very important for large data sets. Third, such a measure
being the divergence between two sets (e.g., an AIFS and its
closest crisp set), it is quite easy to understand how and why,
for example, an image segmentation algorithm using entropy
works. We have also seen that SK-entropies and knowledge
measures are equivalent, so we can also apply our results to
define knowledge measures using local AIF-divergences.

As a future research, we aim to apply entropies and knowl-
edge measures defined from AIF-divergence measures in
image processing, as was done in Bhandari et al. (1992) and
Farnoosh et al. (2016), or to pattern recognition, as was done
in Deng et al. (2015) and Meng and Chen (2016).
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