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Abstract
On account of uncertainty and complexity of environments, it is more suitable to express their assessed value by means of
hesitant fuzzy information for decision makers. In this paper, we establish a new group decision-making (GDM) model with
incomplete hesitant fuzzy preference relations (HFPRs) based on mathematical programming approach. Firstly, based on the
multiplicative consistency of incomplete HFPR, a mathematical programming model is established to obtain multiplicative
consistent fuzzy preference relation (FPR) from a given incomplete HFPR. Following this, experts are assigned with weights
according to their consistency degree. Subsequently, a group consensus reaching process algorithm is constructed based on the
obtained multiplicative consistent FPRs. Correspondingly, a GDM model is further established. Finally, a medical decision
application is studied to present the practicability and effectiveness of the proposed method.

Keywords Incomplete hesitant fuzzy preference relation · Multiplicative consistency · Mathematical programming ·
Consensus · Group decision making

1 Introduction

As an extension of Zadeh’s fuzzy sets (Zadeh 1965), all kinds
of fuzzy sets were established and have been developed in
recent years. Subsequently, a variety of preference relations
were formed, for example fuzzy preference relation (FPR)
(Orlovsky 1978; Herrera-Viedma et al. 2004) and linguistic
preference relation (Xu 2005). Besides, some extended fuzzy
numbers were proposed and applied to decision problems (Li
et al. 2015a, b). Because of the uncertainty and complexity
of decision-making environment, it is not easy to just afford
a single term to evaluate two objects for decision makers
(DMs) in the actual decision-making process. In order to
manage this issue, Torra (2010) developed hesitant fuzzy
set, which allows DMs to take into account simultaneously
several possible values to evaluate two objects. Complying
with the cognitive characteristics of DMs, the hesitant fuzzy
set includes more influential information of DMs. Moreover,
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Rodríguez et al. (2012) proposed hesitant fuzzy linguistic
term sets (HFLTSs) based on the hesitant fuzzy sets. After-
ward, the GDM problems based on preference relations with
HFLTSs have receivedwidespread attention (Rodríguez et al.
2013; Song and Hu 2017; Xu and Wang 2017).

On the basis of the hesitant fuzzy set, Xia and Xu (2013)
put forward hesitant fuzzy preference relation (HFPR). The
GDM models based on HFPRs have been extensively stud-
ied (Xia and Xu 2013; Liao et al. 2014; Zhu et al. 2014;
Zhang et al. 2015b; Xu et al. 2017). Xia and Xu (2013)
introduced the concept of HFPR and applied four operators
to obtain the collective matrices, respectively. Recommend-
ing the concept of multiplicative consistency of HFPR, Liao
et al. (2014) developed two algorithms to improve consis-
tency and consensus level, respectively. Zhang et al. (2015b)
constructed a GDMmodel, simultaneously considering con-
sensus reaching process. Zhu et al. (2014) proposed two
methods to obtain the ranking results of alternatives based on
the α-normalization and the β-normalization, respectively.
Xu et al. (2017) developed firstly a normalization method to
obtain the normalized HFPRs based on additive consistency.
And then, a group consensus model was established based
on two feedbackmechanisms, namely interactivemechanism
and automatic mechanism.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3316-5&domain=pdf
http://orcid.org/0000-0001-5914-4525


6658 Y. Song, G. Li

Meanwhile, the incomplete evaluations frequently exit
owed to varied reasons, for example lack of background
knowledge or time pressure for DMs. Various incomplete
preference relations acquired development constantly in
recent years (Xu and Wang 2013; Xu et al. 2013a, 2018;
Ureña et al. 2015; Zhang and Guo 2016a). Furthermore,
the research of incomplete HFPRs in group decision making
has received attention quickly (Zhang et al. 2015a; Xu et al.
2016). Zhang et al. (2015a) defined the additive consistent
incomplete HFPR. First, the normalized incomplete HFPR
was obtained to ensure the same number for every known ele-
ments. Then, two estimation procedures were constructed to
estimate the missing values with incomplete HFPR based
on the additive consistency. Finally, the collective HFPR
was obtained by means of WA operator. Xu et al. (2016)
developed two goal programming models to get the priority
weights from an incomplete HFPR based on additive consis-
tency andmultiplicative consistency, respectively. In addition
to these two goal programming models were extended to
dealwithGDMproblems.However, the above existingGDM
models to deal with incomplete HFPRs exhibit some draw-
backs as the mentioned methods do not consider group
consensus reaching process, andZhang et al. (2015a)’smodel
carries out normalization process which biases the original
information of DMs (Rodríguez et al. 2016). On account of
the uncertainty for hesitant information, the handlingmethod
with HFPR should draw the reasonable information from
the HFPR rather than endeavor to satisfy that all the pref-
erence information should be perfectly consistent because
the normalization process will bias the original information
(Rodríguez et al. 2016). In addition,Zhu andXu (2013) estab-
lished a regression algorithm to obtain the highest consistent
FPR within all possible FPRs from a given HFPR.

Based on the above motivations, we develop a novel
group decision-making model with incomplete HFPRs by
means of mathematical programming approach, consider-
ing simultaneously group consensus reaching process. The
multiplicative consistent FPR obtained by mathematical
programming may be interpreted as the most reasonable
information of given incomplete HFPR, which means a pro-
cess of regression.

The following contents of this paper are structured as
below: In Sect. 2, the relevant knowledge for FPR, HFPR,
and incomplete HFPR is reviewed. In Sect. 3, an addressing
method for incomplete HFPR via mathematical program-
ming is proposed. In Sect. 4, a GDMmodel with incomplete
HFPRs is established. In Sect. 5, a medical decision problem
is resolved by the proposed model, and comparison between
our method and other relevant approaches is fulfilled. Some
concluding remarks are presented in Sect. 6.

2 Preliminaries

In this section, we review the relevant knowledge for FPR,
HFPR, and incomplete HFPR.

2.1 Fuzzy preference relation

Definition 2.1 (Tanino 1984) Suppose P be FPR about the
alternatives A = {A1, A2, . . . , An}, presented as hereunder:

P = (
pi j

)
n×n =

⎡

⎢⎢⎢
⎣

0.5 p12 · · · p1n
p21 0.5 · · · p2n
...

...
. . .

...

pn1 pn2 · · · 0.5

⎤

⎥⎥⎥
⎦

,

where pi j suggests the degree of preference for alternative
Ai over A j , pi j ∈ [0, 1] , pi j = 0.5 denotes indifference
between Ai and A j , pi j = 1 denotes that Ai is entirely pre-
ferred to A j , and pi j > 0.5 denotes Ai is preferred to A j ,
where 1 ≤ i, j ≤ n.

Definition 2.2 (Tanino 1984) Suppose P = (
pi j

)
n×n be

FPR. If P satisfies the following equation:

pi j = ωi

ωi + ω j
, i, j = 1, 2, . . . , n, (1)

then P is referred to as a multiplicative consistent FPR.

2.2 Hesitant fuzzy preference relation (HFPR)

Xia and Xu (2013) firstly proposed the definition of HFPR.
However, it needs the values of HFPR to be arranged in
ascending sequence, i.e., hβ

i j < hβ+1
i j (i < j), which will

distort the expert’s original information. To overcome the
above weaknesses, Xu et al. (2017) developed a new defini-
tion of HFPR that need not arrange the elements in ascending
or descending sequence. Therefore, this paper uses the defi-
nition proposed by Xu et al. (2017) as follows:

Definition 2.3 (Xu et al. 2017) A hesitant fuzzy preference
relation H about the alternatives X = {x1, x2, . . . , xn} is
presented by H = (

hi j
)
n×n ⊂ X × X , where hi j ={

hβ
i j

∣∣β = 1, 2, . . . , #hi j
}
(#hi j is the number of values in

hi j ) is a hesitant fuzzy element, which indicates all the
possible preference degree(s) of the objective xi over x j .
Moreover, hi j should satisfy the following conditions:

hβ
i j + hβ

j i = 1, hii = {0.5} , #hi j = #h ji ,

i, j = 1, 2, . . . , n.

where hβ
i j refers to the βth element in hi j .
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2.3 Incomplete hesitant fuzzy preference relation

As we have already said in introduction, incomplete pref-
erence relations usually exist on account of DMs’ limited
expertise related to the problem domain or time pressure. In
the following, we review the definition of incomplete HFPR.

Definition 2.4 (Xuet al. 2016)Suppose X = {x1, x2, . . . , xn}
is a fixed set, then an incomplete HFPR H on X is indicated
by H = (

hi j
)
n×n ⊂ X × X where all known hesitant fuzzy

elements (HFEs) hi j =
{
hβ
i j

∣
∣β = 1, 2, . . . , #hi j

}
(#hi j is

the number of values in hi j ) which indicates all the possible
preference degree(s) of the objective xi over x j . Moreover,
hi j should satisfy the following conditions:

hβ
i j + hβ

j i =1, hii ={0.5} , #hi j = #h ji , i, j = 1, 2, . . . , n.

where hβ
i j refers to the βth element in hi j .

Definition 2.5 (Xu et al. 2016) Let H = (
hi j

)
n×n be an

incomplete HFPR. If H satisfies the following conditions:

ωi

ωi + ω j
= h1i j or h

2
i j or . . . or h

#hi j
i j , (2)

then H is referred to as amultiplicative consistent incomplete
HFPR, where i, j = 1, 2, . . . , n, , hβ

i j being the βth element
in hi j and the #hi j being the number of hi j .

3 An addressingmethod for incomplete
HFPR via mathematical programming

In this section, the multiplicative consistent FPR is extracted
from incomplete HFPR by means of mathematical program-
ming.

For convenience of calculation, an indication matrix � =(
λi j

)
n×n of the incomplete HFPR H = (

hi j
)
n×n is con-

structed (Xu et al. 2016) as follows:

λi j =
{
0, hi j = x
1, hi j �= x

and hi j = x represents a missing HFE hi j .

Given an incomplete HFPR H = (
hi j

)
n×n , let δ

(
hi j

) =
h1i j or h

2
i j or . . . or h

#hi j
i j , then Eq. (2) is rewritten as follows:

λi j · ωi

ωi + ω j
= λi j δ

(
hi j

) ⇔ λi jωi = λi j δ
(
hi j

) (
ωi + ω j

)

⇔ λi j
(
δ
(
hi j

) − 1
)
ωi + λi j δ

(
hi j

)
ω j = 0, (3)

If an HFPR H is not consistent, then there is no one
vector satisfying Eq. (3). In real world, it is not easy to
meet the perfect consistency like Eq. (3). Therefore, “soft”
consistent conceptwas proposed to express approximate con-
sistency (Kacprzyk and Fedrizzi 1988; Herrera-Viedma et al.
2014). It is generally known that the most deviation ele-
ment with consistent level plays a central role in deriving
the priority weight of alternatives, based on which, in order
to obtain the best weight for the standards, a solution should
be found so as to minimize the maximum absolute differ-
ences

∣
∣λi j

(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j

∣
∣ for all j based

on Eq. (3). Taking the sum and nonnegativity conditions for
the weights, the below model is established:

min max
{∣∣λi j

(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j

∣∣}

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1
ωi = 1

ωi ≥ 0
i, j = 1, 2, . . . , n

, (4)

Also, because the following equation holds

∣∣λ j i
(
δ
(
h ji

) − 1
)
ω j + λ j iδ

(
h ji

)
ωi

∣∣

= ∣
∣λi j

(
1 − δ

(
hi j

) − 1
)
ω j + λi j

(
1 − δ

(
hi j

))
ωi

∣
∣

= ∣∣λi j
(−δ

(
hi j

))
ω j + λi j

(
1 − δ

(
hi j

))
ωi

∣∣

= ∣∣λi j
(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j

∣∣

Therefore, model (4) is equivalent to the following model (5)

min max
{∣∣λi j

(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j

∣∣}

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1
ωi = 1

ωi ≥ 0
i, j = 1, 2, . . . , n, i < j

, (5)

Model (5) can be transferred to the following model:

min ξ

s.t .

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣λi j
(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j

∣∣ ≤ ξ
n∑

i=1
ωi = 1

ωi ≥ 0
i, j = 1, 2, . . . , n, i < j

, (6)

Moreover, model (6) can be reduced to the following model
(7)
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min ξ

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λi j
(
δ
(
hi j

) − 1
)
ωi + λi jδ

(
hi j

)
ω j − ξ ≤ 0

λi j
(
1 − δ

(
hi j

))
ωi − λi jδ

(
hi j

)
ω j − ξ ≤ 0

n∑

i=1
ωi = 1

ωi ≥ 0
i, j = 1, 2, . . . , n, i < j

, (7)

Finally, model (7) can be translated into the following model
(8)

min ξ

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi j

((
#hi j∑

β=1
zβi j · hβ

i j

)

− 1

)

ωi

+λi j

(
#hi j∑

β=1
zβi j · hβ

i j

)

ω j − ξ ≤ 0,

λi j

(

1 −
(
#hi j∑

β=1
zβi j · hβ

i j

))

ωi

−λi j

(
#hi j∑

β=1
zβi j · hβ

i j

)

ω j − ξ ≤ 0,

n∑

i=1
ωi = 1,

ωi ≥ 0,
#hi j∑

β=1
zβi j = 1,

zβi j = 0 or 1,
i, j = 1, 2, . . . , n, i < j .

, (8)

Remark 1 Since ξmin denotes the deviation of consistency
level, the 1− ξmin may indicate the consistent level for deci-
sion maker. It becomes clear that the 1 − ξmin larger, the
higher the consistent level for decision maker.

Example 1 Assume an incomplete HFPR H as follows:

H =

⎡

⎢⎢
⎣

{0.5} x {0.6} {0.7}
x {0.5} x {0.7, 0.8}

{0.4} x {0.5} {0.6, 0.7}
{0.3} {0.3, 0.2} {0.4, 0.3} {0.5}

⎤

⎥⎥
⎦ .

Based onmodel (8), we establish the followingmathematical
programming

min ξ

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.4ω1 + 0.6ω3 − ξ ≤ 0,
0.4ω1 − 0.6ω3 − ξ ≤ 0,
−0.3ω1 + 0.7ω4 − ξ ≤ 0,
0.3ω1 − 0.7ω4 − ξ ≤ 0,[(
z124 × 0.7 + z224 × 0.8

) − 1
]
ω2

+ (
z124 × 0.7 + z224 × 0.8

)
ω4 − ξ ≤ 0,[

1 − (
z124 × 0.7 + z224 × 0.8

)]
ω2

− (
z124 × 0.7 + z224 × 0.8

)
ω4 − ξ ≤ 0,[(

z134 × 0.6 + z234 × 0.7
) − 1

]
ω3

+ (
z134 × 0.6 + z234 × 0.7

)
ω4 − ξ ≤ 0,[

1 − (
z134 × 0.6 + z234 × 0.7

)]
ω3

− (
z134 × 0.6 + z234 × 0.7

)
ω4 − ξ ≤ 0,

4∑

i=1
ωi = 1, ωi ≥ 0, i = 1, 2, 3, 4,

z124 + z224 = 1,
z134 + z234 = 1,
z124, z

2
24, z

1
34, z

2
34 = 0 or 1.

.

Then, ξmin = 0.001 and ω∗ = (0.2598, 0.4559, 0.1716,
0.1127)T are obtained byMATLAB, and then,multiplicative
consistent FPR can be obtained by Eq. (1) as follows:

R =

⎡

⎢⎢
⎣

0.5 0.36 0.6 0.7
0.64 0.5 0.73 0.8
0.4 0.27 0.5 0.6
0.3 0.2 0.4 0.5

⎤

⎥⎥
⎦ .

For instance, r13 = ω1
ω1+ω3

= 0.2598
0.2598+0.1716 = 0.6.

Remark 2 Based on the above analysis, it should be pointed
out that model (8) could play a dual role: It could help to
obtain not only the complete FPR but alsomultiplicative con-
sistent FPR from a given incomplete HFPR. In this paper, the
obtainedmultiplicative consistent FPR bymodel (8) is called
as reduced HFPR.

4 A novel group decision-makingmodel with
incomplete HFPRs

In this section, the experts’ weight is calculated based on the
experts’ consistent level 1 − ξi,min, where ξi,min is obtained
by model (8). Then, a group consensus reaching process
algorithm is established on the basis of the defined group
consensus degree. Finally, a step-by-step procedure of the
GDM model with incomplete HFPRs is constructed.
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4.1 Determining experts’weight

Once the reduced HFPRs and consistent degree 1 − ξi,min

for expert ei have been obtained by model (8), their corre-
spondingmultiplicative consistent FPRs can also be acquired
through Eq. (1).

It is quintessential to find out the DMs’ weights in the
GDM problems, owing to the fact that the DMs typically
possess different preferences, capabilities, and hierarchical
ranks. It is rational to conclude that the higher the consis-
tent degree of expert’s preference relations is, the larger the
weights will be allocated to her/he. Therefore, the weights
are assigned to experts by means of the following relation:

ui = 1 − ξi,min∑m
i=1

(
1 − ξi,min

) (i = 1, 2, . . . ,m) , (9)

where m denotes the quantity of experts.

4.2 Consensus reaching process

Before the group consensus is reached, theminimumconsen-
sus thresholds GCI should be determined in advance. While
there is no specific rule to find out the consensus thresholds
GCI, it can normally be found by means of a trial-and-error
process (Xu et al. 2013b). In addition, Herrera-Viedma et al.
(2005) indicated briefly that the determination of GCI should
hang on the particular decision-making problem, i.e., if the
decision problem is urgent and has to be resolved rapidly,
the smaller thresholds can be adopted; otherwise, the mini-
mum group consensus thresholds are required to be as high
as possible.

Definition 4.1 Let Pk = (
pi j,k

)
n×n , k = 1, 2, . . . ,m and

P = (
pi j

)
n×n be m FPRs and the collective FPR, respec-

tively. Then, group consensus index (GCI) of expert ek is
given as follows:

GCI (Pk) = 1 − 2

n (n − 1)

n−1∑

i=1

n∑

j=i+1

∣∣pi j,k − pi j
∣∣, (10)

From Eq. (10), it can be seen that if GCI (Pk) = 1, then the
individual FPR Pk is consistent with the collective FPR P .
In addition, if GCI ≥ GCI, then the group reaches a satisfied
level of consensus, where GCI is a predetermined threshold
of group consensus.

Different methods have been proposed to manage the
group consensus reaching process (Herrera-Viedma et al.
2005; Pérez et al. 2014; Xu et al. 2015a, b; Li et al. 2016;
Zhang and Guo 2016b). Exactly as some research (Herrera-
Viedma et al. 2005; Xu et al. 2015a, b), there exists a bounded
rational hypothesis in the consensus reaching process to

express preferences of their true ideas. Moreover, they agree
to resize their preferences by means of a kind of consensus
algorithms in the decision process. In what follows, an auto-
matic iterative algorithm is established based on Ref. (Xu
et al. 2013b) as follows:

Algorithm 1 Group consensus reaching process

Input: Individual FPRs P1, P2, · · · , Pm , the thresholds
GC I , and the maximum iterations tmax ≥ 1.

Output: Adjusted FPRs P(t)
1 , P(t)

2 , · · · , P(t)
m , GC I

(
P(t)
k

)

(k = 1, 2, · · · ,m), P(t)
c and the iterations t .

Step 1: Set t = 0 and P(0)
k = Pk (k = 1, 2, · · · ,m).

Step 2:Using the optimization model (8) to obtain the ξ
(t)
k,min

for P(t)
k (k = 1, 2, · · · ,m) and then get the experts’ weights

u(t) =
(
u(t)
1 , u(t)

2 , · · · , u(t)
m

)T
according to Eq. (9).

Step 3: Calculate the collective FPR P(t)
c =

(
p(t)
i j,c

)

n×n

corresponding to P(t)
1 , P(t)

2 , · · · , P(t)
m , where

p(t)
i j,c = u1 p

(t)
i j,1 + u2 p

(t)
i j,2 + · · · + um p(t)

i j,m , (11)

Step 4:Count theGC I
(
P(t)
k

)
(k = 1, 2, · · · ,m) according

to Eq. (10). If GC I
(
P(t)
k

)
≥ GC I (k = 1, 2, · · · ,m) or

t ≥ tmax, then go to Step 6; or it, to find out the FPR P(t)
k

satisfyingGC I
(
P(t)
k

)
< GC I and proceed to the next step.

Step 5: Ascertain the position of the elements d(t)
iτ jτ ,k for

expert ek satisfying GC I
(
P(t)
k

)
< GC I , where d(t)

iτ jτ ,k =
max
(i, j)

∣∣∣p(t)
i j,k − p(t)

i j,c

∣∣∣ and then adjust expert ek’s FPR accord-

ing to Eq. (12). Let P(t+1)
k =

(
p(t+1)
i j,k

)

n×n
, where

p(t+1)
i j,k =

{
p(t)
i j,c, i = iτ , j = jτ
p(t)
i j,k, otherwise

, (12)

Set t = t + 1 and go to Step 2.
Step 6: Let Pk = P(t)

k , for all k = 1, 2, · · · ,m. Output
P1, P2, · · · , Pm , GC I

(
Pk

)
for all k = 1, 2, · · · ,m, Pc =

P(t)
c and the iterations t .

Remark 3 The thresholds GCI provide a flexible option with
the group to command the decision process. Once thresholds
GCI are specified, Step 4 is implemented to determine which
experts need adjust their opinion and then Step 5 gives a spe-
cific scheme to make adjustments. After the expert opinion
P(t)
k is adjusted, and the optimization model (8) is reused
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to determine the new experts’ weights with those updated
information. By iteratively adjusting the experts’ opinion and
weights, the consensus level gradually is improved.

4.3 Selection process

The objective of this process is to list all alternatives
for selecting the optimal one. The score for alternatives
Ai (i = 1, 2, . . . , n) is computed by means of the following
equation:

S (Ai ) = 2

n (n − 1)

n∑

j=1, j �=i

pi j,c, (13)

where 1 ≤ i, j ≤ n, i �= j and
∑n

i=1 S (Ai ) = 1. If
S (A1) > S (A2), then A1 	 A2; if S (A1) = S (A2), then
A1 = A2.

4.4 A step-by-step procedure of the GDMmodel with
incomplete HFPRs

In what follows, a GDM model based on mathemati-
cal programming is established with incomplete HFPRs.
Assume that there are n alternatives A1, A2, . . . , An and
experts’ weights u(t) = (u1, u2, . . . , um)T related to experts
e1, e2, . . . , em during iteration. The Hk (k = 1, 2, . . . ,m)

indicates theoriginalHFPRgivenbyexpert ek (k = 1, 2, . . . ,
m). The flowchart of proposed GDM model is illustrated in
Fig. 1, and its procedure is specifically shown as follows:

Step 1 Every expert just need to give the most confident
assessed value(s) between two alternatives by pared
comparison method based on their experience and
expertise knowledge, where missing comparisons
are denoted by “x”.

Step 2 The complete multiplicative consistent FPRs
Pk (k = 1, 2, . . . ,m) and ξk,min (k = 1, 2, . . . ,m)

are obtained from the original incomplete HFPRs
Hk (k = 1, 2, . . . ,m)bymeansofmodel (8), respec-
tively.

Step 3 Compute theoriginal experts’weightu(0) = (u1, u2,
. . . , um)T on the basis of ξk,min (k = 1, 2, . . . ,m)

by Eq. (9).
Step 4 Put into effectAlgorithm1 and obtain collective FPR

that achieves preset group consensus degree.
Step 5 Compute the score value of alternatives by Eq. (13)

and rank alternatives Ai (i = 1, 2, . . . , n).
Step 6 End.

5 Case study and contrastive analysis

5.1 Application tomedical decision

In dermatology department, it is a tough choice to deter-
mine the best treatment choice for a patient with a severe
skin lesion since it does not only rely on the disease (Anstey
and Edwards 2014). The opinions, preferences, and circum-
stances of the patient are the most key elements to determine
the most suitable treatment. Otherwise, even apparently suc-
cessful treatments can miss its target completely (Massanet
et al. 2016). In order to share decision-making proposal, it is
necessary that academic dermatologists, clinical dermatolo-
gists, pharmacists, and dermatology nurses to hold a group
consultations to decide the best treatment option, namely a
group decision making.

Suppose that a group of three dermatologists E =
{e1, e2, e3} hesitate for the best treatment, A = {A1 =
Photodynamic therapy, A2 = Isotretinoin, A3 = Large acne
cysts removal, A4 = Oral antibiotics} are applied to
a patient with a severe acne disease. As the evaluation
of all these factors is a complex issue, it is more suit-
able to utilize HFPR for describing their preference for
experts, which enhances the preciseness and intelligibility
of experts’ ideas. Hence, the performance values of alterna-
tives Ai (i = 1, 2, 3, 4) are provided by three experts using
HFPR.
Step 1 Every expert just need to gives his/her the most confi-
dent assessed values between two treatment options by paired
comparison method, respectively. Then, three incomplete
HFPRs Hk (k = 1, 2, 3) are constructed as follows:

H1 =

⎡

⎢⎢
⎣

{0.5} {0.3} {0.4} x
{0.7} {0.5} {0.6} x
{0.6} {0.4} {0.5} {0.7, 0.8}
x x {0.3, 0.2} {0.5}

⎤

⎥⎥
⎦ ,

H2 =

⎡

⎢⎢
⎣

{0.5} {0.7} x {0.5}
{0.3} {0.5} {0.6, 0.7} x
x {0.4, 0.3} {0.5} {0.4}

{0.5} x {0.6} {0.5}

⎤

⎥⎥
⎦ ,

H3 =

⎡

⎢
⎢
⎣

{0.5} {0.3} {0.5} {0.7}
{0.7} {0.5} x {0.8}
{0.5} {0.4} {0.5} {0.7, 0.8}
{0.3} {0.2} {0.3, 0.2} {0.5}

⎤

⎥
⎥
⎦ .

Step2Employmodel (8), the reducedHFPRs Pk (k = 1, 2, 3)
and corresponding ξk,min (k = 1, 2, 3) are obtained as fol-
lows:

P1 =

⎡

⎢⎢
⎣

0.5 0.3 0.4 0.6
0.7 0.5 0.6 0.78
0.6 0.4 0.5 0.7
0.4 0.22 0.3 0.5

⎤

⎥⎥
⎦

(
ξ1,min = 0.0016

) ;
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Decision Makers

Incomplete HFPRs

Multiplicative Consistent
FPRs

Determining Experts’
Weight

Selection Process

Group FPR with Achieving
Group Consensus Level

End

Mathematical
Programming

Automatic Iterative
Algorithm

Fig. 1 The framework of GDM with incomplete HFPRs

P2 =

⎡

⎢⎢
⎣

0.5 0.66 0.68 0.54
0.34 0.5 0.53 0.38
0.32 0.47 0.5 0.35
0.46 0.62 0.65 0.5

⎤

⎥⎥
⎦

(
ξ2,min = 0.0238

) ;

P3 =

⎡

⎢⎢
⎣

0.5 0.31 0.48 0.67
0.69 0.5 0.67 0.82
0.52 0.33 0.5 0.69
0.33 0.18 0.31 0.5

⎤

⎥⎥
⎦

(
ξ3,min = 0.0092

)
.

Step 3 Based on the obtained ξk,min (k = 1, 2, 3) from
Step 2, we secure the original experts’ weight u(0) =
(0.337, 0.329, 0.334)T by Eq. (9).
Step 4 Reaching the predefined group consensus level.

On the basis of the experts’ weight u(0) = (0.337, 0.329,
0.334)T , the original group FPR is shown in Table 1 and
original consensus index of each expert is as follows:

GCI
(
P(0)
1

)
= 0.9138,GCI

(
P(0)
2

)
= 0.8255,
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Table 1 The original group FPR

A1 A2 A3 A4

A1 0.5 0.422 0.519 0.604

A2 0.578 0.5 0.6 0.662

A3 0.481 0.4 0.5 0.582

A4 0.396 0.338 0.418 0.5

GCI
(
P(0)
3

)
= 0.9078.

According to the practical problems, the experts agree to
set up GCI = 0.95. Then, Algorithm 1 is applied to adjust

the original FPRs. Since GCI
(
P(0)
k

)
< GCI (k = 1, 2, 3),

we need to find the position of elements d(0)
iτ jτ ,k (k = 1, 2, 3),

where d(t)
iτ jτ ,k = max(i, j)

∣
∣∣p(t)

i j,k − p(t)
i j,c

∣
∣∣. With regard to P(0)

1 ,

we obtain d(0)
12,1 = d(0)

21,1 = max(i, j)

∣∣∣p(0)
i j,1 − p(0)

i j,c

∣∣∣ = 0.122;

hence, according to Eq. (12), d(0)
12,1, d

(0)
21,1 need to be adjusted

to d(0)
12,1 = 0.422, d(0)

21,1 = 0.578. Similarly, the same proce-
dure is implemented to adjust the other two experts’ FPRs

d(0)
24,2 = 0.662, d(0)

42,2 = 0.338;
d(0)
24,3 = 0.662, d(0)

42,3 = 0.338.

Let t = 1, then go to Step 2.
Going through 5 rounds of adjustment, Algorithm 1 ter-

minated. On the whole, e1, e2, and e3 adjust their FPRs 2, 5,
and 3 times, respectively. The comparison of experts’ FPRs
before and after adjustment is shown in Table 2. Further-
more, by means of Eq. (10), the final group consensus index
of every expert is:

GCI
(
P(2)
1

)
= 0.97,GCI

(
P(5)
2

)
= 0.9542,

GCI
(
P(3)
3

)
= 0.9673.

Table 3 The final group FPR

A1 A2 A3 A4

A1 0.5 0.467 0.555 0.603

A2 0.533 0.5 0.6 0.702

A3 0.445 0.4 0.5 0.682

A4 0.397 0.298 0.318 0.5

The final group FPR Pc is presented in Table 3.
Step 5 Calculate the score of alternatives Ai (i = 1, 2, 3, 4)
based on the final group FPR P̄c by Eq. (13) as follows:

S (A1) = 0.2708; S (A2) = 0.3059; S (A3) = 0.2545;
S (A4) = 0.1688.

Hence, the ranking of alternatives is A2 	 A1 	 A3 	 A4.
According to this ranking, the isotretinoin (A2) is recom-

mended as the best treatment plan for this patient among the
considered ones.

5.2 Comparison with other relevant approaches

In what follows, we will compare our method with the two
previous studies about addressing the GDM problems with
incomplete HFPRs.

The comparison results are shown in Table 4 and Fig. 2.
As can be seen from Table 4, we can see that the above three
methods get the same conclusion that the best alternative
is A2. The same ranking orders are obtained between our
method and the Zhang et al. (2015a)’s method, while differ-
ent ranking orders are obtained between our method and Xu
et al. (2016)’s method.Moreover, Fig. 2 intuitively shows the
ranking values for different methods.

In short, the main contributions of the paper can be
summed up as follows:

Table 2 The experts’ original
FPRs and final improved FPRs

Experts Original FPRs Final improved FPRs

Expert e1 P(0)
1 =

⎡

⎢
⎢
⎣

0.5 0.3 0.4 0.6
0.7 0.5 0.6 0.78
0.6 0.4 0.5 0.7
0.4 0.22 0.3 0.5

⎤

⎥
⎥
⎦ P(2)

1 =

⎡

⎢
⎢
⎣

0.5 0.422 0.519 0.6
0.578 0.5 0.6 0.78
0.481 0.4 0.5 0.7
0.4 0.22 0.3 0.5

⎤

⎥
⎥
⎦

Expert e2 P(0)
2 =

⎡

⎢⎢
⎣

0.5 0.66 0.68 0.54
0.34 0.5 0.53 0.38
0.32 0.47 0.5 0.35
0.46 0.62 0.65 0.5

⎤

⎥⎥
⎦ P(5)

2 =

⎡

⎢⎢
⎣

0.5 0.516 0.583 0.54
0.484 0.5 0.53 0.662
0.417 0.47 0.5 0.657
0.46 0.338 0.343 0.5

⎤

⎥⎥
⎦

Expert e3 P(0)
3 =

⎡

⎢
⎢
⎣

0.5 0.31 0.48 0.67
0.69 0.5 0.67 0.82
0.52 0.33 0.5 0.69
0.33 0.18 0.31 0.5

⎤

⎥
⎥
⎦ P(3)

3 =

⎡

⎢
⎢
⎣

0.5 0.463 0.562 0.67
0.537 0.5 0.67 0.662
0.438 0.33 0.5 0.69
0.33 0.338 0.31 0.5

⎤

⎥
⎥
⎦
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Table 4 Comparison of ranking between the proposed method and previous studies

Considering how to determine
DMs’ weights

Considering group
consensus

Ranking values for alternatives Ranking

Our method Yes Yes (0.2708, 0.3059, 0.2545, 0.1688)T A2 	 A1 	 A3 	 A4

Xu et al. (2016) No No (0.1854, 0.4172, 0.2781, 0.1192)T A2 	 A3 	 A1 	 A4

Zhang et al. (2015a) No No (0.2591, 0.2953, 0.2505, 0.1952)T A2 	 A1 	 A3 	 A4

Alternatives
A1 A2 A3 A4

R
an

ki
ng

 v
al

ue
s

0.1

0.2

0.3

0.4

0.5

Our method

Xu et al (2016)

Zhang et al (2015a)

Fig. 2 Ranking values with different methods

• Themultiplicative consistent completeFPRs are extracted
from given incomplete HFPRs by the proposed mathe-
matical programming approach, in contrast to normaliza-
tion process used by Ref (Zhang et al. 2015a), whichmay
deviate the original information of experts (Rodríguez
et al. 2016).

• Consensus reaching process is considered by the pro-
posed model, while the methods (Zhang et al. 2015a; Xu
et al. 2016) do not consider the group consensus reaching
process, which makes our model more reliable than the
existing methods (Zhang et al. 2015a; Xu et al. 2016).

• The experts’ weight is obtained on the basis of consistent
level of experts, which is more tallied with the actual
situation as different experts have different professional
knowledge and background.

6 Conclusions

In this paper, a mathematical programming method has been
presented to extract the highest consistent incomplete FPR
from all possible FPRs based on a given HFPR and simul-
taneously improve the highest consistent incomplete FPR to
complete multiplicative consistent FPR, namely a process of
regression. Moreover, a step-by-step GDM procedure based
on the obtained multiplicative consistent FPRs has been con-
cluded. Besides, the weights of the experts are produced
on the basis of consistent degree of experts. It is rational
to conclude that experts with higher consistency need to be
allocated with higher weights, and thus, their corresponding

ideas bear more weight during the aggregation process. With
the procedure, a medical decision problem is worked out by
means of the proposed model.

Furthermore, the proposed model also can be applied to
different problems like investment decision making, supplier
selection, and decision support system.
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