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Abstract
The existing grey wolf optimization algorithm has some disadvantages, such as slow convergence speed, low precision and
so on. So this paper proposes a grey wolf optimization algorithm combined with particle swarm optimization (PSO_GWO).
In this new algorithm, the Tent chaotic sequence is used to initiate the individuals’ position, which can increase the diversity
of the wolf pack. And the nonlinear control parameter is used to balance the global search and local search ability of the
algorithm and improve the convergence speed of the algorithm. At the same time, the idea of PSO is introduced, which utilize
the best value of the individual and the best value of the wolf pack to update the position information of each grey wolf. This
method preserves the best position information of the individual and avoids the algorithm falling into a local optimum. To
verify the performance of this algorithm, the proposed method is tested on 18 benchmark functions and compared with some
other improved algorithms. The simulation results show that the proposed algorithm can better search global optimal solution
and better robustness than other algorithm.

Keywords Grey wolf optimizer · Particle swarm optimization · Chaotic sequence · Dynamic adaptation · Global optimization

1 Introduction

One of the salient features of the development of modern
science and technology is that life sciences and engineer-
ing sciences cross, interpenetrate, and influence each other.
The vigorous development of swarm intelligence algorithm
reflects this characteristic and trend of scientific develop-
ment. In recent years, swarm intelligence algorithm has
gradually become the focus of scholars. Due to its simplicity,
flexibility, non-derivation mechanism and avoidance of local
optimality, swarm intelligence algorithm is applied to not
only computers but also agriculture (Zou et al. 2016), met-
allurgy (Reihanian et al. 2011), military (Zheng et al. 2017),
civil, and hydraulic engineering (Quiniou et al. 2014), etc.

Recently, many nature inspired optimization algorithm
are proposed. Artificial fish swarm algorithm (AFSA) (Xian
et al. 2017) imitates the foraging, gathering, and rear-tailing
behaviour of fish group by constructing artificial fish to
achieve optimal results; ant colony optimization (ACO)
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(Chen et al. 2017) is inspired by the behaviour of ants in
finding the path during the search for food; butterfly opti-
mization algorithm (BOA) (O’Neil et al. 2010) is a natural
heuristic algorithm that mimics butterfly foraging behaviour;
cuckoo search (CS) (Rakhshani and Rahati 2017) effectively
solves the optimization problem by simulating some of the
cuckoo species’ brood parasitism. At the same time, CS
also use the relevant Levy flight search mechanism; fire-
fly algorithm (FA) (Nekouie and Yaghoobi 2016) is mainly
to use the characteristics of firefly luminescence for ran-
dom optimization; krill herd algorithm (KH) (Gandomi and
Alavi 2012) simulates the response behaviour of krill for
the biochemical processes and environments evolve; fruit
fly optimization algorithm (FOA) (Pan 2012) is a method
for seeking global optimization based on fruit fly foraging
behaviour; flower pollination algorithm (FPA) (Yang 2013)
is a stochastic global optimization algorithm developed to
mimic the biological characteristics of self-pollination and
cross-pollination of flowering plants in nature; chicken opti-
mization algorithm (COA) (Meng et al. 2014) simulates the
chicken hierarchy and chicken behaviour.

The above metaheuristic algorithms show that many
swarm intelligence technologies have been proposed. Some
of them simulate animal predatory behaviour. However, they
ignored the grey wolf, which is a predator in the top of
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the food chain. Researchers have not established a math-
ematical model of grey wolf social hierarchy and predatory
behaviour. Therefore, Mirjalili et al. (2014) proposed a novel
metaheuristic algorithm,which imitated leadership hierarchy
and hunting process of grey wolves. Based on nature of grey
wolves, they proposed a grey wolf optimization algorithm
(GWO).GWOis a heuristic algorithmbased on population. It
mainly simulates the leadership hierarchy of wolves and grey
wolf predation behaviour. Through a series of standard test
functions, GWO algorithm can converge to a better quality
near-optimal solution, possesses better convergence charac-
teristics than other prevailing population-based techniques,
such as genetic algorithm (GA), particle swarm optimization
(PSO), firefly algorithm (FA), artificial fish swarm algorithm
(AFSA) and differential evolution algorithms (DE). At the
same time, the GWO algorithm is simple to operate in the
optimization process, easy to implement, and has few adjust-
ment parameters. Therefore, the GWO algorithm is widely
concerned and is applied to solve many practical problems,
such as multilevel thresholding problem (Khairuzzaman and
Chaudhury 2017), chemistry experiment (Bian et al. 2018),
multi-objective optimal reactive power dispatch (Nuaekaew
et al. 2017), etc.

Like other swarm intelligent optimization algorithms, the
grey wolf optimization algorithm also has some disadvan-
tages. For example, the original GWO algorithm is easy
to fall into stagnation when attacking prey, and the speed
of convergence gradually slows down in the late search
period. Therefore, Saremi et al. (2015) and Mirjalili et al.
(2016) proposed the combination of dynamic evolutionary
population and grey wolf algorithm to improve the local
search ability of the algorithm. But it neglects the algorithm’s
global search ability. Mittal et al. (2016) presented a modi-
fied GWO(mGWO) to balance exploration and exploitation
ability. Long et al. (2016) proposed a hybrid grey wolf
optimization (HGWO), which utilizes chaotic sequence to
strengthen the diversity of global searching. Zhu et al. (2015)
and Yao and Wang (2016) introduced differential evolution
algorithm to improve the searching ability of wolf algorithm.
In order to increase the diversity of the population, Long and
Wu (2017), Zuo et al. (2017) and Guo et al. (2017) pro-
posed the good point set theory to update the grey wolves
individuals’ position, so that the initial population is evenly
distributed. Kohli and Arora (2017) presented the chaos the-
ory into the GWO algorithm and aimed at accelerating its
global convergence speed. Tawhid and Ali (2017) combined
grey wolf optimization and genetic algorithm to improve
the convergence performance of the algorithm. Jitkongchuen
(2016) proposed a hybrid differential evolution algorithm
with grey wolf optimizer, which solves function optimiza-
tion problem. But, the above algorithms do not consider
the influence of the individual wolves’ experience on the
whole populationwhen studying the greywolf predation pro-

cess. So Singh and Singh (2017) presented a newly hybrid
nature inspired algorithm called HPSOGWO. This algorithm
improves the ability of exploitation in particle swarm opti-
mizationwith the ability of exploration in greywolf optimizer
to produce both variants’ strength.

On this basis, this paper presents a grey wolf optimiza-
tion algorithm combined with particle swarm optimization
(PSO_GWO). This algorithm contains three main improve-
ment concepts. Firstly, it initializes the population by using
Tent mapping; secondly, it adopts nonlinear control param-
eter strategy to coordinate the exploration and exploitation
ability; thirdly, inspired by the particle swarm optimization
(PSO) algorithm, a new position update equation of individ-
uals by incorporating the information of individual historical
best solution into the position update equation is designed to
speed up convergence.

The rest of this paper is organized as follows. Section 2
presents a brief description of GWO. Section 3 illustrates
the proposed approach. Section 4 comprises benchmark test
functions and experimental results. Section 5 concludes the
work and outlines some ideas for future works.

2 Grey wolf optimization algorithm

2.1 Grey wolf social rank and hunting behaviour

Grey wolf is a predator in the top of the food chain. Most
of the wolves live in groups, which has 5–12 wolves per
population on average. And each wolf has its own role in
the population, so they have a very strict social hierarchy, as
shown in Fig. 1.

The first layer is the highest leader of the grey wolves,
called α, which is mainly responsible for making decisions
about hunting, habitat and so on; the second layer is the grey
wolf in the subordinate leader of the grey wolf, called β,
which is mainly responsible for assisting leadership man-
agement group or other wolf pack activities; the third layer
is δ, which is mainly responsible for watching the boundaries
of the territory, warning the wolf pack in case of any danger

the fittest solution

the second best 
solution

the third best
 solution 

Fig. 1 The leadership hierarchy of wolves
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and caring for theweak andwounded greywolves. The fourth
layer is the lowest level grey wolf in the population, calledω,
which has to submit to all the other dominant grey wolves. It
may seem that the ω wolves are not an important character
in the wolf pack, but indispensable for balancing the internal
relations of the population.

The leadership hierarchy of wolves plays a crucial role
in hunting of prey. Firstly, the grey wolves search and track
the prey; secondly, the α grey wolf leads the other wolves
to encircle the prey in all directions; thirdly, α grey wolf
commands the β and δ wolves to attack the prey. If the prey
escapes, the other wolves which are supplied from the rear
will continue to attack the prey; finally, grey wolves catch
the prey.

2.2 Grey wolf optimization algorithm description

Grey wolf optimization algorithm simulates the leadership
hierarchy of wolves and predatory behaviour, and then uti-
lizes the grey wolf abilities, which are search, encirclement,
hunting and other activities in the predation process, to
achieve the purpose of optimization. Assuming that the num-
ber of wolves is N and the search area is d, the position of the
ith wolf can be expressed as: Xi = (Xi1, Xi2, Xi3, . . ., Xid).
In order to mathematical model the social hierarchy of
wolves, the fittest solution is considered as the alpha (α)

wolf. Consequently, the second- and third-best solutions are
named beta (β) and delta (δ) wolves, respectively. The rest of
the candidate solutions are assumed to be omega (ω) wolves.
In the algorithm, the location of the prey corresponds to the
position of the alpha wolf.

The encircling behaviour of grey wolves can be mathe-
matically modelled as follows:

D = ∣
∣C × Xp(t) − X(t)

∣
∣ (1)

X(t + 1) = Xp(t) − A × D (2)

where the set t indicates the current iteration, and the set
X p(t) represents the position vector of the prey, the set X(t)
is the position vector of a grey wolf, the set C is a control
coefficient, which is determined by the following formula:

C = 2r1 (3)

where the set r1 is the random variable in the range of [0,
1]. The set A is convergence factor, which is calculated as
follows:

A = 2ar2 − a (4)

a = 2

(

1 − t

T max

)

(5)

where the set r2 is the random variable in the range of [0, 1].
The set a is the control coefficient, which linearly decreases
from 2 to 0 over the course of iterations, that is (Sahoo and
Chandra 2016), amax = 2, amin = 0.

When the grey wolves catch prey, firstly, the leader wolf
α leads the other wolves to surround the prey. Then, the α

wolf leads β and δ wolves to capture the prey. In the grey
wolves, α, β and δ wolves are the closest to the prey, so the
location of the prey can be calculated by their positions. The
specific mathematical model is as follows:

Dα = |C1 × Xα(t) − X(t)| (6)

Dβ = ∣
∣C2 × Xβ(t) − X(t)

∣
∣ (7)

Dδ = |C3 × Xδ(t) − X(t)| (8)

X1 = Xα − A1 × Dα (9)

X2 = Xβ − A2 × Dβ (10)

X3 = Xδ − A3 × Dδ (11)

X(t + 1) = X1 + X2 + X3

3
(12)

The distance between X(t) and α, β,ω wolves is calculated
by formula (6)–(11), and then, the position of the wolves
move to the prey is calculated by formula (12). The flowchart
of GWO is given in Fig. 2.

Start

Initialize  parameters 
A, C, amax amin  ,set 

t=0

By using randomly 
generated data as the 

initial population 
information

Calculate fitness 
values of each grey 

wolf

Find X , X , X

t  Tmax

Stop and Output the 
optimal solution

NO

Update control parameters 
of algorithm

 Update the position of 
wolves based on best 

performed wolves
, ,

YES

 Calculate the fitness of the 
wolves and update X , X , X

t=t+1

Fig. 2 GWO algorithm optimization process
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3 Improved hybrid grey wolf algorithm

3.1 Chaos initialization

GWO algorithm usually solves function optimization prob-
lem by using randomly generated data as the initial popula-
tion information, which will not retain the diversity of the
population and lead to the poor optimization result of the
algorithm. Therefore, this paper proposes Tent chaotic map
to initialize the population.

Chaoticmotion has the characteristics of randomness, reg-
ularity, and ergodicity. When solving function optimization
problems, these features can lead algorithm to escape local
optima, so as to maintain the diversity of the population and
improve the global search ability. Chaotic maps include Tent
maps, Logistic maps and so on. However, different chaotic
mappings have different search characteristics. So far logis-
tic map is mostly used in the literature. But it has a higher
value rate in [0, 0.1] and [0.9, 1] that leads to inhomogeneous
distribution of values. Shan et al. (2005) proves that the Tent
map can perform better than the Logistic mapping in traver-
sal homogeneity and generate a more uniform initial value
between [0, 1], so as to improve the optimization speed of
the algorithm.

Therefore, this paper proposes Tent chaos initialization,
that is, we use Tent chaos to initialize the grey wolves. The
mathematical model of Tent chaos map is as follows:

x(t + 1) =
{

x(t)
u 0 ≤ x(t) < u

1−x(t)
1−u u ≤ x(t) ≤ 1

(13)

When u = 1/2, the Tent map has the most typical form. At
this time, the resulting sequence has a uniform distribution
and has an approximately uniform distribution density for
different parameters.

Thus, the formula for the Tent chaotic map cited in this
article is:

xt+1 =
{

2xt 0 ≤ xt ≤ 1
2

2(1 − xt )
1
2 < xt ≤ 1

(14)

The steps for generating a sequence of Tent chaos maps are
as follows:

Step 1 Take the random initial value x0 to avoid falling
into the small cycles points{0.2, 0.4, 0.6, 0.8}. Mark the
array y(1) = x0, i = 1, j = 1;
Step 2 According to formula (14) to produce a set of x
sequences. After each iteration, i = i + 1;
Step 3 If the number of iterations reaches the maximum,
jump Step 4; Else If there is xi = {0, 0.25, 0.5, 0.75} or
xi = xi−k, k = {0, 1, 2, 3, 4}, replace the initial value of

the iteration by the formula x(i) = y( j + 1) = y( j) +
c, j = j + 1; Else go to Step 2;
Step 4 Terminate the operation, save x sequence data.

3.2 Nonlinear control parameter strategy

The GWO algorithm is mainly composed of two steps: the
prey positioning and the grey wolf individual’s predatory
behaviour. According to formula (1), the parameter A plays
a very crucial role in balancing the global exploration and
local exploitation capability of the GWO algorithm. When
|A| > 1, the group will expand the search range to find a bet-
ter candidate solution, which is the global exploration ability
of the GWO algorithm. When |A| < 1, the group will nar-
row the search range and perform detailed search in the local
area, which is the local exploitation capability of the GWO
algorithm.At the same time, we can see from formula (2) that
in the process of iteration, the value of A changes continu-
ously with the change of control parameter a. From formula
(4), it can be seen that the control parameter a decreases lin-
early with the increase in the number of iterations. However,
the optimization process of GWO algorithm is very com-
plicated. The linear change of parameter a cannot reflect
the actual optimization search process of the algorithm. Wei
et al. (2016) and Yi-Tung and Erwie (2008) proposed that the
control parameter a varies nonlinearly with the number of
iterations. And through the standard test function optimiza-
tion results show that the use of nonlinear change strategy
is better than the linear strategy optimization. But they still
cannot meet the needs of the algorithm.

Therefore, this paper presents a new nonlinear control
parameters, as shown in the following formula:

a1(t) = aini − (aini − afin) ×
(

t

T max

)2

(15)

where the set aini and afin, respectively, represent the initial
value and final value of the control parameter a. The set t is
current iteration and the set Tmax is the maximum number
of iterations.

In order to verify the validity of the control parameter a
proposed in this paper, we compare it with the linear control
parameters and the nonlinear control parameters which are
proposed in Yang (2013) and Mirjalili et al. (2014), and the
formula is as follows:

a2(t) = aini − aini ×
(

t

T max

)

(16)

a3(t) = aini−(aini−afin) × tan

(
1

ε
× t

T max
× π

)

(17)

a4(t) = aini − aini ×
(

1

e − 1
×

(

e
t

T max − 1
))

(18)
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Fig. 4 Convergence factor dynamic curve

where the set ε is a nonlinear adjustment coefficient.
Four kinds of control parameters are simulated as shown

in Fig. 3. It can be seen from Fig. 3 that the nonlinear control
parameter as proposed in this paper slowly declines at the
early stage and falls fast in the later period. So the nonlinearity
of the proposed algorithm is better.

Meanwhile, the formula for the convergence factor A is
as follows:

A = 2a1r2 − a1 (19)

The dynamic curve of the four kinds of convergence factor
A is shown in Fig. 4. It can be seen that the decline speed
of convergence factor A is slow in the early stage, which
can increase the global search ability and avoid the algo-
rithm falling into the local optimum. The decline speed of

convergence factor A is quick in the later stage, which can
improve local search and speed up algorithm optimization.
Therefore, this improvement can further weigh the explo-
ration and exploitation capabilities.

3.3 PSO thought

In the process of location updating, GWO algorithm takes
into account only the location information of individual
wolves and the optimal solution, second-best solution, and
third-best solution location information of the wolf pack,
which realizes the exchange of information between individ-
uals andwolf pack.But it ignores the exchangeof information
between the wolf and its own experience. Therefore, the idea
of PSOalgorithm is introduced to improve the location updat-
ing process.

In the PSO algorithm, the current position of the parti-
cle is updated by using the best position information of the
particle itself and the best position information of the group.
This paper combining with PSO algorithmwill introduce the
optimal location of individual experience into the position
updating formula, which enables it to keep its own optimal
position information. The new location update formula is as
follows:

Xi (t + 1) = c1r1(w1X1(t) + w2X2(t) + w3X3(t))

+ c2r2(X ibest − Xi (t)) (20)

where the set c1 is a social learning factor, the set c2 is a
cognitive learning factor. They, respectively, represent the
influence of the individual optimal value and the group opti-
mal value. The value of c1 is large which can improve the
global search capability; the value of c2 is large which can
improve the local search capability. But if the c1 is too large,
it will result in too many particles remain in the vicinity
of the local. If the c2 is too large, it will cause the parti-
cles to reach the local optimum in advance and converge
to this value. According to Clerc (2002), this paper selects
c1 = c2 = 2.05. The set r1 and r2 are the random variable
in the range of [0, 1]. The set X ibest indicates that the grey
wolf has experienced the best position. The set w1, w2, w3

are inertia weight coefficients. By adjusting weight ratio of
the α, β, δ wolves, the global and local search ability of the
algorithm can be balanced dynamically. The specific formula
is as follows:

w1 = |X1|
|X1 + X2 + X3| (21)

w2 = |X2|
|X1 + X2 + X3| (22)

w3 = |X3|
|X1 + X2 + X3| (23)
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In Eq. (20), the first part is expressed as the mean value
of the best prey position which utilizes α, β and δ wolf to
search, which expands the search interval to increase the
global search ability of the algorithm; the second part is
expressed as the effect of the personal historical best position
on algorithm search, which preserves the optimal position
experienced by the individual.

3.4 PSO_GWO algorithm flow

The specific implementation steps of the improvedwolf algo-
rithm are as follows:

Step 1 Set the size of the population to N, dimension d,
and initialize the A,C, a values;
Step 2 Generate population individuals by using Tent
mapping {Xi , i = 1, 2, 3, . . . , N }, then calculate the
individual fitness value { fi , i = 1, 2, 3, . . . , N };
Step 3 Sort the order of fitness values by size, and take
the first three fitness values corresponding to the individ-
ual as α, β, δ. The corresponding position information is:
Xα, Xβ, Xδ;
Step 4 Use formula (15) to calculate the nonlinear con-
trol parameters a, and then update the value of A and C
according to formula (2) and (19);
Step 5Use formula (20) to update the location of individ-
uals, then recalculate the fitness values and update values
of α, β, δ;
Step 6 Judge whether t reaches Tmax value, if reached,
the fitness value of α is output, that is, the best solution.
Else go to Step 3.

4 Experimental data and simulation analysis

4.1 Benchmark functions

In order to verify the effectiveness of the improved hybrid
wolf algorithm, this paper selects 18 benchmark functions
(Liu andYin 2016; Lu et al. 2017) to do simulation, compares
with the grey wolf optimization algorithm (GWO) (Mirjalili
et al. 2014), the improved grey wolf optimization algorithm
(IGWO) (Yao and Wang 2016) and the grey the wolf algo-
rithm based on the third strategy (GWO_3) (Zuo et al. 2017).
The specific benchmark functions are shown in Table 1, and
Figs. 5, 6 and 7 illustrate the 2D versions of the benchmark
functions used.

PSO_GWO algorithm pseudo-code 

4.2 Experimental parameters

The performances of the proposed algorithm have been eval-
uated by using 18 commonly used benchmark functions.
For all the experimentation, population size is N = 30;
dimensions are d = 30, 50, 100. The maximum number
of iterations is T max = 500. In the IGWO algorithm,
ε = 5, b1 = 0.5, b2 = 0.5. In the PSO_GWO algorithm,
c1 = c2 = 2.05; aini = 2, afin = 0; r1 = r2 = r3 = r4 =
rand [0, 1].

4.3 Simulation analysis

In order to verify the optimal performance of PSO_GWO,
we use 18 benchmark functions to test the performance of
four algorithms. These benchmark functions are described in
Table 1 and classified in Figs. 5, 6 and 7.

First of all, we use 30 wolves as the grey wolf population
and separately conduct simulation experiments on 30, 50 and
100 dimension.We separately simulate 30 times on unimodal
and multimodal functions and record the average value and
standard deviation. The specific results are shown in Table 2.
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Fig. 5 2-D versions of
unimodal benchmark functions
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Table 1 Benchmarking function

Function expression d Search interval fmin

f1(x) =
30∑

i=1
x2i 30 [−100, 100] 0

f2(x) =
30∑

i=1
|xi | +

30∏

i=1
|xi | 30 [−10, 10] 0

f3(x) =
30∑

i=1

(
i∑

j=1
x j

)2

30 [−100, 100] 0

f4(x) = maxi {|xi | , 1 ≤ i ≤ 30} 30 [−100, 100] 0

f5 =
30∑

i=1
[100(xi+1 − x2i )

2 + (xi − 1)2] 30 [−30, 30] 0

f6 =
{[

30∑

i=1
sin2(xi )

]

− exp

(

−
30∑

i=1
x2i

)}

· exp
[

−
30∑

i=1
sin2

√|xi |
]

30 [−10, 10] −1

f7 = −20 exp

(

−0.2

√

1
n

30∑

i=1
x2i

)

− exp

(

1
n

30∑

i=1
cos (2πxi )

)

+ 20 + e 30 [−5.21, 5.21] 0

f8 =
30∑

i=1
[x2i − 10 cos (2πxi ) + 10] 30 [−32, 32] 0

f9 = 1
4000

30∑

i=1
x2i −

30∏

i=1
cos

(
xi√
i

)

+ 1 30 [−600, 600] 0

f10 =
11∑

i=1

[

ai − x1
(

b2i +bi x2
)

b2i +bi x3+x4

]2

4 [−5, 5] 0.00030

f11 = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [−5, 5] −1.0316

f12 =
(

x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6

)2 + 10
(

1 − 1
8π

)

cos x1 + 10 2 [−5, 5] 0.398

f13 = [

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

× [

30 + (2x1 − 3x2)2 × (

18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)] 2 [−2, 2] 3

f14 = −
4∑

i=1
ci exp

(

−
3∑

j=1
ai j

(

x j − pi j
)2

)

3 [1, 3] −3.86

f15 = −
4∑

i=1
ci exp

(

−
6∑

j=1
ai j

(

x j − pi j
)2

)

6 [0, 1] −3.32

f16 = −
5∑

i=1

[

(X − ai ) (X − ai )T + ci
]−1

4 [0, 10] −10.1532

f17 = −
7∑

i=1

[

(X − ai ) (X − ai )T + ci
]−1

4 [0, 10] −10.4028

f18 = −
10∑

i=1

[

(X − ai ) (X − ai )T + ci
]−1

4 [0, 10] −10.5363

We use the mean and standard deviation as reliability cri-
teria. It can be seen from Table 2 that when the dimension
is same, the PSO_GWO can obtain better average in bench-
mark function F1–F9. Especially in the test function F8, the
PSO_GWO algorithm can converge to zero. In addition, the
standard deviation of the PSO_GWO algorithm is small in 9
benchmark functions experiments, which indicates that the
robustness of this algorithm is better. This is because the
PSO_GWO algorithm introduces nonlinear control parame-
ters to balance the global exploration and local exploitation
capability. However, the control parameters of other algo-
rithms have poor nonlinearity, resulting in not balancing the

local and global search ability well and easily fall into local
optimum during the search period. Meanwhile, regardless of
dimension d = 30, 50 or 100, PSO_GWO algorithm can get
better optimal solution than the other three algorithms. But
the optimization ability of PSO_GWO algorithm decreases
slightly with the increase in dimension.

In addition, we also propose the next set of the bench-
mark functions analysed in this paper, which are the
fixed-dimension multimodal benchmark functions. Then we
separately simulate 30 times and record the average value
and standard deviation. The results are shown in the follow-
ing table.
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Table 2 GWO, GWO_3, IGWO, PSO_GWO algorithm optimization results on unimodal and multimodal functions

Function d GWO GWO_3 IGWO PSO_GWO

Average SD Average SD Average SD Average SD

F1 30 8.33e−27 3.04e−26 1.42e−37 4.93e−37 6.65e−42 2.05e−41 4.83e−119 1.61e−119

50 9.22e−29 4.12e−28 1.66e−36 7.14e−36 2.26e−40 1.01e−39 1.39-118 4.99e−118

100 3.24e−30 1.33e−29 1.89e−36 8.43e−36 9.04e−44 2.53e−43 9.61e−117 3.81e−116

F2 30 3.60e−17 1.47e−16 1.80e−18 5.99e−18 8.27e−21 3.69e−20 1.34e−59 4.18e−59

50 7.08e−16 2.47e−15 1.63e−19 5.52e−19 1.55e−20 6.55e−20 1.53e−57 6.12e−57

100 5.28e−15 1.82e−14 7.06e−19 1.77e−18 1.53e−20 6.77e−20 7.97e−55 3.46e−54

F3 30 3.23e−25 1.45e−24 2.94e−38 1.31e−37 1.52e−42 6.81e−42 1.22e−113 4.86e−113

50 3.04e−28 1.36e−27 2.92e−36 1.29e−35 9.54e−39 2.72e−38 3.49e−115 1.56e−114

100 7.31e−25 3.27e−24 3.87e−38 1.24e−37 4.03e−38 1.80e−37 3.96e−120 1.66e−119

F4 30 5.77e−17 1.34e−16 2.59e−19 1.13e−18 3.61e−18 1.62e−17 6.03e−61 2.31e−60

50 2.87e−17 1.16e−16 8.83e−20 3.67e−19 1.60e−19 5.12e−19 2.96e−58 1.31e−57

100 1.58e−15 5.90e−15 1.39e−18 5.91e−18 1.14e−16 4.86e−16 3.10e−55 1.38e−54

F5 30 2.89e+01 5.46e−02 2.87e+01 2.10e−02 2.87e+01 1.00e−02 2.69e+01 1.10e−02

50 4.89e+01 6.26e−02 4.98e+01 2.13e−02 4.89e+01 1.30e−02 4.78e+01 1.08e−02

100 9.90e+01 4.76e−02 9.98e+01 2.18e−02 9.87e+01 1.08e−02 9.69e+01 0.89e−02

F6 30 -1.03163 0.0589 -1.0095 0.0246 0.9667 0.0089 -1.0120 0.0081

50 -0.9925 0.0561 -0.8828 0.0175 -1.0314 0.0112 -1.0289 0.0012

100 -0.8752 0.0631 -0.5340 0.0119 -1.0314 0.0109 -1.0306 0.0013

F7 30 1.06e−13 2.1e−13 3.28e−14 1.95e−14 3.95e−15 1.82e−15 8.18e−16 1.72e−15

50 1.11e−13 4.76e−13 7.90e−14 1.71e−15 1.13e−14 2.59e−14 8.81e−16 1.82e−15

100 1.174-10 6.71e−10 9.33e−14 2.17e−14 7.55e−14 1.60e−14 4.45e−15 1.90e−15

F8 30 1.02e−16 2.34e−15 7.96e−13 6.13e−13 0 0 0 0

50 5.68e−15 6.78e−14 1.21e−12 8.91e−11 0 0 0 0

100 1.14e−13 2.46e−13 1.71e−14 5.64e−13 0 0 0 0

F9 30 0.0160 0.0220 0.0071 0.0078 0.0046 0.0951 0.0009 0.0003

50 0.028 0.0315 0.009 0.0084 0.00513 0.08 0.0012 0.0018

100 0.076 0.021 0.013 0.06 0.0093 0.016 0.0084 0.0069

Table 3 Comparison between the methods: average and standard deviation with the fixed-dimension multimodal benchmark functions

Function GWO GWO_3 IGWO PSO_GWO

Average SD Average SD Average SD Average SD

F10 5.10e−04 0.0138 6.92e−04 0.0121 4.04e−04 0.0171 6.53e−04 0.0230

F11 −1.0316 0.0389 −1.0316 0.0446 −1.0316 0.0498 −1.0316 0.0273

F12 0.3979 1.5123 0.3983 1.7130 0.3979 2.7290 0.3979 0.8128

F13 3.0000 6.4140 3.0001 8.9019 3.0019 11.5876 3.0000 7.8205

F14 −3.7930 1.3842 −3.8621 1.3719 −3.6766 1.3144 −3.6977 1.2907

F15 −2.3698 0.5705 −2.3840 0.4409 −2.7175 0.6213 −3.3220 0.3825

F16 −6.0748 0.8532 −7.6025 0.8037 −10.0112 0.8116 −10.1522 0.6882

F17 −8.7936 1.0331 −8.6852 1.2324 −9.8151 1.1807 −10.4036 0.6020

F18 −8.3991 0.8492 −9.9167 1.3469 −10.5026 0.8874 −10.5332 1.1117
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Table 4 Time-consuming results of benchmark functions

Function GWO GWO_3 IGWO PSO_GWO

TIC and TOC CPU time TIC and TOC CPU time TIC and TOC CPU time TIC and TOC CPU time

F1 1.01422 0.057501 1.01221 0.03708 1.02737 0.05980 1.001474 0..00585

F2 1.01557 0.026003 1.01012 0.01836 1.02655 0.03173 1.002120 0.0028

F3 1.01893 0.003075 1.01511 0.002928 1.01980 0.003292 1.001928 0.03123

F4 1.01609 0.00017 1.01495 0.000146 1.01950 0.000183 1.017832 0.0001973

F5 1.01165 0.02381 1.01055 0.017316 1.01702 0.02424 1.001568 0.001925

F6 1.01872 0.07418 1.02085 0.05620 1.02180 0.082636 1.0191 0.06902

F7 1.01764 0.072664 1.01558 0.05460 1.01792 0.07614 1.001786 0.074928

F8 1.00981 0.046516 1.00977 0.0448 1.00992 0.047552 1.009825 0.0486

F9 1.01738 0.001691 1.01735 0.0011 1.02192 0.0017 1.01461 0.0023

F10 1.02741 0.069128 1.02734 0.06910 1.02824 0.07292 1.02798 0.072643

F11 1.01587 0.001028 1.0149 0.001018 1.01792 0.00127 1.01623 0.0014

F12 1.01625 0.084368 1.01682 0.08304 1.01830 0.073102 1.01535 0.015934

F13 1.04029 0.03480 1.03233 0.010608 1.04088 0.034196 1.04050 0.0199

F14 1.00764 0.051404 1.00601 0.02636 1.00989 0.01324 1.008218 0.04925

F15 1.0159 0.042028 1.01484 0.04396 1.01683 0.045132 1.016263 0.01681

F16 1.017 0.01780 1.01488 0.01692 1.01931 0.0214 1.0178 0.0003

F17 1.00567 0.07276 1.00490 0.06836 1.00601 0.00728 1.00597 0.02182

F18 1.00501 0.021992 1.00421 0.02132 1.00511 0.003060 1.00480 0.0078250

Table 3 shows a comparison among GWO, GWO_3,
IGWO, PSO_GWO four algorithms based on the average
and standard deviation. It can be known from the above table
data that the algorithm presented in this paper is not enough
different with the simulation results of the other three algo-
rithms.

Simultaneously, this paper calculates the algorithm’s time
statistics from both CPU and TIC/TOC. The CPU reflects
the time it takes to complete the process when the CPU is
working at full speed, while the TIC/TOC is used to calculate
the time the program is running. The calculation results are
shown in Table 4.

The accuracy of the PSO_GWO algorithm can be verified
by starting and ending time of algorithm (TIC and TOC), and
CPU time. These experimental data are shown in Table 4.
As it can be seen from Table 4, the PSO_GWO algorithm
has lower computational complexity than IGWO algorithm.
But comparing with the GWO algorithm, the PSO_GWO
algorithm has a large computational complexity and has a
long running time. This is because the PSO_GWO algo-
rithm is based on the basic GWO algorithm to introduce
PSO algorithm ideas, thereby increasing the computational
complexity of the algorithm. Therefore, the PSO_GWO
algorithm improves convergence accuracy at the expense
of computational complexity. Figure 5 shows the eight test
function optimization curve of the GWO, GWO_3, IGWO,
PSO_GWO algorithm.

As can be seen from Figs. 8, 9 and 10, the search speeds
of the four algorithms are roughly the same during the ini-
tial search, but as the number of iterations increases, the
PSO_GWO algorithm proposed in this paper continues to
search until the search for the optimal solution. However, the
other three algorithms reach the stagnation state in advance,
resulting in poor search results. Therefore, the proposed algo-
rithm has better convergence performance on benchmark
function. This is because the other three algorithms did not
consider the impact of the individual experience of the grey
wolf during the search process. However, the algorithm pro-
posed in this paper uses its own experience to delay the
algorithm into a local optimum during the predation process.

To sum up, all simulation results indicate the improved
hybrid grey wolf optimization algorithm is very helpful in
improving the efficiency of the GWO in the terms of result
quality.

5 Conclusion

In this paper, we proposed an improved grey wolf algorithm.
As described in Sect. 3, it first used Tent chaotic map to
initialize grey wolf population, then used nonlinear control
parameters to balance the local and global search capabili-
ties of the algorithm and introduced PSO algorithm thought
into the position update formula. And in Sect. 4, a series
of experiments on the 18 benchmark test functions are exe-
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Fig. 8 Convergence curve of GWO, GWO_3, IGWO, and PSO_GWO on unimodal functions

123



6628 Z. Teng et al.

50 100 150 200 250 300 350 400 450 500

10
0

10
5

F7

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

GWO

PSO-GWO
GWO-3

IGWO

50 100 150 200 250 300 350 400 450 500

10
-10

10
-5

10
0

F8

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

GWO

GWO-3
PSO-GWO

IGWO

50 100 150 200 250 300 350 400 450 500

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d 

so
 fa

r

F9

GWO

PSO-GWO
GWO3

IGWO

Fig. 9 Convergence curve of GWO, GWO_3, IGWO, and PSO_GWO on multimodal functions

cuted to verify the effectiveness of the improved hybrid wolf
algorithm. The experimental results show that the proposed
algorithm is superior to other algorithms in the search capa-
bility. And it is evident that the proposed algorithm can
improve the performance of GWO algorithm in terms of
result quality and better robustness.

In this work, we justify the problems that were used for
testing benchmark test functions. Although the PSO_GWO
algorithm improves result quality, the computational com-
plexity is increased. So in the future,wewill conduct research
on the issue of reducing the computational complexity. At the
same time,wewill also apply the improved algorithm to solve
wireless sensor networks coverage problem.
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Fig. 10 Convergence curve of PSO, GWO, IGWO and PSO_GWO variants on fixed-dimension multimodal functions
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Fig. 10 continued
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