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Abstract
The recent remarkable increase in air passenger traffic has been fostering a considerable congestion of the airport facilities.
In this context, traditional procedures employed for check-in operations have been supported by alternative methods, based
on the use of self-service options (kiosks, web services, app for mobile phones, etc). However, even if such innovations are
contributing to improve the service level provided to passengers, field investigations suggest that traditional procedures will
be employed also in the future, especially for medium and long-haul flights, where baggage dropping is required. For this
reason, the passengers allocation problem at check-in counters is attracting growing attention by the scientific community
and several decision support tools, involving both optimization and simulation methods, have been proposed. Most of the
available approaches aim at deciding the optimal number of check-in counters to be activated, in such a way to balance the
operative costs and passengers waiting times. Such approaches assume that the service capacity (in terms of available check-in
operators and counters) is given and determined on the basis of physical constraints (related to the available space in the
terminal) and of staff scheduling decisions made at a tactical level. The present contribution tries to overcome this limitation,
by proposing a decision support system, based on a mathematical model, capable of designing optimal check-in policies by
also incorporating staff scheduling decisions. The model is tested on some real-world case studies; computational results are
evaluated, along with the practical usability of the approach.

Keywords Airport check-in · Staff scheduling · Passengers’ allocation · Optimization model · Decision support system

1 Introduction

With an expected annual rate of about 4.0% over the next
20years (IATA 2017), the growth in air passengers traffic has
been fostering a remarkable congestion in the use of available
resources at different levels, in both airside and landside oper-
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ations. Besides investments on new airport facilities, huge
interventions have been deployed in order to increase the
capacity of current infrastructures and to deal with issues
representing bottlenecks in air traffic logistics.

Within terminal facilities, passengers are involved in dif-
ferent processes. In particular, once arrived, theypass through
a check-in area in order to get their boarding pass and/or to
drop off their luggage. Theymay skip this step if they are self-
checked-in and theyownonly ahand luggage.Then, theypro-
ceed to a security area for control operations, and they finally
move toward their assigned gate. These processes require
the use of several resources (equipment, personnel, etc.)
and often produce significant waiting times, which can be
perceived as signal of a low service quality, resulting in a neg-
ative impact on the overall image of the airport and of airlines.

Focusing on check-in operations, two types of systems
can be deployed, based on common-use and exclusive-use
of counters. The common-use system consists of a large set
of counters where passengers can be accepted, regardless
of their flight. Typically, it is adopted for groups of flights
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operated by the same airline or by different airlines that out-
source the handling operations to the same company. On the
other hand, the exclusive-use system consists of a set of coun-
ters, dedicated to single flights. Obviously, the common-use
system is more efficient as it yields higher utilization rates
of available service capacity. Hence, due to above-described
context of growing congestion of terminals, it has become
also the most commonly adopted. Moreover, huge invest-
ments in ICTs have been deployed to support traditional
check-in procedures with self-service alternatives, mainly
based on the use of kiosks, web services, applications for
mobile phones, etc.However, even if the introduction of these
innovations certainly played and will be playing an impor-
tant role, contributing to the reduction of passengers waiting
times andoperating costs for airlines, field investigations sug-
gest that traditional procedures remain important and will be
needed also in the future. Indeed, recent studies demonstrate
that many factors affect the acceptance of self-service mode,
such as passenger’s age, level of education, nationality, previ-
ous experiences, flight destination, the type of journey; thus,
a significant portion of the demand will continue to select the
traditional check-in mode (Chang and Yang 2008; Lu et al.
2009, 2011; Wittmer 2011; Castillo-Manzano and López-
Valpuesta 2013). This is particularly true for medium and
long-haul flights, where baggage dropping processes involve
most of the passengers (Chang and Yang 2008).

For this reason, in the recent literature, several decision
support tools have been proposed to optimize check-in pro-
cedures at desks. As such process is characterized by several
stochastic factors (i.e., number of passengers, passengers
arrival times, check-in times, etc.), many contributions adopt
simulation approaches to tackle the problem. However, if
simulation may be useful for the evaluation of the system
performances, the use of optimization models, separately or
in combination, could be beneficial to determine the value of
decision variables.

Check-in management policies can be tested against dif-
ferent performance functions; however, to date, the most
common objectives are represented by passengers’ waiting
times and the number of desks activated in a given time hori-
zon (usually a single day). This last objective is often used
as a proxy of operating costs, on the assumption that the
more counters are used, the more resources are needed and,
therefore, more expensive will be the process. However, even
if this assumption might be considered appropriate for the
counter rental charge to be paid, personnel costs are also
influenced by the adopted shift system.

To the best of our knowledge, no extant approach con-
siders staff scheduling decisions in addressing the check-in
management problem. For this reason, in this paper we pro-
pose a mathematical model for the optimal management of
the check-in process, in which the objective function rep-
resents a measure of personnel costs associated with the

delivery of the service. Available shift systems are taken into
account, as a constraint for the model.

The paper is organized as follows. In Sect. 2, a survey
of the scientific contributions on optimization approaches
for the airport check-in problem is illustrated, highlighting
literature gaps. Then, in Sect. 3, we discuss the proposed
mathematical model, with a particular emphasis on the jus-
tification of the selected objective function. In Sect. 4, the
procedure adopted to generate the test instances, related to
real-world problems, is illustrated, while in Sect. 5 the results
obtained from the application of the model to the case of two
Italian airports are analyzed and discussed. Finally, some
conclusions are drawn.

2 Literature review

In the literature, many contributions devoted to the optimal
management of service capacity have been proposed (see,
for example, Bruno et al. 2016). In particular, papers focused
on the analysis of the airport check-in service traditionally
adopted simulation approaches to deal with the problem
(Chun and Mak 1999). Only in the last decades, researchers
started to implement optimization or hybrid approaches to
deal with it. One of the first works specifically devoted to
check-in management optimization was the one by Park and
Ahn (2003), which proposed a procedure to calculate the
appropriate number of check-in counters and their operating
times through a deep analysis of passengers arrival distribu-
tion and processing patterns. Yan et al. (2004, 2005) tackled
the problem of assigning flights to blocks of check-in coun-
ters, considering various objective functions, such as the
total passenger walking distance and a so-called inconsis-
tency term, evaluating whether flights having some common
characteristics are assigned to different counter locations.
Van Dijk and Van Der Sluis (2006) highlighted the poten-
tial of combining stochastic and deterministic approaches.
In particular, assuming that a peak requirement of check-
in counters is estimated for each flight, they proposed an
integer linear programming model aimed at determining the
minimum number of desks needed for all flights. The results
provided by this model were then used as inputs for a simula-
tion model to calculate the system performance, in terms of
service times. Parlar and Sharafali (2008) and Stolletz (2011)
attempted to statistically analyze the queueing phenomenon
at check-in counters, providing useful insights for modeling
purposes.

Bruno and Genovese (2010) and Bruno et al. (2014) pro-
posed some models (based on the mathematical structure of
the lot sizing problem) for determining the optimal number
of check-in counters to be activated. Considered objective
functions included passenger waiting times and total open-
ing times of counters.

123



A decision support system to improve performances of airport check-in services 2879

Tang (2010) developed a network model for the optimiza-
tion of common-use check-in counters assignments, with the
goal of minimizing the number of counters required for daily
operations. Stolletz (2010) addressed workforce planning
problems for check-in systems, through a mathematical pro-
gramming model based on a modification of the set covering
model. Hsu et al. (2012) analyzed the problem of dynamic
allocation of various types of check-in facilities (counters,
kiosks, online check-in and barcode check-in) to minimize
waiting times for passengers. They proposed a sequential
stochastic assignmentmodel to decidewhether the n-th arriv-
ing passenger, requiring a certain type of check-in service,
was to be assigned to a given facility or not, and then to
determine the number of facilities of each type to be opened.

Araujo and Repolho (2015) proposed a modification of
the model by Bruno and Genovese (2010) to optimize the
Airport Check-in Counter Allocation Problem (ACCAP),
introducing service level constraints. They also used a simu-
lation approach to assess the results provided by the model.
Mota (2015) studied the problem of the allocation of flights
to check-in counters, considering a given layout of check-
in areas, and introducing constraints related to contracts
between airlines and airport operators. The problem was
solved using an approach based on the combination of an
evolutionary algorithm and simulation.

Parlar et al. (2018) proposed a dynamic programming
model for check-in counter allocation problem, especially
suitable in the case of exclusive-use systems, that was tested
on real data coming from Singapore International Airport.
The performance indicators adopted in the model included
the expected waiting and counter activation costs; these lat-
ter were evaluated considering variable and fixed costs, also
including a penalty for keeping idle counters open.

The analysis of the proposed models reveals that typi-
cal approaches aim at optimizing passengers’ waiting times
and/or the total number of the activated check-in counters,
either using simulation or adopting mathematical models.
Such approaches are characterized by an inherent multi-
criteria nature, that is modeled either through explicitly
multi-objective mathematical models or through the inclu-
sion of appropriate constraints.

When effectivelymodeled, passengers’ waiting times rep-
resent a measure of the passengers’ satisfaction. In terms of
efficiency, the total number of activated check-in counters
may be considered a good proxy, when management costs
are mainly related to counter rental charges. However, this is
not appropriate when the dominant cost item is represented
by the cost of staff delivering the service at counters. Indeed,
in this case, as personnel is engaged according to a shift
system, a more realistic objective could be represented by
an estimation of the personnel cost, on the basis of feasible
shifts. Typically, a shift covers consecutive time periods in
which one ormore breakwindowsmust be included (depend-

ing on its length). Shift works are generally regulated through
work contracts in terms of length, start times and breaks (see
for instance Avramidis et al. 2010; Bard et al. 2003).

In this work, we further extend the use of optimization
models to solve the ACCAP. Specifically, based on the work
byBruno andGenovese (2010), we formulate amodel to deal
with the check-in optimization problem, in which a trade-off
solution between the service level provided to passengers,
in terms of waiting times, and the cost of the service is pro-
vided. In particular, the objective function is represented by
the personnel cost of the staff engaged at check-in counters,
according to a set of given feasible shifts, while the queue of
passengers is limited by a specific set of constraints. In the
following sections, the model will be introduced and some
computational experiences will be shown.

3 A novel mathematical model

In order to formulate the model, the reference planning hori-
zon (typically a single working day) has been discretized
in a finite number N of periods of the same length. Each
departing flight f in such time horizon is characterized by
a departure time and, consequently, by a time window, in
which check-in operations can be performed, whose length
generally depends on various factors, such as the destination
(national, international, intercontinental), the airline policies,
etc. We indicate with T−

f and T+
f , respectively, the first

and the last periods in which passengers of flight f can
be accepted at check-in counters. Even if the passengers’
behavior is not deterministic and it is not possible to know in
advance the exact distribution of their arrivals, we assume to
be able to forecast, with a significant reliability, the number
of passengers of flight f arriving at desks in each period t
of the time window (T−

f , T
+
f ), denoted by dt f . The check-in

optimization problem consists of accepting all the arriving
passengers, by minimizing their waiting times and by satis-
fying the deadlines related to the single flights departures.

Of course, the solution of such a problem is strongly
affected by the available service capacity during the plan-
ning horizon, in terms of check-in operators and desks. The
higher is the service capacity, the higher is the service level
that can be provided to users. In order to clarify this aspect,
let indicate withUBt the Upper Bound of the service capac-
ity needed in each period t , i.e., the minimum number of
desks required to accept passengers with no waiting times.
As the real service capacity is usually lower thanUBt , due to
the presence of limited resources (lack of operators or space
for desks), optimization approaches are adopted in order to
allocate resources with the aim of minimizing the waiting
times of passengers. In Fig. 1, a typical situation is depicted
in which the best policy, given by values of UBt , cannot
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Fig. 1 Typical pattern of a check-in scheduling problem

be implemented as the service capacity, in some periods, is
not sufficient and an alternative feasible solution is adopted.
However, such solution appears to be inefficient, as the avail-
able capacity results highly underutilized, as testified by the
area between the two curves representing the available and
used capacity, respectively.

As check-in activities still represent labor-intensive oper-
ations, especially for long-haul flights, it is reasonable to
assume that the critical resource is represented by operators.
This means that the value of the service capacity strongly
depends on decisions related to staff scheduling, made at a
tactical level.

As an example, in Fig. 2, two alternative solutions,
obtained according to two different staff scheduling policies,
are compared. In particular, the policy reported in Fig. 2b is
representative of a more flexible shift schedule than the one
in Fig. 2a, which allows adapting the number of available
operators to the variability of the service demand over time,
thanks to the use of shifts of shorter duration and/or of more
shift typologies. Comparing the solutions obtained in the two
cases, it is possible to notice that a higher flexibility in the
number of available operators produces amore efficient solu-
tion, characterized by a lower level of underutilized desks.

In this context, operative costs could depend on the
scheduling of desk operators, i.e., duration, type and/or the
starting time of their working shifts.

In the light of such considerations, we propose a math-
ematical programming model aiming at finding a trade-off
between:

– Service operating costs, by optimizing the shift-
scheduling decisions of the desk operators;

– Service level, measured in terms of passengers waiting
times at desks.

Fig. 2 Examples of solutions based on different staff-scheduling deci-
sions. a Less flexible shift schedule. bMore flexible shift schedule

In order to formulate the model, the following notation is
introduced:

T Planning horizon;
N Number of periods in which the planning horizon is

subdivided, indexed by t;
l Length of single periods (l = T /N );
J Set of shift types that can be selected for desk oper-

ators;
F Set of departing flights in the considered planning

horizon;
p f Average service time to process a single passenger

of flight f at check-in desks;
d f t Number of arriving passengers of flight f during

period t ;
a j
kt Binary parameter equal to 1 if and only if the shift

j in J , activated in the period k, covers the period t
(with t > k);
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β f t Binary parameter equal to 1 if and only if the check-
in time window for flight f is closed in period t ;

γ Service level to be guaranteed(), i.e., minimum
number of passengers to be accepted expressed as
percentage of arrivals;

c j Cost for shift type j in J ;
x j
t Number of operators starting the shift type j at the

beginning of period t ;
q f t Passengers of flight f accepted at desks in period t ;
I f t Passengers of flight f in queue at desks at the end of

period t .

Then, the model can be formulated as follows:

min z = ∑

j∈J

T∑

t=1
c j x

j
t (1)

s.t.
β f t I f t = 0 ∀ f ∈ F, t ∈ 1, . . . , N

(2)

I f t = I f (t−1) + d f t − q f t ∀ f ∈ F, t ∈ 1, . . . , N (3)
∑

f ∈F
I f t ≤ (1 − γ )

∑

f ∈F
d f t ∀t ∈ 1, . . . , N (4)

∑

f ∈F
p f q f t ≤ l

∑

j∈J

t∑

k=1
a j
kt x

j
t ∀t ∈ 1, . . . , N (5)

x j
t ∈ N ∀ j ∈ J , t ∈ 1, . . . , T (6)

q f t , I f t ∈ {0, 1} ∀ f ∈ F, t ∈ 1, . . . , T (7)

The objective (1) represents the minimization of the total
costs for the shift schedule. Constraints (2) impose that pas-
sengers of each flight f may be processed only within their
check-in time windows; indeed, no passenger of flight f
can wait at check-in desks outside the time window (I f t =
0, β f t = 1). Equation (3) represent passengers flow con-
servation constraints. Constraints (4) guarantee a minimum
service level to passengers; indeed, they assure that passen-
gers waiting in queue at the end of each period t may not
exceed a given percentage (1− γ ) of the arrivals in the same
period. If γ is equal to one, a maximum service level is guar-
anteed to passengers, as constraints impose to have no queue
in each time period; by decreasing the value of such param-
eter, the feasible amount of passengers in queue in each time
period may increase. Coherently to the approach suggested
by Araujo and Repolho (2015), constraints (5) guarantee that
the service time needed to accept passengers in each time
period t (

∑
f ∈F p f q f t ) does not exceed the service capacity,

defined as the product between the total number of available
operators in period t (

∑
j∈J

∑t
k=1 a

j
kt x

j
t ) and the duration l

of the period itself. Finally, constraints (6) and (7) define the
nature of the introduced decision variables.

In the next sections, the results deriving from the appli-
cation of the above model to real case studies related to two
Italian airports will be introduced and discussed.

4 Methodology for instances generation

In this section, the steps followed to generate test instances
of the problem are illustrated. It is worth to highlight that the
main aim here is to characterize the crucial parameters to be
considered in real-world situations, in order to effectively use
the proposed model as decision support system and to verify
its performances in a set of possible scenarios. Therefore, the
reproduction of realistic values of considered parameters is
out of the scope of the paper and it should be performed on
the basis of specific field investigations.

We used, as reference planning horizon (T ), the single
working day, defined as the time span between the 4:30 am
and the 10:30pm, that was subdivided in a finite number N
of time periods of 15min (N = 72).

A single case study is characterized by a set F of departing
flights, with the corresponding departure times t f and des-
tinations, distinguished between national and international.
Along with this information, retrieved by the official web-
sites of the selected airports, a set of further data are needed;
in particular:

– Check-in time windows;
– Passengers requiring the check-in service at desks;
– Passengers arrival distribution at desks;
– Service characteristics.

4.1 Check-in time windows

For each flight f ∈ F , the completion time t+f of check-in
operations was fixed equal to t f − D f , where D f represents
the time span between the end of check-in operations and the
departure time. Subsequently, the starting time t−f of check-in

operations was fixed equal to t+f − L f , where L f represents
the duration of check-in operations. In the test instances, we
considered D f equal to 30 and 60min and L f equal to 60 and
90min, for national and international flights, respectively.

4.2 Passengers requiring traditional check-in service
mode

For each flight f ∈ F , the total number of passengers
on board n f was firstly estimated. At this end, informa-
tion about the airplane model utilized for each flight f
and the associated passengers’ capacity C f , were collected
(www.flightradar24.com) and a parameter δ f , representing
the aircraft utilization rate, was introduced (n f = δ f C f ). For
each instance, the utilization rates δ f were randomly gener-
ated from a uniform distribution in the range (δ − r ,δ + r ),
whose parameters (δ,r ) are fixed as described in the next
section. Finally, a further coefficient ω f was introduced to
estimate the portion of passengers requiring check-in ser-
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vices at desks (and, hence, do not use self-service modes).
It assumed different values, according to the length of flight
f ; in particular, it was set equal to 0.2 for short-haul flights
(national), 0.5 for medium-haul flights (international with a
duration under 6h) and 0.9 for long and ultralong-haul flights
(over 6h).

4.3 Passengers’ arrival distribution at desks

We assume that passengers arrive at check-in desks accord-
ing to a given distribution, that varies, in dependence of flight
destination, national or international. The percentages σ f t

of arriving passengers of flight f during the single peri-
ods within the associated check-in windows are reported in
Fig. 3 and were derived from a survey conducted at Naples
International Airport in the time span April–May 2016, that
involved more than 150 flights (equally distributed between
national and international) and more than 5000 passengers.
From these values, the number of arriving passengers at
desks, for each flight f and each period t , were calculated
(d f t = σ f tω f n f ).

4.4 Service characteristics

We considered the most adopted work shifts for desk oper-
ators, that can be 4 (part time) or 6h and half long (full
time). According to the Italian regulations, shifts lasting 4h
need to include a break window of 15min (1period), posi-
tioned in a way that avoids that more than two consecutive
hours of work are performed; in the case of longer durations,
shifts have to include an additional break for themeal, lasting
30min (2periods). By combining these aspects, we adopted
six shift configurations, whose structure is shown in Fig. 4.
The cost for each shift is considered proportional to the length
of the shift itself.

Moreover, the unit service time p f , i.e., the time needed
to process a single passenger of flight f at check-in desks,
was assumed constant for each flight f (p f = p) and equal
to 90s.

Figure 5 summarizes the information needed for the
instances generation.

5 Model results

The proposed model was tested on case studies, obtained by
considering daily timetables of typical working days of some
Italian airports. Italy accounts for 41 civil airports, with dif-
ferent characteristics in terms of passenger traffic and number
of flights (ENAC 2017). Only five of them can be classified
as hubs (FCO, MXP, LIN, BGY, VCE), being characterized
by more than 40.000 flights per year (i.e., more than 100
per day), while most of them are micro-airports, with less

Fig. 3 Passengers’ arrival profiles

Fig. 4 Characteristics of work shift types

Fig. 5 Information needed for the instances generation

than 10.000 departing flights per year (i.e., 30 per day), and
medium-size airports, with a range of 10.000–40.000 flights
per year, as reported in Fig. 6. In order to test the proposed
model, we focused on the class of medium-size airports, as
they are those that most likely adopt a management strategy
based on the common-use of check-in counters. Within such
class, two airports of different size were selected: Napoli
Capodichino (NAP) and Firenze Peretola (FLR). The num-
ber of departing flights from the two airports is significantly
different (on average 45 fromFRP and 120 fromNAP), but in
both cases most of them are short- and medium-haul flights,
as shown in Fig. 7.
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Fig. 6 Italian airports per number of departing flights per year. Source:
ENAC (2017)

In order to analyze the variation of the total cost accord-
ing to different service levels, the model was solved with
different values of parameter γ (γ = 0.2, 0.4, 0.6, 0.8, 1.0).
Moreover, also the expected utilization rate δwas varied,with
the aim of simulating different congestion levels of the ter-
minal (δ = 0.4, 0.6, 0.8, 1.0). Then, parameter r was fixed
equal to 0.2 in order to assure a significant variability around
the central value δ but avoiding the overlapping of gener-
ated demand profiles. Hence, for each case study, a set of
20 scenarios was produced (one for each combination of the
parameters α and δ).

Each instance was optimally solved in limited computa-
tional times, i.e., within 3600s, using Cplex 12.4 on an Intel
Core i7 with 1.86GHz and 4GB of RAM. Tables 1 and 2
show results obtained for the two case studies, in terms of
values of the objective function. It is possible to notice that,
by fixing the parameter δ, the value of the objective function
decreaseswhen a higher service level is guaranteed to passen-
gers (i.e., when the value of parameter decreases); indeed, the
model is constrained to activate more shifts in order to have
more available service capacity and minimize the passengers
in queue. Moreover, for each given value of the service level
α, the objective function increases when the congestion level
of the terminal increase (i.e., when the value of parameter δ

decreases), as the number to be accepted at check-in coun-
ters increase and more operators will be needed in each time
period.

In the following, some solutions obtained for the case of
FLRare analyzed, in order to show the capability of themodel
to support the decision maker.

Fig. 7 Map of departing flights from FLR (a) and NAP (b) airports
during a typical week. Source: www.flightradar24.com
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Table 1 Computational results: FLR airport

δ γ

1.0 0.8 0.6 0.4 0.2

0.4 365 304 281 273 273

0.6 546 463 402 387 387

0.8 637 538 508 500 500

1.0 864 720 652 652 652

Table 2 Computational results: NAP airport

δ γ

1.0 0.8 0.6 0.4 0.2

0.4 736 624 593 562 562

0.6 906 791 732 700 692

0.8 1225 1050 981 957 943

1.0 1465 1249 1180 1140 1125

Fig. 8 Number of activated shifts (distinguished per typology) in each
time period (γ = 1, δ = 0.4)

Fig. 9 Allocation of available operators (γ = 1, δ = 0.4)

Figures 8 and 9 show the solution obtained by imposing
the maximum service level (γ = 1) and an expected aircraft
utilization rate δ equal to 0.4. In particular, Fig. 8 indicates

Fig. 10 Allocation of available operators (γ = 0.4, δ = 0.4)

Fig. 11 Available service capacity profile by varying service level γ

from 1 to 0.4

the number of operators that, in each time period, starts their
work shift, classified according to the six considered shift
types, while Fig. 9 reports the number of available operators
over time, and the number of needed operators to process
passengers, determined on the basis of the allocation deci-
sions made by the model. In this case, the desk operators are
scheduled in such a way to have no any passenger waiting in
queue; then, the solution represent an upper bound in terms
of objective function, i.e., shift costs to be activated in terms
ofworking hours. Indeed, if, in a given period, the passengers
arrivals require more operators than the available ones, the
model activates new shifts, that last for a certain number of
successive periods; then, such operators remain active even
if they are not needed later. This circumstance may lead to
an underutilization of the available capacity. Obviously, by
decreasing the service level provided to users, it is possible
to have more flexibility in the use of resources; indeed, if
passengers can wait in queue, a lower number of operators
is required in each time period. Figure 10 shows the results
provided by the model by fixing γ = 0.4. As expected, the
underutilization rate decreases as the gap between needed
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and available operators is generally lower over the whole
time horizon if compared with the one in Fig. 9. Finally,
in Fig. 11 we compared the number of needed operators in
the two scenarios; of course, the line corresponding to the
number of needed operators for γ = 0.4 is dominated by
the one corresponding to γ = 1.0. This testifies that higher
costs would be required to guarantee higher service levels to
passengers (conflicting objectives).

6 Conclusions

Historically, passengers check-in operations have repre-
sented a very resource-intensive process taking place in
airports, being recently supported by technological advances.
Notwithstanding, field investigations suggest that traditional
check-in procedures will continue to be needed also in the
future, especially for long-haul flights, where baggage drop-
ping processes are involved.

For this reason, the check-in problem has been gaining
popularity in the recent operational research literature, with
the development of both optimization and simulation meth-
ods.

The contribution presented in this study has extended the
current state of the art by proposing a mathematical model
capable of performing check-in decisions by also incorporat-
ing staff scheduling considerations, in order to deliver more
realistic and accurate planning decisions. Specifically, the
model is capable of finding trade-off solutions between the
cost of the personnel employed in the check-in operations and
the service level provided to passengers, expressed in terms
of waiting times. These two criteria have been included in
the model as an objective function to be optimized and as
constraints to be satisfied, respectively.

The proposed model was tested on case studies, obtained
by considering daily timetables of typical working days of
some Italian airports; tests were performed considering two
midsized airports, likely to adopt management strategies
based on the common-use of check-in counters.

Results show that the model is capable of identifying the
most appropriate staff configuration (in terms of number of
operators, shift start time and shift type) in order to optimize
the mentioned trade-off.

Future researchesmight involve the adoption of stochastic
version of the model, in order to better represent the variabil-
ity in passengers arrivals, along with the integration with
simulation tools, in order to improve the capability of the
model of dealing with real-world scenarios. Also, additional
case studies might be gathered, to explore to a wider extent
the applicability of the model and gain new insights about
further practical constraints to be added to the mathematical
formulation.
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