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Abstract
In this paper, we discuss a multi-period portfolio selection problem when security returns are given by experts’ estimations.
By considering the security returns as uncertain variables, we propose a multi-period mean–semivariance portfolio opti-
mization model with real-world constraints, in which transaction costs, cardinality and bounding constraints are considered.
Furthermore, we provide an equivalent deterministic form of mean–semivariance model under the assumption that the secu-
rity returns are zigzag uncertain variables. After that, a modified imperialist competitive algorithm is developed to solve the
corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed
model and the corresponding algorithm.

Keywords Multi-period portfolio optimization · Uncertain variable · Semivariance · Cardinality constraint · Imperialist
competitive algorithm

1 Introduction

Portfolio selection discusses the problem of how to allocate
a certain amount of investor’s wealth among different assets
and from a satisfying portfolio. The mean–variance (M–V)
model formulated by Markowitz (1952) lays the basis for
single-period portfolio selection. It combines probability the-
ory with optimization techniques to model the investment
behavior with some uncertainties. Quantifying investment
return as the mean of returns, and investment risk as the
variance from the mean, Markowitz formulated his mod-
els mathematically in two ways: minimizing variance for
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a given expected value, or maximizing expected value for
a given variance. Since then, variance is widely used as a
riskmeasure, and themean–variancemodels arewell investi-
gated such as Yoshimoto (1996), Best andHlouskova (2000),
Liu et al. (2003), Corazza and Favaretto (2007), etc. How-
ever, as pointed out by Grootveld and Hallerbach (1999), the
distinguished drawback is that variance treats high returns
as equally undesirable as low returns because high returns
will also contribute to the extreme of variance. In particular,
when probability distributions of security returns are asym-
metric, variance becomes a deficient measure of investment
risk because it may have a potential danger to sacrifice too
much expected return in eliminating both low and high return
extremes. To overcome this disadvantage, semivariance was
proposed to replace variance in portfolio selection. Semivari-
ance only measures the variability of returns below the mean
and gauges no variability of returns above the mean and thus
better matches investors’ intuition of risk than the variance.
Afterward, several researchers have employed the semivari-
ance as risk measure to study portfolio selection problems
in random environment, such as Markowitz (1959, 1993),
Hogan and Warren (1974), Choobineh and Branting (1986),
Ballestero (2005).

Note that all themodelsmentioned above are single-period
portfolio selection models, which provide an one-off deci-
sion at the beginning of the investment period and suggest to
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hold it until the end of the investment period. But, in the real
world, investors often adjust their wealth from time to time
by taking into consideration the volatile market conditions.
Thus, a lot of work has been done to extend portfolio selec-
tion from single-period case to multi-period case by using
different approaches. Mossin (1968) presented an optimal
multi-period portfolio polices by using dynamic program-
ming approach. Dantzig and Infanger (1993) demonstrated
how multi-period portfolio optimization problems can be
efficiently solved as multistage stochastic linear programs.
Li and Ng (2000) presented a multi-period mean–variance
model and derived an analytical optimal solution. Zhu et al.
(2004) developed a generalized mean–variance multi-period
portfoliomodel incorporating bankruptcy.Wei andYe (2007)
developed a multi-period mean–variance model for portfolio
selection under bankruptcy risk control. Geyer et al. (2009)
used stochastic linear programming approach to study the
multi-period portfolio optimization. Yan and Li (2009) pro-
posed a class ofmulti-period semivariance portfolio selection
with a four-factor futures price model. Brieca and Kerstens
(2009) presented a general approach formulti-horizonmean–
variance portfolio analysis. Fu et al. (2010) considered a
continuous-time mean–variance model with borrowing con-
straint in portfolio selection. Zeng et al. (2013) studied a
multi-period investment-consumption problem with state-
dependent utility functions and uncertain time-horizon in a
regime-switching market. Sun et al. (2016) developed a min-
imax model for a multi-period portfolio selection problem.
Yao et al. (2016) studiedmulti-periodmean–variance portfo-
lio selection with stochastic interest rate and uncontrollable
liability.

All the above literature assumes that the security returns
are random variables with probability distributions. As we
know, a premise of applying probability theory is that the
obtained probability distribution is close enough to the true
frequency. That is to say, we should have enough samples
to estimate probability distributions of the security returns.
However, in real financial markets, there are situations where
people have none or not enough historical data. Thus, in
such situations, the predictions of the security returns have
to rely on experts’ estimations rather than historical data.
With the widely use of fuzzy set theory, more and more
researchers have studied fuzzy portfolio selection problems,
see, for example, Carlsson et al. (2002),Abiyev andMenekay
(2007), Zhang et al. (2009), Chen (2015), Zhang (2016),
Liu et al. (2016a), Chen et al. (2016), Mehlawat (2016),
Wang et al. (2017). These researches broadened the way
to handle portfolio selection problems with returns given
by experts’ estimations. However, deeper researches find
that paradoxes will appear when fuzzy variable is used to
describe the security returns (see Liu 2012). To better deal
with this subjective uncertainty, an uncertainty theory was
founded by Liu (2007) in 2007 and refined by Liu (2010) in

2010. By using uncertainty theory, no counterintuitive results
occur. So far, the uncertainty theory has been used to handle
many optimization problems, such as the shortest path (Gao
2011), single-period inventory (Qin and Kar 2013), facil-
ity location-allocation (Wen et al. 2014), and option pricing
(Shen and Yao 2016; Sun et al. 2017). In particular, some
researchers have applied the uncertainty theory for portfolio
selection problems. In an early study, Huang (2012) pro-
posed a risk index model for uncertain portfolio selection.
Li and Qin (2014) formulated a mean-semiabsolute devi-
ation model for portfolio selection under assumption that
security returns are uncertain interval variables. Zhang et al.
(2015) proposed two uncertain portfolio selection models,
that is, an expected-variance-chance model and a chance-
expected-variance model. Qin et al. (2016) formulated an
uncertain portfolio rebalancing model with transaction costs
by using semiabsolute deviation to measure the portfolio
risk. Chen et al. (2017a) proposed two uncertain diversi-
fiedmean–semivariancemodels for portfolio selection. Chen
et al. (2017b) formulated an uncertain multi-objectivemean–
variance–skewness–kurtosis portfolio optimization model.
Recently, Zhai and Bai (2018) presented an uncertain mean-
riskmodel with background risk for portfolio selection. Chen
et al. (2018) proposed an uncertain portfolio selection model
under consideration of the skewness, transaction costs, cardi-
nality and minimum transaction lots constraints. Apart from
the above-mentioned studies, there exist few studies onmulti-
period uncertain portfolio selection problems. Huang and
Qiao (2012) developed a multi-period uncertain mean-risk
index model. Li et al. (2018) proposed an uncertain multi-
period portfolio selection model, in which transaction cost
and bankruptcy of investor are considered.

Imperialist competitive algorithm (ICA) is a new popula-
tion-based meta-heuristic algorithm proposed by Atashpaz-
Gargari and Lucas (2007) in 2007. This novel optimization
method was developed based on a socio-politically moti-
vated strategy. The ICA uses an initial population that
consists of colonies and imperialists that are assigned to sev-
eral empires. The empires then compete with each other,
which cause the weak empires to collapse and the powerful
empires to dominate and overtake their colonies. The ICA
has shown potential superiority to other well-known opti-
mizationmethods; for example, Atashpaz-Gargari and Lucas
(2007) showed the ICA has potential superiority to other
well-known optimization techniques, such as the genetic
algorithm (GA) and particle swarm optimization (PSO) in
terms of its convergence rate and global optima achieve-
ment; Towsyfyan et al. (2013) also demonstrated that ICAhas
considerable improvement over GA in finding the optimum
solution in less computational time with the same popula-
tion size and iterations; Niknam et al. (2011) mixed ICA
with a K-means algorithm to show its advantages over GA,
PSO, ant colony optimization (ACO), simulated annealing
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(SA), Tabu search (TS), and honeybee mating optimization
(HBMO)algorithms.Therefore, ICAhas arousedmuch inter-
est and has been successfully used in different fields, such
as traveling salesman (Xu et al. 2014), job-shop scheduling
(Zandieha et al. 2017), economic load dispatch (Morshed
and Asgharpour 2014), feature selection (MousaviRad et al.
2012), distribution network design (Ghorbani and Akbari
Jokar 2016) problems. A comprehensive survey of ICA is
presented in the studies of Hosseini and Al Khaled (2014),
Sharafi et al. (2016).

Though there are some researches about portfolio selec-
tion problems under the framework of uncertainty theory,
most of them are mainly focused on single-period portfo-
lio selections. To the best of the author’s knowledge, there is
few research on constructingmulti-period uncertain portfolio
selection model by using semivariance as risk measurement
under the real-world constraints, and then solving the corre-
sponding model by ICA algorithm. Therefore, the purpose
of this paper is to present a multi-period mean–semivariance
model for uncertain portfolio selection with real-world con-
straints and to develop an efficient heuristic approach based
on ICA algorithm for solving proposed model. Our contribu-
tions can be summarized under two aspects as follows: (1)We
formulate a new multi-period mean–semivariance portfolio
optimization model including transaction costs, cardinality
andbounding constraints, inwhich the security returns are the
uncertain variables whose values are obtained from experts’
evaluations rather than historical data. (2) Considering the
complexity of the proposed model, we design a MICA algo-
rithm for the solution, in which the GA’s crossover and
mutation operators are integrated into the ICA by introduc-
ing a new type of country called ‘independent’ country, and
a dynamic switching revolution strategy is also proposed.

The rest of the paper is organized as follows. In Sect. 2, we
review somebasic concepts and results of the uncertainty the-
ory. In Sect. 3, we present a multi-periodmean–semivariance
model for uncertain portfolio selection and then give an
equivalent of the model when security returns are zigzag
uncertain variables. In Sect. 4, we design a MICA algorithm
to solve the proposed model. After that, an example is given
to illustrate the effectiveness of the proposedmodel and algo-
rithm in Sect. 5. Finally, we present conclusions and future
research directions in Sect. 6.

2 Preliminaries

Uncertainty theory is developed based on the following four
axioms.

Definition 1 (Liu 2007) Let � be a nonempty set and L be
a σ -algebra on �. A set function M is called an uncertain
measure if it satisfies the following axioms:

Axiom 1: (Normality)M{�} = 1;
Axiom 2: (Duality)M{�} +M{�c}=1 for any event � ∈ L;
Axiom 3: (Subadditivity) For every sequence {�i} ∈ L, we
have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}.

Moreover, a product axiom was given by Liu (2009) for the
operation of uncertain variables.
Axiom 4: (Product) Let (�k,L,M) be the uncertainty spaces
for k = 1, 2, . . .. Now, the product uncertain measure M is
an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k},

where �k are arbitrarily chosen events from L for k =
1, 2, . . ., respectively.

Definition 2 (Liu 2007) Let Γ be a nonempty set, L the
σ−algebra over Γ , and M be an uncertain measure. Then,
the triplet (Γ ,L,M) is said to be an uncertainty space.

Definition 3 (Liu 2007) Let (�,L,M) be an uncertainty
space. An uncertain variable ξ is a measurable function from
� to a set of real numbers; that is, for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B}

defines an event.

Definition 4 (Liu 2007) The uncertainty distribution � :
R → [0, 1] of an uncertain variable ξ is defined by

�(x) = M{ξ ≤ x}.

An uncertainty distribution � is called regular if it has an
inverse function �−1. In this case, the inverse function �−1

is called an inverse uncertainty distribution.

Definition 5 (Liu 2007) The uncertain variables ξ1, ξ2, . . . ,

ξn are said to be independent if

M

{
n⋂

i=1

ξi

}
= min

1≤i≤n
M{ξi ∈ Bi },

for Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1 (Liu 2007) Let ξ1, ξ2, . . . , ξn be the indepen-
dent uncertain variables with regular uncertainty distribu-
tions �1,�2, . . . , �n, respectively. If f (x1, x2, . . . , xn) is
strictly increasing with respect to x1, x2, . . . , xm and strictly
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decreasing with respect to xm+1, xm+2, . . . , xn then ξ =
f (ξ1, ξ2, . . . , ξn) is an uncertain variable with an inverse
uncertainty distribution

	−1(α) = f (�−1
1 (α), . . . , �−1

m (α),

�−1
m+1(1 − α), . . . , �−1

n (1 − α)). (1)

Definition 6 (Liu 2007) Let ξ be an uncertain variable; then
the expected value of ξ is given by

E(ξ) =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (2)

provided that at least one of the two integrals is finite.

Since the uncertain variables operate mainly in the form
of inverse uncertainty distributions, Liu (2010) presented
the following formulas to calculate the expected value of
an uncertain variable via inverse uncertainty distributions.

E[ξ ] =
∫ 1

0
�−1(α)dα. (3)

Definition 7 (Liu 2007) Let ξ be an uncertain variable with
finite expected value e. Then, the variance of ξ is, respec-
tively, given by

V [ξ ] = E{(ξ − e)2}. (4)

Theorem 2 (Liu 2010) Let ξ and η be independent uncertain
variables. Then, for any real numbers a and b we have

E[aξ + bη] = aE[ξ ] + bE[η]. (5)

3 Themulti-period uncertain portfolio
optimizationmodel

As discussed earlier, in many situations, historical data are
insufficient for the estimation of security returns. In such
cases, we have to rely on the domain experts’ subjective
evaluations for estimating the security returns. In this sec-
tion, by regarding security returns as the uncertain variables,
we will propose a multi-period mean–semivariance model
for portfolio selection with real-world constraints.

3.1 Mathematical modeling

Assume that an investor allocates his initialwealthW0 among
the n securities at the beginning of period 1, and obtain the
terminal wealth at the end of period T . The investor could
readjust his wealth at the every beginning of the following
T −1 consecutive time periods. For the better understanding

of our paper, we first introduce all the notations that will
be used in the following sections. For i = 1, 2, . . . , n, and
t = 1, 2, . . . , T , we let

rt,i The uncertain return rate of i th security at
period t ;

rf The risk-free interest rate;
dt,i The transaction cost on security i at period t ;
Wt The available wealth at the end of period t ;
ΔWt The increment wealth between the period t and

t − 1;
εt,i The minimum proportion allocated to security i

at period t , if security i is held;
δt,i The maximum proportion allocated to security i

at period t , if security i is held;
mt The number of securities that investors wish to

hold in the portfolio at period t ,
1 ≤ mt ≤ n;

zt,i The binary variable, zt,i ∈ {0, 1}. If security i is
included in the portfolio at period t ,

zt,i = 1, and zt,i = 0 otherwise.

Transaction cost is an important factor for an investor to
take into consideration in portfolio selection. It is not trivial
enough to be neglected, and the optimal portfolio depends
on the total costs of transaction. Similar to the researches in
Chen (2015); Chen et al. (2016) and others, we assume that
the transaction cost is a V-shaped function of the differences
between portfolio xt at period t and the portfolio xt−1 at
period t −1. Hence, the total transaction cost of the portfolio
xt at period t can be represented by

Dt =
n∑

i=1

dt,i |xt,i − xt−1,i |, t = 1, 2, . . . , T . (6)

Thus, the net return rate of the portfolio xt at period t(t =
1, 2, . . . , T ) after paying transaction costs is obtained as

Rt,N =
n∑

i=1

(
rt,i xt,i−dt,i |xt,i−xt−1,i |

)
, t = 1, 2, . . . , T .

(7)

Furthermore, the wealth at the end of period t + 1 can be
expressed as

Wt+1 = Wt (1 + Rt,N )

= Wt

[
1 +

n∑
i=1

(
rt,i xt,i − dt,i |xt,i − xt−1,i |

)]
. (8)
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Solving Eq. (8), recursively, the terminal wealth obtained at
the end of period T can be expressed by

WT = W0

T∏
t=1

[
1+

n∑
i=1

(
rt,i xt,i − dt,i |xt,i − xt−1,i |

)]
. (9)

Besides the transaction costs, investors commonly face
other real-world constraints such as cardinality and bound-
ing constraints. The cardinality constraint imposes a limit on
the number of assets in the portfolio either to simplify the
management of the portfolio or to reduce transaction costs.
The bounding constraint restricts the proportion of each asset
in the portfolio to lie between the lower and upper bounds
in order to avoid very small (or large) and unrealistic hold-
ings. Specifically, a minimum εt,i and a maximum δt,i for
each asset i at period t are given, and we impose that either
xt,i = 0 or εt,i ≤ xt,i ≤ δt,i . In addition, the cardinality
constraints about the portfolio at period t can be expressed
by

n∑
i=1

zt,i = mt , t = 1, 2, . . . , T , (10)

where zt,i ∈ {0, 1} is a binary variable that controls whether
asset i at period t should be selected in the portfolio or not.

Taking above facts into consideration, we assume that the
investor wants to maximize his/her terminal wealth over the
T period. At the same time, the cumulative investment risk
of the portfolios must be smaller than the given maximum
risk tolerance level. Thus, the multi-period uncertain port-
folio selection problem with real-world constraints can be
formulated as the follows:

max E[WT ]

s.t.
T∑

t=1

V [Wt ] ≤ σ,

n∑
i=1

xt,i = 1,

n∑
i=1

zt,i = mt ,

εt,i zt,i ≤ xt,i ≤ δt,i zt,i ,

zt,i ∈ {0, 1},
xt,i ≥ 0,

i = 1, 2, . . . , n; t = 1, 2, . . . , T ,

(11)

where σ is the preset maximum risk tolerance level.
In the model (11), variance is used as risk measure. How-

ever, as discussed in introduction section, we know that when

return distributions of securities are asymmetric, using vari-
ance as risk measure leads to an unsatisfactory prediction of
portfolio behavior. Thus, some researchers began to employ
semivariance as an alternative risk measure to qualify the
risk of portfolio, see, for example, Markowitz (1959), Liu
and Zhang (2015). Especially, Huang (2012) introduced a
new easier-to-use risk measure for single-period portfolio
selection, where risk-free interest rate is set as a base tar-
get and any portfolio returns below the risk-free interest rate
are regarded as losses. In this paper, the semivariance of the
return rate on the portfolio at period t can be defined as fol-
lows:

Definition 8 LetW0 be the initial wealth, and rf the risk-free
interest rate. Then, the semivariance of the return rate on the
portfolio at period t is defined as

SVt = E

[[
(�Wt − W0 · rf)−

]2]
, (12)

where

(�Wt−W0 ·rf)− =
{

�Wt − W0 · rf , if�Wt ≤ W0 · rf ,
0. if�Wt > W0 · rf .

Now, we assume that the investor adopts semivariance
as risk measure. Then, the multi-period mean–semivariance
model for uncertain portfolio selection can be formulated as
follows:

max E[WT ]

s.t.
T∑

t=1

SV[Wt ] ≤ σ,

n∑
i=1

xt,i = 1,

n∑
i=1

zt,i = mt ,

εt,i zt,i ≤ xt,i ≤ δt,i zt,i ,

zt,i ∈ {0, 1},
xt,i ≥ 0,

i = 1, 2, . . . , n; t = 1, 2, . . . , T .

(13)

3.2 Equivalent of the proposedmodel

In order to solve the proposedmodel (13), we need to convert
it into its equivalent. Before giving the crisp form, we first
give a theorem for calculating the semivariance.

Theorem 3 Let ξ be an uncertain variable with continuous
uncertainty distribution � whose inverse function �−1(α)
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exists and is unique for each α ∈ (0, 1), and semivariance
defined as

SV(ξ) = E

[
[(ξ − W0 · rf)−]2

]
.

Then

SV(ξ) =
∫ β

0
(�−1(α) − W0 · rf)2dα, (14)

where �−1(β) = W0 · rf .
Proof According to Definitions 6 and 8, we have

SV(ξ) =
∫ +∞

0
M{(ξ − W0 · rf)2 ≥ r}dr

=
∫ +∞

0
M{ξ ≤ W0 · rf − √

r}dr

=
∫ W0·rf

−∞
2(W0 · rf − r)�(r)dr .

�	
The theorem is proved.

In the following section, we will convert the proposed
model (13) into its equivalent. With the same considera-
tion as Chen et al. (2018) and Qin et al. (2016), we assume
that the returns of security rt,i are zigzag uncertain variables
for all i = 1, 2, . . . , n and t = 1, 2, . . . , T , denoted by
rt,i = Z(at,i , bt,i , ct,i ) whose uncertainty distribution can
be described by

�(rt,i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, rt,i ≤ at,i ,

(rt,i − at,i )/2(bt,i − at,i ), at,i ≤ rt,i ≤ bt,i ,

(rt,i + ct,i − 2bt,i )/2(ct,i − bt,i ), bt,i ≤ rt,i ≤ ct,i ,

1, ri ≥ ct,i ,

where at,i < bt,i < ct,i .
Furthermore, the inverse uncertainty distributions of

zigzag uncertain variables rt,i (i = 1, 2, . . . , n; t =
1, 2, . . . , T ) are

�−1(αt,i ) =
{

(1 − 2αt,i )at,i + 2αt,i bt,i , 0 < αt,i < 0.5,

(2 − 2αt,i )bt,i + (2αt,i − 1)ct,i , 0.5 ≤ αt,i < 1.

(15)

Then, from Eq. (3), we have

E[rt,i ] = at,i + 2bt,i + ct,i
4

. (16)

According to the results inLiu (2007), the sumof two inde-
pendent zigzag uncertain variables ξ1 = Z(a1, b1, c1) and
ξ2 = Z(a2, b2, c2) is also zigzag uncertain variable Z(a1 +

a2, b1 + b2, c1 + c2), i.e., Z(a1, b1, c1) + Z(a2, b2, c2) =
Z(a1 + a2, b1 + b2, c1 + c2). In addition, the product of
a zigzag uncertain variable Z(a, b, c) and a real number
k > 0 is also a zigzag uncertain variable Z(ka, kb, kc), i.e.,
k · Z(a, b, c) = Z(ka, kb, kc).

Therefore, for any real numbers xt,i ≥ 0 (i = 1, 2, . . . , n;
t = 1, 2, . . . , T ), the total uncertain return at period t is still
a zigzag uncertain variable with the following form:

n∑
i=1

rt,i xt,i =
n∑

i=1

(at,i xt,i , bt,i xt,i , ct,i xt,)

= Z

( n∑
i=1

at,i xt,i ,
n∑

i=1

bt,i xt,i ,
n∑

i=1

ct,i xt,i

)
.

(17)

Thus, we easily obtain the expected total return at period
t as follows,

E

( n∑
i=1

rt,i xt,i

)
= 1

4

( n∑
i=1

at,i xt,i + 2
n∑

i=1

bt,i xt,i +
n∑

i=1

ct,i xt,i

)
.

(18)

Furthermore, according to Eq. (9), we can obtain the final
expected wealth at the end of period T as follows:

E[WT ] = W0

T∏
t=1

[
1 +

n∑
i=1

(
xt,i E(rt,i ) − dt,i |xt,i − x(t−1),i |

)]

= W0

T∏
t=1

[
1 + 1

4

( n∑
i=1

at,i xt,i + 2
n∑

i=1

bt,i xt,i +
n∑

i=1

ct,i xt,i

)

− dt,i |xt,i − x(t−1),i |
)]

.

(19)

Moreover, for the zigzag uncertain variables rt,i =
Z(at,i , bt,i , ct,i ), according to Eqs. (14) and (15), we have
following results.

(i) If β < 0.5, then

SV(rt,i ) =
∫ β

0
(�−1(α) − W0 · rf )2dα

=
∫ β

0
[(1 − 2α)at,i + 2αbt,i − W0 · rf ]2dα

=
∫ β

0
[(2bt,i − 2at,i )

2α2 + 2(2bt,i − 2at,i )(at,i

− W0 · rf )α + (at,i − W0 · rf )2]dα
= 1

3

[
4(bt,i − at,i )

2β3 + 6(bt,i − at,i )(at,i − W0 · rf )β2

+ 3(at,i − W0 · rf )2β
]

(20)
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(ii) If β ≥ 0.5, then

SV(rt,i ) =
∫ β

0
(�−1(α) − W0 · rf )2dα

=
∫ 0.5

0
[(1 − 2α)a + 2αb − W0 · rf ]2dα

+
∫ β

0.5
[(2 − 2α)b + (2α − 1)c − W0 · rf ]2dα

= 4

3
(ct,i − bt,i )

2β3 + 2(ct,i − bt,i )(2bt,i

− ct,i − W0 · rf )β2 + (2bt,i − ct,i − W0 · rf )2β
− 1

6
[(ct,i − bt,i )

2 + 3(ct,i − bt,i )(2bt,i

−t,i c − W0 · rf ) + 3(2bt,i − ct,i − W0 · rf )2]

(21)

Furthermore, the semivariance about the return rate of the
portfolio at period t can be expressed by

(i) If β < 0.5, then

SV(Wt ) = 1

3

[
4(bt,iWt−1 − at,iWt−1)

2β3
t

− 6(at,iWt−1 − bt,iWt−1)(at,iWt−1 − W0 · rf )β2
t

+ 3(at,iWt−1 − W0 · rf )2βt

]
.

(22)

(ii) If β ≥ 0.5, then

SV(Wt ) =
{
4

3
(ct,i Wt−1 − bt,i Wt−1)

2β3
t + 2(ct,iWt−1

− bt,i Wt−1)(2bt,i Wt−1 − ct,i Wt−1 − W0 · rf )β2
t

+ (2bt,i Wt−1 − ct,i Wt−1 − W0 · rf )2βt

+ 1

6

[
(at,i Wt−1)

2 + at,i bt,i W
2
t−1 + 6bt,i Wt−1W0 · rf

− 3(at,i Wt−1 + ct,i Wt−1)W0 · rf
− (ct,i Wt−1)

2 + 5bt,i ct,i W
2
t−1 − 6b2t,i

]}
.

(23)

Based on the above analysis, the uncertain multi-period
portfolio selection model (13) can be transformed into the
following optimization problem:

(i) If β < 0.5, the model (13) equals

max W0

T∏
t=1

[
1 +

n∑
i=1

(1
4
(at,i + 2bt,i + ct,i )xt,i

− dt,i |xt,i − x(t−1),i |
)]

s.t.
T∑

t=1

1

3

[
4(bt,iWt−1 − at,iWt−1)

2β3
t

− 6(at,iWt−1 − bt,iWt−1)(at,iWt−1 − W0 · rf)β2
t

+ 3(at,iWt−1 − W0 · rf)2βt

]
≤ σ,

n∑
i=1

xt,i = 1,

n∑
i=1

zt,i = mt ,

εt,i zt,i ≤ xt,i ≤ δt,i zt,i ,

zt,i ∈ {0, 1},
xt,i ≥ 0,

i = 1, 2, . . . , n; t = 1, 2, . . . , T .

(24)

(ii) If β ≥ 0.5, the model (11) equals

max W0

T∏
t=1

[
1 +

n∑
i=1

(1
4
(at,i + 2bt,i + ct,i )xt,i

− dt,i |xt,i − x(t−1),i |
)]

s.t.
T∑

t=1

{
4

3
(ct,iWt−1 − bt,iWt−1)

2β3
t + 2(ct,iWt−1

− bt,iWt−1)(2bt,iWt−1 − ct,iWt−1 − W0 · rf )β2
t

+ (2bt,iWt−1 − ct,iWt−1 − W0 · rf )2βt

+ 1

6

[
(at,iWt−1)

2 + at,i bt,iW
2
t−1 + 6bt,iWt−1W0 · rf

− 3(at,iWt−1 + ct,iWt−1)W0 · rf − (ct,iWt−1)
2

+ 5bt,i ct,iW
2
t−1 − 6b2t,i

]} ≤ σ,

n∑
i=1

xt,i = 1,

n∑
i=1

zt,i = mt ,

εt,i zt,i ≤ xt,i ≤ δt,i zt,i ,

zt,i ∈ {0, 1},
xt,i ≥ 0,

i = 1, 2, . . . , n; t = 1, 2, . . . , T .

(25)
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4 Hybrid of imperialist competitive and
genetic algorithm

The proposed models (24) and (25) are classified as a mixed
integer nonlinear programming model necessitating the use
of efficient heuristic algorithms to find the solution. In this
paper, we propose a modified imperialist competitive algo-
rithm (MICA) for the solution. In the following, basic ICA
is first reviewed and then, MICA algorithm to solve the pro-
posed models is presented.

4.1 Basic ICA

Imperialist competitive algorithm (ICA) (Atashpaz-Gargari
and Lucas 2007) is an evolutionary meta-heuristic algorithm
that mimics socio-political imperialist competition to search
for a global optimal solution. It is a population-based algo-
rithm in which every element of the population is called a
country. Each country denotes an encoded solution to the
problem. The better countries are chosen to become the
imperialists. The other countries are divided among the impe-
rialists as colonies. The whole set of an imperialist and its
colonies is called an empire. After seizing the colonies, the
imperialists try to penetrate into their colonies by making
them similar to themselves. Then, the imperialists compete
with each other to seize more colonies and gain more power.
This process makes some imperialists more powerful and
some weaker. The weak empires eventually collapse. An
overview of the main steps of the ICA is presented next.

4.1.1 Initialization

Similar to other population-based meta-heuristic algorithms,
ICA also beginswith a randomly generated populationwhich
contains Npop initial solutions. In ICA, each individual is
called a ‘country.’ For an Nvar-dimensional optimization
problem, a country is a 1∗Nvar array whose elements are ran-
domly generated in the allowable range of the corresponding
parameters as:

Country = [p1, p2, . . . , pNvar ]. (26)

The power of country is inversely proportional to the value
of the cost function. The countrywith smaller cost has greater
power. Thus, the cost of each country is evaluated with the
cost function f at variables (p1, p2, . . . , pNvar ) as the fol-
lows:

Cost = f (country) = f (p1, p2, . . . , pNvar ). (27)

In the initialization step, we need to generate an initial
populationwith the size of Npop. Next, we have to select Nimp

of the most powerful countries to construct the empires. The

remaining Ncol(Ncol = Npop − Nimp) will be the colonies
such that each colony belongs to an empire. So, an empire
consists of an imperialist and set of colonies.

To form the initial empires, the colonies are divided
among the imperialist countries according to the power of
the imperialists. The normalized fitness of each imperialist
is determined by,

Cn = max
i

{ci } − cn, i = 1, 2, . . . , Nimp (28)

where cn and Cn are the cost and normalized cost of nth
imperialist, respectively. An imperialist with larger cost (i.e.,
a weaker imperialist country) has smaller normalized cost.
When the normalized costs of all imperialists are gathered,
the normalized power of each imperialist can be evaluated as
follows:

pn =
∣∣∣∣ Cn∑Nimp

i=1 ci

∣∣∣∣. (29)

The initial colonies are distributed among empires based
on their power; therefore, the initial number of colonies for
nth empire can be defined as follows:

NCn = round(pn · Ncol), (30)

where NCn is the number of initial colonies possessed by
the nth imperialist, Ncol is the total number of colonies in
the initial population, and round is a function that gives the
nearest integer of a fractional number.

4.1.2 Assimilation process

After forming initial empires, the colonies in each empire
start to improve their power by moving toward their rele-
vant imperialist. This process is known as the assimilation
process, illustrated in Fig. 1.

As shown inFig. 1, the colonymoves x distance alongwith
d direction toward its imperialist. The moving distance x is
a random number generated by random distribution within
interval [0, β ∗ d]. The value of β falls between 1 and 2. Set-
ting β > 1 causes the colony to move toward the imperialist
direction. Meanwhile, a random amount of deviation (the θ

in Fig. 1) is added to the movement direction, to enhance
the exploration ability of the algorithm. The θ is defined as
follows:

θ ∼ ∪(−ϕ, ϕ), (31)

where ϕ is an arbitrary parameter, where a larger value will
facilitate a global search and a smaller value will encourage
a local search. Setting ϕ to π/4 (radian) could be a good
choice.
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Fig. 1 Assimilation process

4.1.3 Revolution operator

Similar to the mutation process in GA, ICA allows a sudden
change in socio-political characteristic of a country, known
as revolution. During revolution, the positions of some coun-
tries suddenly change which facilitate diversification. The
revolution rate decides the percentage of countries inside an
empire which will randomly change. This process avoids
the algorithm to converge to local optimal solution in the
early iterations. The revolution operator must be precisely
determined since a very high value of it decreases the inten-
sification power of algorithm while a very low value of it
decreases diversification.

4.1.4 Exchanging the position of a colony and an imperialist

After assimilation and revolution processes, it is possible that
a colony reaches a position with lower cost than its imperial-
ist. If there exists any colonywith lower cost, then the position
of this colony exchanges with the position of its imperialist.
The algorithm then continues with imperialist in a new posi-
tion, and new imperialist attempts to assimilate its colonies.

4.1.5 Total power of an empire

The power of an empire is computed based on the power of
its imperialist and a fraction of the power of its colonies.

TCn =Cost(imperialistn)

+ ξ ∗ mean{Cost(coloniesof empiren)}, (32)

where TCn is the total cost of nth empire, and ξ is a positive
number between 0 and 1, usually close to zero. A small value
of ξ emphasizes a greater influence of imperialist power in
determining the total power of empire, while a large value
of ξ indicates the influence of the mean power of colonies
in determining the total power of the empire. And all the
empires except the most powerful one will collapse and all
colonies will be under the control of this unique empire.

4.1.6 Imperialist competition

Any empire that is unable to gain power will finally be elim-
inated, and more powerful empires will seize their colonies.
In an iteration of the algorithm, a set of the weakest empires
are considered and the more powerful empires try to con-
quer colonies from the weakest empires. The competition
for colonies is based on the power of empires. In fact the
more powerful an empire is, the better chance it has to win
the competition for taking a colony. To model this compe-
tition, first the probability of every empire for winning the
competition is calculated based on the normalized total cost
of every empire. Normalized total cost of an empire is given
by

NTCn = max
i

{TCi } − TCn, (33)

where TCn is the total cost of nth empire and NTCn is the
normalized total cost of corresponding nth empire. After cal-
culating the normalized cost (power) of every empire, the
probability with which each empire might win the competi-
tion for conquering colonies is given by

pn =
∣∣∣∣ NTCn∑Nimp

i=1 NTCi

∣∣∣∣. (34)

In the imperialist competition step, if the weakest imperi-
alist loses all of its colonies, then this imperialist is collapsed.
A collapsed imperialist is possessed by other imperialists as
a colony.

4.1.7 Convergence

After a certain amount of iterations, there will be only one
empire left, as that empire is themost powerful empire among
the other empires. The other empires have collapsed during
imperialistic competition.Also, the colonies in themost pow-
erful empire will have the same position and same fitness as
the imperialist. The program will terminate when the num-
ber of imperialist, Nimp = 1 or the maximum number of
iterations has reached.
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4.2 The proposedMICA algorithm

4.2.1 Fitness function

The fitness function is a factor for measuring the quality
of a solution. In an optimization problem, fitness is often
determined by the value of its objective function. Thus, for
themaximization problems, the individualwith higher fitness
will have more chance to generate offspring. In this paper,
we take the objective functions of the models (24) and (25)
as the fitness functions.

In addition, we know that, in the basic ICA, the power of
country is inversely proportional to the value of the cost func-
tion. So, for the proposed MIC algorithm, the cost function
is defined as the reciprocal of the fitness function:

Cost = 1

fit(country)
. (35)

where fit(country) refers to the fitness of the country.

4.2.2 Hybrid ICA-GA

ICA has attracted much attention and wide applications for
solving optimization problems; however, this algorithm is
easily to be trapped into a local optimum. Thus, inspired by
the ideas in Mehdinejad et al. (2016), in this paper, a new
type of country called ‘independent’ country is introduced,
and the GA’s crossover and mutation operators are applied
for these independent countries. The independent countries
are anti-imperialism and are in competition with imperialist
countries. Independent countries’ aim is to free the colonies
from the empires and let them join independent countries to
cause the collapse of all empires.

More specifically, in the initial population, Nimp of the
most powerful countries from initial countries Npop are
selected to be imperialists, Nind of the most powerful coun-
tries from remaining countries (Npop − Nimp) are selected
to be independent countries, and the remaining Ncol (Ncol =
Npop − Nimp − Nind) countries form the colonies. Then, in
each iteration, three operators of GA are added as follows:

(1) Mutation Operator. In the evolutionary progress of
ICA, population diversity may be lost and premature
convergence always happens. Here, we design a new
mutation strategy to perform mutation operator. Specif-
ically, a new independent country I nd ′

i is produced
according to the following equation:

Ind′
i = Indi + ϕi × rand(Nvar, Nvar) × (Coubest − Indi ),

(36)

ϕi = 1 − fit(Indi )∑Npop
i=1 fit(coui )

, (37)

where Indi refers to the i th independent country,
rand(Nvar, Nvar) is a Nvar×Nvar matrix, whose elements
are random numbers between 0 and 1. Coubest refers to
the country with the best fitness, and ϕi is the mutation
probability of i th independent country. fit(Indi ) refers to
the fitness of the i th independent country. The countries
with greater fitness have less probability to mutation. It
should be noted that, after mutation operator, if the new
country is not better than old one, we let Ind′

i = Indi .
(2) CrossoverOperator. This paper adopts the single-point

crossover operation method. In single-point crossover,
one crossover position k is selected uniformly at random
in the interval [1, 2, . . . , Nvar], and then the variables
exchanged between the ‘independent countries’ in this
point. Thus, two new independent countries are pro-
duced.

(3) Selection Operator. We select some of the best coun-
tries with the size of Nimp from the new countries includ-
ing imperialists, independent countries and colonies to
be new imperialists, and the rest of the countries are to
be the new colonies.

4.2.3 Dynamic switching revolution strategy

Like many meta-heuristic methods, parameters selection has
great effects on the algorithm performance. Revolution oper-
ator is the counterpart of mutation in GA. A large value of
revolution rate reinforces the exploration, while a small value
of it may encourage exploitation. Hosseini and Al Khaled
(2014) showed that the value of revolution rate is highly
dependent on themagnitude of solution spaces, and the value
of 0.2 could be an appropriate choice in general. Besides,
Sadeghi et al. (2016) suggested that 0.1 is the better set for
revolution rate. However, for any generalized algorithm, we
know that more global search should be done at the begin-
ning as it will tend to explore the search space better and
when enough exploration has been done, the process should
move on to local search that is exploitation. Thus, in this
paper, dynamic switching revolution strategy is employed to
make the algorithm more reliable in exploring and exploit-
ing the search space. The revolution operator is performed
as follows:

Pr ,i = p0

(
1 − fit(coli )

fit(coubest)
· eλ

)
, i = 1, 2, . . . , Ncol,

(38)

λ = rand [0, Nvar]
Nvar

, (39)
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where fit(coli ) is the fitness for the i th colony, coubest is
the country with the best fitness, rand [0, Nvar] is a random
number between 0 and Nvar.

From Eq. (38), we can see that the bigger the fitness value,
the smaller the probability of performing revolution opera-
tion. Moreover, the revolution rate is also associated with
the dimension of the optimization problem. As the dimen-
sion Nvar increases, the probability of performing revolution
operation also increases.

4.2.4 Constraint satisfaction

We use hybrid representation to define a portfolio, in which
two vectors are defined as following forms:

� = {z1,1, z1,2, . . . , z1,n; . . . ; zT ,1, zT ,2, . . . , zT ,n},
X = {x1,1, x1,2, . . . , x1,n; . . . ; xT ,1, xT ,2, . . . , xT ,n}.

Here, zt,i is a binary vector that specifies whether a particular
asset participate in the portfolio at period t , where zt,i ∈
{0, 1}(i = 1, 2, . . . , n; t = 1, 2, . . . , T ). xt,i is a real-
valued vector used to compute the investment proportions
of the budget invested on the portfolio at period t , where
xt,i ∈ [0, 1](i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

Similar to the studies in Chang et al. (2000), Liu et al.
(2016b), Mishra et al. (2014), we performed the following
operators to find the portfolio x associated with the above
encoding. First, if the number of assets in the portfolio at each
period (i.e., the number of 1’s in zt ) exceeds the maximum
allowed number m, we deleted (by changing its value from
1 to 0 in zt ) those assets with the (n − m) smallest weights
in xt . In this way, we can keep the portfolio at each period
satisfy the cardinality constraints.

To meet the budget constraint, we perform the following
normalization operation

x ′
t,i = xt,i zt,i∑n

j=1 xt,i zt,i
, i = 1, 2, . . . , n; t = 1, 2, . . . , T

(40)

Since the normalize investment proportion may not sat-
isfy the bound constraints, the following three cases are
discussed.
Case 1: If both lower and upper constraints are present, then
the investment proportions are computed by

x ′
t,i = εt,i zt,i

+ xt,i zt,i∑n
i=1 xt,i zt,i

(
δt,i zt,i −

n∑
i=1

εt,i zt,i

)
, t = 1, 2, . . . , T .

(41)

Case2: If the investment proportion has to be adjusted only
for the lower constraint, and there is no restriction on the

upper limit, then the adjusted investment proportions are
computed as:

x ′
t,i = εt,i zt,i

+ xt,i zt,i∑n
i=1 xt,i zt,i

(
1 −

n∑
i=1

εt,i zt,i

)
, t = 1, 2, . . . , T .

(42)

Case 3: If the investment proportion has to be adjusted for
the upper constraint, and there is no restriction on the lower
limit, then the adjusted investment proportions are calculated
by

x ′
t,i = δt,i zt,i

− xt,i zt,i∑n
i=1 xt,i zt,i

(
n∑

i=1

δt,i zt,i − 1

)
, t = 1, 2, . . . , T .

(43)

4.2.5 Stop criteria

We consider two stopping criteria. The program will ter-
minate when the number of imperialist Nimp = 1 or the
maximum number of iterations has reached.

The pseudo-code about the MICA algorithm is showed in
Algorithm 1.

5 Numerical example

In this section, we give a numerical example to illustrate
the applications of the proposed models and demonstrate
the validity of the designed algorithm. In this example, the
investor intends to make four consecutive periods investment
among the 10 securities with initial wealth 10,000 RMB.
In addition, we assume that security returns cannot be well
reflected by the historical data and are given by experts’ eval-
uations. Here, the return rates are characterized by zigzag
uncertain variables rt,i (i = 1, 2, . . . , 10; t = 1, 2, 3, 4),
which are shown in Table 1.

In this example, we assume that the initial portfolio at
the beginning of period is x0,i = 0.1 for i = 1, 2, . . . , 10.
The risk-free interest rate is 0.02. The transaction costs of
securities at the four periods are set as dt,i = 0.0015 (i =
1, 2, . . . , 10; t = 1, 2, 3, 4). The maximum number of secu-
rities held in the portfolio in each period is mt = 5 (t =
1, 2, 3, 4). The lower bound constraint εt,i = 0.1, and upper
bound constraint δt,i = 0.6 for all i = 1, 2, . . . , 10 and
t = 1, 2, 3, 4.

The parameters of the MICA algorithm are set as follows:
the numbers of countries Npop, imperialists Nimp, indepen-
dent countries Nind, and colonies Ncol are set to 30, 10, 10,
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Table 1 The zigzag uncertain returns of 10 securities

Security i 1 2 3 4 5 6 7 8 9 10

t = 1 a1,i −0.4 −0.8 −0.5 −0.7 −0.6 −0.3 −0.8 −0.5 −0.7 −0.6

b1,i 0.1 −0.2 −0.1 0.1 0.3 −0.1 0.1 0.3 0.2 0.002

c1,i 0.5 0.2 0.3 0.6 0.9 0.4 0.9 0.7 0.6 0.8

t = 2 a2,i −0.3 −0.7 −0.5 −0.6 −0.5 −0.5 −0.8 −0.5 −0.7 −0.5

b2,i 0.2 −0.1 −0.2 0.1 0.3 0.1 0.1 0.3 0.2 0.2

c2,i 0.5 0.3 0.5 0.5 0.8 0.4 0.9 0.7 0.6 0.9

t = 3 a3,i −0.4 −0.8 −0.5 −0.8 −0.6 −0.6 −0.9 −0.5 −0.6 −0.6

b3,i 0.1 −0.2 −0.1 0.2 0.4 −0.2 −0.1 0.3 0.3 0.003

c3,i 0.5 0.2 0.3 0.7 0.7 0.7 0.8 0.6 0.7 0.8

t = 4 a4,i −0.2 −0.6 −0.9 −0.4 −0.6 −0.7 −0.5 −0.8 −0.3 −0.1

b4,i 0.001 −0.2 0.1 0.3 0.2 0.4 −0.3 −0.3 0.2 0.1

c4,i 0.4 0.3 0.6 0.6 0.9 0.5 0.6 0.8 0.7 0.5

Table 2 The optimal strategies with different values of σ

σ t x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Terminal wealth

1500 t = 1 0.000 0.264 0.000 0.000 0.240 0.049 0.000 0.354 0.093 0.000 11,380.2209

t = 2 0.265 0.000 0.000 0.000 0.179 0.036 0.000 0.263 0.000 0.256 12,932.0524

t = 3 0.394 0.293 0.156 0.000 0.000 0.054 0.000 0.000 0.103 0.000 14,621.3049

t = 4 0.000 0.000 0.128 0.000 0.218 0.044 0.289 0.321 0.000 0.000 15,548.7712

1600 t = 1 0.000 0.331 0.000 0.000 0.000 0.168 0.146 0.000 0.095 0.260 11,439.6252

t = 2 0.245 0.000 0.182 0.316 0.000 0.000 0.000 0.009 0.000 0.247 13,113.5027

t = 3 0.258 0.332 0.000 0.000 0.168 0.000 0.147 0.000 0.095 0.000 14,939.8430

t = 4 0.221 0.000 0.000 0.286 0.000 0.144 0.126 0.000 0.000 0.223 16,966.6278

1700 t = 1 0.000 0.145 0.000 0.000 0.368 0.000 0.000 0.349 0.087 0.051 11,681.6879

t = 2 0.113 0.152 0.347 0.336 0.000 0.000 0.000 0.000 0.000 0.053 13,429.2396

t = 3 0.126 0.169 0.000 0.000 0.000 0.000 0.198 0.406 0.101 0.000 15,374.8084

t = 4 0.084 0.000 0.000 0.248 0.285 0.316 0.000 0.000 0.067 0.000 17,487.9872

1800 t = 1 0.002 0.000 0.000 0.000 0.128 0.000 0.105 0.255 0.51 0.000 11,876.1322

t = 2 0.003 0.000 0.337 0.000 0.173 0.000 0.143 0.345 0.000 0.000 13,700.0478

t = 3 0.002 0.407 0.242 0.000 0.000 0.000 0.102 0.247 0.000 0.000 15,887.9872

t = 4 0.002 0.321 0.19 0.000 0.098 0.000 0.000 0.000 0.389 0.000 18,016.0462

and 10, respectively. In addition, assimilation coefficient β

and crossover rate pc are set to 0.6 and 0.5, respectively. The
maximum generation number is 200.

Using the proposed algorithm, we can obtain some invest-
ment strategies by varying the risk tolerate parameter σ . The
results are listed in Table 2. We find that the investor will
adopt different investment strategies at different investment
periods. For example, when σ = 1600 RMB, the investor
adopts the following strategies. At the beginning of period 1,

the investor needs to assign his initial wealth among securi-
ties 2, 6, 7, 9 and 10 by the investment proportions of 0.331,
0.168, 0.146, 0.095 and 0.260, respectively. At the begin-
ning of period 2, the investor needs to adjust his wealth
again. After adjustment, he holds securities 1, 3, 4, 8 and
10 by the investment proportions of 0.245, 0.182, 0.316,
0.009 and 0.247, respectively. Finally, at the beginning of
period 4, the investor constructs a portfolio among secu-
rities 1, 4, 6, 7 and 10 by the investment proportions of
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Algorithm 1 The MICA algorithm

1: Randomly generate Npop initial countries

2: Initialize the imperialists, independent countries and

colonies

3: For n = 1 to Nind /*the number of the independent

countries*/

4: For k = 1 to Nvar /* the dimension of the countries*/

5: Mutation for independent countries

6: Generate a random number r from [0, 1]
7: If r < pc, select the i th and (i +

1)th countries as the parent and children

/* pc is the crossover probability */

8: Crossover the parent’s and children’s gene

9: End Loop

10: Select the new imperialists and colonies

11: End Loop

12: Elimination of empire

13: For j = 1 to Nimp /* the number of the imperialists

*/

14: Move the colony toward the relevant imperialist

15: Compute the fitness of assimilated countries

16: Imperialist competition

17: Perform revolution operator on new colony

18: If the fitness of new colony is better than that of

imperialist

19: Exchange the position of colony and imperialist

20: Select the weakest colony from the weakest empire

and let it to be the empire

21: If there is imperialist with no colonies

22: Eliminate the imperialist

23: End Loop

24: Until stopping condition is reached

0.221, 0.286, 0.144, 0.126 and 0.223, respectively. In this
case, the crisp value of terminal wealth is 16,966.6278 RMB.
In addition, Table 2 also indicates that the terminal wealth
increases along with the increasement of the risk tolerate
value σ . For instance, when σ = 1800 the best terminal

wealth is achieved, while σ = 1500 leads to the lowest ter-
minal wealth.

To demonstrate the effects of the cardinality constraint
on the portfolio selection, given mt = 5 and 6 (t =
1, 2, 3, 4), the histograms for the optimal portfolio strate-
gies are depicted in Fig. 2. From Fig. 2, it is clear that
with the changes of the mt , the investors adopt different
investment strategies. For example, when mt = 5, secu-
rities 1, 6 and 10 are included in the portfolio at period
of 4. Nevertheless, when mt = 6, these securities are not
selected at the same period. Moreover, taking the security 6
as a example, we can see that when mt = 5, it is selected
to invest just at periods 1 and 4 by the investment pro-
portions of 0.168 and 0.144, respectively. However, when
mt = 6, the investor holds this security at each period by
the investment proportions of 0.114, 0.132, 0.121 and 0.1,
respectively.

Furthermore, given σ = 1600, rf = 0.02, and mt = 5,
Table 3 is presented to demonstrate the effect of transaction
costs on portfolio selection. It can be seen from Table 3 that
when the transaction cost rate increases, the investor gains
less expected incremental wealth.

Similarly, Table 4 demonstrates how the risk-free inter-
est rates rf affect the portfolio selection. It can be seen that
the obtained terminal wealth as well as the corresponding
risk increase at the same time along with the increasing
of the rf value. For instance, when rf = 0.01, the ter-
minal wealth is 14,705.8295 at end of period 4, and the
cumulative semivariance SV is 899.1219, while rf = 0.03,
the corresponding values are 18,280.9852 and 1471.7799,
respectively.

Finally, to demonstrate the effectiveness of our designed
algorithm,we compare it with the basic ICA andGAby vary-
ing the generation numbers. The parameters of the above two
algorithms are the same as the proposedMICA. The detailed
comparative results are shown in Table 5. It should be noted
that Different 1 refers to the difference between the objec-
tive values of MICA and ICA, and Different 2 refers to the
difference between the objective values of MICA and GA.
It can be seen that the objective values obtained by our pro-
posed algorithm are larger than those by the basic ICA and
GA algorithms. In addition, we also calculate the maximum
deviation of objective for the proposed model with respect
to different generations. The maximum deviation generated
by the MICA algorithm is smaller than the one generated by
the other algorithms. Besides, the convergence characteris-
tic of different algorithms is shown in Fig. 3. It is obvious
that the proposed MICA can quickly converge to a better
solution much faster than the other algorithms. All these
results show that the proposed MICA algorithm has a better
performance and is more efficient in finding optimal portfo-
lios.
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Fig. 2 The optimal investment
strategies under different m

(b)(a)

Table 3 Wealth increment
under different transaction costs di �W Terminal wealth

t = 1 t = 2 t = 3 t = 4

0.0005 1596.0682 1336.0153 2005.9215 2226.2906 17,137.2956

0.0010 1469.1378 1592.2746 1808.8682 2161.3133 17,031.5939

0.0015 1439.6252 1673.8774 1826.3403 2026.7848 16,966.6278

0.0020 1186.8012 −242.0526 2005.9912 2134.2860 15,085.0258

0.0025 1022.5334 1230.3904 1578.1419 1796.6385 15,627.7042

Table 4 The model results under different risk-free interest rate

rf t βt SV Terminal wealth

rf = 0.01 t = 1 0.4120 161.6300 11,507.7000

t = 2 0.4269 107.4156 12,836.2351

t = 3 0.4008 208.7136 14,452.4776

t = 4 0.8257 421.3627 14,705.8295

rf = 0.02 t = 1 0.0000 0.0000 11,439.6252

t = 2 0.5745 239.0890 12,673.8774

t = 3 1.0000 310.1759 14,361.8985

t = 4 0.4392 227.9275 16,966.6278

rf = 0.03 t = 1 1.0000 185.3339 11,571.6553

t = 2 1.0000 406.0352 13,768.9612

t = 3 0.0000 361.0708 15,965.8657

t = 4 0.4206 519.3400 18,280.9852

6 Conclusion

Since the security market is so complex, sometimes secu-
rity returns have to be predicted by experts’ evaluations
rather than historical data. This paper discusses a multi-
period portfolio selection problem with returns given by
experts’ evaluations. By using uncertainty theory, we pro-
pose amulti-periodmean–semivariance portfoliomodelwith
real-world constraints, in which transaction costs, cardinal-
ity and bounding constraints are considered simultaneously.
We further convert the proposed optimization model into a
crisp mathematical programming under the assumption that
the security returns are zigzag uncertain variables. After that,
we design aMICAalgorithm to solve the corresponding opti-
mization model. Finally, a numerical example is given to
illustrate the ideas of the proposed model and the validity
of the designed algorithm. The experimental results demon-
strate that real-world constraints have a great impact on the
optimal investment strategy, and the designed MICA algo-
rithm is effective for solving the proposed model.
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Table 5 The comparison of the different algorithms

t ICA GA MICA Different 1 Different 2

t = 1 G = 100 10,502.3575 10,458.8725 11,276.8726 774.5151 556.9271

G = 200 10,928.1905 11,015.7996 11,439.6252 511.4347 423.8256

G = 300 11,028.4114 11,212.6087 11,528.6252 500.2138 316.0165

G = 400 11,528.6277 11,528.6283 11,528.6299 0.0022 0.0016

G = 500 11,528.6297 11,528.6292 11,528.6299 0.0002 0.0005

Maximum deviation 1026.2722 839.0744 754.7418

t = 2 G = 100 12,067.8745 12,165.8983 12,448.7221 380.8476 282.8238

G = 200 12,861.6152 12,951.9208 13,113.5027 251.8875 161.5819

G = 300 13,020.2621 13,065.3628 13,420.3976 400.1355 355.0348

G = 400 13,490.0056 13,494.0666 13,496.0866 6.0810 2.0200

G = 500 13,496.0864 13,496.0865 13,496.0866 0.0002 0.0001

Maximum deviation 1428.2119 1330.1882 1047.3645

t = 3 G = 100 13,773.9776 14,048.83393 14,930.2751 1156.2975 881.4412

G = 200 13,883.5505 13,979.1193 14,939.8430 1056.2925 960.7237

G = 300 14,290.2516 14,304.4206 14,996.8993 706.6477 692.4787

G = 400 15,027.4502 15,027.4500 15,027.4505 0.0003 0.0005

G = 500 15,028.1928 15,028.1928 15,028.1928 0.0000 0.0000

Maximum deviation 1154.2152 979.3589 97.9177

t = 4 G = 100 15,987.2108 16,028.8339 16,201.2751 214.0643 172.4412

G = 200 16,906.5505 16,875.1193 16,966.6278 60.0773 91.5085

G = 300 16,936.2516 16,895.4206 17,041.8993 105.64773 146.4787

G = 400 17,306.4553 17,303.4551 173,09.4555 3.0002 6.0004

G = 500 17,309.4555 17,309.4555 17,309.4555 0.0000 0.0000

Maximum deviation 1322.2447 1280.6216 1108.1804

Fig. 3 Convergence through
MICA, ICA and GA
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Finally, for future researches three areas are proposed:
first adding other real-world constraints such as minimum
transaction lots and bankruptcy in the investment horizon,
second changing the proposedmodel to amulti-periodmulti-
objective one and third comparing other heuristic algorithms
with the designed algorithm.
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