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Abstract
In this paper, a fuzzy model predictive controller is developed to reduce the emission pollutants in spark ignition internal
combustion engines. The path to this control goal is regulating the amount of normalized air-to-fuel ratio in the engine. In order
to generate the simulation data, mean value engine model is simulated. To approximate the nonlinear and fast time-varying
dynamics of the engine, a modified fuzzy relational model is trained offline in batch mode. For training, gradient descent back
propagation algorithm along with evolutionary asexual reproduction optimization algorithm is used. Nonlinear structure of
the fuzzy model of the engine imposes nonlinear optimization to produce control signals. Hence, gradient descent algorithm is
used to generate online control signals. The effectiveness and robustness of the controller are evaluated through simulations.

Keywords Fuzzy modeling · Model predictive control · Engine control · Optimization

1 Introduction

Exhaust pipe emission pollutants of internal combustion
engines (ICEs), such as nitrogen oxidesNOx , carbonmonox-
ide CO and unburned hydro-carbons (HC), are one of the
main causes of air pollution in urban areas. These pollutants
have carcinogenic and destructive effect on humans (Kiencke
and Nielsen 2005). Based on different emission standards
such as OBD II, EURO 6 and LEV III, automotive industry
is strictly required to regulate the amount of exhaust pipe
pollutants in ICEs. Meanwhile, the overall performance of
the engine in terms of producing enough torque and traction
force should be maintained at a satisfactory level (Kiencke
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and Nielsen 2005). Hence, regulation of emission pollutants
is an important control goal in automotive industry which led
to huge number of research works in the last three decades
(Carnevale et al. 1995; Hendricks and Luther 2001; Jansri
and Sooraksa 2012; Kaidantzis et al. 1993; Kiencke 1988;
Kopačka et al. 2011; Lauber et al. 2007; Li and Yurkovich
1999; Meyer et al. 2013; Morelos and Anzurez Marin 2012;
Shamdani et al. 2007; Sardarmehni et al. 2013a, b; Wang and
Yu 2005, 2008; Wang et al. 2006; Yildiz et al. 2008; Zhai
and Yu 2009; Zhai et al. 2010).

In spark ignition (SI) engines, as one of the most com-
mon transport vehicles, the amount of exhaust pipe emission
pollutants can be effectively reduced, to almost zero, by
use of three-way catalytic converters (TWCCs) (Kiencke
and Nielsen 2005). TWCC is a device that is integrated at
the end of exhaust pipe. It is composed of a coated metal
or ceramic carrier substrate with a large surface which is
again covered with a thin layer of platinum and rhodium.
In summary, platinum and rhodium accelerate simultaneous
oxidation and reduction processes which lead to conver-
sion of NOx , CO and unburned HC to CO2, N2, and H2O
(Kiencke and Nielsen 2005). The performance of TWCC
is strongly dependent on the amount of air-to-fuel ratio
(AFR), defined as mass ratio of air to fuel in the combus-
tion chamber (Carnevale et al. 1995; Hendricks and Luther
2001; Kaidantzis et al. 1993; Kiencke 1988; Kiencke and
Nielsen 2005; Lauber et al. 2007; Li and Yurkovich 1999;
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Meyer et al. 2013; Morelos and Anzurez Marin 2012; Sham-
dani et al. 2007; Sardarmehni et al. 2013a, b; Wang and
Yu 2005, 2008; Wang et al. 2006; Yildiz et al. 2008; Zhai
and Yu 2009; Zhai et al. 2010). If the amount of air is
enough to burn the fuel completely, the mixture is called
stoichiometric mixture and its AFR is called stoichiomet-
ric AFR. Usually the normalized AFR, typically denoted
by λ in the literature, is used which is the ratio of instan-
taneous AFR to stoichiometric AFR. TWCC can eliminate
the exhaust emission pollutants only if λ is controlled within
± 1% of the stoichiometric value equal to 1. This region for
λ is referred to as lambda window (Kiencke and Nielsen
2005). As a results, regulating the amount of λ in the lambda
window is the backbone of emission control systems in SI
engines.

Due to low cost of proportional integral (PI) controllers,
they are widely used in the automotive industry to regulate
λ. However, PI controllers demonstrate poor performance in
the presence of noise/disturbance, the engines time-varying
and fast dynamics, structured/unstructured uncertainties in
the engine model and they usually have a time-consuming
calibration process. As a result, interests in designing novel
controllers for improving the robustness and quality of λ

control have been increased in both industrial and aca-
demic investigations (Carnevale et al. 1995; Hendricks and
Luther 2001; Jansri and Sooraksa 2012; Kaidantzis et al.
1993; Kiencke 1988; Kiencke and Nielsen 2005; Lauber
et al. 2007; Li and Yurkovich 1999; Meyer et al. 2013;
Morelos and Anzurez Marin 2012; Shamdani et al. 2007;
Sardarmehni et al. 2013a, b;Wang and Yu 2005, 2008;Wang
et al. 2006; Yildiz et al. 2008; Zhai and Yu 2009; Zhai et al.
2010).

Modeling and control of ICEs have been studied since
late 1980s by evolution of control oriented engine models.
The idea of modeling the fast and time-varying dynamics of
ICEs by mathematically compact but precise physic-based
models were almost fulfilled by presentation of mean value
engine models (MVEMs). MVEM describes the dynamical
behavior of ICEs in the state space and models dynamics of
every state variable through fitting it to the mean value of
the corresponding state in the previous time steps. Although
MVEM neglects unnecessary complexities in combustion
process, accuracy in modeling the required state variables
is guaranteed. As studied in Hendricks et al. (1996), simu-
lated dynamics of a real engine in the state space by MVEM
are as accurate as a typical dynamo-meter measurement
in the steady-state mode and yields ± 2% mean absolute
error (MAE) in the transient mode. At first, MVEM for
any arbitrary SI engine was not compatible to be applied
to another SI engine because of the difficulties in mod-
eling of engines volumetric efficiency. Hendricks et al.
(1996) have improved the MVEM by introducing a sim-
ple model of the volumetric efficiency, and therefore, the

improved model is compatible for application in a wide
range of SI engines. Further studies in mean value mod-
eling approach led to mean value modeling of SI engines
with exhaust gas recirculation (EGR). EGR technology is
importing a portion of exhaust gas to the combustion cham-
ber. Through EGR, the amount of NOx is considerably
reduced and the exhaust emission temperature is decreased
which protects the TWCC from thermal damages. At first,
EGR control strategies were based on static relationships
depending on stationary engine mapping which led to no
satisfactorily AFR control (Azzoni et al. 1997; Fons et al.
1999). However, by developments in MVEM of SI engines
with EGR as dynamic engine models a considerable change
in the quality of AFR control in EGR engines has been
achieved (Azzoni et al. 1997). The first models of MVEM
including EGR were isothermal models. The extension of
isothermal models led to dynamic adiabatic models which
show sufficient accuracy for control purpose (Azzoni et al.
1997).

Many classical and modern control strategies have been
studied and applied to control AFR in ICEs (Carnevale et al.
1995; Hendricks and Luther 2001; Kaidantzis et al. 1993;
Kiencke 1988;Kiencke andNielsen 2005; Lauber et al. 2007;
Li and Yurkovich 1999; Meyer et al. 2013; Morelos and
Anzurez Marin 2012; Shamdani et al. 2007; Sardarmehni
et al. 2013a, b; Wang and Yu 2005, 2008; Wang et al. 2006;
Yildiz et al. 2008; Zhai and Yu 2009; Zhai et al. 2010). In
accordance with the purpose of the present study, a brief
literature survey on model predictive control (MPC) for reg-
ulating AFR is going to be presented. The main idea in
MPC of AFR is dedicated to using a simple mathematical
model to identify (predict) the engine dynamics and using
this model in the prediction horizon of the MPC in order
to generate a sequence of controls which minimizes a per-
formance index throughout a short and finite horizon. As a
result, a time-dependent control sequence is generated and
at each time step only the first component of this sequence
is applied as the control. The rest of the components of the
control sequence are used as initial values for the calculation
of control in the next time step. Artificial neural networks and
fuzzy systems are two research interests in modern MPCs.
Due to the ability of neural networks in uniform approx-
imation of continuous functions in a compact set, neural
networks have been widely used in identification stage of
MPC of AFR in ICEs. In this regard, applications of offline
and online multilayer perceptron (Wang et al. 2006; Wang
and Yu 2005; Zhai and Yu 2009), radial-based function neu-
ral network (Sardarmehni et al. 2013a; Wang and Yu 2008),
and dynamic recurrent neural networks (Zhai et al. 2010),
have been reported. Meanwhile, the potential of fuzzy sys-
tems in handling the unknown dynamics and uncertainties
in modeling and control of dynamical systems has led to
their widespread applications, especially in MPC of λ in
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ICEs (Ghaffari et al. 2008; Kopačka et al. 2011; Wong et al.
2013).

A fuzzy relational model (FRM) has a structure in which
the fuzzy inputs and the fuzzy output are in vector form. A
(multi-dimensional) fuzzy relational matrix (FRX) is com-
posed with the fuzzy input vectors to calculate the fuzzy
output vector. This constitutes a fuzzy relational equation
in matrix form. The fuzzy input vectors are constructed
through the vectorizing fuzzifiers, and the final (crisp) output
is extracted from the fuzzy output vector through a discrete
defuzzifier. It is interesting that the elements of the FRX in
an FRM can be interpreted as the truth values of the fuzzy if–
then rules. Indeed, all possible rules are present in the fuzzy
rule-base of an FRM. In this way, every FRM can be con-
sidered as a linguistic fuzzy model with a fuzzy relational
equation in its core. The fuzzy relational modeling structure
can be used for modeling nonlinear functions with adequate
accuracy.

In this paper, a modified fuzzy relational mode (MFRM)
proposed in Aghili-Ashtiani and Menhaj (2014) is used. The
MFRM is based on the fuzzy relational inner composition
(FRIC) introduced in Aghili-Ashtiani and Menhaj (2012).
The MFRM is itself the base for g-normal fuzzy relational
modeling which is proposed in Aghili-Ashtiani and Menhaj
(2015). TheMFRM supports multiple inputs in a transparent
manner which means that the knowledge stored in the FRX
can be directly understood and used by an expert, and vice
versa, the knowledge of an expert can be directly translated
and inserted in the FRX. For example, an expert’s experience
can be used to determine the FRX as an starting point and
then the FRXcan be fine-tuned through an iterative algorithm
which uses the provided data. In this study, the structure of
the MFRM is adapted for modeling the dynamics of MVEM
to predict the amount of AFR in the prediction horizon of
MPC. The application of MFRM in MPC was first intro-
duced in Amiraskari andMenhaj (2013). However, improper
design of the fuzzy system led to application of model-free
optimization methods with heuristic solution for the MPC
system.

Training theMFRM of the engine is preformed via offline
data gathered from the MVEM model subjected to bounded
random inputs. These random inputs are selected such that
they can generate both transient and steady-state data which
engine might encounter. The training is initiated with gradi-
ent descent back propagation (GDBP) with a fixed learning
rate. The main drawback of GDBP is possibility of getting
stuck in local minima. This issue occurred in the training pro-
cess ofMFRM. Hence, an evolutionary optimization method
called asexual reproduction optimization (ARO) (Mansouri
et al. 2011) is used to precede the training process with the
final output of GDBP as the initial guess for starting the train-
ing process. The combination of these two algorithms results
in a faster convergence of the training process compared with

using solely ARO from the beginning of the training. Once
trained, the MFRM is used to predict the amount of lambda
in the prediction horizon and control signals are derived
through online minimization of a selected cost function. For
minimization of the cost function, gradient descent (GD)
algorithm is used. According to simulation results, the pro-
posed fuzzy MPC system has a good performance in terms
of regulating lambda. Besides, the proposed fuzzy MPC sys-
tem has a robust performance in the presence of moderate
disturbances.

The rest of this paper is organized as follows. Section 2
and 3 describe the MVEM and the MFRM of the engine. In
Sect. 4, the training process of the MFRM is discussed and
the MPC structure is discussed in Sect. 5. Simulation results
anddiscussions are presented inSect. 6, andSect. 7 concludes
the paper.

2 MVEM of SI engine including EGR

The schematic of anMVEMwithEGR is shown in Fig. 1, and
the notations used for presenting the MVEM are depicted in
Table 1. As one can see from Fig. 1, an MVEM with EGR is
composed of 5 sub-systems which are exhaust gas recircula-
tion, intake manifold air mass flow, crank shaft and loading,
fuel vapor and fuel film, and lambda sensormodel. In general,
the inputs of the engine are injected fuel mass flow rate, ṁ f i ,
throttle plate angle, α, and ignition advance. In this study,
it is assumed that ignition advance is a constant and throttle
plate angle is regarded as a noise signal. Hence, injected fuel
mass flow rate is the only control signal. The state variables
are selected from the output of the three basic sub-systems
of the MVEM which are intake manifold air mass flow,
crankshaft/loading and fuel vapor/film sub-system. There-
fore, the state variables are fuel mass flow deposited in the
intake manifold, ṁff , manifold pressure, Pi , and crankshaft
speed, n (Hendricks and Sorenson 1990; Hendricks et al.
1996). Since the purpose of the closed-loop system is to con-
trol AFR, the measured AFR by sensor, λsensor, is considered
as the fourth state of the MVEM (Sardarmehni et al. 2013b).
At last, the output of the system is selected as the measured
AFR by sensor, λsensor.

The first two sub-systems in Fig. 1 address the dynamics
of the intake manifold air mass flow and EGR. Considering
the intakemanifold as the control volume, the first state equa-
tion is obtained from applying conservation of mass (Azzoni
et al. 1997; Fons et al. 1999; Hendricks and Sorenson 1990;
Hendricks et al. 1996).

d

dt
mi = ṁat + ṁEGR − ṁap (1)
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Fig. 1 Schematic of MVEM with EGR

In Eq. (1),mi is air mass in intakemanifold (kg) and ṁat is air
mass flow rate passing the throttle plate (kg/s). ṁEGR is EGR
mass flow rate (kg/s) and ṁap is air mass flow rate entering
the combustion chamber (kg/s). Using energy conservation
in adiabatic processes, one has

ṁatha + ṁEGRhEGR − ṁaphi = d

dt
(mi)

= ṁicvTi + micvṪi (2)

In Eq. (2), ha , hEGR, hi are enthalpy of ambient air (kj/kg),
enthalpy of EGR air (kj/kg), and enthalpy of manifold air
(kj/kg), respectively. cv is constant volume specific heat (kj
/kg ◦K ) and Ti is intakemanifold temperature (◦K). Enthalpy
can be expressed as

hx = Tx
RK

K − 1
(3)

where R shows the gas global constant (kj/kg◦K) and K is
ratio of the specific heats. The sub-script x in Eq. (3) can be

either of ambient air, EGR air or air in the manifold. There-
fore, Eq. (2) can bewritten as a differential equation by taking
time derivatives of Eq. (3) and substituting in Eq. (2) as fol-
lows1.

Ṫi = ṁatTa RK

(K − 1)micv
+ ṁEGRTEGRRK

(K − 1)micv

− ṁapTiRK

(K − 1)micv
− ṁiTi

mi

(4)

In Eq. (4), Ti is intakemanifold temperature (◦K ), Ta is ambi-
ent air temperature (◦K ) and TEGR is EGR temperature (◦K ).
Thermodynamically K and cv can be expressed by

K = cp
cv

(5)

cv = R

K − 1
(6)

1 Note that R and K are constants.

123



Fuzzy model predictive control of normalized air-to-fuel ratio in internal combustion engines 6173

Table 1 MVEM Notations

mi Air mass in intake manifold (kg)

ṁat Air mass flow passing the throttle plate (kg/s)

ṁEGR EGR mass flow (kg/s)

ṁap Air mass flow entering the combustion chamber (kg/s)

ha Enthalpy of ambient air (kj/kg)

hEGR Enthalpy of EGR air (kj/kg)

hi Enthalpy of manifold air (kj/kg)

cv Constant volume specific heat (kj/kg◦K)

Ti Intake manifold temperature (K)

R Gas global constant (kj/kg◦K)

K Ratio of the specific heats = 1.4 for air

Ta Ambient temperature (◦K)

TEGR EGR temperature (◦K)

cp Constant pressure specific heat (kj/kg◦K)

Pi Manifold air pressure (bar)

Vi Intake manifold and port passage volume m3

Dc Mark/space ratio (MSR) of the PWM drive signal

Dcm Common PWM MSR center value for all pressure ratios

τdc Effective relaxation MSR of the PWM control signal

τP Effective relaxation pressure for the valve

Pe Exhaust manifold pressure (bar)

Se Slope of pressure difference curve, with normalized air
charge

ye Intercept of pressure difference curve, with normalized
air charge

Ve Engine displacement volume (l)

n Crank shaft speed (RPM/1000) or (kRPM)

ev Volumetric efficiency based on manifold conditions

α Throttle plate angle (◦)
Pa Ambient pressure (bar)

Ta Ambient temperature (◦K)

I Total engines moment of inertia
(kgm2 ∗ (π/30)2 ∗ 1000)

Pf Engine mechanical friction loss power (kW)

Pp Engine pumping loss power (kW)

Pb Engine load power (kW)

Hu Fuel heating value (kj/kg)

ηi Indicated efficiency

τd Time delay for the injected fuel to make power (s)

ṁfi Injected fuel mass flow rate (kg/s)

Xf Ratio of injected fuel deposits in the intake manifold

ṁf Fuel flow into combustion chamber (kg/s)

ṁfi Injected fuel mass flow (kg/s)

ṁff Fuel film mass flow (kg/s)

ṁfv Fuel vapor mass flow (kg/s)

τf Fuel film evaporation time constant (s)

λsensor Measured lambda by lambda sensor

τe Time delay in measurements of lambda sensor (ms) or
10−3 (s)

Table 1 continued

λm Lambda which is directly calculated from the MVEM

λd Desired value of lambda equals to 1

AFRst Stoichiometric value of air-to-fuel ratio equals to 14.86

� Total delay in lambda sensor measurements ms or 10−3 s

θEVO Angle of crankshaft at which exhaust valve opens (◦)
ncyl Number of engine’s cylinders

td Time constant delay for the exhaust gas to reach the
lambda sensor (ms) or 10−3 (s)

In Eq. (5), cp is constant pressure specific heat (kj/kg◦K).
Substituting Eqs. (5) and (6) in Eq. (4) and assuming air as
an ideal gas yields to

Ṫi = ṁat Ta RKTi
PiVi

+ ṁEGRTEGRRKTi
PiVi

− ṁapT 2
i RK

PiVi

− ṁiTi2

PiVi

(7)

where Pi is manifold air pressure (bar ) and Vi is intake
manifold and port passage volume (m3). Applying the mass
conservation from Eq. (1) and assuming air as an ideal gas,
one has

Ṗi = R

Vi

(
ṁiTi + miṪi

)

= KR

Vi

(−ṁapTi + ṁat Ta + ṁEGRTEGR
) (8)

The dynamics of intakemanifold in SI engine including EGR
can be expressed by mean value approach as Eq. (7) and
Eq. (8). The key assumption here is that perfect mixing of
fresh air and EGR flow is happening in the intake manifold.
In order to use adiabaticMVEM, it is necessary to specify the
EGR mass flow and temperature. A device for EGR control
is the Delphi Linear Exhaust Recirculation Valve (LERV).
Study of EGR valve flow characteristics revealed that ṁEGR

can be approximated as Fons et al. (1999), Azzoni et al.
(1997)

ṁEGR (Dc,�P) = 1

2
a (�P)

[
tanh

[
Dc − Dcm

τdc

]
+ 1

]
(9)

In Eq. (9), Dc is mark/space ratio (MSR) of the PWM2 drive
signal and Dcm is common PWM MSR center value for all
pressure ratios. τdc is the effective relaxation MSR of the
PWM control signal. Meanwhile,

a (�P) = ṁEGR (max)

[
1 − exp

(−�P

τ�P

)]
(10)

2 Pulse-width modulation.

123



6174 T. Sardarmehni et al.

where τ�P is the effective relaxation pressure for the valve.
In (9) and (10),�P is the pressure drop across the EGR valve
and it is a function of crank shaft speed and normalized air
charge per cycle and can be expressed as

�P = Pe − Pi = −Se (n)map′ + ye (n) (11)

In Eq. (11), Pe is exhaust manifold pressure (bar) and Se is
slope of pressure difference curvewith normalized air charge.
ye is intercept of pressure difference curve, with normalized
air charge. n is crank shaft speed (kRPM). Se and ye are
constants (Hendricks et al. 1996) and

map′ = 120RTi
Vdn

ṁap (12)

where Vd is engine displacement volume (l). In Eq. (12), ṁap

is a function of crank shaft speed, n, and manifold pressure,
Pi, and can be defined as Hendricks and Sorenson (1990),
Hendricks et al. (1996)

ṁap (n, Pi) = Vd
120

(evPi) n (13)

In Eq. (13), ev is volumetric efficiency. ṁat is a function of the
throttle plate angle, α, and the manifold pressure, Pi, which
can be defined as Hendricks and Sorenson (1990), Hendricks
et al. (1996)

ṁat (α, Pi) = mat1
Pa√
Ta

β1 (α) β2 (Pr) + mat0 (14)

The intermediate terms of β1 and β2 are considered as

β1 (α) = 1 − α1 cos (α) + α2cos
2 (α) (15)

Pr = Pi
Pa

(16)

β2 (Pr) =
{

1
Pn

√
Pr P1 − Pr P2 if Pr ≥ Pc

1 if Pr < Pc
(17)

In Eqs. (14)–(17), mat1, mat0, α1, α2, Pn , P1, P2 and Pc are
constants (Hendricks and Sorenson 1990; Hendricks et al.
1996).

The second state space equation is obtained through the
energy conservation for the crankshaft rotation (Hendricks
and Sorenson 1990; Hendricks et al. 1996).

ṅ =−1

I n

(
Pf (Pi, n) + Pp (Pi, n) + Pb (n)

)

+ 1

I n
Huηi (n, Pi, λ) ṁf (t − τd)

(18)

In Eq. (18), I is total engines moment of inertia (kgm2 ∗
(π/30)2∗1000). Pf is enginemechanical friction loss power

(kW), Pp is engine pumping loss power (kW), and Pb is
engine load power (kW). Hu is fuel heating value (kj/kg)
and ηi is indicated efficiency. At last, τd is time delay for the
injected fuel to make power (s).

The third state equation is achieved from the dynamics of
the fuel film. Considering Xf as the ratio of fuel deposits as
liquid in the intake manifold after reaching the cold air in
the manifold, and 1 − Xf as the ratio of the fuel remains as
fuel vapor, the condensed fuel film gradually vaporizes to be
mixed with the fuel vapor and makes entering the combus-
tion chamber as Hendricks and Sorenson (1990), Hendricks
et al. (1996)

m̈ff = 1

τf

(
ṁff + X f ṁfi

)
(19)

In Eq. (19), ṁff is fuel film mass flow rate (kg/s) and ṁ f i

denotes injected fuel mass flow rate (kg/s). Meanwhile, one
has

ṁfv = (1 − Xf) ṁfi (20)

ṁf = ṁfv + ṁff (21)

where ṁfv is fuel vapor mass flow rate (kg/s) and τf is fuel
film evaporation time constant (s).

The fourth state equation determines the dynamics of
a first-order lambda sensor which is summarized as Sar-
darmehni et al. (2013a)

λ̇sensor = 1

τe
(−λsensor + λm(t − δ)) (22)

where λsensor is the measured lambda by lambda sensor and
λm is the computed lambda from MVEM model. τe defines
the time delay in the measurements made by the sensor.
In (22), δ is the total delay of the lambda sensor.

δ =
(

θEVO

720

) (
120

ncyln

)
+ td (23)

At last, the computed lambda from theMVEM,λm , is defined
as

λm = ṁap

AFRstṁ f
(24)

3 Structure of theMFRM

Every MFRM as introduced in Aghili-Ashtiani and Menhaj
(2014) and depicted in Fig. 2 is comprised of three blocks:
(1) fuzzy discretization (fuzzification) (called φ-block); (2)
fuzzy relational inner composition by a fuzzy relational
matrix (called R-block); (3) output extraction (defuzzifica-
tion) (called ψ-block).

123



Fuzzy model predictive control of normalized air-to-fuel ratio in internal combustion engines 6175

Fig. 2 Structure of a typical MFRM (Aghili-Ashtiani and Menhaj 2014)

Regarding Fig. 2, consider the input vector of the MFRM
as x ∈ R

p. Each respective element of x is a scalar which is
referred to as xi, i = 1, . . . , p. The working mechanism of
MFRM is as follows. As it is shown in Fig. 2, each xi is first
fuzzified and makes a corresponding fuzzy vector ai ∈ R

qi ,
where qi is the number of the membership functions across
which xi is evaluated. The p fuzzy vectors are composed
with (p + 1)-dimensional FRX R through a fuzzy relational
inner composition (FRIC) to make the fuzzy output vector b
according to Aghili-Ashtiani and Menhaj (2012) as

b = R ◦ a1 ◦ a2 ◦ . . . ◦ ap, (25)

in which R is a qp+1 × qp × · · · × q1 FRX. The sign “◦”
stands for the FRIC for which we have used the algebraic
product as the t-norm and the algebraic sum as the t-conorm.
The output of the MFRM is obtained from b via output
extraction methods; one of the most important of them is
the weighted average defuzzification represented as

y =
∑qp+1

i=1 c (i) b (i)
∑qp+1

i=1 b (i)
, (26)

where c is the vector of the centers for the output variable
and acts as a weight matrix and c(i) denotes its i-th element.
This completes the overall view of the structure of anMFRM.
The heart of the MFRM is the FRIC which will be discussed
more in the training section.

Remark 1 Choosing the membership functions in the φ-
block must be handled with caution. The MFRM is going
to act as the engine model for model predictive control of λ,
where nonlinear minimization of a cost function is required
for generating the control actions. In this paper, a derivative-
based optimization algorithm is used for this minimization
and so it is necessary for the overall relation of the MFRM to
be differentiable. To this end, we have used Gaussian mem-
bership functions in the φ-block.

If we determine the membership functions in the φ-block,
the type of t-norm and t-conorm in the R-block, and the type

of output extraction in the ψ-block, then the identification of
an MFRM is performed by tuning the elements of its FRX.
In other words, training the MFRM is equivalent to tuning
its FRX. A derivative-based tuning algorithm has been pre-
sented in Aghili-Ashtiani and Menhaj (2014) which can be
performed iteratively and so it can be used online if the sam-
pling time is not too small.

Remark 2 When we want to employ the structure of MFRM
in the predictive control scheme,we should notice the compu-
tational cost of the overall scheme, i.e., the tuning procedure
for model identification and the nonlinear minimization for
control action. As a result, a low computational burden is
desired in the identification phase to speed up the overall
performance of the control system. In this regard, the idea
of training MFRM via offline data in batch mode seems to
alleviate the problem of heavy computations. The FRX that
is trained by offline training method is a constant matrix and
does not need further modifications during the simulations.

4 Training

In order to ensure the offline training process, one needs to
select a rich set of training patterns which covers the domain
of interest in which the engine is functioning. In the train-
ing process, one can consider two regions of interest for
the engine as transient and steady state. To achieve the suit-
able training patterns, with the same procedure reported in
Zhai and Yu (2009), random bounded square signals with
random pulse widths are imposed to the engine model for
the throttle plate angle and injected fuel mass flow. While
longer pulse widths represent the steady-state working con-
ditions of the engine, the shorter pulse widths are meant to
simulate the transient performance of the engine. For gen-
erating the training patterns, throttle plate angle is confined
to α ∈ [20, 40] (deg) and injected fuel mass flow rate is
bounded to ṁ f i ∈ [0.001, 0.008] (kg/s), respectively. The
resulted lambdas of the MVEM are stored. Since the throttle
plate angle is regarded as an input noise, it is not considered
in the input vector of the MFRM. Considering λsensor(t) as
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Fig. 3 Illustration of the membership functions

the output of the MVEM at the current time instant, t , the
input vector of MFRM is composed of the fuel mass flow,
and λ as

x = [
ṁ f i (t) , ṁ f i (t − 1) , λ (t − 1) , λ (t − 2)

]T (27)

InEq. (27),λsensor(.) is shownasλ(.) for notational brevity. In
order to start the training process, 1000 training patterns with
data collection sample time of 0.01 (sec) were selected from
widespread simulation data subjected to bounded random
inputs. All training patterns are normalized into the interval
[0, 1]. For normalization, one can use (Zhai and Yu 2009)

xi,normal = xi − xi,min

xi,max − xi,min
(28)

where xi,min and xi,max show the minimum and maximum of
a signal xi used as training patterns, respectively.

In the MFRM, three Gaussian functions were selected as
the membership functions. These membership functions are
illustrated in Fig. 3.

Considering the input vector of MFRM as x ∈ R
4, the

fuzzified vectors as xi ∈ R
3 with i = 1, 2, 3, 4, mod-

ified fuzzy relational matrix (MFRX) becomes as R ∈
R
3×3×3×3×3. Each element in the R can be addressed by

R (i, j, k, l,m, n) where i, j, k, l,m, n = 1, . . . , q

(29)

In Eq. (29), q = 3 is the number of membership functions.
The computations begin with fuzzification of the input vec-
tor in which each element of the input vector changes to its
respective fuzzy vector. Considering xi as the i th element of
the input vector x, one has

xi = [s1 (xi ) , s2 (xi ) , s3 (xi )] , i = 1, . . . , p (30)

In Eq. (30), s1(.), s2(.) and s3(.) are the mathematical models
for the membership functions and p = 4 is the number of

elements in the input vector. As mentioned before, xi is the
i th element of the input vector x and xi the fuzzified vector
associated with scalar xi . For notational simplicity, we refer
to j th element of xi as xi( j). The FRC can be preformed
through some algebraic calculations as

M =
q=3∑

m=1

R (:, :, :, :,m) × x1 (m) (31)

In Eq. (31), M has one dimension less than R which means
M ∈ R

3×3×3×3. Accordingly one can get M1 as

M1 =
q=3∑

l=1

M (:, :, :, l) × x2 (l) (32)

which leads toM1 ∈ R
3×3×3. Continuing of FRC leads to

M2 =
q=3∑

k=1

M1 (:, :, k) × x3 (k) (33)

which leads to M2 ∈ R
3×3. With the same procedure, one

has

b =
q=3∑

j=1

M2 (:, j) × x4 ( j) (34)

Finally, the output of the MFRM can be defined as

y = C × b
∑q=3

i=1 b (i)
(35)

For offline training of the MFRM, GDBP algorithm is
firstly used. Although no good results could be obtained by
GDBP, this algorithm is described here for the sake of com-
pleteness and re-appearance of some of formulations in the
control unit (optimization). Consider the training error as

e(t) = y(t) − yd(t) (36)

In Eq. (36), y(t) is the output of the MFRM and yd(t) is
the output of MVEM which is the desired output for MFRM
training. The accumulated error can be defined as

E (z) = 1

2

1000∑

t=1

e2(t) (37)

where z is the iteration number and 1000 defines the total
number of training patterns. Training begins with updating
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matrixC andR. AssumingC = [Ci ]i=1,...,q , based onGDBP
algorithm one has

Ci (z + 1) = Ci (z) − αGDBP
∂E (z)

∂Ci (z)
(38)

In Eq. (38),αGDBP is a small positive number called learning
rate. Using chain rule, Eq. (38) can be written as

∂E

∂Ci
= ∂E

∂e

∂e

∂ y

∂ y

∂Ci
(39)

The first and second terms on the right-hand side of (39) can
be easily defined. For the third term, one has

∂ y

∂Ci
= bi

∑q=3
i=1 bi

(40)

According to GDBP, each element of FRX,R, can be update
as

Ri jklm (z + 1) = Ri jklm (z) − αGDBP
∂E (z)

∂Ri jklm (z)
(41)

where

∂E

∂Ri jklm
= ∂E

∂e

∂e

∂ y

∂ y

∂bi

∂bi
∂M2,i j

∂M2,i j

∂M1,i jk

∂M1,i jk

∂Mi jkl

∂Mi jkl

∂Ri jklm
(42)

For defining the partial derivatives in Eq. (42), one has

∂ y

∂bi
=

Ci

(∑q=3
n bn

)
− C × b

(∑q=3
n bn

)2 (43)

∂bi
∂M2,i j

= x4 ( j) (44)

∂M2,i j

∂M1,i jk
= x3 (k) (45)

∂M1,i jk

∂Mi jkl
= x2 (l) (46)

∂Mi jkl

∂Ri jklm
= x1 (m) (47)

In summary, one updatesC andR fromEqs. (38) and (41),
respectively. This iterative process continues until no mean-
ingful differences can be found in updated C and R. The
training algorithm is summarized in Algorithm 1.

4.1 MFRM validation data

The offline training process with GDBP was preformed with
two constant learning rate until no meaningful changes were
detected in the accumulated error. The learning rate was
selected as αGDBP = 0.001 when the accumulate error

Algorithm 1Offline training of MFRMwith GDBP in batch
mode.
step 1: Select a rich set of training patterns x [l] ∈ Ω , where l ∈

{1, 2, . . . , η f inal } and η f inal is the number of training pat-
terns. Normalize the training set with Eq. (28). Initialize
matrices R and C with random values of proper dimensions.
Also, select q number of proper membership functions and
two positive values for αGDBP and β as learning rate and
training threshold, respectively.

step 2: Give all the training patterns to the MFRM one by one and
calculate e(.) from Eq. (36) for each of them.

step 3: Calculate E(.) from Eq. (37) and step 2.
step 4: Update C and R from Eqs. (38) and (41), respectively.
step 5: If E(.) calculated in step 3 is less than β, go back to step

2. Otherwise set the final values for C and R as what were
obtained in step 4 and stop training.
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Fig. 4 Accumulated error in offline training with GDBP in batch mode

was greater than 0.5 and αGDBP = 0.0001 for accumu-
late error less than 0.5. After 20000 iterations of the GDBP,
the accumulated error reached E = 0.37 and did not change
considerably. The history of the accumulated error versus the
GDBP iteration index is shown in Fig. 4.

Afterward, theMFRMofMVEMwas testedwith new ran-
dom bounded signals for throttle plate angle and injected fuel
mass flow rate. The validation results are shown in Fig. 5. As
it is shown in Fig. 5, there is a significant difference between
the MFRMs response and that of the MVEM which shows
poor training by the GDBP. To improve the offline train-
ing, asexual reproduction optimization (ARO), reported in
Farasat et al. (2010), Mansouri et al. (2011) is used.

ARO algorithm is inspired from the budding method of
asexual reproduction mechanism. ARO is an individual-
based algorithm. Individuals are defined by a set of chromo-
somes as binary stringsmade by some binary elements called
genes. Each chromosome has a length of L = l1 + l2 + 1
genes where the first gene is simply showing the sign of that
chromosome. The next L1 number of genes represents the
integer part of the individual, and the last L2 genes represent
the decimal part of the individual (Mansouri et al. 2011).
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Fig. 5 Validation data of the MFRM trained by GDBP

The basic idea in ARO is competing for survival. To
start the algorithm, an individual is randomly initiated in an
arbitrary search domain. We call this individual as parent.
Afterward, the parent reproduces an offspring called bud by
a particular operator called reproduction mechanism which
is going to be discussed in the sequel. The parent and its off-
spring compete to survive according to a fitness function. If
the bud wins the competition, its parent will be discarded.
Therefore, the parent is replaced with its bud which forms
the new parent. If the parent wins, the bud will be discarded
and a new bud will be reproduced. This exhaustive search
continues until the stopping criteria are satisfied (Mansouri
et al. 2011).

The reproductionmechanism in ARO has two steps which
can be summarized as follows. First, a copy of parent named
larva is produced. Then, a sub-string with g bits where
g ∈ [1, L I ] (LI is the length of individual) in larva is ran-
domly chosen. Afterward bits of the sub-string mutate such
that in any selected gene, 1 is replaced by 0 and vice versa
(Mansouri et al. 2011). The next step in the reproduction
mechanism is forming a bud from a larva. At this point, one
notes that larva and parent are different only in the selected
and mutated g genes which were chosen randomly in gener-
ating larva. For producing a bud, for each gene in themutated
g-length of larva, one first generates a random number uni-
formly distributed in [0, 1]. If this number is less than 0.5, the
gene will be selected from the parent. Otherwise, the gene
will be selected from larva. This procedure continues until
bud is completely formed. The reproduction mechanism is
illustrated in Fig. 6.

When bud is formed, its fitness is compared to that of its
respective parent based on a selected fitness function. Based
on this comparison, the most merited individual, i.e., bud or
parent, will be kept as a new parent and the other one would
be discarded as explained earlier (Mansouri et al. 2011).

The offline training of MFRMwith ARO in batch mode is
summarized in Algorithm 2. For training MFRMwith ARO,
the final values of C and R from offline training with GDBP
are chosen as the initial values of individuals. An individual

Algorithm 2 Offline training of MFRM with ARO in batch
mode.
step 1 Select a rich set of training patterns x [l] ∈ Ω where l ∈

{1, 2, . . . , η f inal } and η f inal is the number of training pat-
terns. Normalize the training set with Eq. (28). Select two
positive integers as l1 and l2 representing the decimal and inte-
ger part of each unknowns. Initialize matrices R and C with
random values of proper dimensions. Convert each element
of matrices R and C to a binary string called chromosomes
where the first genes are showing the sign of their respec-
tive chromosomes. Gather all chromosomes in an individual.
Label this individual as parent. Set the fitness function ofARO
as the accumulated error as depicted in Eq. (37). At last, select
q number of proper membership functions and a positive con-
stant β as training threshold.

step 2 Give all the training patterns to the MFRM one by one and
calculate e(.) from Eq. (36) for each of them.

step 3 Calculate E(.) from Eq. (37) and step 2.
step 4: From the bud as

step 4-1 Choose a random g-length of the parent. For each element
in the g-length, change genes with 0 value to 1 and vice
versa. Label the result as larva.

step 4-2 For the genes in the g-length, produce a random number
uniformly distributed in [0, 1]. If the number is less than
0.5, choose the gene from the parent. Otherwise, choose
the respective gene from the larva and form the bud.

step 5 Compare the performance of the existing parent with that of
the bud produced in step 4 based on Eq. (37). If the bud results
in a better performance, discard the parent and label bud as
the new parent. Otherwise, discard the bud.

step 6 If the amount of the E(.) in two successive iterations of using
ARO is greater than β, go back to step 2. Otherwise, in the
parent, convert the binary values for each element ofR andC
to the decimal format and stop training.

containing
(
3 + 35

) × (l1 + l2 + 1) genes was selected. It is
worthy of attention that 3 + 35 is the number of unknowns
as the number of the elements ofC andR. The history of the
accumulated error versus the ARO iteration index is shown
in Fig. 7. When training was concluded, the MFRM that
was trained by ARO was validated by the same inputs used
for validation of the trained MFRM by GDBP. As shown in
Fig 8, the resulted MFRM can identify the dynamics of the
engine with a very good precision. The mean absolute error
in validation is only 0.0087 which proves the effectiveness
of the training process.

5 MPC

A schematic of MPC system is shown in Fig. 9. The purpose
of MPC is generating a time-dependent sequence of control
signals which minimizes a performance index throughout
Nu future time steps. Nu defines the length of the prediction
horizon in MPC and in Fig. 9 it equals Nu = 5. MPC uses
the trained MFRM of the engine to predict and construct the
input vector of the MFRM in the prediction horizon, i.e., Pi
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Fig. 6 Reproduction
mechanism generating bud
individual (Mansouri et al.
2011)
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Fig. 7 Accumulated error in offline training with ARO in batch mode

in Fig. 9 where i = 1, . . . , 5. The working mechanism of
MPC can be described as follows. Consider ṁ f i (t0) as the
injected fuel mass flow rate at time t0 which is known and
λ(t0−�t) as the amount of λ(.)which was measured at time
t0 − �t . During the time interval t0 through t0 + �t , all the
components of the input vector of MFRM as P0 in Fig. 9
are known. Now, imagine one needs to form P1. As shown
in Fig. 9, P1 has four elements which two of them, as the
second and forth elements, can be found directly through P0
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Fig. 8 Validation data of the MFRM trained by ARO

which was fully known. The problem is finding the first and
third elements of P1. For this purpose, MPC uses the MFRM
for predicting the amount of λ(t0) as the third element of P1

and U1 is calculated based on an optimization which will be
discussed in the sequel. Hence, with a similar procedure, the
goal of MPC is constructing all Pis as

Pi =[ṁ f i (t0 + i�t) , ṁ f i (t0 + (i − 1) �t) ,

λ (t0 + i�t) , λ (t0 + (i − 1)�t)]T , i = 0, . . . , Nu
(48)

Fig. 9 Schematics of MPC with MFRM
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For this purpose, MPC predicts the amount of λ(t0 + (i +
1)�t) by using MFRM of the engine. The input vector of
MFRMis simplyPi as inEq. (48), and the output isλ(t0+(i+
1)�t). Therefore, in the interval, t0+(i�t) to t0+(i+1)�t ,
MPC requires the predicted values for both ṁ f i (.) and λ(.) at
time samples t0+i�t (i = 0, . . . , Nu). Asmentioned before,
the values of λ(t0+i�t) for eachPi are predicted through the
trained MFRM of the engine using Pi−1 for i = 1, ..., Nu .
Moreover, the values of ṁ f i (t0 + i�t) are obtained through
minimization of the following cost function.

J =1

2

k+Nu∑

i=k

(
λ̂ (i) − λd (i)

)

︸ ︷︷ ︸
e(i)

2

+ ξ

k+Nu∑

i=k

(
ṁ f i (i) − ṁ f i (i − 1)

)2

(49)

where λ̂ is the predicted λ at time t0 + (i + 1)�t . λd is the
desired value of λ which is the stoichiometric value and it
equals 1. ξ shows the control penalizing weight which is a
positive number less than one and prevents excessive control
expenditure in online control. As one can see from Fig. 9, at
each time step MPC generates a sequence of control actions
for Nu future time steps. However, only the first element of
this sequence is sent to the system at time instant t , i.e., U1.
The rest of Ui s are stored and used as an initial value for the
computations in the next time step.

5.1 Optimization

According to gradient descent algorithm, the vector of con-
trol signals in the control horizon, U = [U1,U2, ..,UNu ] is
updated as

U(z + 1) = U(z) − η
∂ J (z)

∂U(z)
(50)

In Eq. (50), η is the learning rate and z shows the iteration
number. J (.) is defined in Eq. (49). Assuming Nu = 1, U
becomes a scalarU1 and the partial derivative in the last term
of Eq. (50) is computed as follows.

∂ J

∂U1
= ∂ J

∂e

∂e

∂λ̂

∂λ̂

∂U1
+ 2ζ (u (i) − u (i − 1)) (51)

In Eq. (51), e(.) is defined in Eq. (49) as e(i) = λ̂ (i) − λd .

For calculating ∂λ̂
∂u1

, one can use chain rule as

∂λ̂

∂U1
=

(∑q=3
i=1 Ci

∂bi
∂U1

) (∑q=3
i=1 bi

)
−

(∑q=3
i=1

∂bi
∂U1

) (∑q=3
i=1 Cibi

)

(∑q=3
i=1 bi

)2

(52)

Through some algebraic manipulations, one can get ∂bi
∂U1

as

∂bi
∂U1

=
q=3∑

j=1

x4 ( j)
q=3∑

k=1

x3 (k)
q=3∑

l=1

x2 (l)
q=3∑

m=1

Ri jklmA (m)

(53)

In Eq. (53), xis are the vectors generated from fuzzification
unit and A is defined as

A =
[
∂x1 (1)

∂U1
,
∂x1 (2)

∂U1
,
∂x1 (3)

∂U1

]
(54)

Also, one has

∂x1 (i)

∂U1
= −2 (U1 − τ i )

2σ 2
i

exp

(

− (U1 − τ i )

2σ 2
i

)

(55)

In Eq. (55), τ and σ are the vectors that contains the mean
and the standard deviation of theGaussianmembership func-
tions, therefore

τ = [τ i ]i=1,...,q

σ = [σ i ]i=1,...,q (56)

6 Numerical simulation

Before starting the simulations, it is better to modify the
desired lambda, λd , to help the control system in the start
of the process. For this purpose, one can define the modified
desired lambda as

λd(t) = 1 − exp(−Ct) (57)

In Eq. (57), C is a constant. As C increases, the behavior of
the modified desired lambda resembles the behavior of the
step function with step size of 1 which jumps to 1 at t = 0.
To speed up the calculations for online control and also avoid
the accumulation of identification errors in long prediction
horizon, the prediction horizon is shortened to Nu = 1. Since
the overall control goal is to regulate lambda within ± 1% of
its stoichiometric value, the iterations of the gradient descent
algorithm in Eq. (50) are continued until a threshold value,
0.01 for absolute tracking error is fulfilled. Also, the learn-
ing rate of the gradient descent optimization is chosen to
be 0.001 in Eq. (50). At last, u1 in Eq. (50) should satisfy
its upper and lower bounds which are considered one and
zero, respectively. It is worthy of attention that MFRM is
working with the normalized data. Hence, the output of the
MPC unit is a normalized fuel mass flow rate which should
be de-normalized with the exact min–max values used for
normalization in training.
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Fig. 10 Throttle plate angle profile with 10% uncertainty (Zhai and Yu
2009)
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Fig. 11 Simulation results of the MPC with 10% input uncertainty

For a better comparison of the performance of the pro-
posed fuzzy MPC with that of the recent applications, the
same profile of throttle plate angle in Sardarmehni et al.
(2013a), Zhai and Yu (2009) subjected to± 10% uncertainty
is used in the simulations. Figures 10 and 11 show the pro-
file of the throttle plate angle with ± 10% uncertainty and
the simulation results of the proposed fuzzy MPC within
the lambda window, respectively. In Fig. 11, the mean abso-
lute tracking error for desired lambda tracking is 0.0418. By
neglecting the first 2 s of the simulation, the mean absolute
tracking error becomes 0.00207 which shows the good per-
formance of the MPC system.

To evaluate the robustness of the MPC system to larger
uncertainties, the uncertainty on the throttle plate angle is
increased to 25% as shown in Fig. 12. The performance
of the fuzzy MPC system with 25% uncertainty is shown
in Fig. 13. In spite of the large uncertainty imposed to the
system, the fuzzy MPC system demonstrates a good perfor-
mance. The mean absolute tracking error of this simulation
is 0.0447 which confirms the robustness of the controller in
rejecting moderate disturbances. By neglecting the first 2 s
of the simulation, the mean absolute tracking error becomes
0.00481.
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Fig. 12 Throttle plate angle profile with 25% uncertainty (Zhai and Yu
2009; Sardarmehni et al. 2013a)
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Fig. 13 Simulation results of the MPC with 25% input uncertainty

7 Conclusion

A fuzzy model predictive control strategy based on modified
relational fuzzy theory was developed for nonlinear control
of normalized air-to-fuel ratio in spark ignition internal com-
bustion engines. To produce the simulation data, mean value
engine model for a spark ignition internal combustion engine
equipped with exhaust gas recirculation was simulated. Ini-
tially, the fuzzy model was trained with offline engine data
subjected to random inputs of throttle plate angle and injected
fuel mass flow rate by gradient descent back propagation
algorithm. However, the gradient descent back propagation
algorithm did not demonstrate good results in validation of
the fuzzy model after training. Hence, a model-free opti-
mization algorithm based on asexual reproduction method
was used to train the fuzzy model of the engine. The resulted
fuzzy model was validated with a negligible error. In the
control unit, a model predictive control system was devel-
oped based on nonlinear minimization of the cost function
by online gradient descent algorithm. The robustness of the

123



6182 T. Sardarmehni et al.

model predictive control system was evaluated through sim-
ulations.
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