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Abstract
The ordered structures of natural, integer, rational and real numbers are studied here. It is known that the theories of these
numbers in the language of order are decidable and finitely axiomatizable. Also, their theories in the language of order and
addition are decidable and infinitely axiomatizable. For the language of order and multiplication, it is known that the theories
ofN andZ are not decidable (and so not axiomatizable by any computably enumerable set of sentences). By Tarski’s theorem,
themultiplicative ordered structure ofR is decidable also; here we prove this result directly and present an axiomatization. The
structure of Q in the language of order and multiplication seems to be missing in the literature; here we show the decidability
of its theory by the technique of quantifier elimination, and after presenting an infinite axiomatization for this structure, we
prove that it is not finitely axiomatizable.

Keywords Decidability · Undecidability · Completeness · Incompleteness · First-order theory · Quantifier elimination ·
Ordered structures

1 Introduction and preliminaries

Entscheidungsproblem, one of the fundamental problems of
(mathematical) logic, asks for a single-input Boolean-output
algorithm that takes a formula ϕ as input and outputs ‘yes’
if ϕ is logically valid and outputs ‘no’ otherwise. Now, we
know that this problem is not (computably) solvable. One
reason for this is the existence of an essentially undecidable
and finitely axiomatizable theory, see, for example, Visser
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(2017); for another proof see Boolos et al. (2007, Theorem
11.2). However, by Gödel’s completeness theorem, the set of
logically valid formulas is computably enumerable, i.e., there
exists an input-free algorithm that (after running) lists all the
valid formulas (and nothing else). For the structures, since
their theories are complete, the story is different: the the-
ory of a structure is either decidable or that structure is not
axiomatizable [by any computably enumerable set of sen-
tences; see, for example, Enderton (2001, Corollaries 25G
and 26I) or Monk (1976, Theorem 15.2)]. For example, the
additive theory of natural numbers 〈N;+〉 was shown to be
decidable by Presburger in 1929 (and by Skolem in 1930; see
Smoryński 1991). The multiplicative theory of the natural
numbers 〈N;×〉 was announced to be decidable by Skolem
in 1930. Then it was expected that the theory of addition and
multiplication of natural numbers would be decidable too,
confirming Hilbert’s program. But the world was shocked in
1931 by Gödel’s incompleteness theorem which implies that
the theory of 〈N;+,×〉 is undecidable (see Sect. 1.3.1). In
this paper we study the theories of the sets N, Z, Q and R in
the languages {<}, {<,+} and {<,×}; see the table below.

N Z Q R

{<} Theorem 3 Theorem 2 Theorem 1 Theorem 1
{<,+} Remark 4 Theorem 5 Theorem 4 Theorem 4
{<,×} Section 1.3.1 Section 1.3.2 Theorem 7 Theorem 6
{+,×} Section 1.3.1 Section 1.3.2 Section 2.2 Section 2.1
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Let us note that order is definable in the language {+,×} in
these sets: inN by x < y ⇐⇒ ∃z(z+z �= z∧x+z= y), and
in Z by Lagrange’s four-square theorem x < y is equivalent
with ∃t, u, v, w(x �= y∧x+t·t+u·u+v·v+w·w = y).The four-
square theorem holds in Q too: for any p/q ∈ Q

+ we have
pq>0 so pq=a2+b2+c2+d2 for some integers a, b, c, d;
therefore, p/q= pq/q2=(a/q)2+(b/q)2+(c/q)2+(d/q)2

holds. Thus, the same formula defines the order (x < y) in
Q as well. Finally, in R the relation x < y is equivalent with
the formula ∃z(z+z �= z ∧ x + z ·z = y).

The decidability of N, Z, Q, R in the languages {<} and
{<,+} is already known. It is also known that the theories of
N and Z in the language {<,×} are undecidable. The theory
of R in the language {<,×} is decidable too by Tarski’s the-
orem (which states the decidability of 〈R;<,+,×〉). Here,
we prove this directly by presenting an explicit axiomatiza-
tion. Finally, the structure 〈Q;<,×〉 is studied in this paper
(seemingly, for the first time). We show, by the method of
quantifier elimination, that the theory of this structure is
decidable. Here, the (super-)structure 〈Q;+,×〉 is not usable
since it is undecidable [proved by Robinson (1949); see also
Smoryński (1991, Theorem 8.30)]. On the other hand, its
(sub-)structure 〈Q;×〉 is decidable [proved by Mostowski
(1952); see also Salehi (2012a, 2018)]. So, the three struc-
tures 〈Q;+,×〉 and 〈Q;<,×〉 and 〈Q;×〉 are different from
each other; the order relation< is not definable in 〈Q;×〉 and
the addition operation+ is not definable in 〈Q;<,×〉 (by our
results; see Corollary 2). The additive structures of Z, Q and
R, and also the multiplicative structures of Q

+ and R
+ are

abelian groups, and the theory of all abelian groups is decid-
able [proved by Szmielew (1949, 1955)]. Also, the additive
and order structures of Q and R, and the multiplicative and
order structures of Q

+ and R
+ are (regularly dense) ordered

abelian groups and the theory of all regularly dense ordered
abelian groups is proved to be decidable in Robinson and
Zakon (1960). The additive and order structure of Z does
not belong to this category (as Z is not dense); this structure
is a Z -group (see Prestel 1986; Prestel and Delzell 2011).
This paper is a continuation of the conference paper (Salehi
2012b).

1.1 The ordered structure of numbers

Definition 1 (Ordered structure) An ordered structure is a
triple 〈A;<,L 〉 where A is a non-empty set and < is a
binary relation on A which satisfies the following axioms:

(O1) ∀x, y(x < y → y �< x),

(O2) ∀x, y, z(x < y < z → x < z) and

(O3) ∀x, y(x < y ∨ x = y ∨ y < x);

and L is a language. ♦

Here, L could be empty, or any language, for example,
{+} or {×} or {+,×}.
Definition 2 (Various types of orders) A linear order relation
< is called dense if it satisfies

(O4) ∀x, y(x < y → ∃z[x < z < y]).

An order relation < is called without endpoints if it satisfies

(O5) ∀x∃y(x < y) and

(O6) ∀x∃y(y < x).

A discrete order has the property that any element has
an immediate successor (i.e., there is no other element in
between them). If the successor of x is denoted by s(x), then
a discrete order satisfies

(O7) ∀x, y(x< y ↔ s(x)< y ∨ s(x)= y).

The successor of an integer x is s(x) = x + 1. ♦

Remark 1 (The main lemma of quantifier elimination) It is
known that a theory (or a structure) admits quantifier elim-
ination if and only if every formula of the form ∃x(∧∧i αi )

is equivalent with a quantifier-free formula, where each αi

is either an atomic formula or the negation of an atomic
formula. This has been proved in, for example, Ender-
ton (2001, Theorem 31F), Hinman (2005, Lemma 2.4.30),
Kreisel and Krivine (1971, Theorem 1, Chapter 4), Marker
(2002, Lemma 3.1.5) and Smoryński (1991, Lemma 4.1).
In the presence of a linear order relation (<) by the equiva-
lences (s �= t) ↔ (s < t ∨ t < s) and (s �< t) ↔ (t � s),
which follow from the axioms {O1,O2,O3} (of Definition 1),
we do not need to consider the negated atomic formulas
(when there is no relation symbol in the language other than
<,=). ♦

Convention Let ⊥ denote the (propositional constant of)
contradiction, and � the truth. By convention, a � b abbre-
viates a < b ∨ a = b. The symbols × and · are used
interchangeably throughout the paper. For convenience, let
us agree that 0−1 = 0 as this does not contradict our intu-
ition. Needless to say, xn symbolizes x · x · . . . · x (n−times);
also x + x + · · · + x (n−times) is abbreviated as n � x . ♦

The following theorem has been proved in Marker (2002,
Theorems 2.4.1 and 3.1.3). For making this paper as
self-contained as possible, we present a syntactic (proof-
theoretic) proof for it in “Appendix.”

Theorem 1 (Axiomatizability of 〈R;<〉 and 〈Q;<〉) The
finite theory {O1,O2,O3,O4,O5,O6} (of dense linear orders
without endpoints—see Definitions 1 and 2) completely
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axiomatizes the theory of 〈R;<〉 and 〈Q;<〉, and so these
structures are decidable. Moreover, (the theory of ) those
structures admit quantifier elimination.

In fact for any set A such that Q ⊆ A ⊆ R, the structure
〈A;<〉 can be completely axiomatized by the finite set of
axioms {O1,O2,O3,O4,O5,O6} in Definitions 1 and 2.

The theory of the structure 〈Z;<〉 does not admit quan-
tifier elimination: for example, the formula ∃x(y < x < z)
is not equivalent with any quantifier-free formula in the lan-
guage {<} (note that it is not equivalentwith y < z). Ifwe add
the successor operation s to the language, then that formula
will be equivalent with s(y) < z and the process of quanti-
fier elimination will go through; the proof of the following
theorem appears in “Appendix.”

Theorem 2 (Axiomatizability of 〈Z;<〉) The finite theory of
discrete linear orders without endpoints, consisting of the
axioms O1, O2, O3, O7 plus

(O8) ∀x∃y(s(y) = x)

completely axiomatizes the order theory of the integer num-
bers, and so its theory is decidable. Moreover, the structure
〈Z;<, s〉 admits quantifier elimination.

The structure 〈N;<〉 can also be finitely axiomatized. The
following theorem has been proved in Enderton (2001, The-
orem 32A) so we do not present its proof in this paper.

Theorem 3 (Axiomatizability of 〈N;<〉) The finite theory
consisting of the axioms {O1,O2,O3,O7} (in Definitions 1
and 2) and also the following two axioms

(O◦
8) ∀x∃y(x �= 0 → s(y) = x),

(O9) ∀x(x �< 0),

completely axiomatizes the order theory of the natural num-
bers, and so its theory is decidable. Moreover, the structure
〈N;<, s, 0〉 admits quantifier elimination. ��
Let us note that the structure 〈N;<, s〉 does not admit quan-
tifier elimination, since, for example, ∃x(s(x) = y) is not
equivalent with any quantifier-free formula in the language
{<, s}. However, this formula is equivalent with 0 < y.

1.2 The additive ordered structures of numbers

Here we study the structures of the sets N, Z, Q, R over the
language {+,<}.
Definition 3 (Some group theory) A group is a structure
〈G; ∗, e, ι〉 where ∗ is a binary operation on G, e is a con-
stant (a special element of G) and ι is a unary operation on

G which satisfy the following axioms:

∀x, y, z [x ∗ (y ∗ z) = (x ∗ y) ∗ z];
∀x(x ∗ e = x);
∀x(x ∗ ι(x) = e).

It is called an abelian group when it also satisfies

∀x, y(x ∗ y = y ∗ x).

A group is called non-trivial when

∃x(x �= e);

and it is called divisible when for each n ∈ N we have

∀x∃y[x = ∗n(y)]

where ∗n(y) = y ∗ · · · ∗ y (n-times).
An ordered group is a group equipped with an order relation
< (which satisfies O1,O2,O3) such that also the axiom

∀x, y, z(x< y → x ∗ z< y ∗ z ∧ z ∗ x< z ∗ y)

is satisfied in it. ♦

The following has been proved in, for example, Marker
(2002, Corollary 3.1.17); we also present a proof for it in
“Appendix.”

Theorem 4 (Axiomatizability of 〈R;<,+〉 and 〈Q;<,+〉)
The following infinite theory (of non-trivial ordered divis-
ible abelian groups) completely axiomatizes the order and
additive theory of the real and rational numbers, and
so their theories are decidable. Moreover, the structures
〈R;<,+,−, 0〉 and 〈Q;<,+,−, 0〉 admit quantifier elimi-
nation.

(O1) ∀x, y(x < y → y �< x)

(O2) ∀x, y, z(x < y < z → x < z)

(O3) ∀x, y(x < y ∨ x = y ∨ y < x)

(A1) ∀x, y, z (x + (y + z) = (x + y) + z)

(A2) ∀x(x + 0 = x)

(A3) ∀x(x + (−x) = 0)

(A4) ∀x, y(x + y = y + x)

(A5) ∀x, y, z(x < y → x + z < y + z)

(A6) ∃y(y �= 0)

(A7) ∀x∃y(x = n � y)
n ∈ N

+
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Remark 2 (Infinite axiomatizability) To see that the theories
of 〈R;<,+〉 and 〈Q;<,+〉 are not finitely axiomatizable,
it suffices to note that for a given natural number N , the set

Q/N ! = { m

(N !)k | m ∈ Z, k ∈ N} of rational numbers,

where N ! = 1 × 2 × 3 × · · · × N , is closed under addition
and so satisfies the axioms O1, O2, O3, A1, A2, A3, A4, A5, A6
and the finite number of the instances of the axiom A7 (for
n = 1, . . . , N ) but does not satisfy the instance of A7 for
n = p where p is a prime number larger than N !. ♦

For eliminating the quantifiers of the formulas of the struc-
ture 〈Z;<,+〉, we add the (binary) congruence relations
{≡n}n�2 (modulo standard natural numbers) to the language;
let us note that a ≡n b is equivalent with ∃x(a + n � x = b).
The following theorem has been proved, in various formats,
in, for example, the books Boolos et al. (2007, Chapter
24), Enderton (2001, Theorem 32E), Hinman (2005, Corol-
lary 2.5.18), Kreisel and Krivine (1971, Section III, Chapter
4), Marker (2002, Corollary 3.1.21), Monk (1976, Theo-
rem 13.10) and Smoryński (1991, Section 4, Chapter III).
In “Appendix,” we present a slightly different proof.

Theorem 5 (Axiomatizability of 〈Z;<,+〉) The infinite the-
ory of non-trivial discretely ordered abelian groups with the
division algorithm, that is O1, O2, O3, A1, A2, A3, A4, A5 and

(O◦
7) ∀x, y(x < y ↔ x + 1 � y

)

(A◦
7) ∀x∃y ( ∨∨

i<n

x = n � y + ī
)

n ∈ N
+

where ī = 1 + · · · + 1 (i − times)

completely axiomatizes the order and additive theory of the
integer numbers, and so its theory is decidable.Moreover, the
(theory of the) structure 〈Z;<,+,−, 0, 1, {≡n}n�2〉 admits
quantifier elimination.

Remark 3 (Infinite axiomatizability) The theory of the struc-
ture 〈Z;<,+〉 cannot be axiomatized finitely, because O1,
O2, O3, A1, A2, A3, A4, A5, O◦

7 and any finite number of the
instances of A◦

7 cannot prove all the instances of A
◦
7. To see

this take p to be a sufficiently large prime number and put
N = (p − 1)!. Recall that Q/N = {m/Nk | m ∈ Z, k ∈ N}
is closed under addition and the operation x �→ x/n for any
1 < n < p. Let A = (Q/N ) × Z and define the structure
A = 〈A ;<A,+A,−A, 0A, 1A〉 by the following:

(<A): (a, �) <A (b,m) ⇐⇒ (a<b)∨(a=b ∧ � < m);
(+A): (a, �) +A (b,m) = (a + b, � + m);
(−A): −A(a, �) = (−a,−�);
(0A): 0A = (0, 0);
(1A): 1A = (0, 1).

It is straightforward to see thatA satisfies the axioms O1, O2,
O3,A1,A2,A3,A4,A5 andO◦

7; but does not satisfyA
◦
7 for n = p

since (1, 0) = p � (a, �) + ī for any a ∈ Q/N , � ∈ Z, i ∈ N

(with i < p) implies that a = 1/p but 1/p /∈ Q/N . However,
A satisfies the finite number of the instances of A◦

7 (for any
1 < n < p): for any (a, �) ∈ A we have a = m/Nk for
some m ∈ Z, k ∈ N, and � = nq + r for some q, r with
0 � r < n; now, (a, �) = n �

(
m′/Nk+1, q

)+A (0, r) (where
m′ = m · (N/n) ∈ Z) and so (a, �) = n �

(
m′/Nk+1, q

)+A r̄
(where r̄ = 1A +A · · · +A 1A for r times). ��
Remark 4 (〈N;<,+〉) Since N is definable in the structure
〈Z;<,+〉 by “x ∈ N

′′ ⇐⇒ ∃y(y+ y = y ∧ y � x), we
do not study the theory of the structure 〈N;<,+〉 separately
(see Enderton 2001, Theorem32E). In fact the decidability of
〈Z;<,+〉 implies the decidability of 〈N;<,+〉: relativiza-
tionψN of a {<,+}-formulaψ resulted from substituting any
subformula of the form ∀xθ(x) by ∀x[“x ∈ N

′′ →θ(x)] and
∃xθ(x) by ∃x[“x ∈ N

′′ ∧θ(x)] has the following property:
〈N;<,+〉 |� ψ ⇐⇒ 〈Z;<,+〉 |� ψN. ♦

1.3 Themultiplicative ordered structures of
numbers

Finally, we consider the theories of the number sets N, Z, R

and Q in the language {<,×}.

1.3.1 Natural numbers with order andmultiplication

The theory of the structure 〈N;<,×〉 is not decidable (and so
no computably enumerable set of sentences can axiomatize
this structure). This is because:

• The addition operation is definable in 〈N;<,×〉, since
◦ the successor operation s is definable from order:

y=s(x) ⇐⇒ x< y ∧ ¬∃z(x< z< y),

◦ and the addition operation is definable from the
successor and multiplication operations:

z= x+y ⇐⇒ [¬∃u(s(u)= z)∧ x= y= z
] ∨

[∃u(s(u)= z) ∧ s(z · x) · s(z · y)=s(z · z · s(x · y))].

This identity was first introduced by Robinson (1949);
also see, for example, Boolos et al. (2007, Chapter 24) or
Enderton (2001, Exercise 2 on page 281).
•Thus, the structure 〈N;<,×〉 can interpret the structure
〈N;+,×〉 whose theory is undecidable [see, for exam-
ple, Boolos et al. (2007, Theorem 17.4), Enderton (2001,
Corollary 35A), Hinman (2005, Theorem 4.1.7), Monk
(1976, Chapter 15) or Smoryński (1991, Corollary 6.4 in
Chapter III)].
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1.3.2 Integer numbers with order andmultiplication

The undecidability of the theory of the structure 〈N;+,×〉
also implies the undecidability of the theories of the struc-
tures 〈Z;+,×〉 and 〈Z;<,×〉 as follows:

• By Lagrange’s four-square theorem [see, for example,
Monk (1976, Theorem 16.6)]N is definable in 〈Z;+,×〉,
and so 〈Z;+,×〉 has an undecidable theory [see, for
example, Monk (1976, Theorem 16.7) or Smoryński
(1991, Corollary 8.29 in Chapter III)].

• The following numbers and operations are definable in
the structure 〈Z;<,×〉:
– The number zero: u = 0 ⇐⇒ ∀x(x · u = u).
– The number one: u = 1 ⇐⇒ ∀x(x · u = x).
– The number -1: u = −1 ⇐⇒ u · u = 1 ∧ u �= 1.
– The additive inverse: y = −x ⇐⇒ y = (−1) · x .
– The successor: y = s(x) ⇐⇒ x < y

∧�z(x < z < y).
– The addition: z = x+y ⇐⇒ [z = 0∧y = −x] ∨

[z �= 0 ∧ s(z · x) · s(z · y) = s(z · z · s(x · y))].
There is another beautiful definition for + in terms of s
and × in Z on page 187 of Hinman (2005):

z = x + y ⇐⇒
[z · s(z) = z ∧ s(x · y) = s(x) · s(y)] ∨

[z · s(z) �= z ∧ s(z · x) · s(z · y) = s(z · z · s(x · y))].

• Whence, the structure 〈Z;<,×〉 can interpret the unde-
cidable structure 〈Z;+,×〉.

2 Reals and rationals with order and
multiplication

2.1 Real numbers with order andmultiplication

The structure 〈R;<,×〉 is decidable, since by a theorem of
Tarski the structure 〈R;<,+,×〉 can be completely axiom-
atized by the theory of real closed ordered fields, and so
has a decidable theory; see, for example, Kreisel and Kriv-
ine (1971, Theorem 7, Chapter 4), Marker (2002, Theorem
3.3.15) or Monk (1976, Theorem 21.36). Here, we prove
the decidability of the theory of 〈R;<,×〉 directly (without
using Tarski’s theorem) and provide an explicit axiomatiza-
tion for it. Before that let us make a little note about the
theory 〈R+;<,×〉 (of the positive real numbers) which is
isomorphic to 〈R;<,+〉 by the mapping x �→ log(x). Thus,
we have the following immediate corollary of Theorem 4:

Proposition 1 (Axiomatizability of 〈R+;<,×〉) The follow-
ing infinite theory (of non-trivial ordered divisible abelian

groups) completely axiomatizes the order and multiplica-
tive theory of the positive real numbers, and so its theory
is decidable. Moreover, the structure 〈R+;<,×,�−1, 1〉
admits quantifier elimination.

(O1) ∀x, y(x < y → y �< x)

(O2) ∀x, y, z(x < y < z → x < z)

(O3) ∀x, y(x < y ∨ x = y ∨ y < x)

(M1) ∀x, y, z (x · (y · z) = (x · y) · z)
(M2) ∀x(x · 1 = x)

(M3) ∀x(x · x−1 = 1)

(M4) ∀x, y(x · y = y · x)
(M5) ∀x, y, z(x < y → x · z < y · z)
(M6) ∃y(y �= 1)

(M7) ∀x∃y(x = yn) n � 2

Proof For the infinite axiomatizability it suffices to note that
for a sufficiently large N the set {2m·(N !)−k | m ∈ Z, k ∈ N}
of positive real numbers (cf. Remark 2) satisfies all the
axioms (O1, O2, O3, M1, M2, M3, M4, M5, M6) and finitely
many instances of the axiom M7 (for n � N ) but not all the
instances of M7 (for example, when n = p is a prime larger
than N !). ��

Theorem 6 (Axiomatizability of 〈R;<,×〉) The following
infinite theory completely axiomatizes the order and mul-
tiplicative theory of the real numbers, and so its theory is
decidable. Moreover, the structure 〈R;<,×,�−1,−1, 0, 1〉
admits quantifier elimination.

(O1) ∀x, y(x < y → y �< x)

(O2) ∀x, y, z(x < y < z → x < z)

(O3) ∀x, y(x < y ∨ x = y ∨ y < x)

(M1) ∀x, y, z (x · (y · z) = (x · y) · z)
(M◦

2) ∀x(x · 1 = x ∧ x · 0 = 0 = 0−1)

(M◦
3) ∀x(x �= 0 → x · x−1 = 1)

(M4) ∀x, y(x · y = y · x)
(M◦

5) ∀x, y, z(x < y ∧ 0 < z → x · z < y · z)
(M•

5) ∀x, y, z(x < y ∧ z < 0 → y · z < x · z)
(M◦

6) ∃y(−1 < 0 < 1 < y)

(M◦
7) ∀x∃y(x = y2n+1)

(M8) ∀x(x2n = 1 ←→ x = 1 ∨ x = −1)

(M9) ∀x (0 < x ←→ ∃y[y �= 0 ∧ x = y2])
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Proof We have (x < 0) ↔ (0 < −x) by M•
5, M

◦
2, M

◦
6 and M8,

where −x = (−1) · x . Whence, for any quantifier-free for-
mula ηwe have ∃xη(x) ≡ ∃x>0η(x)∨η(0)∨∃y>0η(−y).
Also, if z is another variable in η then η(x, z) is equivalent
with [0 < z ∧ η(x, z)] ∨ η(x, 0) ∨ [0 < −z ∧ η(x, z)]. For
the last disjunct, if we let z′ = −z then 0 < −z∧η(x, z)will
be 0 < z′ ∧ η(x,−z′). Thus, by introducing the constants
0 and −1 (and renaming the variables if necessary), we can
assume that all the variables of a quantifier-free formula are
positive. Now, the process of eliminating the quantifier of the
formula ∃xη(x), where η is the conjunction of some atomic
formulas (cf. Remark 1) goes as follows: we first eliminate
the constants 0 and −1 and then reduce the desired conclu-
sion to Proposition 1. For the first part, we simplify terms so
that each term is either positive (all the variables are posi-
tive) or equals to 0 or is the negation of a positive term (is
−t for some positive term t). Then by replacing 0 = 0 with
� and 0 < 0 with ⊥ we can assume that 0 appears at most
once in any atomic formula; also −1 appears at most once
since − t = − s is equivalent with t = s and − t < − s with
s < t . Now, we can eliminate the constant −1 by replacing
the atomic formulas − t = s, t = − s and t < − s by ⊥ and
− t < s by� for positive or zero terms t, s (note that−0 = 0
by M◦

2). Also the constant 0 can be eliminated by replacing
0 < t with � and t < 0 and t = 0 (also 0 = t) with ⊥ for
positive terms t . Thus, we get a formula whose all variables
are positive, and so we are in the realm ofR

+. Finally, for the
second part we have the equivalence of thus resulted formula
with a quantifier-free formula by Proposition 1 provided that
the relativized form of the axioms O1, O2, O3, M1, M2, M3,
M4, M5, M6 and M7 to R

+ can be proved from the axioms
O1, O2, O3, M1, M◦

2, M
◦
3, M4, M

◦
5, M

•
5, M

◦
6, M

◦
7, M8, and M9. We

need to consider M6 and M7 only, when relativized toR
+, i.e.,

∃y(0 < y ∧ y �= 1) and ∀x∃y[0 < x → 0 < y ∧ x = yn].
The relativization of M6 immediately follows from M◦

6. For
the relativization of M7 take any a > 0, and any n ∈ N.
Write n = 2k(2m + 1); by M◦

7 there exists some c such that
c2m+1 = a, and by M◦

5 and M•
5 we should have c > 0. Now,

by using M9 for k times there must exist some b such that
b2

k = c and we can have b > 0 (since otherwise we can take
−b instead of b). Now, we have b2

k (2m+1) = c2m+1 = a and
so a = bn . ��

That no finite set of axioms can completely axiomatize the
theory of 〈R;<,×〉 can be seen from the fact that the set {0}∪
{−2m·(N !)−k

, 2m·(N !)−k | m ∈ Z, k ∈ N} of real numbers, for
some N > 2, satisfies all the axioms of Theorem 6 except
M◦
7; however it satisfies a finite number of its instances (when

2n + 1 � N ) but not all the instances (e.g., when 2n + 1 is a
prime greater than N !) of M◦

7 (cf. the proof of Proposition 1
and Remark 2).

2.2 Rational numbers with order andmultiplication

The technique of the proof of Theorem 6 enables us to con-
sider first themultiplicative and order structure of the positive
rational numbers 〈Q+;<,×〉. The formula ∃x(y = xn) (for
n > 1) is not equivalent with any quantifier-free formula in
〈Q+;<,×〉; so let us introduce the following notation.

Definition 4 (�) Let�n(y) be the formula ∃x(y = xn), stat-
ing that “y is the nth power of a number” (for n > 1). ♦

Now we can introduce our candidate axiomatization for the
theory of the structure 〈Q+;<,×〉.
Definition 5 (TQ) Let TQ be the theory axiomatized by the
axioms O1, O2, O3, M1, M2, M3, M4, M5 and M6 of Proposition 1
plus the following two axiom schemes:

(M10) ∀x, z∃y(x < z → x < yn < z), and

(M11) ∀{x j } j<q∃y∀z
∧∧

m j �n( j<q)

(yn · x j �= zm j );

for each n � 1 (and m j > 1). ♦

Some explanations on the new axioms M10 and M11 are in
order. The axiom M10, interpreted in Q

+, states that Q
+ is

dense not only in itself but also in the radicals of its elements
(or more generally in R

+: for any x, z ∈ Q
+ there exists

some y ∈ Q
+ that satisfies n

√
x < y < n

√
z). The axiom M11,

interpreted in Q
+, is actually equivalent with the fact that

for any sequences x1, . . . , xq ∈ Q
+ and m1, . . . ,mq ∈ N

+
none of which divides n (in symbols m j � n), there exists
some y ∈ Q

+ such that
∧∧

j ¬�m j (y
n · x j ). This axiom is

not true inR
+ (while M10 is true in it) and to see that why M11

is true in Q
+ it suffices to note that for given x1, . . . , xq one

can take y to be a prime number which does not appear in the
unique factorization (of the numerators and denominators of
the reduced forms) of any of x j ’s. In this case yn ·x j can be an
m j ’s power (of a rational number) only when m j divides n.
The conditionm j � n is necessary, since otherwise (ifm j | n
and) if x j happens to satisfy �m j (x j ) then no y can satisfy
the relation ¬�m j (y

n · x j ).
We now show that TQ completely axiomatizes the theory

of the structure 〈Q+;<,×,�−1, 1, {�n}n>1〉 and moreover
this structure admits quantifier elimination; thus, the theory
of the structure 〈Q+;<,×〉 is decidable. For that, we will
need the following lemmas.

Lemma 1 For any x ∈ Q
+ and any natural n1, n2 > 1,

�n1(x) ∧ �n2(x) ⇐⇒ �n(x)

where n is the least common multiplier of n1 and n2.

Proof The ⇐ part is straightforward; for the ⇒ direction
suppose that x = yn1 = zn2 . By Bézout’s Identity there are
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some c1, c2 ∈ Z such that c1n/n1 + c2n/n2 = 1; therefore,
x = xc1n/n1 · xc2n/n2 = yc1n · zc2n = (yc1 zc2)n . ��
Lemma 2 For natural numbers {ni }i<p with ni > 1 and
positive rational numbers {ti }i<p and x,

∧∧

i<p

�ni (x · ti ) ⇐⇒ �n(x · β) ∧
∧∧

i �= j

�di, j

(
ti · t−1

j

)

where n is the least common multiplier of ni ’s, di, j is the
greatest common divisor of ni and n j (for each i �= j) and

β = ∏
i<p t

ci (n/ni )
i in which ci ’s satisfy

∑
i<p ci (n/ni ) = 1.

Proof For ti ’s, ni ’s, ci ’s, di, j ’s and n as given above, we
show that the relation �nk (tk · β−1) holds for each fixed
k < p when

∧∧
i �= j �di, j (ti · t−1

j ) holds. Let mk,i be the least
commonmultiplier of nk and ni (which is a divisor of n then).
Let us note that dk,i/ni = nk/mk,i . Since�dk,i (tk · t−1

i ) there

should exists somewk,i ’s (for i �= k) such that tk ·t−1
i = w

dk,i
k,i .

Now, the relation �nk (tk · β−1) follows from the following
identities:

tk · β−1 = t
∑

i ci (n/ni )
k · ∏

i t
−ci (n/ni )
i

= ∏
i �=k(tk · t−1

i )ci (n/ni )

= ∏
i �=k(w

dk,i
k,i )ci (n/ni )

= ∏
i �=k w

ci ·nk (n/mk,i )

k,i

= (
∏

i �=k w
ci (n/mk,i )

k,i )nk .

(⇒): The relations �ni (x · ti ) and �n j (x · t j ) immedi-
ately imply that �di, j (x · ti ) and �di, j (x · t j ) and so

�di, j (ti · t−1
j ). For showing �n(x · β) it suffices, by

Lemma 1, to show that�ni (x ·β) holds for each i < p.
This immediately follows from�ni (ti ·β−1)whichwas
proved above, and the assumption �ni (x · ti ).

(⇐): From the first part of the proof we have �nk (tk · β−1)

for each k < p; now by �n(x · β) we have �nk (x · β)

and so �nk (x · tk) for each k < p. ��
Let us note that Lemmas 1 and 2 are provable in TQ. The idea
of the proof of Lemma 2 is taken from (Ore 1952).

Lemma 3 The following sentences are provable in TQ for
any n > 1:

∀u∃y[�n(y · u)],
∀x, u∃y[x < y ∧ �n(y · u)],
∀z, u∃y[y < z ∧ �n(y · u)] and
∀x, z, u∃y[x < z → x < y < z ∧ �n(y · u)].

Proof Weshow the last formula only.ByM10 (ofDefinition 5)
there exists some v such that x · u < vn < z · u. Then for
y = vn · u−1 we will have x < y < z and �n(y · u). ��

Lemma 4 The following sentences are provable in TQ for
any {m j > 1} j<q :

∀{x j } j<q∃y[∧∧ j<q ¬�m j (y · x j )],
∀{x j } j<q , u∃y[u < y ∧ ∧∧

j<q ¬�m j (y · x j )],
∀{x j } j<q , v∃y[y < v ∧ ∧∧

j<q ¬�m j (y · x j )] and
∀{x j } j<q , u, v∃y[u < v → u < y < v ∧
∧∧

j<q ¬�m j (y · x j )].

Proof The first sentence is an immediate consequence of M11
(of Definition 5) for n = 1. We show the last sentence. There
exists γ , by M11, such that

∧∧
j ¬�m j (γ · x j ). Let M =

∏
j m j ; byM10 there exists δ such thatu·γ −1 < δM < v·γ −1.

Now for y = γ ·δM wehave u < y < v and
∧∧

j ¬�m j (y·x j )
since if (otherwise) we had�m j (y · x j ) then�m j (γ ·δM · x j )
and so �m j (γ · x j ) would hold; a contradiction. ��
Lemma 5 In the theory TQ the following formulas

∃x[�n(x · t) ∧ ∧∧
j<q ¬�m j (x · s j )],

∃x[u < x ∧ �n(x · t) ∧ ∧∧
j<q ¬�m j (x · s j )] and

∃x[x < v ∧ �n(x · t) ∧ ∧∧
j<q ¬�m j (x · s j )]

are equivalent with

∧∧

m j |n( j<q)

¬�m j (t
−1 · s j );

and the formula

∃x
⎡

⎣u < x < v ∧ �n(x · t) ∧
∧∧

j<q

¬�m j (x · s j )
⎤

⎦

is equivalent with

∧∧

m j |n( j<q)

¬�m j (t
−1 · s j ) ∧ u < v.

Proof If m j | n then �n(x · t) implies �m j (x · t). Now,
if �m j (t

−1 · s j ) were true then �m j (x · s j ) would be true
too; contradicting

∧∧
j<q ¬�m j (x · s j ). Suppose now that

the relation
∧∧

m j |n ¬�m j (t
−1 · s j ) holds. By M11 there exists

some γ such that
∧∧

m j �n ¬�m j (γ · t−1 · s j ). By M10 there

exists some δ such that u · t · γ −n < δM ·n < v · t · γ −n

(if u < v) where M = ∏
j<q m j . For x = δM ·n · γ n · t−1

we have u < x < v and �n(x · t). We show ¬�m j (x · s j )
for each j < q by distinguishing two cases: if m j | n then
¬�m j (t

−1 · s j ) implies ¬�m j (δ
M ·n · γ n · t−1 · s j ); if m j � n

then ¬�m j (γ · t−1 · s j ) implies ¬�m j (δ
M ·n · γ n · t−1 · s j ). ��

Theorem 7 (Axiomatizability of 〈Q;<,×〉) The infinite the-
ory TQ completely axiomatizes the theory of 〈Q+;<,×〉, and
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moreover the structure 〈Q+;<,×,�−1, 1, {�n}n>1〉 admits
quantifier elimination.
Also, the structure 〈Q;<,×〉 can be completely axiomatized
by the theory that results from TQ by adding the axioms M8
(in Theorem 6) and substituting its M2, M3, M5, M6 and M10,
respectively, with the axioms M◦

2, M
◦
3, M

◦
5, M

•
5, M

◦
6 and

(M◦
10) ∀x, z∃y(0 < x < z → x < yn < z).

Moreover, 〈Q;<,×,�−1,−1, 0, 1, {�n}n>1〉 admits quan-
tifier elimination.

Proof Let us prove the Q
+ part only. We are to eliminate the

quantifier of the formula

∃x
⎛

⎝
∧∧

i<p

�ni (x
ai · ti ) ∧

∧∧

j<q

¬�m j (x
b j · s j ) ∧

∧∧

k< f

uk < xck ∧
∧∧

�<g

xd� <v� ∧
∧∧

ι<h

xeι = wι

⎞

⎠ . (1)

By an < bn ↔ a < b and �m·n(an) ↔ �m(a) we can
assume that all the ai ’s, b j ’s, ck’s, d�’s and eι’s are equal
to each other, and moreover, equal to one (cf. the proof of
Theorem 5). We can also assume that h = 0 and f , g � 1.
By Lemma 2 we can also assume that p � 1. If q = 0 then
Lemma 3 implies that the quantifier of formula (1) can be
eliminated. So, we assume that q > 0. If p = 0 then the
quantifier of (1) can be eliminated by Lemma 4. Finally, if
p = 1 (and q �= 0 = h and f , g � 1) then Lemma 5 implies
that formula (1) is equivalent with a quantifier-free formula.

��
Corollary 1 (Decidability of 〈Q;<,×〉) The (first-order)
theory of the structure 〈Q;<,×〉 (and also 〈Q+;<,×〉) is
decidable.

Proof By Theorem 7 it suffices to note that the atomic for-
mulas of the language {<,×,�−1,−1, 0, 1, {�n}n>1} are
decidable in Q. For any r ∈ Q and any natural n > 1 the
formula �n(r) holds if and only if every exponent of the
unique factorization (of the numerators and denominators of
the reduced form) of r is divisible by n. ��
Corollary 2 (Non-definability of addition)Theadditionoper-
ation (+) is not definable in the structure 〈Q;<,×〉.
Proof If it were, then the structure 〈Q;<,+,×〉 would be
decidable by Theorem 7; but (Robinson 1949) proved that
this structure is not decidable. ��
Remark 5 (Infinite axiomatizability) To see that the structure
〈Q+;<,×〉 cannot be finitely axiomatized, we present an
ordered multiplicative structure that satisfies any sufficiently
large finite number of the axioms of TQ but does not satisfy
all of its axioms. Let p be a sufficiently large prime number.

The set Q/p = {m/pk | m ∈ Z, k ∈ N} is closed under
addition and theoperation x �→ x/p, and alsoZ ⊂ Q/p ⊂ Q.
Let ρ0, ρ1, ρ2, · · · denote the sequence of all prime numbers
(2, 3, 5, · · · ). Let

(Q/p)∗ =
{

∏

i<�

ρ
ri
i | � ∈ N, ri ∈ Q/p

}

;

this is closed under multiplication and x �→ x1/p, and also
Q

+ ⊂ (Q/p)∗ ⊂ R
+. Thus, (Q/p)∗ satisfies the axioms O1,

O2, O3, M1, M2, M3, M4, M5 and M6 of Proposition 1, and also
the axiom M10. However, it does not satisfy the axiom M11 for
n = q = x0 = 1 and m0 = p because (Q/p)∗ |� ∀y�p(y).
We show that (Q/p)∗ satisfies the instances of the axiom M11
when 1 < m j < p (for each j < q and arbitrary n, q). Thus,
no finite number of the instances of M11 can prove all of its
instances (with the rest of the axioms of TQ). Let x j ’s be given
from (Q/p)∗; write x j = ∏

i<� j
ρ
ri, j
i where we can assume

that � j � q. Put r j, j = u j/p
v j where u j ∈ Z and v j ∈ N (for

each j < q). Define t j to be 1 whenm j | u j and bem j when

m j � u j . Let y = ∏
i<q ρ

(ti /pvi+1)
i (∈ (Q/p)∗). We show∧∧

j<q ¬�m j (y
n · x j ) under the assumption

∧∧
j<q m j � n.

Take a k < q, and assume (for the sake of contradiction)

that �mk (y
n · xk). Then �mk (ρ

ntk/pvk+1

k · ρuk/pvk

k ) holds, and

so there exist a, b such that ρ
(ntk+puk )/pvk+1

k = ρ
(mk ·a)/pb

k .
Therefore, mk | ntk + puk . We reach to a contradiction by
distinguishing two cases:

(i) If mk | uk then tk = 1 and so mk | n + puk whence
mk | n, contradicting ∧∧

j<q m j � n;
(ii) If mk � uk then tk = mk and so mk | nmk + puk whence

mk | puk which by (mk, p) = 1 implies that mk | uk ,
contradicting the assumption (of mk � uk). ♦

3 Conclusions

In the following table the decidable structures are denoted by
� and the undecidable ones by �\/ :

N Z Q R

{<} � � � �
{<,+} � � � �
{<,×} �\/ �\/ � �
{+,×} �\/ �\/ �\/ �

The decidability of the structure 〈Q;<,×〉 is a new result
of this paper, along with the explicit axiomatization for the
already known decidable structure 〈R;<,×〉. For the other
decidable structures (other than 〈N;<〉 and 〈N;<,+〉), some

123



On decidability and axiomatizability of some ordered structures 3623

old and some new (syntactic) proofs are given for their decid-
ability, with explicit axiomatizations (see “Appendix”). It is
interesting to note that the undecidability of 〈N;<,×〉 and
〈Z;<,×〉 is inherited from the undecidability of 〈N;+,×〉
and 〈Z;+,×〉 (and the definability of the addition operation
+ in terms of order < and multiplication × in N and Z),
and the decidability of 〈R;<,×〉 comes from the decidabil-
ity of 〈R;+,×〉 (and the definability of order < in terms of
addition+ andmultiplication× inR).Nonetheless, the unde-
cidability of 〈Q;+,×〉 has nothing to dowith the (decidable)
structure 〈Q;<,×〉; indeed the addition operation + is not
definable in 〈Q;<,×〉 even though the order relation < is
definable in 〈Q;+,×〉.
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Appendix

Theorem 1 . The finite theory {O1,O2,O3,O4,O5,O6} (of
dense linear orders without endpoints—see Definitions 1
and 2) completely axiomatizes the theory of 〈R;<〉 and
〈Q;<〉, and so these structures are decidable. Moreover, (the
theory of ) those structures admit quantifier elimination.

Proof All the atomic formulas are either of the form u < v

or u = v for some variables u and v. If both of the variables
are equal, then u < u is equivalent with ⊥ by O1 and u = u
is equivalent with�. So, by Remark 1, it suffices to eliminate
the quantifier of the formulas of the form

∃x
⎛

⎝
∧∧

i<�

yi < x ∧
∧∧

j<m

x < z j ∧
∧∧

k<n

x = uk

⎞

⎠ (2)

where yi ’s, z j ’s and uk’s are variables. Now, if n �= 0 then
formula (2) is equivalent with the quantifier-free formula

∧∧

i<�

yi < u0 ∧
∧∧

j<m

u0 < z j ∧
∧∧

k<n

u0 = uk .

So, let us suppose that n = 0. Then if m = 0 or � = 0
formula (2) is equivalent with the quantifier-free formula �,
by the axioms O5 and O6 (with O2 and O3) respectively, and
if �,m �= 0 it is equivalent with the quantifier-free formula
∧∧

i<�, j<m yi < z j by the axiom O4 (with O2 and O3). ��

Theorem 2 The finite theory of discrete linear orders without
endpoints, consisting of the axioms O1, O2, O3, O7 plus

(O8) ∀x∃y(s(y) = x)

completely axiomatizes the order theory of the integer num-
bers, and so its theory is decidable. Moreover, the structure
〈Z;<, s〉 admits quantifier elimination.
Proof We note that all the terms in the language {<, s} are
of the form sn(y) for some variable y and n ∈ N. So, all
the atomic formulas are either of the form sn(u) = sm(v)

or sn(u) < sm(v) for some variables u, v. If a variable
x appears in the both sides of an atomic formula, then we
have either sn(x) = sm(x) or sn(x) < sm(x). The formula
sn(x) = sm(x) is equivalent with � when n = m and with
⊥ otherwise; also sn(x) < sm(x) is equivalent with � when
n < m and with ⊥ otherwise. So, it suffices to consider
the atomic formulas of the form t < sn(x) or sn(x) < t
or sn(x) = t for some x-free term t and n ∈ N

+. Now, by
Remark 1, we eliminate the quantifier of the formulas

∃x
⎛

⎝
∧∧

i<�

ti < spi (x) ∧
∧∧

j<m

sq j (x)<s j ∧
∧∧

k<n

srk (x)=uk

⎞

⎠ .

(3)

The axioms prove the equivalences [a < b] ↔ [s(a) < s(b)]
and [a = b] ↔ [s(a) = s(b)]; so we can assume that pi ’s
and q j ’s and rk’s in formula (3) are equal to each other, say
to α. Then by O8 formula (3) is equivalent with

∃y
⎛

⎝
∧∧

i<�

t ′i < y ∧
∧∧

j<m

y < s′
j ∧

∧∧

k<n

y = u′
k

⎞

⎠ (4)

for some (possibly new) terms t ′i , s′
j , u

′
k (and y = sα(x)).

Now, if n �= 0 then formula (4) is equivalent with the
quantifier-free formula

∧∧

i<�

t ′i < u′
0 ∧

∧∧

j<m

u′
0 < s′

j ∧
∧∧

k<n

u′
0 = u′

k .

Let us then assume that n = 0. The formula

∃x
⎛

⎝
∧∧

i<�

ti < x ∧
∧∧

j<m

x < s j

⎞

⎠ (5)

is equivalent, by the axiom O7 (in Definition 2), with the
quantifier-free formula

∧∧
i<�, j<m s(ti ) < s j . ��

Theorem 4 The following infinite theory (of non-trivial
ordered divisible abelian groups) completely axiomatizes the
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order and additive theory of the real and rational numbers,
and so their theories are decidable. Moreover, the structures
〈R;<,+,−, 0〉 and 〈Q;<,+,−, 0〉 admit quantifier elimi-
nation.

(O1) ∀x, y(x < y → y �< x)

(O2) ∀x, y, z(x < y < z → x < z)

(O3) ∀x, y(x < y ∨ x = y ∨ y < x)

(A1) ∀x, y, z (x + (y + z) = (x + y) + z)

(A2) ∀x(x + 0 = x)

(A3) ∀x(x + (−x) = 0)

(A4) ∀x, y(x + y = y + x)

(A5) ∀x, y, z(x < y → x + z < y + z)

(A6) ∃y(y �= 0)

(A7) ∀x∃y(x = n � y) n ∈ N
+

Proof Firstly, let us note that O4, O5 and O6 can be proved
from the presented axioms: if a < b then by A7 there exists
some c such that c + c = a + b; one can easily show that
a < c < b holds. Thus, O4 is proved; for O5 note that for any
0 < a we have a < a + a by A5. A dual argument can prove
the axiom O6. Also, the equivalences

(i) [a < b] ↔ [n � a < n � b] and
(ii) [a = b] ↔ [n � a = n � b]

can be proved from the axioms: (i) follows from A5 (with
O1,O2,O3) and (ii) follows from ∀x(n � x = 0 → x = 0)
which is derived from A5 (with O1,O2,O3).

Secondly, every term containing x is equal to n � x + t for
some x-free term t and n∈Z−{0}. So, every atomic formula
containing x is equivalent with n � x�t where�∈{=,<,>}.
Whence, by Remark 1, it suffices to prove the equivalence of
the formula

∃x
⎛

⎝
∧∧

i<�

ti < pi � x ∧
∧∧

j<m

q j � x < s j ∧
∧∧

k<n

rk � x = uk

⎞

⎠

(6)

with a quantifier-free formula. By the equivalences (i) and (ii)
abovewe can assume that pi ’s andq j ’s and rk’s in formula (6)
are equal to each other, say to α. Then by A7 formula (6) is
equivalent with

∃y
⎛

⎝
∧∧

i<�

t ′i < y ∧
∧∧

j<m

y < s′
j ∧

∧∧

k<n

y = u′
k

⎞

⎠ (7)

for some (possibly new) terms t ′i , s′
j , u

′
k (and y = α �x). Now,

the quantifier of this formula can be eliminated just like the
way that the quantifier of formula (2) was eliminated in the
proof of Theorem 1. ��

About the congruence relations, a useful fact is the fol-
lowing generalized Chinese remainder theorem; below we
present a proof of this theorem from (Fraenkel 1963).

Proposition 2 (Generalized Chinese remainder)For integers
n0, n1, . . . , nk � 2 and t0, t1, . . . , tk there exists some x such
that x ≡ni ti for i = 0, . . . , k if and only if ti ≡di, j t j holds
for each 0 � i < j � k, where di, j is the greatest common
divisor of ni and n j .

Proof The ‘only if’ part is easy. We prove the ‘if’ part by
induction on k. For k = 0 there is nothing to prove, and
for k = 1 we note that by Bézout’s Identity there are a0, a1
such that a0n0 + a1n1 = d0,1. Also, by the assumption there
exists some c such that t0 − t1 = cd0,1. Now, if we take
x to be a0(n0/d0,1)t1 + a1(n1/d0,1)t0 then we have x =
t0 − a0n0c and x = t1 + a1n1c so x ≡n0 t0 and x ≡n1 t1
hold. For the induction step (k + 1) suppose that x ≡ni ti
holds for i = 0, . . . , k (and that ti ≡di, j t j holds for each
0 � i < j � k+1). Let n be the least common multiplier of
n0, . . . , nk ; then the greatest commondivisorm ofn andnk+1

is the least common multiplier of d0,k+1, . . . , dk,k+1. Now
x ≡di,k+1 ti holds for 0 � i � k and so by the assumption
ti ≡di,k+1 tk+1 we have x ≡di,k+1 tk+1 (for i = 0, . . . , k).
Therefore, x ≡m tk+1 and so x − tk+1 = mc for some c. By
Bézout’s Identity there are a, b such that an + bnk+1 = m.
Now, for y = x−ancwehave y = tk+1+bnk+1c ≡nk+1 tk+1

and also y ≡ni x ≡ni ti holds for each 0 � i � k. This
proves the desired conclusion. ��
Theorem 5 The infinite theory of non-trivial discretely order-
ed abelian groups with the division algorithm, that is O1, O2,
O3, A1, A2, A3, A4, A5 and

(O◦
7) ∀x, y(x < y ↔ x + 1 � y

)

(A◦
7) ∀x∃y

(
∨∨

i<n

x = n � y + ī

)

n ∈ N
+

where ī = 1 + · · · + 1 (i − times)

completely axiomatizes the order and additive theory of the
integer numbers, and so its theory is decidable.Moreover, the
(theory of the) structure 〈Z;<,+,−, 0, 1, {≡n}n�2〉 admits
quantifier elimination.

Proof The axiom A◦
7 can be easily seen to be equivalent with

the formula∀x ∨∨
i<n

(
x ≡n ī∧∧∧

i �= j<n x �≡n j̄
)
, and so the

negation signs behind the congruences can be eliminated by
(a �≡n b) ↔ ∨∨

0<i<n(a ≡n b + ī ). Whence, by Remark 1,
it suffices to show the equivalence of
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∃x
⎛

⎝
∧∧

i<m

ai � x ≡ni ti ∧
∧∧

j<p

u j <b j � x

∧
∧∧

k<q

ck � x<vk ∧
∧∧

�<r

d� � x = w�

⎞

⎠ (8)

with some quantifier-free formula, where ai ’s, b j ’s, ck’s and
d�’s are natural numbers and ti ’s, u j ’s, vk’s and w�’s are
x-free terms. By the equivalences

(i) [a < b] ↔ [n � a < n � b],
(ii) [a = b] ↔ [n � a = n � b] and
(iii) [a ≡m b] ↔ [n � a ≡nm n � b]

which are provable from the axioms, we can assume that ai ’s,
b j ’s, ck’s and d�’s in formula (8) are equal to each other, say
to α. Now, (8) is equivalent with

∃y
⎛

⎝y ≡α 0 ∧
∧∧

i<m

y ≡ni t
′
i ∧

∧∧

j<p

u′
j < y

∧
∧∧

k<q

y<v′
k ∧

∧∧

�<r

y = w′
�

⎞

⎠ (9)

for y = α � x and some (possibly new) terms t ′i ’s, u′
j ’s, v

′
k’s

and w′
�’s. If r �= 0 then (9) is readily equivalent with the

quantifier-free formula which results from substituting w′
0

with y. So, it suffices to eliminate the quantifier of

∃x
⎛

⎝
∧∧

i<m

x ≡ni ti ∧
∧∧

j<p

u j < x ∧
∧∧

k<q

x<vk

⎞

⎠ . (10)

By the equivalence of the formula ∃x(θ(x)∧u0< x∧u1< x)
with the following formula

[∃x(θ(x)∧u0< x)∧u1�u0
]∨[∃x(θ(x)∧u1< x)∧u0�u1

]
,

we can assume that p � 1 (and q � 1 by a dual argument).
Also, the formula ∃x(θ(x) ∧ x ≡n0 t0 ∧ x ≡n1 t1) is equiva-
lent with ∃x(θ(x)∧x ≡n t)∧t0 ≡d t1 where d is the greatest
common divisor of n0 and n1, n is their least common multi-
plier, and t = a0(n0/d)t1 + a1(n1/d)t0 where a0, a1 satisfy
Bézout’s Identity a0n0 + a1n1 = d (see the proof of Propo-
sition 2). So, we can assume that m � 1 as well. Now, if
m = 0 then formula (10) is equivalent with a quantifier-
free formula by Theorem 2 (with s(x) = x + 1 just like
the way formula (5) was equivalent with some quantifier-
free formula). So, suppose that m = 1. In this case, if
any of p or q is equal to 0 then (10) is equivalent with �
(since any congruence can have infinitely large or infinitely

small solutions). Finally, if p = q = 1 = m then the
formula

∃x(x ≡n t ∧ u< x ∧ x<v)

is equivalent with ∃y(r < n � y � s) for x = t + n � y,
r = u − t and s = v − t − 1. Now, ∃y(r < n � y � s) is
equivalent with the quantifier-free formula

∨∨

i<n

(s ≡n ī ∧ r + ī < s)

since by the division algorithm there are some q and
some i < n such that s = qn + i . The existence of
some y such that r < ny � s is then equivalent with
r < nq (= s − i). ��
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