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Abstract
Medical case-based reasoning (CBR) systems require the handling of vague or imprecise data. The fuzzy set theory is
particularly suitable for this purpose. This paper proposes a case-base preparation framework for CBR systems, which
converts the electronic health record medical data into fuzzy CBR knowledge. It generates fuzzy case-base knowledge by
suggesting a standard crisp entity–relationship data model for CBR case-base. The resulting data model is fuzzified using a
proposed relational data model fuzzificationmethodology. The performances of this methodology and its resulting fuzzy case-
base structure are evaluated. Diabetes diagnosis is used as a case study. A set of 60 real diabetic cases is used in the study. A
fuzzy CBR system is implemented to check the diagnoses accuracy. It combines the resulting fuzzy case-base with a proposed
fuzzy similarity measure. Experimental results indicate that the proposed fuzzy CBR method is superior to traditional CBR
and other machine-learning methods. Our fuzzy CBR achieves an accuracy of 95%, a precision of 96%, a recall 97.96%, an
f-measure of 96.97%, a specificity of 81.82%, and good robustness for dealing with vagueness. The resulting fuzzy case-base
relational database enhances the representation of case-base knowledge, the performance of retrieval algorithms, and the
querying capabilities of CBR systems.

Keywords Case-based reasoning · Diabetes diagnosis · Fuzzy relational database · Case retrieval · Clinical decision support
system

1 Introduction

Diabetesmellitus (DM) is a chronic disease with severe com-
plications. Early DM diagnosis plays a crucial role in its
control and prevention of its complications (Varma et al.
2014). It has been shown that 80% of type 2 DM compli-
cations can be avoided or delayed by early identification of
those at risk (Barakat and Barakat 2010). A physician has to
be able to analyze several factors to diagnose DM correctly.
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An inability to comprehend large amounts of data may lead
to an erroneous diagnosis. As a result, we need to select an
effective AI technique to build a clinical decision support
system (CDSS). Case-based reasoning (CBR) is one of the
most suitable intelligent techniques for an experience-based,
theory-less, or ill-formed problems, such as DM diagnosis
(El-Sappagh et al. 2014). Many real-world systems require
support formanaging imprecise data.Radha andRajagopalan
(2007) argued that any medical diagnostic system that disal-
lows vagueness in knowledge representation would be prone
to errors.

For diagnosing diseases properly, physicians depend on
their experience and the patient’s vague descriptions of their
symptoms. To handle the complexity of chronic disease, the
fuzzy theory needs to be incorporated intoCBR to allowmore
robust, flexible, and accurate models. Fuzzy logic has been
integrated with CBR in many fields (Portinale and Montani
2002; Xiaodong et al. 2009). As far as we know, there are
no studies of fuzzy CBR in diabetes diagnosis. However,
fuzzy logic has been used with other AI techniques, such as
rule-based reasoning (RBR), for diabetes diagnosis (Lee and
Wang 2011).
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Fuzzy sets enhance CBR in many ways. First, they help in
building fuzzy cases to provide a characterization of impre-
cise information (Portinale and Montani 2002). The cases
in CBR can be built from electronic health record (EHR)
database. However, the crisp data model of EHR proves
inadequate for representing vague data. An extended fuzzy
relational database (FRDB)needs to bederived from theEHR
to represent and query vague patient data. Second, they can
be used in developing case retrieval algorithms that incor-
porate fuzzy matching techniques, which can handle partial
case matching or retrieval processes. Third, they can be used
in a fuzzy query and query case description. Therefore, a
CBR system can accept an imprecise description of a new
case (Portinale and Montani 2002). Finally, fuzzy reasoning
in the form of fuzzy rule-based systems can be combined
with fuzzy CBR (FCBR) to overcome their separate lim-
itations. However, there is no way to utilize fuzziness in
CBRwithout having a fuzzy representation of case-base (CB)
knowledge.

All existing FCBR systems concentrate on the retrieval
problem and disregard the fuzzy knowledge storage of
fuzzy CB. This study follows a different strategy by stor-
ing the fuzzy knowledge in a standard-based fuzzy relational
database. Fuzzy knowledge representation and querying play
a critical role in the success of a CBR system for chronic
disease diagnosis. This paper discusses the detailed process
of fuzzy CB knowledge creation from EHR by fuzzifying
its conceptual and logical data models. In another study (El-
Sappagh et al. 2014), we handled incomplete data and NULL
values in a data preprocessing phase.

The rest of the paper is organized as follows. Section 2
reviews relatedwork on the role of fuzzy inCBRand diabetes
diagnosis. Section 3 introduces our proposed CB prepara-
tion framework. Section 4 details the proposed fuzzification
framework for the CB database. Section 5 considers the
implementation of our fuzzy CBR using diabetes diagnosis
as a case study. Section 6 evaluates the system’s performance.
Finally, Sect. 7 describes the conclusion and future work.

2 Related work

Many research efforts have been invested in diagnosing dia-
betes using AI techniques. Mohamudally and Khan (2011)
conducted a comparison between most algorithms and listed
their strengths and weaknesses. Shankaracharya et al. (2010)
presented a review of some diabetes diagnosis techniques,
such as ANNs, SVMs, neuro-fuzzy systems, and RBR sys-
tems. Kalaiselvi and Nasira (2014) proposed an Adaptive
Neuro-fuzzy Inference System (ANFIS) for diabetes diag-
nosis (80% accuracy). Temurtas et al. (2009) proposed a
multi-layer ANN and a probabilistic NN to diagnose diabetes

by using the Pima Indian Dataset (PID),1 which had accu-
racies of 79.62 and 78.05%, respectively. Ganji and Abadeh
(2011) developed a fuzzy classification system for diabetes
diagnosis using ant colony optimization and tested it with
the PID (accuracy 84.24%). Barakat and Barakat (2010) uti-
lized SVM to provide a diabetes diagnosis system with an
accuracy of 94%. However, Yao and Li (2010) asserted that
CBR is better than SVM, especially when the data contain
a high level of noise. Varma et al. (2014) proposed a modi-
fied Gini-index Gaussian RBR system using fuzzy decision
tree algorithm and tested it with the PID with an accuracy
of 75.8%. Zadeh (2003) surveyed the recent ML techniques
applied in diabetes diagnosis problem.

On the other hand, RBR requires an explicit model of the
domain. It is a hard task for an expert to recall all the tacit
rules comprehensively. An RBR is simply not appropriate
for complex problems because of the high dimensionality of
the rule space, except for trivial cases with no impact on real-
life applications. For example, Barakat and Barakat (2010)
generated a set of rules that are no straightforward general
rules for DM diagnosis. Sometimes it is very difficult for
even an experienced clinician because being dependent only
on the result of the laboratory tests is not enough. In addition,
the maintenance of a large rule base system is a challenging
task. Its size increases the system’s computational load, and
building a rule base is a time-consuming task (Ganji and
Abadeh 2011). Developing a CBR system is much faster and
easier than constructingRBR system.Althoughmany studies
used ANN for diabetes diagnosis, ANN hasmany limitations
compared to CBR. For example, it has no explanations and
works as a “black box.” CBR is more flexible than ANN by
handling missing data and a large number of features. As a
result, CBR is more suitable for complex problems than ML
and RBR techniques.

By concentrating on CBR, it has been used to solve many
medical and non-medical problems. Montani et al. (2000)
proposed a CBR for medical education named iCBLS. This
system achieved accuracies of 70% for students’ interaction,
76.4% for group learning, 72.8% for solo learning, and 74.6%
for improved clinical skills. El-Sappagh et al. (2015) inte-
grated CBR and ANN to estimate the cost of new product
development. They improved CBR by using ANN to cal-
culate attribute weights, get the optimal value of k nearest
neighbors, and to estimate the cost of a potential product.
Wang (1997) predicted and adapted the database manage-
ment system (DBMS) performance based on CBR model,
and they tested it onMySQLDBMS.Hyung et al. (1994) used
CBR to determine the efforts required to build new software,
by integrating particle swarm optimization (PSO) with CBR.
PSO is utilized to select optimum weights, and their pro-
posal achieved better performance by using the two datasets

1 http://archive.ics.uci.edu/ml/datasets.
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ofMaxwell andDesharnais. Gerstenkorn andMan’ko (1991)
proposed a classificationmodel based on a hybridCBR-ANN
technique. The ANN is used to calculate feature weights.
The authors adopted a cost-sensitive back-propagation neural
network (BPNN) to deal with unbalanced data in the net-
work training process. The system has been tested by seven
datasets, and the system achieved an average accuracy of
83.98%. Pappis and Karacapilidis (1993)

CBR has been used for diabetes diagnosis in many stud-
ies (Marling et al. 2011; Begum et al. 2009). Marling et al.
(2011) used it to improve the insulin bolus calculation pro-
cess. They proposed a temporal retrieval algorithm to take
into account preceding events when recommending bolus
insulin doses. By enhancing bolus predictions, they reduced
the blood glucose risk index byup to 27%.However,CBRhas
been combined with fuzzy logic to handle domain impreci-
sions and vagueness (Rodriguez et al. 2006; Fan et al. 2011).
Rodriguez et al. (2006) proposed an individualized situation
recognition system in dynamic environments by combining
CBR, Situation-Operator-Modeling (SOM), and fuzzy logic.
Fan et al. (2011) proposed a strategy for enhancing the oper-
ational agility of petroleum refinery plants based on CBR.
They suggested a case retrieval technique based on fuzzy
matching based on proposed stability number and optimiza-
tion model for fuzzy membership functions. In the medical
domain, physicians often describe patients using imperfect
and linguistic data, and their knowledge has a significant deal
of imprecision and vagueness. Petrovic et al. (2011) argued
much of the knowledge that humans acquire through experi-
ence be perception-based and thus subject to imprecision and
inaccuracy. When such knowledge is not treated in a suitable
way that can consider and convey its inherent imprecision, it
usually leads to reduced effectiveness of the used knowledge-
based systems. To handle imprecision and vagueness, CBR
has used fuzzy reasoning in many medical and non-medical
CDSS systems. However, there is a shortage of literature
showing hybrid fuzzy logic and CBR for diabetes manage-
ment. On the other hand, there are many fuzzy rule-based
systems for implementing diabetes diagnosis CDSS (Lee and
Wang 2011).

Most existing studies have not stored fuzzy CB knowl-
edge in a separate fuzzy database. Portinale and Montani
(2002) created a crisp database for CB and used fuzzy SQL
queries for case retrieval. Xiaodong et al. (2009) created a
fuzzy CB database. They have represented fuzziness using a
single linguistic value for each fuzzy variable, which surely
affects the accuracy of the retrieval algorithms and query for-
mulation. Medical domain requires the creation of standard
and interoperable knowledge bases to support the integra-
tion between distributed CDSS systems and interoperability
between CDSS and EHR. As a result, the created CB fuzzy
database must be based on a unified medical data model.
There are no studies in the literature that consider this issue.

Diabetes diagnosis was used as a case study in this paper.
We apply the fuzzification process to a crisp HL7 RIM-based
CB quantitative data. The result is a fuzzy CB relational
database. To start the fuzzification process, Li and Ho (2009)
created a standard relational datamodel for the diabetes diag-
nosis case-base. They populated it with real diabetic cases
to make the necessary data preprocessing steps using a set
of ML algorithms (El-Sappagh et al. 2014). They encode the
CB unstructured contents using SNOMEDCT ontology. The
encoding of CB knowledge using standard ontology supports
the development of semantic case retrieval algorithms (Pap-
pis and Karacapilidis 1993; Arias-Aranda et al. 2009). Qin
et al. (2018) proposed a CBR system for computer-aided tol-
erance specification. Theymodeled theCBandquery cases in
OWLontologies andused ontology-based similaritymeasure
for case retrieval. Pappis and Karacapilidis (1993) utilized
CBR for analyzing the response to risks connectedwith urban
water supply network (UWSN). They utilized OWL ontolo-
gies for the representation of disaster scenario features and
UWSN risks and response strategies knowledge, and for case
retrieval process.

3 The CB preparation framework

EHR data are the primary source of CB knowledge. This
section discusses the conversion of both the structure and
content of an EHR database to a derived CB structure and
content. The structures of EHR data and CBR cases could be
matched. In our domain, a case is composed of a description
of the problem and its solution as shown in Eq. 1.

Case-Structure = {P, S (P)} (1)

where P is the description of the problem that is represented
by several dimensions, such as patient symptoms and labo-
ratory test results. This part is described by 58 features, all
of which are derived from the EHR as shown in Eq. 2.

P = {LFT,LP,GS, A, B, R,G, O,KFT,LT,US,HP} (2)

whereLFTLiver FunctionTests, LPLipidProfile, GSGlobal
Symptoms, A Age, B Body Mass Index, R Residence, G
Gender, O Occupation, KFT Kidney Function Tests, LT Lab
Tests, USUrination Symptoms, and HPHematological Pro-
file. The solution part S(P) is described by six features; it
is the diagnosis of diabetes including diabetic, pre-diabetic,
gestational-diabetic, and pre-diabetic-gestational. Moreover,
S(P) includes the potential to produce other complications
as presented in Eq. 3.

S (P) = {DD, L, N , H ,G,SP} (3)
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Fig. 1 The case-base preparation phases

Fig. 2 The crisp CB data model for diabetes diagnosis and other related complaints

where DD diabetes diagnosis, L liver problem, N nephropa-
thy problem, H hypercholesterolemia problem, G glomeru-
lonephritis, and SP splenomegaly. However, EHRs are
distributed systems inmost cases. As a result, their data struc-
tures will vary. To facilitate the collection of patient medical
data from distributed EHR environments, we stick to stan-
dards that include a standard medical data model, standard
diabetes diagnosis data elements, and standard contents.

Figure 1 shows our previously proposed CB preparation
framework to map an EHR database into high-quality CBR’s
CB knowledge (El-Sappagh et al. 2014), which improves the

CB semantic. The data-fuzzification phase is the final phase,
which is the focus of our study. It will be discussed in details
in the next sections.

4 The proposed CB database fuzzification
framework

In this section, we propose a methodology to extend the
CB relational model to incorporate fuzziness. In addition,
an FRDB CB is created for diabetes diagnosis. In Fig. 2, we
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have created a crisp physical, relational database of the dia-
betes case-base. Then, we populated it with a dataset that is
prepared in a previous study (Li and Ho 2009). Using reverse
engineering,we create the crispCBERmodel from this phys-
ical database. Next, we will discuss the detailed steps of a
proposed CB database fuzzification methodology, which has
seven steps as follows.

Step 1 Build the crisp CB ER model. Our domain experts
and the diabetes diagnosis CPGs determined a list of DM
diagnoses and their complication features. From the EHR
database, all of these features are collected and organized
in a CB structure. We have previously proposed a stan-
dard CB relational data model (Li and Ho 2009). In this
paper, we customize this model according to our dataset.
Patient cases are described by a set of entities as shown in
Fig. 2. The Case problem is defined by the entities, which are
Patient_Case, Kidney_Function_Test, Liver_Function_Test,
Lipid_Profile, Diabetes_Lab_Test, Global_Symptom, Hema-
tological_profile, and Urination_Symptom. The Diagnosis
entity represents case solution.

Step 2 Determine the fuzzy entities and fuzzy attributes. In
a fuzzy database FDB, crisp entities exist side by side with
fuzzy entities: FDB = {CE, FE}. For space restrictions,
we concentrate only on fuzzy relations (e.g., Patient_Case in
Fig. 2):

a. Determine the fuzzy entities, which are entities with one
or more fuzzy attributes, such as Diabetes_Lab_Test and
Patient_case. For FE = {E1, E2, . . . , En}, n = |FE |
and FE = FDB − {Global_Symptom,Diagnosis}.

b. In each fuzzy entity Ei =
{
Ai
1, . . . , A

i
q , A

i
q+1, . . . ,

Ai
b, A

i
b+1, . . . , A

i
c

}
, determine the quantitative attributes

Ai
q (not binary and categorical) to be fuzzified that

may contain imprecise data. For example, in table
Patient_Case, fuzzy features are BMI, Age, etc.

c. For each selected fuzzy attribute Ai
q :

1. Determine the range of values for its crisp domain,
Ai
q ∈ [α, β].

2. Determine the fuzzy linguistic terms Ai
q ∈

{
Ai
q1,

Ai
q2, . . . , A

i
qk

}
for k terms. For each term Ai

qk deter-

mine its MF μi
qk . For each MF, determine its shape,

formula, and parameters. We select triangular and
trapezoidal MFs, see Table 1. These two types of
membership functions are suitable to represent the
fuzzy semantics of many problems based on previ-
ous experiences (Arias-Aranda et al. 2009), and in
the same time they are simple, flexible, and com-
putationally cheaper that other nonlinear functions
(Khanum et al. 2009). It is difficult to calculate the
arithmetic operations in case of Bell, Sigmoidal, or

Gaussian. In addition, the medical meaning of such
membership functions has been deeply discussed
and validated with our domain experts. Based on
experience, the overlap of triangle-to-triangle and
trapezoid-to-triangle fuzzy regions results in some-
where between 25 and 50% of the fuzzy set base
being averaged. Our domain experts recommended
fixing the normal ranges of all features and making
the left and right terms overlap by 50%.

Table 1 shows examples of fuzzy linguistic variables that
are created by using MATLAB from some fuzzy tables. The
attached supplementary file contains the membership func-
tions of the 35 features.

Step 3 Extend the ER model into a fuzzy ER model by con-
centrating on the third fuzzification type.

An entity is said to be fuzzy if one or more of its attributes
are fuzzy. All entities in Fig. 2 are fuzzy entities except
Diagnosis and Global_Symptom relations, which have crisp
categorical (i.e., symbolic) and ordinal features. An attribute
is said to be fuzzy if its domain is a set of possibility distribu-
tions. In this step, all fuzzy entities and attributes in the crisp
model are signed by the construct “F,” such as Patient_CaseF

and ageF as modeled.

Step 4 Select a strategy for the FRDB design. Three main
strategies exist for FRDB design. Eachmethod has its advan-
tages and disadvantages. These methods concentrate on the
fuzzy SQL query processing. As a result, they save a large
volume of metadata in the database dictionary to describe
data precisely. However, in our case, we depend on a retrieval
algorithm to fetch the knowledge from the case-base. The
resulting database will be used to populate the CB fuzzy
ontology; we customize these models. This paper concen-
trates on the fuzzification of quantitative numerical data using
only possibility distribution.

Step 5 Transform the fuzzy ER model to case-base fuzzy
relational model. This step is performed by transforming
crisp entities and relationships into tables and relationships,
as done for traditional databases. For example, the Diagno-
sis entity is mapped to the Diagnosis relation. Fuzzification
of the data is achieved by converting the crisp values into
linguistic values, each with a degree of membership in every
fuzzy set. The fuzzification is done bymapping each instance
of a crisp attribute into the fuzzy sets of its corresponding
fuzzy attributes.

More formally, let E be an entity with attributes <

K , A1, . . . , Al , B0 >, with key K , non-key attributes Ai

for i = 1, . . . , l, and let B0 be the non-key attribute to
be fuzzified. For any tuple z =< k, a1, . . . , al , b0 >∈
E , with k ∈ K , ai ∈ Ai for i = 1, . . . , l, and b0 ∈
B0, EF is the fuzzy entity, and it has the tuple zF =<
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Table 1 Examples of fuzzy membership functions and their equations

Fuzzy entity Membership functions Membership functions equations

Fuzzy entity Patient_case
μYoung (x) =

⎧
⎨
⎩
0 x > 40
40−x
10 30 ≤ x ≤ 40

1 x < 30

Fuzzy feature Age μMiddleAged (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ 30
x−30
10 30 < x ≤ 40

50−x
10 40 < x < 50

0 x ≥ 50

μOld (x) =

⎧⎪⎨
⎪⎩

0 x < 40
x−40
10 40 ≤ x ≤ 50

1 x > 50

Fuzzy entity Kidney_Function _Test
μLow (x) =

⎧
⎪⎨
⎪⎩

0 x > 0.95
0.95−x
0.45 0.5 ≤ x ≤ 0.95

1 x < 0.5

Fuzzy feature Serum_Creatinine μNormal (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ 0.5
x−0.5
0.45 0.5 < x ≤ 0.95
1.4−x
0.45 0.95 < x < 1.4

0 x ≥ 1.4

μHigh (x) =

⎧
⎪⎨
⎪⎩

0 x < 0.95
x−0.95
0.45 0.95 ≤ x ≤ 1.4

1 x > 1.4

Fuzzy entity Lipid_profile

μLow (x) =

⎧⎪⎨
⎪⎩

0 x > 95
95−x
65 30 ≤ x ≤ 95

1 x < 30

Fuzzy feature Triglycerides μNormal (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ 30
x−30
65 30 < x ≤ 95

160−x
65 95 < x < 160

0 x ≥ 160

μHigh (x) =

⎧
⎪⎨
⎪⎩

0 x < 95
x−95
65 95 ≤ x ≤ 160

1 x > 160

Fuzzy entity Liver_Function_Test

μLow (x) =

⎧
⎪⎨
⎪⎩

0 x > 6.35
6.35−x
2.35 4 ≤ x ≤ 6.35

1 x < 4

Fuzzy feature Total_protein μNormal (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ 4
x−4
2.35 4 < x ≤ 6.35
8.7−x
2.35 6.35 < x < 8.7
0 x ≥ 8.7

μHigh (x) =

⎧
⎪⎨
⎪⎩

0 x < 6.35
x−6.35
2.35 6.35 ≤ x ≤ 8.7

1 x > 8.7

k, a1, . . . , al , {μ (b1) /b1, . . . , μ (bn) /bn} >, where b0 =
{μ (b1) /b1, . . . , μ (bn) /bn} > for i = 1, . . . , n. The result-
ing fuzzy entities are thus possibilistic relations (since one of
its attributes is fuzzy), and it is not in the first normal form,
as shown in Table 2 for the crisp Age=52.

Step 6 Normalize relations by using functional depen-
dencies, multi-valued dependencies, and restricted fuzzy
functional dependencies. For fuzzy attributes, the domains
are sets of possibility distributions (i.e., fuzzy sets) that are
non-atomic. A domain is atomic if its elements are indivisible
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Fig. 3 A fragment of the
fuzzified relation

Patient case 

Age_ID 
Age BMI 

CaseID 

BMI_ID Age_ID 

Persistence 

BMI_ID 

Value  

m  m  1  1  

Value  

units. For a normalized relation, all attributes are required to
have atomic domains. Therefore, a possibilistic relation is not
in the first normal form (1NF) unless the DBMS allows pos-
sibility distributions as a data type. In the absence of database
systems that provide possibility distributions as a data types,
a strategy is required to normalize possibilistic entities. In
our case, each fuzzy attribute is modeled as a separate fuzzy
table with key= base table key + fuzzy table’s attributes,
where each attribute stores atomic value.

Consider a relation R with attributes< K , A1, . . . , Al >,
with a non-fuzzy key K, and non-key (fuzzy or non-fuzzy)
attributes At for t = 1, . . . , l. For each fuzzy attribute Am

with 1 ≤ m ≤ n � n ≤ l (i.e., its domain is a fuzzy set),
create a new relation Am =< Km, value, μ >, andmodify R
to Ŕ by replacing Am in Rwith Km in Ŕ. The termsValue and
μ model the elements and associated grades, respectively, to
the fuzzy attribute Am .Km is an atomic identifier in Ŕ for Am

as shown in Eq. 4.

r = < k, a1, . . . , am, . . . , al >

∈ R with am =
{
μ
am1

am1

, . . . , μ
amn

amn

}
(4)

add the collection of tuples aF
mp

=< km, amp , μ
(
amp

)
>

to the new relation Am for p = 1, . . . , n. Furthermore, add
the instance < k, a1, . . . , km, . . . , al > to Ŕ, where n is the
number of fuzzy sets defined for the fuzzy variable Am .

For illustration, assume that we have an entity-type set E ,
and type e ∈ E is an instance entity type, e.g., the fuzzy table
Patient_caseF.Moreover, assume that we have attribute set A
for e and that a∈A is an instance attribute, e.g., Patient_caseF

(CaseID, AgeF, BMIF, Residence, Occupation …), where A
as the set of crisp and fuzzy attributes = {Age, BMI, Resi-
dence, and Occupation}, and a = {Age, BMI}.

If a quantitative and non-key attribute a is decided to be
a fuzzy attribute, it becomes a composite or multi-valued
attribute. Therefore, it can be expressed by a possibility dis-
tribution. If the attribute a has the fuzzy values (fuzzy sets):
a1, a2. . .an , then its values can be represented as shown in
Eq. 5.

V (a) =
{
μ
a1

a1
, μ

a2

a2
. . . μ

an

an

}
(5)

where V (a) is the value of the attribute a, μ (ai ) is the mem-
bership function of the fuzzy value ai , and 0 < μ (ai)
≤ 1, 1 ≤ i ≤ n. For example, if Age = 70 and its fuzzy
values are defined as < young, middle_aged, old >, then
according to the membership functions in Table 1, the fuzzi-
fication process is presented in Eq. 6.

Value (age = 70)

= {0.0/young, 0.0/middle_aged, 1.0 /old} (6)

Fuzzy attributes are modeled as separate entity-attribute-
value (EAV) tables, as seen in Fig. 3. The Value attribute
stores the fuzzy set name, and the μ attribute stores its mem-
bership degree. According to the membership functions of
Age and BMI, each value in the crisp table is converted to a
set of tuples in the derived EAV tables.

Fuzzy attributes can be modeled as regular tables, i.e., not
in EAV format. In these tables, a column is created for each
fuzzy value. This design can simplify querying, but it wastes
memory for fuzzy values with μ = 0.0. Moreover, the nor-
malization can be done in the main table (e.g., Patient_case).
The main table containing the crisp data can be altered by
replacing the crisp column by its fuzzified columns.

Step 7 Populate the resulting fuzzy relational database. Crisp
data types are represented according to the hosting RDBMS.
For fuzzy relations, they are filled according to the member-
ship function formulas of the associated attributes. In Fig. 4,
data are extracted from the crisp relational database, fuzzi-
fied according to the domain expert knowledge, and stored
in a fuzzy relational database. There is no need to store meta-
data physically about the fuzzy membership functions. We
built a Java project to populate a CB FRDB from previously
filled crisp CB RDB. After executing step 7, the fuzzy CB
is available in a fuzzy relational database. The next stage is
to build a complete CBR system that utilizes the resulting
fuzzy knowledge base.

5 System implementation

Implementation issues can be grouped into three stages: (1)
representation of the case features and their measures, (2)
database modeling, and (3) CDSS system. The representa-
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Fig. 4 The fuzzy CB population
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Fig. 5 The customized JCOLIBRI functionality

tion process involves the selection of the diagnostic features
and their operationalization. Our study of the medical lit-
erature and the cooperation with our domain experts have
determined the features, which are used for the diagnosis of
diabetes along with their types (fuzzy or crisp), ranges, and
preparation. Moreover, a fuzzy relational database for CB
storage has been proposed based on our proposed methodol-
ogy using the Oracle 11g DBMS.

We have implemented a fuzzy CBR prototype using our
prepared dataset and fuzzification methodology results. The
JCOLIBRI2 API2 is used as the Java platform, which sup-
ports the implementation of crisp CBR systems. On the other
hand, it is not related to fuzzy logic aspects in anyway. To test
the results of our proposedCB fuzzificationmethodology,we
implemented an FCBR using a fuzzy CB and added the fuzzy
functionalities of the fuzzy similarity and the fuzzy query
to JCOLIBRI2. Figure 5 shows a customized JCOLIBRI2
architecture according to our added and needed functional-
ities. To save space, we concentrate on the fuzzy CB and
fuzzy retrieval steps that are the most critical steps in CBR.

1. Fuzzy case-base It has been built in the previous sections.
This CB is connected to JCOLIBRI2 using theDatabase

2 http://gaia.fdi.ucm.es/research/colibri/jcolibri.

Connector object. Our fuzzy CB does not contain any
linguistic terms as feature values.

2. Feature weights We calculated weights in another study
for medical data preparation (El-Sappagh et al. 2014).
Table 2 shows a sample of feature weights with values ∈
[0, 1].

3. Fuzzy case retrieval algorithmThis algorithmwas imple-
mented and connected to the JCOLIBRI2 environment.
Very serious consideration must be given to the nature of
the data that dictate the selection of a suitable similarity
measurement. A single similarity measure cannot fit all
situations. Our similarity measure depends on the type of
feature values. The global similarity function uses a dif-
ferent local similarity function for each feature type. The
global similarity SIM (C, Q) between two cases C and
Q is calculated by Eq. 7, and sim is the local similarity
function between two values.

SIM
(
Ci ,Cq

) =
n∑

k=1

wk ∗ sim
(
fik, fqk

)
(7)

The local similarity function sim is calculated according to
feature types as follows:

Case 1 For each ordinal feature (e.g., urination fre-
quency, urobilinogen, bilirubin, and protein), our domain
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Table 2 A sample of feature
weights

A B C D E Maximum

2hPG 0.060 0.001 1.000 0.894 0.038 1

Birth 0.128 0.551 0.396 0.206 0.248 0.551

Hunger 0.377 0.202 0.929 0.074 0.308 0.929

HbA1C 0.030 0.025 0.370 1.000 0.049 1

Hemoglobin 0.092 0.176 0.619 0.157 0.699 0.699

Platelet count 0.020 0.118 1.000 0.111 0.422 1

Prothrombin INR 0.134 0.057 0.056 0.051 0.689 0.689

Red cell count 0.047 0.089 0.897 0.157 0.745 0.897

Residence 0.063 0.391 1.000 0.031 0.520 1

SGOT_AST 0.150 0.106 0.000 0.070 0.271 0.271

S. Sodium 0.104 0.144 0.095 0.098 0.363 0.363

S. Uric acid 0.000 0.136 1.000 0.087 0.522 1

Triglycerides 0.014 0.127 0.000 0.101 0.790 0.790

…

Table 3 A similarity matrix of
Urination frequency

Nil + ++ +++

Nil 1 0.6 0.3 0.1

+ 0.6 1 0.6 0.3

++ 0.3 0.6 1 0.6

+++ 0.1 0.3 0.6 1

experts proposed a similarity matrix. For example, the
similarity matrix of urination frequency is shown in
Table 3.
Case 2For all symbolic features (e.g., residence and gen-
der), we use the exact-match similarity function in Eq. 8.

sim (ci , qi ) =
{
0, if qi �= ci
1, if qi = ci

(8)

• Case 3 For fuzzy features, most of the existing fuzzy
case retrieval algorithms use one value to represent a
fuzzy variable (the largest membership value), and they
use these values to calculate the similarity. In our algo-
rithm, we utilize all of the membership degrees of a
fuzzy variable. As shown in Fig. 5, the same member-
ship functions that are used to fuzzify the CB are used to
fuzzify all numerical features in a query case (e.g., FPG,
age, HbA1c, BMI, Serum Creatinine, Total cholesterol,
Direct Bilirubin, Alk Phosphatase, etc.). We propose a
similaritymeasure based onmembership functions of the
fuzzy sets associated with these features. The similarity
is based on the degree of similarity between the fuzzy
sets in the query and stored cases. A comparison is per-
formed between the stored and fuzzy query values. The
normalized Euclidean distances between the fuzzy sets

of a feature are used to calculate the similarity as shown
in Eq. 9.

Dist (ci , qi ) =
√∑n

k=1

(
μcik − μqik

)2
√
n

(9)

where qi the crisp value of the query’s feature; ci the crisp
value of the stored case’s feature; n the number of fuzzy
sets; μcik the fuzzy degree of k’s fuzzy value, and it is
read from the fuzzy database; μqik is the corresponding
fuzzy degree of μcik , and it is calculated in the applica-
tion. For example, let the fuzzy variable Age be fuzzified
as the young, middle_aged and old fuzzy sets in Table 1.
The value of n is 3. The current case’s age in CB is age
= 30, and it is fuzzified as μAge (30) = {1.0 /young,
0.0/middle_age, 0.0/old}. Let the query case has age =
38, and it is fuzzified asμAge (38)= {0.2/young, 0.8/mid-
dle_age, 0.0/old}. Figure 6 shows the distance between
the youngmembership values in the query and case-base
cases. The same process is carried out for middle_age
and old for ages 30 and 38, respectively. The normalized
Euclidean distance between the two ages (i.e., 30, 38) is
calculated using Eq. 9 as follows.

Dist (30, 38)

=
√

(1.0− v0.2)2+(0.8 − 0.0)2+(0.0−0.0)2√
3

=0.65

The similarity is calculated using Eq. 10.

sim (ci , qi ) = 1 − Dist (ci , qi ) (10)

The similarity level between 30 and 38 is sim (30, 38) =
0.35. As we will discuss later, this similarity measure
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Fig. 6 The distance between two fuzzy membership values

satisfies the defined fuzzy similarity measure properties
(Sushmita and Chaudhury 2007). Moreover, in a query
description, a patient can now be described using vague
terms for numerical features (e.g., Age = young, BMI =
obese, FPG = low) without any numerical values. In this
case, the full possibility distribution of the fuzzy term is
created, and Eq. 9 can calculate the distance.
Finally, fuzzy hedges such as “very” or “extremely” are
possible in query case description.Hedges are fuzzyqual-
ifiers that modify a membership value in a fuzzy set. For
example, if μyoung (x) is the membership function, then

μveryYoung (x) = (
μyoung (x)

)2.
• Case 4 For numerical features, the similarity is calcu-
lated according to Eq. 11, where maxi , and mini are the
feature’s maximum and minimum values, respectively.

sim (ci , qi ) = 1 − |ci − qi |
maxi −mini

(11)

6 Performance evaluation

The performance assessment has four strategies as discussed
in the following subsections.

6.1 Evaluation of the fuzzy similarity metric

First, we discuss the justification for the similarity measures
that we proposed.We support many types of features, includ-
ing numerical, nominal, ordinal, and fuzzy types.We select a
fuzzy similarity measure based on the well-known Euclidean
distance function. This fuzzy distance metric satisfies the
following properties: nonnegative: d (x, y) ≥ 0; identity:
d (x, y) = 0 iff x = y; symmetry: d (x, y) = d (y, x);
and triangle inequality: d (x, z) ≤ d (x, y) + d (y, z). The
defined fuzzy similaritymeasure satisfies the defined similar-
ity properties as follows in Sushmita and Chaudhury (2007).
Let xi , x j ∈ X be two elements in the universe X , where
xi , x j are defined by fuzzy sets Ak ∈ F and F is the class of
all fuzzy sets of X , k = 1, . . . , N .

1. S
(
xi , x j

) = S
(
x j , xi

)
, xi , x j ∈ X , for all Ak ,

2. S (xi , xi ) = 1,

3. 0 ≤ S
(
xi , x j

) ≤ 1,
4. S

(
xi , x j

) = 1 iff xi = x j ,
5. If μAh (xi ) ≤ μAh

(
x j

) ≤ μAh (xk) for all xi , x j , xk ∈
X , where Ah, h = 1, 2, . . . , N ∈ F ,F is the class of
all fuzzy sets of X , then S

(
xi , x j

) ≥ S (xi , xk) and
S

(
x j , xk

) ≥ S (xi , xk).
6. max∀xi ,x j∈X S

(
xi , x j

) = 1, which means it is a normal
similarity measure.

We compare the performance of this similarity measure with
some of the existing measures as shown in Eq. 12 (Xiong
2011):

S(xi , x j ) = max
k

min[μAk (xi ), μAk (x j )] (12)

Moreover, the correlation coefficient of xi and x j is defined
in Eq. 13 (Godo et al. 2009).

k
(
xi , x j

) = C
(
xi , x j

)
√
T (xi ).T (x j )

(13)

where T (xi ) = ∑N
k=1

[
μ2

Ak
(xi ) + v2Ak

(xi )
]
, vAk (xi ) =

1 − μAk (xi ), and C
(
xi , x j

) = ∑N
k=1 μAk (xi ).μAk (x j ) +

vAk (xi ).vAk (x j ).
Moreover, Jin et al. (2010) proposed three types of simi-

larity measures are described by Eqs. 14, 15, and 16.

Mxi ,x j =
∑N

k=1 min
(
μAk (xi

)
, μAk (x j ))∑N

k=1 max
(
μAk (xi

)
, μAk (x j ))

(14)

Lxi ,x j = 1 − max
k

|μAk (xi ) − μAk (x j )| (15)

Sxi ,x j = 1 −
∑N

k=1 |μAk (xi ) − μAk (x j )|∑N
k=1(μAk (xi ) + μAk (x j ))

(16)

Let us now illustrate several examples that compare the
present measure with the previously listed measures. Con-
sider that we have four ages defined according to three fuzzy
sets young, middle_age, and old, as shown in Table 4.

From Table 5, we see that our similarity measure satisfies
the previously listed properties. However, it is difficult to say
which similarity measure is the best. Nevertheless, we can
make the following observations.
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Table 4 Four fuzzy ages

Young Middle_age Old

Age 1 0.0 0.0 1.0

Age 2 1.0 1.0 0.0

Age 3 0.8 1.0 0.4

Age 4 0.4 0.5 0.7

– The similarity measure in Eq. 12 uses maxi to obtain the
similarity. If xi = x j and maxi < 1, then S

(
xi , x j

)
< 1,

which violates the fourth property.
– If there exists at least one (but not all) fuzzy set A such
that μAk (xi ) = μAk (x j ) = 1, then S

(
xi , x j

) = 1, by
Eq. 12. However, xi �= x j , here, e.g., S(Age 2, Age 3),
where μyoung and μold are not equal in both Age 2 and
Age 3.

– FromEq. 15, if there exists a fuzzy set A such thatμAk (xi )
andμAk (x j ) are significantly different, then Lxi ,x j is rela-
tively small even if the other elements are relatively close.
For example, S(Age 1, Age 3) = 0.0 for Eq. 15, which
is not reliable since μold (Age 1) and μold (Age 3) are
ignored.

– Finally, our proposed measure has the property of sig-
nificance of the average property. We mean by this that
each element in the compared sets plays an equal role in
the similarity computation. This point is not seen in the
other measures.

6.2 Evaluation by comparison with domain expert
decisions

In this section, we have evaluated the accuracy decisions
made by the proposed system decision compared to those of
our domain expert to verify its feasibility and applicability.
A CBR system is characterized as a lazy learner technique.
We have queried the system using all cases in the knowledge
base (i.e., 60 cases) by using “leave one out” cross-validation
(LOOCV). Each test query is fed into the system, and the
corresponding response is recorded. The decisions of the pro-
posed system are comparedwith those of our domain experts.

The effectiveness of the system is determined by the num-
ber of correct answers that it gives, i.e., answers that concur
with those of the expert. In other words, the accuracy is
inversely proportional to the number of times that the sys-
tem fails. We have used the weight vector computed using a
set of ML algorithms (El-Sappagh et al. 2014) in our previ-
ous work. The diagnoses suggested by the proposed system
include a diabetes diagnosis (i.e., diabetic, pre-diabetic, nor-
mal, etc.) and the possibility of developing other chronic
problems, such as nephropathy, cancer, and kidney malfunc-
tion. “Appendix A” shows a small sample of cases that were
tested. The accuracy of our system is 95%; that is, in 57 out
of 60 cases, the system retrieved a case with the same diag-
noses suggested by the domain experts. Moreover, besides
diabetes diagnoses, our system has predicted the future com-
plications of all cases like the domain expert predictions. We
have selected k = 3 to assert the consistency of decisions
of our proposed system. For example, Case 5 decided that
the patient has diabetes in all of the retrieved cases. As a
result, the accuracy of the CBR system decisions would give
a physician the confidence to follow them because it is accu-
rate. Moreover, if the system diagnosis is incorrect for the
first k = 1, it can be correct for the second or third deci-
sion (i.e., k = 2, 3). The predicted complications, other than
diabetes, need to be checked by a physician to prevent their
occurrence or to begin their treatments.

6.3 Evaluation by comparison with other CBR
systems

We have executed the same experiments with a traditional
CBR system and then compared its performance with that of
our proposed system. A traditional system means one that is
not fuzzy; instead, it has a crispCB representation, crisp simi-
larity algorithms, and crisp querying capabilities. “Appendix
B” presents a sample of the tested cases. The comparison
includes three aspects. First, the accuracy of the traditional
CBR is lower than our accuracy. The reasons for the inac-
curacy of the traditional systems are as follows: (1) they do
not handle the similarity of ordinal features correctly, e.g.,
vision, thirst, etc.; (2) the proposed fuzzy similaritymeasures

Table 5 The similarity evaluation for each measure

Equations S(Age 1, Age 2) S(Age 1, Age 3) S(Age 1, Age 4) S(Age 2, Age 3) S(Age 2, Age 4) S(Age 3, Age 4)

(5) 0.00 0.18 0.59 0.74 0.39 0.59

(6) 0.00 0.40 0.70 1.00 0.50 0.50

(7) 0.00 0.37 0.77 0.63 0.23 0.47

(8) 0.00 0.14 0.37 0.75 0.33 0.52

(9) 0.00 0.00 0.50 0.60 0.30 0.50

(10) 0.00 0.25 0.53 0.86 0.50 0.69
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Table 6 The diabetic decision
confusion matrix

System decision Domain expert decision

Positive Negative

Positive Proposed (48), traditional (19) Proposed (2), traditional (6)

Negative Proposed (1), traditional (21) Proposed (9), traditional (14)

aremore accurate than the crisp similarity of traditionalCBR;
(3) the fuzzified version of the previously prepared CB has an
accurate design that handles the fuzziness aspect perfectly.
Second, the cases diagnosed correctly by traditional CBR
have lower similarity levels (i.e., confidence) compared to
ours. For example, case 5 was diagnosed with 100% con-
fidence in our system, compared to 80% in the traditional
system. Finally, the most critical property of our system is
its ability to describe a patient with vague terms and hedges
in query cases. For example, if a physician did not know
the exact value of a particular test, he could use a linguistic
term to describe this feature (e.g., HbA1c = high, or FPG =
low). Moreover, hedges can be used to modify these linguis-
tic terms (e.g., Age = very old, or FPG = slightly high).

The classification accuracy may not always be the most
significant performance criterion in medical diagnosis; other
measures such as sensitivity and specificity might outweigh
it. Therefore, in our evaluation, we calculate and compare
these metrics. We use a 2 × 2 confusion matrix to calculate
the precision (confidence), recall (sensitivity), accuracy, and
specificity of our FCBR and the traditional system as shown
in Table 6. Moreover, we compare the harmonic mean of the
precision and sensitivity (i.e., F-measure) of both systems.
We calculate the system performance for diabetic decisions,
and the terms TP, FP, FN, and TN are interpreted as:

TP = the CBR system decides the diabetic case, and
domain expert decides a diabetic case.
FP = the CBR system decides a diabetic case, but the
domain expert does not.
FN= the CBR system decides not a diabetic case, but the
domain expert decide it be diabetic.
TN = the CBR system decides not a diabetic case, and
the expert decides not a diabetic case.

The above parameters can be evaluated for pre-diabetic and
normal as well. We calculate P, R, A, E , and S for both
systems using Eqs. 17, 18, 19, 20, and 21:

Precision (P) = TP

TP + FP
= � True positive

�system decision positive
(17)

True positive rate (TPR) = Recall (R) = TP

TP + FN

= � True positive

� Expert decision positive
(18)

Accuracy (A) = TP + TN

TP + TN + FP + FN

= � true results (true positives and true negatives)

� population
(19)

Effectiveness (E) = F-Measure (Score) = 1( 1
2P

) + ( 1
2R

)

= 2 ∗ P ∗ R

P + R
(20)

Specificity (S) = TN

TN + FP
(21)

The effectiveness E is a single number indicator of system
performance. It is the harmonic mean of precision and recall.

The values of P, R, A, E , and S for both systems regard-
ing the diagnoses of diabetes are as follows:

– For the proposed FCBR system

P = 48

48 + 2
= 96%, R = 48

48 + 1
= 97.96%,

A = 48 + 9

48 + 9 + 2 + 1
= 95%, E = 1

1
2∗0.96 + 1

2∗0.9796
= 96.97%,

S = 9

9 + 2
= 81.82%.

– For the traditional CBR system

P = 19

19 + 6
= 76%, R = 19

19 + 21
= 47.5%,

A = 19 + 14

19 + 14 + 6 + 21
= 55%,

E = 1
1

2∗0.76 + 1
2∗0.475

= 58.46%, S = 14

14 + 20
= 70%.

The overall performance of our proposed system is better
the other systems because its similarity measures take into
account the nature of all features, the cases are carefully pre-
processed and cleaned, and an accurate weight vector has
been defined. Moreover, the pre-calculated features weights
enhance the accuracy of the calculation.

Table 7 shows a comparison between 18 CBR systems
for both medical and non-medical applications. As seen in
Fig. 7, our FCBR system has improved accuracy.
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Table 7 A comparison between the accuracy of the proposed system and other CBR systems

Reasoning type Domain System name Purpose Acc.

Fuzzy CBR Medical The proposed system Diabetes diagnosis 95 %

ConFuCiuS (Balakrishnan et al. 2012) Diabetes Diagnosis 75.53%

CBFDT (Bellazzi et al. 1998) Diagnosis of liver disorder 85%

Begum et al. (Kumari and Singh 2013) Diagnosis of stress 80%

Petrovic et al. (Çalisir and Dogantekin 2011) Radiotherapy planning 84.72%

Non-medical Li et al. (Kahramanli and Allahverdi 2008) Financial application 92.36%

Arias-Aranda et al. (Polat and Güneş 2007) Knowing the relationship between
flexibility and operations strategy

89.23%

Khanum et al. (Dogantekin et al. 2010) Facial expression recognition 85%

Han et al. (Patil et al. 2010) Endpoint prediction of Basic
Oxygen Furnace (BOF)

91.98%

Sushmita et al. (Li and Sun 2011) Financial application 75%

Xiong et al. (Karatsiolis and Schizas 2012) Hybrid rule-CBR 93.25

Martins-Bede et al. (Polat et al. 2008) Classifying the prevalence of
Schistosomiasis in the state of
Minas Gerais in Brazil

71%

Jin et al. (Adekunle 2015) Customer-driven design 92%

Traditional CBR Medical T-IDDM (Begum et al. 2009) Diabetes treatment and monitoring
using conventional insulin
therapy

84%

Marling et al. (Kalpana and Kumar 2011a) Type 1 Diabetes management on
Insulin Pump Therapy

77.5%

Balakrishnan et al. (Chang and Lilly 2004) Predictive system for diabetic
retinopathy

85%

Bellazzi et al. (Goncalves et al. 2006) Diabetes therapy 90%

Marling et al. (2008) 4DSS system for diabetes
diagnosis

80%

Non-medical The non-medical traditional CBR systems are very diverse, and we do
not select any system here because we concentrate on diabetes
systems only

Fig. 7 A comparison between our FCBR and existing CBR systems
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Table 8 A comparison between the proposed FCBR and other diabetes diagnosis ML studies

Diabetes diagnosis system Method Clas. Acc. (%)

Proposed FCBR system CBR using fuzzy case representation, fuzzy retrieval,
and fuzzy query

95

LDA–MWSVM (Aibinu et al. 2010) Linear discriminant analysis and Morlet wavelet
SVM classifier

89.74

Kahramanli and Allahverdi (Ali et al.
2018b)

Fuzzy neural network 84.24

Polat and Gunes (Abbasbandy and Hajjari
2010)

Principal component analysis and adaptive
Neuro-fuzzy Inference system

89.47

LDA-ANFIS (Samant and Agarwal 2018) Linear discriminant analysis and adaptive
network-based fuzzy inference system

84.61

Hybrid prediction model (Ali et al. 2018a) C4.5 algorithm 92.38

FCS-ANTMINER (Relich and Pawlewski
2018)

An Ant colony-based classification system 84.24

Karatsiolis and Schizas (Brown et al.
2018)

Support vector machine and RBF networks 82.20

GDA–LS-SVM (Raza et al. 2018) Generalized discriminant analysis and least square
support vector machine

82.05

Adekunle (Qin et al. 2018) C5.0 algorithm 78.45

Kalpana and Kumar (Wu et al. 2017) Fuzzy expert system using fuzzy verdict mechanism 85.03

Lee and Wang (2011) A fuzzy expert system with fuzzy ontology 81.70

VISIT (Biswas et al. 2017) Fuzzy classifier and genetic algorithms 77.00

HNFB−1 (Yu et al. 2018) Artificial neural network and fuzzy logic 78.26

Kalpana and Kumar (Sarkheyli-Hägele
and Söffker 2017)

Fuzzy expert system using fuzzy determination
mechanism

89.32

Aibinu et al. (Zhang et al. 2018) Complex-valued neural networks, real-valued neural
network, and parametric modeling

80.65

6.4 Evaluation by comparison with ML classifiers

In this section, we perform two types of comparison. First,
Table 8 shows a comparison between classification accu-
racy of the proposed FCBR system and existing ML studies
for diabetes diagnosis. All these studies have lower perfor-
mances than that of ours. However, these systems mostly
depend on the PID dataset. As a result, it is better to
apply thesemachine-learning algorithms to our preprocessed
dataset (El-Sappagh et al. 2014; Kalpana and Kumar 2011b).
Second, we run a set of ML algorithms as black boxes
on our case-base data using the WEKA APIs. We com-
pare the proposed FCBR system with the techniques of
C4.5, k-NN with k = 3 (IBK in WEKA), SVM (SMO
in WEKA), ANN, and Naive Bayes. We used the default
settings of these algorithms recommended by WEKA. The
k-fold cross-validation (KFCV) is the selected evaluation
technique for k = 2, . . ., 10. When k = N then KFCV
is equivalent to LOOCV used in CBR for N = case-base
size. “Appendix C” shows the results of the tested algo-
rithms.

Many studies compare algorithms accuracy to measure
the performance (Temurtas et al. 2009), but we used accu-
racy and other metrics. As previously demonstrated, our
technique can predict diabetes with high accuracy, sensi-
tivity, and specificity, which outperforms other machine-
learning classification techniques. Moreover, to the best of
our knowledge, there is no machine-learning classification
algorithm with multi-attributes for classes. Figure 8 com-
pares the performance metrics between the k-folds, and
fivefold cross-validation has the best performance. How-
ever, our system achieves better classification. The 60-fold
cross-validation, which is equivalent to LOOCV, did not
achieve the best performance compared to fivefold cross-
validation.

In Fig. 9, it is easily seen that our technique produced a
better performance than the tested algorithms for diagnosing
diabetes. This figure compares the proposed system against a
traditional CBR, C4.5, naïve Bayes, k-NN, SVM, and ANN.
Although the proposed FCBR system performs better com-
pared to traditional one, it still has some problems dealing
with semantic retrieval. When the CB is represented as a
fuzzy ontology and the domain background knowledge is
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Fig. 8 A comparison between our approach and ML techniques

Fig. 9 A comparison between our approach and ML techniques

represented as an ontology, semantic retrieval plays a crit-
ical role in evaluating the semantic and clinical similarity.
The current work has prepared the fuzzy CB database to be
used in the future in building CBR systems based on fuzzy
ontology.

7 Conclusion

In this paper, we proposed a CB preparation framework,
which is dependent on EHR data. We proposed a CB
database fuzzification methodology. The methodology has
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been applied to a diabetes diagnosis database and produced
a fuzzy CB relational database.We implemented a case study
to measure the accuracy of the fuzzification process, and a
fuzzy CBR system was implemented. The accuracy and per-
formance evaluation of our system is 95%, and it proved
its applicability for diagnosing diabetes. However, the main
limitation of our study is the semantic understanding of the
relationships between medical concepts. This restriction will
be handled in the third phase of our proposed framework
(i.e., coding phase). Moreover, combining fuzzy and ontol-
ogy semantics can improve the CBR performance. In future
work, we will study the applicability of fuzzy ontology as a
CB, and standard medical ontology, such as SNOMED CT,
as domain background knowledge in CBR. We expect that
this integrated architecture will enhance the intelligence of
CBR systems and make them more acceptable in medical
environments.
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Appendix B

A comparison of the proposed fuzzy CBR system and traditional CBR
system

Query case Domain expert decision Proposed system decision Traditional system decision

Case1 Diabetes diagnosis: D D (90%) P (78%)
Case 2 Diabetes diagnosis: N N (95%) N (83%)
Case 3 Diabetes diagnosis: D P (88%) D (70%)
Case 4 Diabetes diagnosis: D D (94%) P (64%)
Case 5 Diabetes diagnosis: D D (100%) D (80%)
Case 6 Diabetes diagnosis: P P (81%) D (64%)
Case 7 Diabetes diagnosis: N N (92.4%) N (85%)
Case 8 Diabetes diagnosis: D D (99%) P (79%)
Case 9 Diabetes diagnosis: D D (93%) P (74%)
Case 10 Diabetes diagnosis: D D (91%) P (75%)

Appendix C

A comparison of our FCBR andML classifiers using our case-base data

Fold Algorithm Precision (%) TPR-Recall (%) Accuracy (%) F-Measure (%)
Machine-learning algorithms

Twofold C4.5 90 93.1 90 91.5
k-NN (k = 3) 80 69 66.66 74.1
SVM 75.8 86.2 68.33 80.6
Naive Bayes 86.2 86.2 75 86.2
ANN 70.6 82.8 65 76.2

Threefold C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 74.1 69 60 71.4
SVM 78.8 89.7 71.66 83.9
Naive Bayes 83.9 89.7 75 86.7
ANN 73.5 86.2 65 79.4

Fourfold C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 76.9 69 65 72.7
SVM 77.4 82.8 71.66 80
Naive Bayes 79.3 79.3 71.66 79.3
ANN 76.7 79.3 66.66 78

Fivefold C4.5 93.1 93.1 91.67 93.1
k-NN (k = 3) 73.1 65.5 63.33 69.1
SVM 75 82.8 66.66 78.7
Naive Bayes 83.3 69 66.66 75.5
ANN 75.8 86.2 68.33 80.6

Sixfold C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 74.1 69 63.33 71.4
SVM 81.3 89.7 75 85.2
Naive Bayes 86.2 86.2 73.33 86.2
ANN 76.5 89.7 70 82.5

Sevenfold C4.5 90 93.1 90 91.5
k-NN (k = 3) 63.3 65.5 58.33 64.4
SVM 76.7 79.3 71.66 78
Naive Bayes 75.9 75.9 70 75.9
ANN 76.7 79.3 65 78

Eightfold C4.5 89.3 86.2 86.66 87.7
k-NN (k = 3) 78.6 75.9 66.66 77.2
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Fold Algorithm Precision (%) TPR-Recall (%) Accuracy (%) F-Measure (%)
Machine-learning algorithms

SVM 82.1 79.3 71.66 80.7
Naive Bayes 78.1 86.2 73.33 82
ANN 77.4 82.8 71.66 80

Ninefold C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 83.3 69 66.66 75.5
SVM 80.6 86.2 76.66 83.3
Naive Bayes 82.1 79.3 73.33 80.7
ANN 83.9 89.7 75 86.7

Tenfold C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 73.1 65.5 56.67 69.1
SVM 80.6 86.2 75 83.3
Naive Bayes 83.3 86.2 75 84.7
ANN 76.5 89.7 70 82.5

k-fold (k = 60) ≡ LOOCV C4.5 89.7 89.7 88.33 89.7
k-NN (k = 3) 73.1 65.5 58.33 69.1
SVM 80 82.8 75 81.4
Naive Bayes 85.2 79.3 73.33 82.1
ANN 78.8 89.7 75 83.9

Average (%) 80.568 82.086 73.0972 81.164
Maximum (%) 93.1 93.1 91.67 93.1
Conventional CBR system 76 47.5 55 58.46
Proposed FCBR system 96 97.96 95 96.97
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