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Abstract

- Saleem Abdullah? - Fazli Amin' - M. Sajjad Ali Khan'

In this paper, we define some Einstein operations on trapezoidal cubic fuzzy set and develop three arithmetic averaging
operators, that is trapezoidal cubic fuzzy Einstein weighted averaging (TrCFEWA) operator, trapezoidal cubic fuzzy Ein-
stein ordered weighted averaging (TrCFEOWA) operator and trapezoidal cubic fuzzy Einstein hybrid weighted averaging
(TrCFEHWA) operator, for aggregating trapezoidal cubic fuzzy information. The TrCFEHWA operator generalizes both the
TrCFEWA and TrCFEOWA operators. Furthermore, we establish various properties of these operators and derive the relation-
ship between the proposed operators and the exiting aggregation operators. We apply on the TTCFEHWA operator to multiple
attribute decision making with trapezoidal cubic fuzzy information. Finally, a numerical example is providing to demonstrate

the submission of the established approach.

Keywords Trapezoidal cubic fuzzy set (TrCES) - Einstein #-norm - Arithmetic averaging operator - Multi-attribute decision

making (MADM)

1 Introduction

Fuzzy set was first introduced by Zadeh (1965). Atanassov’s
intuitionistic fuzzy sets (AIFSs) (Atanassov 1994) and
interval-valued fuzzy sets (IVFSs) (Atanassov 1986, 1994)
are two reasonably basic developments, which were intro-
duced to help a segment of the drawbacks of fuzzy set theory.
As observed in Zadeh (1973) and recent made in Bustince
and Burillo (1996); Deschrijver and Kerre (2003), the AIFS
is numerically equivalent to the IVFSs. The AIFSs address
one of the main ideological headways, which consult not
solely to what degree a part has a place with a particular
set (non-membership); moreover, to what degree this seg-
ment does not have a place with the set (non-membership
function). Throughout in the last decade, the AIFS theory
has been associated with aggregate intuitionistic fuzzy infor-
mation (Deschrijver and Kerre 2007; Liu and Wang 2007,
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Turksen 1986; Xu and Cai 2010). Recently, the possibility
of AIFSs is summed up by allowing the membership and
non-membership capacity to expect interval values along
these lines displaying the possibility of interval-valued intu-
itionistic fuzzy sets (IVIFSs) (Liu and Wang 2007). Wang
and Liu (2013), proposed FEinstein intersection, Einstein
product, Einstein scalar multiplication and Einstein expo-
nentiation and then defined new concentration and dilation
of AIFSs. Wang and Zhang (2009), introduced the con-
cept of intuitionistic trapezoidal fuzzy numbers. In Wu and
Cao (2013), developed some aggregation operators based on
intuitionistic trapezoidal fuzzy numbers, namely intuition-
istic trapezoidal fuzzy weighted geometric ITFWG) oper-
ator, the intuitionistic trapezoidal fuzzy ordered weighted
geometric (ITFOWG) operator, the induced intuitionistic
trapezoidal fuzzy ordered weighted geometric (I-ITFOWG)
operator and the intuitionistic trapezoidal fuzzy hybrid geo-
metric (ITFHG) operator. Zhang et al. (2013) developed
gray relational projection method, combined gray relational
analysis method and projection method under intuitionis-
tic trapezoidal fuzzy number. Liu et al. (2017) developed
the trapezoidal intuitionistic fuzzy Einstein weighted averag-
ing (TIFEWA) operator, the trapezoidal intuitionistic fuzzy
Einstein ordered weighted averaging (TIFEOWA) operator
and the trapezoidal intuitionistic fuzzy Einstein hybrid aver-
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aging (TIFEHA) operator. Zhang et al. (2014) developed
interval-valued dual hesitant fuzzy Einstein weighted aver-
aging (IVDHFEWA) operator, interval-valued dual hesitant
fuzzy Einstein ordered weighted averaging IVDHFEOWA)
operator, interval-valued dual hesitant fuzzy Einstein hybrid
averaging (IVDHFEHA) operator, interval-valued dual hes-
itant fuzzy Einstein weighted geometric (IVDHFEWG)
operator, interval-valued dual hesitant fuzzy Einstein ordered
weighted geometric IVDHFEOWG) operator, and interval-
valued dual hesitant fuzzy Einstein hybrid geometric (IVD-
HFEHG) operator.

Cubic set was introduced by Jun et al. (2011), as a gen-
eralization of fuzzy set and intuitionistic fuzzy set and is
characterized by membership degree and non-membership
degree. The membership function is an interval fuzzy num-
ber, while non-membership function is a fuzzy set. Fahmi
et al. (2018) defined the triangular cubic fuzzy number
and operational laws. We developed the triangular cubic
fuzzy hybrid aggregation (TCFHA) administrator to total
all individual fuzzy choice structure provide by the decision
makers into the aggregate cubic fuzzy decision matrix. Fahmi
et al. (2017) proposed the cubic TOPSIS method and cubic
gray relation analysis (GRA) method. Finally, the proposed
method is used for selection in sol-gel synthesis of titanium
carbide nano-powders. Fahmi et al. (2017) defined weighted
average operator of triangular cubic fuzzy numbers and ham-
ming distance of the TCFN. We develop an MCDM method
approach based on an extended VIKOR method using tri-
angular cubic fuzzy numbers (TCFNS) and multi-criteria
decision-making (MCDM) method using triangular cubic
fuzzy numbers (TCFNs).

Based on the above analysis in this paper, we develop
trapezoidal cubic fuzzy numbers (TrCFNs), which is the
generalization of trapezoidal intuitionistic fuzzy number and
trapezoidal interval fuzzy number. We propose some oper-
ations based on Einstein #-norm and Einstein 7-conorm
for TrCFNs. We also develop score and accuracy function
to compare two TrCFNs. Due to the developed opera-
tion, we propose trapezoidal cubic fuzzy Einstein weighted
averaging (TrCFEWA) operator, trapezoidal cubic fuzzy Ein-
stein ordered weighted averaging (TrCFEOWA) operator and
trapezoidal cubic fuzzy Einstein hybrid weighted averaging
(TrCFEHWA) operator, for aggregating a collection of trape-
zoidal cubic fuzzy numbers (TrCFNs).

This paper is organized as follows: In Sect. 2, we dis-
cuss some definitions and properties. In Sect. 3, we discuss
the trapezoidal cubic fuzzy number (TrCFN) and operational
laws. In Sect. 4, we present some Einstein operations on
trapezoidal cubic fuzzy sets (TrCFSs) and analysis some
desirable properties of the proposed operations. In Sect. 5,
we first develop some novel arithmetic averaging opera-
tors, such as the trapezoidal cubic fuzzy Einstein weighted
averaging (TrCFEWA) operator, trapezoidal cubic fuzzy Ein-
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stein ordered weighted averaging (TrCFEOWA) operator and
trapezoidal cubic fuzzy Einstein hybrid weighted averag-
ing (TrCFEHWA) operator, for aggregating a collection of
trapezoidal cubic fuzzy numbers (TrCFNs). In Sect. 6, we
apply the TrCFEHWA operator to multiple attribute decision
making (MADM) with trapezoidal cubic fuzzy material. Sec-
tion 7 gives a numerical example according to our approach.
In Sect. 8, we discuss comparison analysis. In Sect. 9, we
consume a conclusion.

2 Preliminaries

In this section, we give a brief review of some preliminaries.

Definition 1 (Zadeh 1965) H be a universe of discourse.
Then, the fuzzy set can be defined as: J = {h, u;(h)|h €
H}. A fuzzy set in a set H is denoted by iy : H — I. The
function p ; (h) denoted the degree of membership of the ele-
ment & to the set H, where I = [0, 1] . The collection of all
fuzzy subsets of H is denoted by I . Define a relation on
I as follows: (Vu,n € I")(u < n < (Vh € H)(u(h) <
n(h))).

Definition 2 (Atanassov 1986) Let H is a non-empty set.
A function [ H — [I] is called an interval-valued
fuzzy set (briefly, an IVF set) in H . Let [I]" stand for
the set of all IVF sets in H . For every I € [/ 17 and
h e H,I(h) =[I"(h), I"(h)]is called the degree of mem-
bership of an element 4 to I, where I~ : H — [ and
IT : H — I are fuzzy sets in H which are called a lower
fuzzy set and an upper fuzzy set in H, respectively. For sim-
plexes, we denote I = [I~, I™] . For every I, I, € [I]H,
we define Iy € I < I1(h) < I (h) for all h € H and
I =01 < I1(h)=L(h)Vh e H.

Definition 3 (Jun et al. 2011) Let H is a non-empty set. A
cubicsetin H isastructure of the form F = {{(h, I (h), u(h)):
h € H} in which [ is an IVF set in H and p is a fuzzy set
in H. A cubic set F = {(h, I[(h), u(h)) : h € H} is simply
denoted by F = (I, j1). Denote by C¥ the collection of all
cubic sets in H. A cubic set F = (I, i) in which I(h) =0
and p(h) =1 (resp. I(h) = 1 and u(h) =0 forallh € H
is denoted by O (resp. 1). A cubic set D = (J, A) in which
J(h) = 0and A(h) = 0 (resp. J(h) = 1 and A(h) = 1) for
all h € H is denoted by (resp. i).

Definition 4 (Jun et al. 2011) Let H is a non-empty set. A
cubic set F = (I, ) in H is said to be an internal cubic set
if I=(h) <u(h) <It(h) VYheH.

Definition 5 (Jun et al. 2011) Let H is a non-empty set. A
cubic set F = (I, u) in H is said to be an external cubic set
if w(h) ¢ [I=(h), It (h)] Yhe H.
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3 Trapezoidal cubic fuzzy numbers

In this section, we introduce the concept of trapezoidal cubic
fuzzy numbers, which is the generalization of trapezoidal
intuitionistic fuzzy numbers and trapezoidal interval-valued
fuzzy numbers.

Definition 6 Let Abe the trapezoidal cubic fuzzy number on
the set of real numbers, its IVTTEN is defined as:

h—p~) 7— — —
(;__Pp_))IA} p- <h<gq
AT (h) = I;} q  <h<r~
A L =h) 1_} r-<h<s” '
(s——r7) A -
0 h<p orh<s~
h—pt
(f(1+fpp43) IA+] pt=h<q*
=Yl st
%1/—(} rt<h<st
0 h>pTorh>st
and its TrFN is B i)
S psh<q
KA g <h=r
Cath) = . Then the
AW =) rseoiua, Z g <
0 h<porh>s)
trapezoidal cubic fuzzy number A basically denoted by
(lp~.q,
r,sT), ()
A = Jloman Then A is called trapezoidal
= r+,s+),(1;\")], . Then A is called trapezoida
[(p.q.7.59),
(na)l)

cubic fuzzy number (TrCFN).

(Up; (1), q; (h),
ry (h), sy (W} 1]
Up (h). qi (b)),
(), st () IXI],
[{p1(h), q1(h),
ri(h), si(h)}; wal)
|lh e H

Definition7 Let A| = and Ay =

(Upy (h), g,y (h),
ry (), sy (W)} 1],
[py (). a5 (h).

ry (), s (WY 1],
Up2(h), q2(h),
ra(h), st(M}; pwa)
|h e H

sets; some operational laws on trapezoidal cubic fuzzy sets
are defined as follows:

be two trapezoidal cubic fuzzy

A1 C Ay iffVh € H, [py (h) > p; (h),
q; (h) > g5 (h),

ry () = ry(h), sy (h) = sy (h), Iy = 1],

@ { [pf () = py (h). q;f (h) = g5 (h), ;

ri () = rif(h), 7 (h) = 55 (h), I}, > I 1and

[p1(h) < pa(h), qi(h) < q2(h),

ri(h) <ri(h),s1(h) < s2(h), pa, < p1a,l

A1 Nr.s A2 =(Tpy (h), p; (W],

Tlgy (h), g5 (W], Tlry (h), r5 (W],

Tlsy (h), sy (D], T, 131,

TIpy (h), py (W], Tlg; (h), q5 (W], |.

Tlr{ (h), ry (W), Tls) (h), s W1, [

TII 131, SIpi(h), p2(h)],

Slq1(h), g2(M)], S[ri(h), ra(h)],

Sls1(h), s2(M)], Slia,, a,l)

Ay Ur s Ay = (S[py (h), py (W],

Slgy (), g5 (W1, Slry (h), ry (W],

Slsy (h), 55 (], SUT T3],

Stpy (), py (W],

Slg; (h). g5 (W1, S[rit (), rF ()1, | .

Slsy (), s3 (W], ’

UG I TLpi(h), pa(h)],

Tlg1(h), g2(h)],

Tri(h), ra(h)],

Ts1(h), s2(MW)], Tlpea,, ma,l)

(b)

()

where any pair (7', S) can be used. T denotes a £-norm and
S a so-called ¢-conorm dual to the -norm 7', defined by
Sth,ty=1-TA —-h,1—-1).

([({0.2,0.4,
0.6, 0.8}; 0.10],
Example8 Let A = ([){(;'46 ?06}’ 0.12)1: and Ay =
[{0.3,0.5,
0.7,0.9}; 0.11])
([{0.10, 0.12,
0.14, 0.16}; 0.20],
[{0.12, 0.14, . .
0.16.0.18}: 0.24]. be two trapezoidal cubic fuzzy sets
[{0.11,0.13,
0.15,0.17}; 0.22])
(TrCFSs)

A C AyiffVh € H,0.2 > 0.10,

0.4 >0.12,0.6 > 0.14, 0.8 > 0.16,
0.10 > 0.20,0.4 > 0.12,0.6 > 0.14, |
0.8 >0.16,0.10 > 0.18,0.12 > 0.24 [’
and 0.3 < 0.11,0.5 < 0.13,
0.7<0.15,09 <0.17,0.11 <0.22

(a)
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(b) AjNy s Ay =

() AyUr s Ay =

Definition9 Let A =

(T10.2,0.10], T[0.4, 0.12],
710.6,0.14], T[0.8, 0.16],
710.10, 0.20], T[0.4, 0.12],
T10.6,0.14], T[0.8, 0.16],
7[0.10,0.18], T[0.12, 0.24] and
5[0.3, 0.11], S[0.5, 0.13],
$[0.7,0.15],
5[0.9,0.17], S[0.11, 0.22])
(S10.2,0.10], S[0.4, 0.12],
5[0.6, 0.141, S[0.8, 0.16],
5[0.10, 0.20], S[0.4, 0.12],
S[0.6, 0.14], S[0.8, 0.16],
S[0.10, 0.18], S[0.12, 0.24] and
710.3,0.11], T[0.5, 0.13],
710.7,0.15], T[0.9, 0.17],
T[0.11,0.22])

({lpy(h), g, (h),
IROEROIYNE
{lpk(h), g (h),
rihy, sT, 1T,
{[pa(h), ga(h),
ra(h), sa(h)], wa))
|lh e H

be the trape-

((IDHIpL ) + gk (h) +rf () + s ()1+
T(A) = { [path) + ga(h) +ra(h) +sa(W)(pa)— ¢

[Py (W) + gy (h) + 7y (h) + s (WIUT))

((IHIpE ) + gk (h) +rf () +sT(1+
G(A) = { [py (W) + g5 (h) +ry (h) + s, (WIUY)

—[pah) +qah) +rath) +sa(h)](pa))

([{0.6, 0.8,

0.10, 0.12}; 0.3];
[{0.8, 0.10,

0.12, 0.14}; 0.5],
[{0.7,0.9,

0.11, 0.13}
;0.4])

zoidal cubic fuzzy number (TrCFN). Then the score function
S(A), accuracy function H(A), membership uncertainty
index T'(A) and hesitation uncertainty index G(A) of the
trapezoidal cubic fuzzy number (TrCFN) A are defined by

Example 10 Let A = be the trape-

[0.6 + 0.8 4+ 0.10 4 0.12] (0.3)+
[0.8 +0.10 + 0.12 + 0.14] (0.5)
[0.74+0.9+0.11+0.13] (0.4)) | |
12 ’
_ 0.3064+0.58—0.376 __ 0.886—0.376
- - 12

zoidal cubic fuzzy number (TrCFN). Then, the score function
S(A), accuracy function H(A), membership uncertainty
index T(A) and hesitation uncertainty index G(A)of the
trapezoidal cubic fuzzy number (TrCFN) A are defined by

(LI Ops () +q, (h) + 1, (h) + 5, (M)]+
(LOIp s () + g (h) 41y (h) + s 4 (W]
—[pa(h) +qa(h) +ra(h) +sa(h)](1a))

S(A) = > ;
([P () + g5 (h) + 1y (h) + s (W)]+
[P} (h) +qi(h) +rEh) +sTMIUTD]

H(A) = +Hpath) +ga(h) +ra(h) +sa(W)1(a)) |

12
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H(A) =

T(A) =

0.51 12
= 031 — 0.0425
[0.6 4+ 0.8 + 0.10 + 0.12] (0.3)+

[0.8 4 0.1040.12 4 0.14] (0.5)

+[0.7+0.940.11 4+ 0.13] (0.4))
2

_ 0.30640.5840.376 __ 1.262 __
= 0306+0.58+0.376 _ 1262 _ () 1051

12
[0.8 +0.10 4+ 0.12 + 0.14](0.5)+
[0.74+0.9+0.11 4 0.13](0.4)
—[0.6 +0.8 4+ 0.10 + 0.12](0.3))
=0.58 4+ 0.736 — 0.486 = 0.83

([[0.8 +0.10 4+ 0.12 4 0.14](0.5)+
[0.6 + 0.8 +0.10 + 0.12](0.3)—
[0.740.9+40.11 4+ 0.13](0.4))
=0.584+0.486 — 0.736 = 0.33

)

’
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T(A)

G(A)

By mathematical induction, we can derive the multiplica-

4 Some Einstein operations on trapezoidal . . . .
P P tion operation on trapezoidal cubic fuzzy sets (TrCFSs) as

cubic fuzzy sets
Yy follows:
In this section, we introduce the Einstein #-norm B max(I5) (1475 WP —[1—py ()]
e AT [+ py P+ 1=p (W
T {T(h, T) = } [4q,; (W —[1—q, (W]
I+d-md-1) [y (DP =g, T
and its dual 7-conorm [ty (1= [1=ry (W]*
[14ry (WA +[1—r g (W]’
sls o= 2151 [t (WP —T1=s3 (1
1+ ht [+sy (W P+[1—s; (W]*
) ) l+pf WP —1—prmp |’
(then the generalized union d) on TrCFSs A1 and A, becomes max(IX) [tp i< )]A U=p i( )]A,
. . [1+p, (WI*+1—py (W)]
to the Einstein sum (denoted by A1 + A>) on A and A; as I
. 94 —UTq,
follows: AA = (g (P H1—g D]
- ] + A + A
[ p, (h)+p5 (h) [14r, (W] =[1=r, (h)]
rl’l.':IX(IA1 s IAZ) [m, [1+r;(h)])~+[l—r2'(h)])» s
4y W+, (h) sy (WP —[1—=s1 ()1*
I+qy (Wgy ()’ [+st (WP +1—s ()]
rf(h)+r{(h) S;(h)+327(h) r . z[pA(h)])» 17T
Ly (ry () Tsy (h)sy W} ’ min(za) [[(Z—pA(hﬂ*HpA(h)]*’
+ 4+
< max(Iy , Iy)) , 2[pam1*
pr+ps () g (W+ay () [Q—pa()P+pat)}-’
14+p (py () 1+q] (g () 2ra()1*
A+ Ay = i (41 () ) [Q—ra(WP*+ra(m1*’
Lo Gy () 2Usa )
s (W+sy () | [Q—sa)P+Isam)]* |
I+sF (s () |7
min(a,, ha,) where X is any positive real number.
P1-pP2
1+((1=p1(h)(A=pa(h)))’
q1-92
I+((1=q1(h)(1—=q2(h)))°
ry-r
I+ ((A=r1 (M) (A=r2(h)))
51-52
I+ ((1=s1 (M) (1=s2(h)))

@ Springer



5758

A. Fahmi et al.

([{py (), q; (h),
i (h), sy (W}
I,

Upi (h), g, (),
rif(h), s (W}
I,

[{p1(h), q1(h),
ri(h), s1(h)};
pa)lh e H

Definition 11 Let A| = and Ay =

({py (1), q, (),
ry (h), sy (M)}
1,1

[{py (h), g5 (h),
ry (h), sy (W)};
I,

[{p2(h), q2(h),
ra(h), s2(h)};
ua)lh € H
bers (TrCFNs). Then some Einstein operations of Aj and A,

can be defined as:

be two trapezoidal cubic fuzzy num-

max(IXl, IA_z)
Py (W)+p, (h)
I4+pT (Wp5 (W)’
I+q; (g, ()’
ry (h)+ry (h)
1+r] (W)ry (h)’
sy (W+sy () |
< I4s7 (h)sy (h) | s
+ gy | P +pT ()
max(La, L) | T Fmpr iy
i +a ()
1+qr<h)q§(h>> ’
i (45 (h)
1+ (W) (h))°
s (W) +s5 (h)
L L+s{ (h)s5 (h))
min(MA] ’ /'LAz)

[ p1(h)-pa(h)
I+1=p1 () (1—p2()))° >

A+ Ay =

q1(h)-q2(h)
(1+((1—&1 (1) (1—=gq2(h)))°>
ri(h)-ra(h)

(+1—=ri (h)(1=r2(h)))’
s1(h)-s2(h)
(A+((1=s1(h))(1=s2(h)))

@ Springer

[+p, (W =[1—p, (W]
[+p; (WP+[1—py (D]’
1+, (W) —[1—q, (W]*
T+q, (WP +[1—g, (W’
1+r (W) —[1—r (W]*
L7y (P +[L—r ) ()’
I+s, (WP —[1—s, (W]*
< Ts (WP [1—s, ()]
1 | D+pt ) —0—pf)*

max(ly) [[Hpi(h)]*ﬂl—pj(h)]“
[La; (W1 —[1—g} ()]
[+ay (WP +1—g (W]
H4rf (WP —[=rf ()
(1 (WP +[1=rF (W)’
sy (WP —[1=sy (W1 |
L [4si (P+1=s; 1 |

. 2[pa(m)]*
min(pa) [[(2—pA<h)]"A+[pA<h)V’

20ga(]*
[2~ga(W+ga 1>’

_rnax(IA_) |:

AA =

2ra (i1
[Q=raWP+ram1*°

2sa(W1*
[Q—sa ()] +[s4 (W)]*

Proposition 12 Let A, A1 and A, be three trapezoidal cubic
fuzzy numbers and A, Ay, Ao > 0, then we have:

(1) A+ A=A+ Ay,
(2) AM(A1 4+ Ap) = AA2 + LA,
(3) AMA+ 1A = (A1 + A2)A.

Proof The proof of this proposition is provided in Appendix
A. O

Remark 13 If «; SLTrCFN s, then o < ap, that is the
total order contains the usual partial order on LTyCEN-

5 Trapezoidal cubic fuzzy arithmetic
averaging operators based on Einstein
operations

In this section, we introduce the concept of trapezoidal cubic
fuzzy FEinstein weighted averaging (TCFEWA) operator,
trapezoidal cubic fuzzy Einstein ordered weighted averaging
(TCFEOWA) operator and discuss some of its properties.
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Definition 14 (Beliakov et al. 2007; Grabisch et al. 2009) An
aggregation function f : [0, 1]" — [0, 1] is a function non-
decreasing in each argument, thatis A; < B; for all j €
{1,2,....n} implies f(Ay, A2, ..., Ay) < f(By, B2, ..., By)
and satisfying £ (0,0, ...,0) =0and f(1,1,...,1) = 1.

Deﬁnitio.n 15 fLTrCFN B Lr"i“rCFN — ' LTiCEN is an
aggregation function if it is monotone with respect to <

LTrCFEN and satisfies fLTrCFN (OLTrCFN ey OLTrCFN)

= Orpepn @ fopepnULpepny - lomeepn) =
LTrCEN"

Place the file in any of the directories where MS Word
looks for templates. These directories are defined within MS
Word under Tools/Options/File Locations.

5.1 Trapezoidal cubic fuzzy Einstein weighted
averaging operator

(Upy(h), gy (h),
V/I(h) S;(h)} 1]
[{PA (h), g5 (h),
(s G 1]

, [{(PA(h), qa(h),
ra(h), sa(h)}; pal)l
heH

lection of TrCFNs in L1ycpN and @ = (w1, w2, ..., zzr,,)T
is the weight vector of A;(j = 1,2,...,n) such that
@; € [0, 1] and Z;'.:l . Then trapezoidal cubic
fuzzy Einstein weighted averaging operator of dimension
n is a mapping TrCFEWA : L’i’rCFN — L1rcpN and
TrCFEWA (Al, Ao, ..., Ay) = DA + mAs, ..., w A,
If o = (n 1 %)T . Then the TrCFEWA operator
is reduced to trapezoidal cubic fuzzy Einstein averaging
operator of dimension n , which is defined as follows:
TrCFEA(A1, Aa, ..., Ap) = (A1 + Ax + ...+ Ap)

Definition 16 Let A = be a col-

o; =1

(0.9,0.11,
0.13,0.15], (0.2)
Example 17 Let A, = 801151001173] 0.4) and Ay =
[0.10,0.12,
0.14,0.16](0.3))
([0.2,0.4,
0.6,0.8], (0.1)
[0.4, 0.6, be a collection of TrCFNs in LTCFN -
0.8,0.10], (0.3)
[0.3,0.5,

Then their aggregated value by using the TrCFEWA operator
is also the TrCFN and @ = 0.3,0.4,0.3

TrCFEWA (A1, Ay, ..., A,) =

2 1409103 (14+0.21%3 —[T5_ [1-0.91%3[1-0.2]°3

n _ 1 [140.9193[140.21°- 2+1‘[

1[1-0.9103[1-0.510-3"
_[140.117104[140.4104 — 1‘[2,l 1-0.111%4[1—0.4104 >

n 1+0.11104[14-0. 4]04+1‘[

0.2

1—-0.11104[1—-0.4]04
1-0.131%4[1-0.6]4

[
n n
(1401314 [140.61%4 [ T5_, I
| [140.13104[1+0. 6]°4+n i

2, [140.151°4[140.8)4—[]5_,

H

1-0.13]04[1-0.6]04"
[1-0.15194[1—0.8104

,[1+o 15194[1+0.8 °4+n

S 1401119471404

1 [1-0.15104[1-0.8]04

o [1=0.1119471-0.4104

S[1+0.11
14013

41+0404+1‘[J_ [1—0.11]04[1—0.4]04"

1‘[2 1[140.13

1[1+0 15

104

]

0411+40.6]%4

1

0.4 |

1°

10
—[15_,11-0.131°4[1-0.6]>% *

10

104

04[140.84—[T;_,[1-0.15]°4[1-0.8

_i[140.15
1[1+o 17

04[140.8] 04+1‘[_ -
041140.1014—

{[1-0.15104[1-0.8]04 "

[
[
[
04[140.6]0 4+1‘[2 | [1-0.13104[1-0.6]04
[
[
[ 2 [1-0.171°411-0.101%4

2 11017104 [140. 1014+ T3

2[15_410.101%%[0.3)°3

L[1—0.1710471-0.10104

22112—0.10103[(2—0.3193+TT7_
2[15_410.121%%[0.5]°3

| [o. 10]03 [0_3]0,3 ’

0.2) TP, 014P70 77

[15-112—0.12193[(2—0.5]03+[]5_, [0.12]°3[0.5]03

2115_,10.161°3[0.9]°3

1‘[?;l [(2—0.14]0-3[(2—0.7]0«3+1‘[§:l [0.1410-3[0.7103°

(0. 21 1382—0.8312 0. 41 3493—-0.6009

1.1382+40.8312° 1.34934-0.6009

1.0023 1)

0213771705012

— 0.307 0.7484
= ([(0:2 1.9694° 0.4 9502]

_ ] 0212
= ([0.2(0.1558); 0.4(0.3837)];
(0.2)[0.5421])

— ([0.0311; 0.1534]; 0.1084)

| 111201613 [2—0.91°3 +[T}_,10.16]°-3[0.9]°3

1,
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(w1, @2, ..., wy)T isthe weightvectorof Aj(j = 1,2, ...,n)
such that wj € [0, 1] and Z'}-:l wj =1.Then

(Hpa(h), g, (h),
ra(h), sy (M} 141,
P (). ay (),
ry(h).sy () 171,
{(pa(h). ga(h),
ra(h), sa(h)}; pal)
lh e H

tion of TrCFNs in L.cpN - Then their aggregated value

Theorem 18 Ler A = bea collec- (1) (Idempotency): If all Aj,j = 1,2,...n are equal,
ie, Aj = A, forall j = 1,2,...,n, then TICFEWA
(A1, Ag, ..., Ay) = A.

(2) (Boundary): If

by using the TrCFEWA operator is also the TrCFN and Prin = min_ p7,
TrCFEWA (A1, Ay, ..., Ay) = (max(I;) 1=j=n
Gmin = Min qj_, Frip = min r7,
1<j<n 1<j<n
LT R O S  TO) - — mins;, [ = mi
t [ty (017 +TT)o [1=py (17 Smin = 1Ignjnglns' ¢ in = 1r<nj1r§1n I
[T 14y 0017 —TTj_ gy ()17 Prin = min pF, gt = min g,
" lta; W17 +TT = =gy ()]” I<j=n I=jzn
n _ w n — w ) + = 1 + + = i +
H£=1[1+r£(h>]m 71—[’11-=1[17r17(h)]w’ 'min lfsnjlrsln i Smin 1I<nj12n Si
[Tz l+ry W1 +[ = [1=r (W] .
/ ! It = min I = max p;
" Usy )7 =TT =y (17 min = BU3, 4 Pmax = TUE D)o
[Tj=i sy 17 +TT2 [ =sy ()17 Gmax = MAX ¢j, Fmax = Max rj,
L - <j<n I<j<n
Joiltp! 1”7 T =pf (17 ] Smax = MAX §j,  [max = MaX i,
T o7 17+ = py (17 e
[T} [+ay 017 —TT)_i[1—q; 17 Pmax = X Pj> Gmax = DX 4>
n + w n _ T w s
max(1+) Teilgy W1+ 1= =g ()] oo = max ri, S, = max s
A o 1" - =rf oo™ | t=i=n 1=
IR OTRE S AT O Pmax = hax M Prvax = [hax P;r’
@ @ <j< <j<
[T ls W1 —TT) o =i ()] N = oy ’ "+
i [T [sy 17 4Ty =57 ()17 i Imax = 11;1/?1; 9j> Tmax = lglj?i;in i
_ 2]_[’;-:1[1’10!)]”7 ] S;ax = max s—.i_, II-I"I_aX = max I','"
e W H T 1 T I<jz=n 1=j=n
o in = min i in = min s
2“’}:1[(11 )] Pmin 2, Pj, {min 15, qj
. _Q=q11” T} lq1 (17 Fmin = MiN 7}, Smin = min s,
min(a) 2T 1 ) I<j<n 1<j<n
j= :
Q= )7 H[ Ty [ (17 Mmin = 121,-12" Wy
20T ls1 (1"
T [@=s1 W17 +TT = [s1()]” for all j = 1,2,.,n, we can obtain that
- - <[pr:1m(h)v q;ln(h)s
Fonin (1) Sin (M1, ()
where @ = (w1, @a, ..., wy)] is the weight vector of [;$ (h) mqli (h) Aj
Ai(j=1,2,...n) suchthatw; € [0, 1] and ¥"'_, &w; = min * ° fmint 5
410 ) 7 €10, 1and 3 joy @, (). st (D). (1) | < TrCFEWA (A4, Ay,
[Pmax (1), gmax (1),
Proof The proof of this theorem is provided in “Appendix ;lmaxg;)’ Smax (], (ea;))|
B> O €
vy Ap)

([{p, (), g (h),
IROEROIIN
{ph (), gk,

IHORROIIN

([Pmax (1), dmax (h),
rI;ax(h)’ s;ax (h)]s (IX])

be a [Prnax (B)s Govax (),

Proposition 19 Let A =

IA

collection of TrCFNs in Lp,cpN and where @

@ Springer

[{pa(h), ga(h),
ra(h), sa(h)}, pal)l
heH

i (h), st ()], (IXJ,)
[Pmin(h)a Qmin(h)v

Tmin (1), Smin ()], (L4 ;)]
heH
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({py (), g4 (h),
ry(h), SX(h)}
Iy ] {p (h),

qx (h), VX(h),
sj(h)}; I
, {(pa(h), ga(h),
ra(h), sa(h)};
wal)lh € H

(3) (Monotonicity): A = and B =

(lpg (M), qg (h),
rg(h), Sg(h)]
(1 ). [pf (h),
gy (h), r;,f(h),
Szgr(h)], (I3
[pB(h), g (h),
rg(h), sg(h)],
(up))lh € H
Lticen and Aj < LTicen By, i.e.,

be two collection of TrCFNs in

py(h) < pg(h),
ra(h) <rg(h),
ph(h) < phh),
ri(h) < (b,
ga(h) < qp(h),
sa(h) < sp(h)

g, (h) < qg(h),

sy (h) < s5(h),

qi(h) < gz ),

sx(h) < s§(h)and pa(h) < pp(h),
ra(h) <rp(h),

then TrCFEWA(AL, As, ..., Ay) < TrCFEWA(B;,

By, ..., By).

Proof The proof of these propositions 1, 2, 3 is provided in
“Appendix C.” O

({p4 (M), g, (h),

r;(h) s;(h)}
[{pA (h),

qA A (), i (h),

Corollary 20 Let A = sj\'(h)}; IX] beacollection
s {(pa(h), ga(h),
ra(h), sa(h)};
ual)lh € H

of TrCFNsin Ly.cpy and wherew = (w1, wa, ..., w,,)T

is the weight vector of Aj(j = 1,2, ..., n) such that w; €
[0, 1] and Z?:l wj = 1. Then

TrCFWA (A1, Ay, ., Ay) <TrCFWA (Ay, Ay, ., Ap).
Proof Omitted. O

5.2 Trapezoidal cubic fuzzy Einstein ordered
weighted averaging operator

We also develop a type of trapezoidal cubic fuzzy Einstein
ordered weighted averaging (TrCFEOWA) operator.

({ps(h), g4 (h),
ry (h), Sj(h)}
;) lps (),
ORGSO
sA (MY 1]
Hpa(h), ga(h),
ra(h), sa(h)},
walllh € H
lection of TrCENs in Ltycgen , iS also the TrCFEOWA
operator of dimension 7, is a mapping TrCFEOWA :
Lrepn — LTCEN - that is an associated vector =

[0, 1] and Z;l:

Definition 21 Let A = be a col-

(w1, oo, ..., w,,)T such that w; € (o =1
. TrCFEOWA (Al, Az, ceey An) = ZD‘]A(U)l + w2A(g)2, N
@, Ao)n, Where (o(1),0(2),...,0(n)) is a permutation
of (1,2, ...,n) such that Ao‘(l) < Ao'(j_l) for all j =
2,3,...,n(.e., Ay(j) is the j th largest value in the col-
lection (A1, Az, .., Ap). T o = (o, o2, ..., )] =
(n e %)T , then the TrTCFEOWA operator is reduced to

the TrCFA operator (2) of dimension 7.

(Hpa (), g, (h),
ry (h), SX (M},
'n ][{p (h)
q (h), r} (h),
sy (), 1]
Hpa(h), qa(h),
ra(h), sa(h)},
wal)lh € H
of trapezoidal cubic fuzzy numbers (TrCFNs) in L.cEN-
Then their aggregated value by using the TCFEOWA opera-
tor is also the TrCFN and
TrCFEOWA (Aq, Ay, ...

Theorem 22 Let A = be a collection

,Ap) =

i 1124 ) (D17~ h_ll=p, 0”7 ]
[JPRTE N Ty (ENTE N (Y i
) 'fl'=1“—%(_/)(h)]
l_[_'}=|[1+q;<j>(h)]w +1’[7=1[1—q;(j)(h)]w ’

I_ w — w 5
tmaxlfy ] [Tj=i gy W1 —[Tji [ =rg gy (0]
[T [y (17 + T [ =rg gy (017
[T U5y 17 =TT 1= (01
[Tji s,y W17 +TTj— [1=s, ;) (17
[T (4p) G 017 =TT 1=pf 017 ]
[Tizil14p5 W17 +TT) o =pf (017
[T} 1[1+q(,(,)<h>]“’ —[T} 11— qa(,)m)w
max[l+] 1_[] 1[1+({J(1)(h)] +l_[1 11 qa(j)(h)
A [1+ram(h) -=l[]7ra(j)(h) ’
1_[/:1[”’0(])“‘)] ’/1' 1[1_’:0)(/1)]%
[T il 017 =TTy (=5, (17
[T sy 17 +TTG oy =5y 17
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i 21T} _ilpoy (1" ] is the weight vector of the TrCFEOWA operator Aj(j =
[Tj=11@=po iy WP+ Tj2ilpo () D7 1,2, ...,n) such that w; € [0, 1] and Z’}:l w; =1
21T} 1[%(/)(}1)]
[T} 112=40 )y M7 +] T} <1190 (D17
min[ie4] ) Proof Omitted. O

2T}y lro iy (017
_7’=1[(2_r0(j)(h)]m+n_7=|[r0(j)(h)]w ’

2T Lo 17
[Tj=1[C—=s0()) m1” S ) m”

where (o (1), 0(2), ..., 0 (n)) is a permutation of (1,2, ..., n)
such that Ag(1y < Ag(j—n forall j =2,3,...n, @ =
(w1, oo, ..., w,,)T istheweightvectorofAj(j =1,2,...,.n)
such that wj € [0, 1], and Z?:l wj=1.

Proof The process of this proof is the same as theorem 1. O

({pa(h), g, (h),
rj(h) sy}, 1]
[P (). gz (k).
ra(h), sy ()}, I7]
[{PA (h), qa(h),
ra(h), sa(h)},
wal)l
heH
lection of TrCFNs in Ly.cpn and where w = (w1, o2, ...,
wn) ! be the weighting vector of the TrCFEOWA operator,
such thatw; € [0, 1] and Z?:l wj = 1.Then TrCFEOWA
(A1, Aa, ..., Ay)
< TrCFEOWA (By, B3, ..., B,) , where (Aq, Aa, ..
is any permutation of (By, B, ..., By).
Based on algebraic operations on trapezoidal cubic fuzzy
sets (TrCFSs), defined the TrCFEOWA operator as follows:
TrCFEOWA (Ay, Az, ..., Ay) =

Proposition 23 Let A = be a col-

L] An)

(max (I = [T'_y [ = pyj)s

1 ) (AN TRl NI (AN TR |
=TT - ;(])]]}, {max(1})

(1 =TT = Py Il 1 =TT =g 1
[ =TTl =g I 0 =TTt = s 1)
min(ua{[Ti=1 Poi)s I1j=1 @0y [Tj=1 70 (i)
11501

and proposed an approach to solving group decision-making

({pa(h), g, (h),

s (h) N (h)} 1]
[{ pa(h), gy (),

problems, where A = (h) sj(h)} I: be a col-
, [{(pA(h), qa(h),
ra(h), sa(h)}; pal)l
heH
lection of TrCFNs in Ly,.cpN, (0(1),0(Q2),...,0(n)) is a
permutation of (1,2, ...,n) such that As(jy < As(j—1) for
all j = 2,3,...,n and where w = (o1, w2, ..., o)’

@ Springer

({p4 (M), g4 (h),
r;(h) s;(h)} 1]
[{pA (h). qf (),
ri(h), st} I
[{pA(h), ga(h),
ra(h), sa(h)}, pal)l

Corollary 24 Let A = be a collec-

heH
tion of TrCFNs in L.cpN and where
o = (o1, w3, ..., wn)T is the weight vector of TrCFE-

OWA suchthatw; € [0, l]ana’Z'}:1 wj = 1.Then TrCFE-
OWA (A1, Aa. ..., A)) < TrCFEOWA (A}, Ay, ... Ay).

Proof Omitted O

5.3 Trapezoidal cubic fuzzy Einstein hybrid
weighted averaging operator

The TrCFEWA operator weights individual the TrCFNs and
the TrCFEOWA operator weights individual the ordered
positions of the TrCFNs. We develop trapezoidal cubic fuzzy
hybrid averaging (TrCFEHWA) operator, which weights
together the given TrCFN and its well-ordered position.

(HUp4(h), g4 (h),
r;(h) s;(h)} 1]
[{pA(h) g (h),

Definition 25 LetA = { r} T, sX(h)}, IA+] be acollec-
[{pa(h), ga(h),
ra(h), sa(h)}, mal)l
heH

tion of TrCFNs in Lrycpy and @ = (w1, @3, ..., wy) T isthe

weight vector of A;(j = 1,2, ...,n) such that w; € [0, 1]
and Z?: (@ = 1. Then trapezoidal cubic fuzzy Einstein
hybrid weighted averaging operator of dimension n is a map-
ping TrCFEHWA : LT~y — LTCEN , that is an associated
vector w = (wy, wy, ..., w,)! such that w; € [0, 1] and
Z'Jl-=1 w; = 1.

TrCFEHWA (A1, Az, ..., Ay) = p1Asq) + P2As)s -
PnAcq) - If p = 0w,y + (1 — O)we(;) with a balancing
coefficient & € [0, 1], (c(1),0(2),...,0(n)) is a permu-
tation of (1,2, ...,n) such that As(;) < Ag(j—1 for all
J = 2,3,...,n(.e., Ay is the j th largest value in the
collection (Ay, Ay, ..., Ap).
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([{px (1), g5 (),
IROEROIIN
Up (), qf (),

Theorem 26 Let A = r/:r(h), s:{(h)}; II] be a collec-
{(pa(h), ga(h),
ra(h), sa(h)}; wal)l
heH
tion of trapezoidal cubic fuzzy numbers (TrCFNs) in LT:cEN
and w = (wy, wy, ..., wn)T is the weight vector of Aj(j =

1,2, ...,n) such that w; € [0, 1] and Z'}zl wj=1.Then
their aggregated value by using the TrCFEHWA operator,
which is an associated vector w = (w1, wa, ..., wn)T, is
the weightvectorof Aj(j = 1,2, ..., n) suchthatw; € [0, 1]
and Z?:l wj = 1, is also the TrCFN and TrCFEWA
(Ay, Az, ..., Ap) = (max (1)

[ [l ) 1 =TT =Py 1
[Tj =1 l4pg 1T T =Py )1
[Tj=1 U4 1" ~TTji =45
[Tj=1l4a5 )1+ Tj=i =45 ))*

a4y 1 =TTl =rg )1 |
" g ) AT T =g 1
[Tjoils, )1 =TTl =55 )1

L [T [y 1+ T s ) 1

[Tl +pg ) 1"l =Py )" ]
Jo1 py ) AT L =py ) 1

[T l+a ) 1 =TT =g )1

[T [+ ) 1 T =gy )1

+
max(/ )
() [Tjo Dy ) 1 =TT =) 1
l_[_'}=| [1+r{(,)]°‘+n';=1 [1—?‘{(./}]0‘ ’
n n
=i sy ) 1 =T [ =55 1
L il ) 1T =555,
B 2Tz (p1® n
1o [C=poy 1 H i [Pe(h 1
n
21Tz lgo(p1”
. '!_ 72— NCES '!_ e
mln(/,LA) l_[J—l[( qa(/)] l_[./_l[qa(])] )

2[T) ool

[T [C=re ()1 +] 1oy ro (1
2T Ise(h”

L nﬁzl [(2_50(].)](1_;'_1—[7:1 [Sa(j)]a .

If p = 0w, (j)+(1—0)ws (jywith a balancing coefficient 6 €
[0, 1], (o (1), 0(2), ..., 0 (n)) is a permutation of (1, 2, ..., n)
such that Ag(jy < Ag(j—1) forall j =2,3,...,n(.e., As(j)
is the j th largest value in the collection (A1, Aa, ..., Ap).

6 An approach to multiple attribute decision
making with trapezoidal cubic fuzzy
information

A multiple attribute decision-making (MADM) problem is
to find a best compromise solution from all feasible alterna-
tives assessed on multiple attributes. Let h = {hy, h2, ..., hy,}
be a discrete set of alternatives and G = {g1, g2, ..., &}

be the set of attributes. Suppose the rating of alternatives
hi (i = 1,2,..,n) on attributes g; (j = 1,2,...,m)
given by decision maker are trapezoidal cubic fuzzy num-
bers (TrCENs) in L1,cFn :

(Hpy (h), g, (h),
ra(h), sy (W]
BITHORIO)
ra(sy (1]t
[{pa(h), ga(h),
ra(h), sa(h)}; pal)l
heH

where

[p4(h), g4 (h),

ra(h), s, (ML),

[P (), ay (b,

ry (), sy (I
zoidal fuzzy set that the alternative h; satisfies the attribute g ;
and { [pa(h), qa(h),

indicates the interval-valued trape-

ra(h), sa(h)](ia)
that the alternative /; does not satisfy the attribute g ;- Hence,

a multiple attribute decision-making (MADM) problem can
be concisely expressed in the trapezoidal cubic fuzzy deci-
(HUpy(h), q, (h),
ra(h), sy ()} 1]
pa (). g1 (h),
ra (). s (W) 1]
[ pah), ga(h),
ra(h), sa(h)}; pal)l
heH

Next, we shall apply the TTrCFEHWA operator to deal with
the multiple attribute decision-making (MADM) problem,
which involves the following steps.

} indicates the trapezoidal fuzzy set

sion matrix D = (A;j)mxn =

Step 1: Get the normalized trapezoidal cubic fuzzy deci-
sion matrix. The following normalization formula
Ek = (,ij)nxl. Accordingly, we attain the nor-
malized trapezoidal cubic fuzzy decision matrix
E = (B J Ynxm -

Step 2. Utilize the TrCFEHWA operator to aggregate all
the rating values B;; (j = 1,2,...,m) of the i
th line and get the overall rating value g;; corre-
sponding to the alternative h; (i = 1,2,...,n),

i.e., ﬁij = TrCFHWA (,3,'1, ,3,‘2, ...,,Bim), (i =
1,2,...n), wherew = (wy, s, ..., w,)7 isthe
attribute weight vector of g; (j = 1,2,...,m)
such that w; € [0,1], (j = 1,2,..,m) and

Z';:l wj=1w=(w,w, .., wy) T is the asso-
ciated vector of the TrTCFEHWA operator, such that
wj €[0,1],j=1,2,...,nand Z;'.:l wj = 1.

Step 3. Rank the order of all alternatives. Utilize the method
in definition 8 to rank the overall rating values
Bi (i = 1,2,...,n) and rank all the alternatives
hi (i =1,2,...,n) in accordance with §; (i =
1,2, ..., n) in ascending order.
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Step 4: Lastly, we choice the most appropriate alternative(s)
with the smallest largely rating value.

7 lllustrative example

In this section, amultiple attribute decision-making (MADM)
problem involves the prioritization of a set of propulsion sys-
tems used to illustrate the developed operator.

The propulsion system selection is based on the study that
has been conducted for the selection of propulsion system of
a double-ended passenger ferry to operate across the Lahore
in Karachi with the aim of reducing the journey time in highly
congested seaway traffic. Propulsion system alternatives are
given the set of alternatives A = {A1, Az, A3z, As}

Aj : Conventional propeller and high lift rudder;
Aj ¢ Get-up-and-go,

A3z : Cycloidal propeller,

A4 Outmoded

The selection decision is made on the basis of one objec-
tive and four subjective attributes, which are the following:

C1 : Investment cost (IC);

C» : Reparation and maintenance expenditures;
C3 : Maneuverability (MV);

C4 : Vibration and noise (VN).

where the attribute weight vector is u = (0.24, 0.35,0.41)
. Therefore, trapezoidal cubic fuzzy multiple attribute deci-
sion making (MADM) problem is to choose the appropriate
propulsion system from among three alternatives.

Assume that the decision maker uses the linguistic terms to
represent the evaluating values of the alternatives with respect
to different attributes, respectively, as shown in Table 1. (Here
the relationship between the linguistic terms and the corre-
sponding TrCFNs in Ltycpn as shown in Tables 2, 3, 4.

Step 1: Get the normalized trapezoidal cubic fuzzy deci-
sion matrix. The following normalization formula Ef =
(Bf nx1-

Henceforth, we acquire the standardized trapezoidal cubic
fuzzy decision matrix E = (B;;)nxm -

Step 2. Utilize the TrTCFEHWA operator to total all the
rating values B;;(j = 1, 2, ..., m) of the i th line and get the
general rating value f;; comparing to the alternative /;

w = (0.25,0.25, 0.25, 0.25)
Step 3. Rank the request of all choices. Use the tech-

nique in definition 8 to rank the general rating values
Bi (i =1,2,...,n) and rank every one of the alternatives

@ Springer

Table 1 Linguistic terms

Linguistic TrCFVs
terms
Very high {([0.4,0.6,0.8,0.10],0.2[0.6,0.8,0.10,0.12],
(VH)
0.4[0.5,0.7,0.9,0.111,0.3) }
Very low {([0.6,0.8,0.10,0.12],0.2[0.8,0.10,0.12,0.14],0.4
(VL)
[0.7,0.9,0.11,0.13],0.3) }
Low (L) {([0.16,0.18,0.20,0.221,0.2[0.18,0.20,0.22,0.24],0.4
[0.17,0.19,0.21,0.23],0.3) }
Medium low {([0.5,0.7,0.9,0.11],0.2[0.7,0.9,0.11,0.13]1,0.4
(ML)
[0.6,0.8,0.10,0.12],0.3) }
Medium (M) {([0.9,0.11,0.13,0.15],0.2[0.11,0.13,0.15,0.17],0.4
[0.10,0.12,0.14,0.16],0.3) }
Medium high  {{[0.12,0.14,0.16,0.18],0.2[0.14,0.16,0.18,0.20],0.4
(MH)

[0.13,0.15,0.17,0.19],0.3) }
High {([0.25,0.27,0.29,0.31],0.2[0.27,0.29,0.31,0.33]1,0.4
[0.26,0.28,0.30,0.321,0.3) }

Table2 Decision matrix 2

Cl C2 C3 C4

Ap Very low Very high Very high Very low
Ar Very low Very high Very low low
A low Very low Medium high Very high
Ay Very high Medium low Medium low Very high
Table 3 Decision matrix 3

Cy C C3 Cy
A1 High Low Very high Medium high
Ay Medium high  High Very low Low
A3 Low Medium high  High Medium low

A4 Very high Medium low  Medium low  High

Table 4 Decision matrix 4

Cy Cy C3 Cy
A} Medium low Low Very high Medium low
Az  Medium high  Very low Very low Medium
A3 Low Medium Medium Low
Ay Medium Medium low  Medium low  Very high
hi (i=1,2,...,n)inaccordance with 8; (i =1,2,...,n)

in ascending order. At long last, we select the most allur-
ing alternative(s) with the littlest general rating esteem.
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Table 5 Expert decision matrix 5

C Cs Cs Cs
< [0.6,0.8, <[0.4,0.6,0 < [0.4,0.6, <[0.6,0.8,
0.10,0.12],0.2 8,0.10],0.2; 0.8,0.10], 0.2; 0.10,0.12],0.2;

M [0.8,0.10, [0.6,0.8, [0.6,0.8, [0.8,0.10,

! 0.12,0.14], 0.4 0.10,0.12], 0.4; 0.10,0.12], 0.4; 0.12,0.14], 0.4;
[0.7,0.9, [0.5,0.7, [0.5,0.7, [0.7,0.9,
0.11,0.13],0.3 > 0.9,0.117;0.3 > 0.9,0.111,0.3 > 0.11,0.13]0.3 >
< [0.6,0.8, < [0.4,0.6, < [0.6,0.8, <[0.16,0.18,
0.10,0.12], 0.2; 0.8,0.10], 0.2; 0.10,0.12], 0.2; 0.20,0.22],0.2;

s [0.8,0.10, [0.6, 0.8, [0.8,0.10, [0.18, 0.20,

2 0.12,0.14], 0.4; 0.10,0.12], 0.4; 0.12,0.14], 0.4; 0.22,0.24], 0.4;
[0.7, 0.9, [0.5,0.7, [0.7,0.9, [0.17,0.19,
0.11,0.13],0.3 > 0.9,0.11],0.3 > 0.11,0.13],0.3 > 0.21,0.23],0.3 >
< [0.16,0.18, <[0.6,0.8, <[0.12,0.14, <[0.4,0.6,
0.20,0.22],0.2; 0.10,0.12],0.2; 0.16,0.18],0.2; 0.8, 0.10],0.2;

4 [0.18, 0.20, [0.8,0.10, [0.14, 0.16, [0.6, 0.8,

3 0.22,0.24], 0.4; 0.12,0.14], 0.4 0.18,0.20], 0.4 0.10,0.12], 0.4;
[0.17,0.19, [0.7,0.9, [0.13,0.15, [0.5,0.7,
0.21,0.231,0.3 > 0.11,0.13],0.3 > 0.17,0.191,0.3 > 0.9,0.11];0.3 >
< [0.4,0.6, <[0.5,0.7, <[0.5,0.7, < [0.4,0.6,
0.8,0.10], 0.2 0.9,0.11],0.2; 0.9,0.11],0.2; 0.8,0.10], 0.2;

s [0.6, 0.8, [0.7,0.9, [0.7, 0.9, [0.6, 0.8,

4 0.10,0.12], 0.4; 0.11,0.13], 0.4; 0.11,0.13], 0.4; 0.10,0.12], 0.4;
[0.5,0.7, [0.6, 0.8, [0.6, 0.8, [0.5,0.7,
0.9,0.111,0.3 > 0.10,0.12],0.3 > 0.10,0.12],0.3 > 0.9,0.11],0.3 >

Table 6 Expert decision matrix 6

Ci G C3 Cy
< [0.25,0.27, < [0.16,0.18, < [0.4,0.6, < [0.12,0.14,
0.29,0.31],0.2; 0.20, 0.22],0.2; 0.8,0.10], 0.2; 0.16,0.18], 0.2;
A [0.27,0.29, [0.18, 0.20, [0.6, 0.8, [0.14,0.16,

! 0.31,0.33],0.4; 0.22,0.24], 0.4, 0.10,0.12], 0.4; 0.18,0.20], 0.4;
[0.26, 0.28, [0.17,0.19, [0.5,0.7, [0.13,0.15,
0.30,0.32]1,0.3 > 0.21,0.23],0.3 > 0.9,0.11],0.3 > 0.17,0.191,0.3 >
< [0.12,0.14, < [0.25,0.27, < [0.6,0.8, < [0.16,0.18,
0.16,0.18], 0.2; 0.29,0.31],0.2; 0.10,0.12]1,0.2; 0.20, 0.221,0.2;

A [0.14,0.16, [0.27,0.29, [0.8,0.10, [0.18, 0.20,

2 0.18, 0.20], 0.4; 0.31, 0.33], 0.4; 0.12,0.14], 0.4; 0.22,0.241, 0.4;
[0.13,0.15, [0.26, 0.28, [0.7,0.9, [0.17,0.19,
0.17,0.19]; 0.3 > 0.30,0.32],0.3 > 0.11,0.13],0.3 > 0.21,0.23],0.3 >
< [0.16,0.18, < [0.12,0.14, < [0.25,0.27, < [0.5,0.7,

0.20, 0.221,0.2; 0.16,0.18], 0.2; 0.29,0.31],0.2; 0.9,0.111,0.2;
A [0.18, 0.20, [0.14,0.16, [0.27,0.29, [0.7,0.9,

3 0.22,0.24], 0.4; 0.18,0.20], 0.4; 0.31,0.33],0.4; 0.11,0.13],0.4;
[0.17,0.19, [0.13,0.15, [0.26, 0.28, [0.6, 0.8,
0.21,0.231,0.3 > 0.17,0.19]1,0.3 > 0.30,0.32]1,0.3 > 0.10,0.12],0.3 >
< [0.4,0.6, < [0.5,0.7, < [0.5,0.7, < [0.25,0.27,
0.8,0.10], 0.2; 0.9,0.11],0.2; 0.9,0.11],0.2; 0.29,0.311,0.2;

A [0.6,0.8, [0.7,0.9, [0.7,0.9, [0.27,0.29,

4 0.10, 0.12], 0.4; 0.11,0.13], 0.4; 0.11,0.13], 0.4; 0.31, 0.33], 0.4;

[0.5,0.7, [0.6,0.8, [0.6, 0.8, [0.26, 0.28,

0.9,0.11],0.3 >

0.10,0.12],0.3 >

0.10,0.12],0.3 >

0.30,0.32],0.3 >
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Table 7 Expert decision matrix 7

C Cs Cs Cs
<1[0.5,0.7, <[0.6,0.8, < [0.4,0.6, <1[0.5,0.7,
0.9,0.11],0.2; 0.10,0.12],0.2; 0.8,0.101], 0.2; 0.9,0.11],0.2;

M [0.7,0.9, [0.8,0.10, [0.6, 0.8, [0.7,0.9,

! 0.11,0.13], 0.4; 0.12,0.14], 0.4; 0.10,0.12], 0.4; 0.11,0.13], 0.4;
[0.6,0.8, [0.7,0.9, [0.5,0.7, [0.6,0.8,
0.10,0.12],0.3 > 0.11,0.13],0.3 > 0.9,0.11,0.3 > 0.10,0.12],0.3 >
<[0.5,0.7, <[0.6,0.8, <[0.6,0.8, <[0.9,0.11,
0.9,0.11],0.2; 0.10,0.12],0.2; 0.10,0.12], 0.2; 0.13,0.15],0.2;

s [0.7, 0.9, [0.8,0.10, [0.8,0.10, [0.11,0.13,

2 0.11,0.13], 0.4; 0.12,0.14], 0.4; 0.12,0.14], 0.4; 0.15,0.17], 0.4
[0.6, 0.8, [0.7,0.9, [0.7,0.9, [0.10, 0.12,
0.10,0.12],0.3 > 0.11,0.13],0.3 > 0.11,0.13],0.3 > 0.14,0.16],0.3 >
<[0.6,0.8, <[0.9,0.11, <1[0.9,0.11, <[0.6,0.8,
0.10,0.12],0.2; 0.13,0.15],0.2; 0.13,0.15],0.2; 0.10,0.12],0.2;

4 [0.8,0.10, [0.11,0.13, [0.11,0.13, [0.8,0.10,

3 0.12,0.14], 0.4; 0.15,0.17], 0.4; 0.15,0.17], 0.4; 0.12,0.14], 0.4;
[0.7,0.9, [0.10, 0.12, [0.10, 0.12, [0.7,0.9,
0.11,0.13],0.3 > 0.14,0.16],0.3 > 0.14,0.16], 0.3 > 0.11,0.13],0.3 >
<[0.9,0.11, <[0.5,0.7, <[0.5,0.7, < [0.4,0.6,
0.13,0.15],0.2; 0.9,0.11],0.2; 0.9,0.11],0.2; 0.8,0.10], 0.2;

A [0.11,0.13, [0.7,0.9, [0.7,0.9, [0.6, 0.8,

4 0.15,0.17], 0.4; 0.11,0.13], 0.4; 0.11,0.13], 0.4; 0.10,0.12], 0.4;
[0.10, 0.12, [0.6, 0.8, [0.6,0.8, :0.5,0.7,
0.14,0.16], 0.3 > 0.10,0.12],0.3 > 0.10,0.12],0.3 > 0.9,0.11],0.3 >

Table 8 Normalized trapezoidal cubic fuzzy decision matrix 8

Cy G C3 Cy

< [0.4,0.2, < [0.6,0.4, < [0.6,0.4, < [0.4,0.2,
0.9, 0.88], 0.2,0.9], 0.2,0.9], 0.9, 0.88],
0.8; 0.2, 0.8;[0.4, 0.8; 0.4, 0.8; 0.2,

Ay 0.9, 0.88, 0.2,0.9, 0.2,0.9, 0.9, 0.88,
0.86], 0.6 0.88], 0.6; 0.88], 0.6; 0.86], 0.6;
[0.3,0.1, [0.5,0.3, [0.5,0.3, [0.3,0.1,
0.89,0.87],0.7 > 0.1,0.89]; 0.7 > 0.1,0.89]; 0.7 > 0.89,0.87],0.7 >
< [0.4,0.2, < [0.6,0.4, < [0.4,0.2, < [0.84,0.82,
0.9, 0.88], 0.2,0.9], 0.9, 0.88], 0.8,0.78],
0.8; 0.2, 0.8;[0.4, 0.8; 0.2, 0.8;[0.82,

Ay 0.9, 0.88, 0.2,0.9, 0.9, 0.88, 0.8,0.78,
0.86], 0.6; 0.88], 0.6; 0.86], 0.6; 0.76], 0.6;
[0.3,0.1, [0.5,0.3, [0.3,0.1, [0.83,0.81,
0.89,0.87],0.7 > 0.1,0.89]; 0.7 > 0.89,0.87],0.7 > 0.79,0.771,0.7 >
< [0.84,0.82, < [0.4,0.2, < [0.88, 0.86, < [0.6,0.4,
0.8,0.78], 0.9, 0.88], 0.84, 0.82], 0.2,0.9],
0.8;[0.82, 0.8;[0.2, 0.8; [0.86, 0.8; 0.4,

A3 0.8,0.78, 0.9, 0.88, 0.84,0.82, 0.2,0.9,
0.76], 0.6; 0.86], 0.6; 0.8],0.6 0.88], 0.6;
[0.83, 0.81, [0.3,0.1, [0.87,0.85, [0.5,0.3,
0.79,0.77],0.7 > 0.89,0.87],0.7 > 0.83,0.81],0.7 > 0.1,0.89]; 0.7 >
< [0.6,0.4, < [0.5,0.3, < [0.5,0.3, < [0.6,0.4,
0.2,0.9], 0.1,0.89], 0.1, 0.89], 0.2,0.9],
0.8; 0.4, 0.8;[0.3, 0.8; 0.3, 0.8;[0.4,

Ay 0.2,0.9, 0.1,0.89, 0.1,0.89, 0.2,0.9,
0.88], 0.6; 0.87], 0.6; 0.87], 0.6; 0.88], 0.6;
[0.5,0.3, [0.4,0.2, [0.4,0.2, [0.5,0.3,
0.1,0.89]; 0.7 > 0.9,0.88],0.7 > 0.9,0.88],0.7 > 0.1,0.89]; 0.7 >
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Table 9 Normalized trapezoidal cubic fuzzy decision matrix 9

Ci C C3 Cy
< [0.75,0.73, < [0.84,0.82, < [0.6,0.4, < [0.88, 0.86,
0.71, 0.69], 0.8; 0.80,0.78], 0.8; 0.2,0.9],0.8; 0.84,0.82], 0.8;
A [0.73,0.71, [0.82,0.80, [0.4,0.2, [0.86, 0.84,

! 0.69, 0.67], 0.6; 0.78,0.76], 0.6; 0.9, 0.88], 0.6; 0.82, 0.801, 0.6;
[0.74,0.72, [0.83,0.81, [0.5,0.3, [0.87,0.85,
0.70,0.68],0.7 > 0.79,0.77],0.7 > 0.1,0.89],0.7 > 0.83,0.81]; 0.7 >
< [0.88, 0.86, < [0.75,0.73, <[0.4,0.2, < [0.84,0.82,
0.84,0.82],0.8; 0.71,0.691, 0.8; 0.9,0.88],0.8; 0.80, 0.78], 0.8;

A [0.86, 0.84, [0.73,0.71, [0.2,0.9, [0.82, 0.80,

2 0.82, 0.80], 0.6; 0.69, 0.671, 0.6; 0.88,0.86], 0.6; 0.78, 0.76], 0.6;
[0.87,0.85, [0.74,0.72, [0.3,0.1, [0.83,0.81,
0.83,0.81]; 0.7 > 0.70, 0.681,0.7 > 0.89,0.871,0.7 > 0.79,0.771,0.7 >
< [0.84,0.82, < [0.88, 0.86, < [0.75,0.73, < [0.5,0.3,
0.80, 0.78], 0.8; 0.84,0.82],0.8; 0.71,0.69], 0.8; 0.1,0.89],0.8;

A [0.82, 0.80, [0.86, 0.84, [0.73,0.71, [0.3,0.1,

3 0.78, 0.76], 0.6; 0.82,0.80], 0.6; 0.69, 0.67], 0.6; 0.89, 0.87], 0.6;
[0.83,0.81, [0.87,0.85, [0.74,0.72, [0.4,0.2,
0.79,0.77],0.7 > 0.83,0.81]; 0.7 > 0.70,0.68],0.7 > 0.9,0.88],0.7 >
< [0.6,0.4, < [0.5,0.3, < [0.5,0.3, < [0.75,0.73,
0.2,0.9],0.8; 0.1,0.89],0.8; 0.1,0.89],0.8; 0.71, 0.691, 0.8;

A [0.4,0.2, [0.3,0.1, [0.3,0.1, [0.73,0.71,

4 0.9, 0.88], 0.6; 0.89,0.871, 0.6; 0.89,0.87], 0.6; 0.69, 0.671, 0.6;
[0.5,0.3, [0.4,0.2, [0.4,0.2, [0.74,0.72,
0.1,0.89],0.7 > 0.9,0.88],0.7 > 0.9,0.88],0.7 > 0.70, 0.68],0.7 >

Table 10 Normalized trapezoidal cubic fuzzy decision matrix 10

Cy C3 Cy

< [0.5,0.3,0.1, < [0.84,0.82,0.80, < [0.6,0.4,0.2, <[0.5,0.3,0.1,
0.891], (0.8) 0.78], (0.8) 0.9], (0.8) 0.89], (0.8)

A [0.3,0.1,0.89, [0.82,0.80, 0.78, [0.4,0.2,0.9, [0.3,0.1,0.89,

! 0.871, (0.6) 0.76], (0.6) 0.88], (0.6) 0.87], (0.6)

[0.4,0.2,0.9, [0.83,0.81,0.79, [0.5,0.3,0.1, [0.4,0.2,0.9,
0.88], (0.7) > 0.771, (0.7) > 0.891, (0.7) > 0.88], (0.7) >
<[0.5,0.3,0.1, <[0.4,0.2,0.9, <[0.4,0.2,0.9, < [0.1,0.89,0.87,
0.89], (0.8) 0.88], (0.8) 0.88], (0.8) 0.85], (0.8)

A [0.3,0.1,0.89, [0.2,0.9,0.88, [0.2,0.9,0.88, [0.89,0.87,0.85,

2 0.87], (0.6) 0.86], (0.6) 0.86], (0.6) 0.83], (0.6)

[0.4,0.2,0.9, [0.3,0.1,0.89, [0.3,0.1,0.89, [0.9,0.88, 0.86,
0.88], (0.7) > 0.871, (0.7) > 0.871, (0.7) > 0.84], (0.7) >
< [0.84,0.82, 0.80, < [0.1,0.89,0.87, < [0.1,0.89,0.87, < [0.84,0.82, 0.80,
0.781, (0.8); 0.85], (0.8) 0.85], (0.8) 0.78], (0.8)

A [0.82,0.80, 0.78, [0.89, 0.87, 0.85, [0.89, 0.87, 0.85, [0.82, 0.80, 0.78,

3 0.761, (0.6); 0.83], (0.6) 0.83], (0.6) 0.76], (0.6)

[0.83,0.81,0.79, [0.9,0.88, 0.86, [0.9,0.88, 0.86, [0.83,0.81,0.79,
0.771, (0.7) > 0.84]1, (0.7) > 0.84]1, (0.7) > 0.771, (0.7) >
< [0.1,0.89,0.87, <[0.5,0.3,0.1, <[0.5,0.3,0.1, <[0.6,0.4,0.2,
0.85], (0.8) 0.89], (0.8) 0.89], (0.8) 0.9], (0.8)

A [0.89,0.87,0.85, [0.3,0.1,0.89, [0.3,0.1,0.89, [0.4,0.2,0.9,

4 0.83], (0.6) 0.87], (0.6) 0.87], (0.6) 0.88], (0.6)

[0.9,0.88, 0.86, [0.4,0.2,0.9, [0.4,0.2,0.9, [0.5,0.3,0.1,
0.84]1, (0.7) > 0.88], (0.7) > 0.88], (0.7) > 0.891, (0.7) >
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Table 11 Utilize the TTCFEHWA operator

G,

C

C3

Cy

Al

A

A3

Ay

< [0.6229, 0.1806,
0.6841, 0.8087],
(0.8); [0.1806,
0.6841, 0.8087,
0.7850], (0.6),
[0.5267, 0.4850,
0.7954, 0.7753],
0.7) >

< [0.7311, 0.6497,
0.7949, 0.8559],
(0.8)[0.6497,
0.7949, 0.8559,
0.8355], (0.6);
[0.5736, 0.3841,
0.8623, 0.8423],
0.7) >

< [0.84, 0.82,
0.80, 0.78], (0.8);
[0.82,0.80,
0.78,0.76],

(0.6);
,[0.83,0.81,
0.79, 0.77],

0.7) >

< [0.3886, 0.5100,
0.8076, 0.8787],
(0.8); [0.5100,
0.8076, 0.8787,
0.8585], (0.6);
[0.4657, 0.2455,
0.5711,0.8674],
0.7) >

< [0.7966, 0.7502,
0.7037, 0.0007],
(0.8), [0.7502,
0.7037, 0.0007,
0.7972], (0.6);
[0.7400, 0.6538,
0.5162, 0.7995],
0.7) >

< [0.6444, 0.5491,
0.6975, 0.8131],
(0.8); [0.5491,
0.6975, 0.8131,
0.7904], (0.6);
[0.5485, 0.3776,
0.4991, 0.7776],
0.7) >

< [0.6745, 0.7829,
0.8648, 0.8444],
(0.8); [0.7829,
0.8648, 0.8444,
0.5514], (0.6);
[0.7026, 0.5587,
0.8523,0.8323],
0.7) >

<[0.5,0.3,
0.1, 0.89],
(0.8); [0.3,
0.1,0.89,
0.87], (0.6);
,[0.4,0.2,
0.9, 0.88],
0.7) >

< [0.5068, 0.3033,
0.6844, 0.8904],
(0.8); [0.3033,
0.6844, 0.8904,
0.8703], (0.6);
[0.3903, 0.1758,
0.3408, 0.8799],
0.7) >

<[0.4,0.2,
0.9, 0.88],
(0.8); [0.2,
0.9,0.88,
0.86], (0.6):
,[0.3,0.1,
0.89, 0.87],
0.7) >

< [0.6939, 0.8155,
0.7939, 0.7728],
(0.8); [0.8155,
0.7939, 0.7728,
0.7518], (0.6);
[0.8114,0.7913,
0.7711, 0.7510],
0.7) >

<[0.5,0.3,
0.1,0.89],
(0.8); [0.3,
0.1,0.89,
0.87], (0.6);
[0.4,0.2,
0.9, 0.88],
0.7) >

< [0.7311, 0.6497,
0.7632, 0.8559],
(0.8); [0.6497,
0.7632, 0.8559,
0.8355], (0.6);
[0.5736,0.3841,
0.8623, 0.8423],
0.7) >

< [0.7356, 0.8406,
0.8202, 0.7998],
(0.8); [0.8406,
0.8202, 0.7998,
0.7796], (0.6);
[0.8474, 0.8269,
0.8073,0.7832],
0.7) >

< [0.6371, 0.5004,
0.3587,0.8717],
(0.8); [0.5004,
0.3587,0.8717,
0.8509], (0.6);
[0.5170, 0.3280,
0.5606, 0.8446],
0.7) >

< [0.6821, 0.5890,
0.4967, 0.8211],
(0.8); [0.5890,
0.4967, 0.8211,
0.7981], (0.6);
[0.6134, 0.4791,
0.2881, 0.7824],
0.7) >

Table 12 Aggregation operator

A; =0.1771, Ay = 0.2022,

A3 =0.1977, A4 = 0.1709.

@ Springer

A

A3

Ay

[0.5451,0.3509, 0.7832, 0.8179], (0.7))

([0.7222, 0.7512, 0.7473, 0.8218], (0.8); [0.7512, 0.7473, 0.8218, 0.7457], (0.6);
[0.7096, 0.6004, 0.7395, 0.6654], (0.7))

([0.5265, 0.4337, 0.4353, 0.8726], (0.8); [0.4337, 0.4353, 0.8726, 0.8216], (0.6)
[0.4542,0.2649, 0.6307, 0.8521], (0.7))

([0.6789, 0.5088, 0.7104, 0.7426], (0.8); [0.5088, 0.7104, 0.7426, 0.8250], (0.6)],
[0.5489, 0.3926, 0.6061, 0.8239], (0.7))

([[0.6442, 0.6071, 0.8158, 0.8403], (0.8)[0.6071, 0.8158, 0.8403, 0.8190], (0.6) }

Step 4: Ranking A> > A3 > A; > A4 and A is the best
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8 Comparison analyses

In way to verify the sagacity and efficiency of the proposed
approach, a comparative study is driven overshadowing the
methods of interval-valued intuitionistic trapezoidal fuzzy
number (Wu and Liu 2013), intuitionistic trapezoidal fuzzy
number (Liu et al. 2017) and triangular cubic fuzzy number
(Fahmi et al. 2018), which are special cases of trapezoidal
cubic fuzzy numbers (TrCFNs), to the related expressive
example.

8.1 A comparison analysis with the existing MCDM
interval-valued intuitionistic trapezoidal fuzzy
number

(Wu and Liu 2013) Step 1: According to the decision infor-
mation given in the interval-valued intuitionistic trapezoidal
fuzzy number decision matrix R¥ = (rikj)

Step 2. Utilize the IVTTFHWA operator to total all the
rating values B;;(j = 1,2,...,m) of the i th line and get
the general rating value f;; comparing to the alternative 4;.
Utilize the decision information given in matrix R, and we
get: (0.2,0.3,0.2,0.3)

Step 3. Find the score value

S(r1) = —0.0406, S(r2) = —0.0864,
S(r3) = 0.0585, S(ra) = —0.0412.

Step 4. Rank all the alternatives A;(i = 1,2,3,4) in
accordance with the scores S(r;) of the overall preference
values r; : A3 > Ay > A4 > Ajq, and thus, the most desir-
able alternative is Az.

Table 13 Interval valued

intuitionistic trapezoidal fuzzy = - G G
number ([0.6.0.8, ([0.4, 0.6, ([0.4, 0.6, (10.6,0.8,
A 0.10, 0.12] 0.8,0.10], 0.8,0.10] 0.10, 0.12],
! [0.8,0.10] [0.6,0.8], [0.6,0.8] [0.8,0.10]
[0.7,0.9]) [0.5,0.7]) [0.5,0.7]) [0.7,0.9])
([0.6, 0.8, ([0.4, 0.6, ([0.6, 0.8, ([0.16, 0.18,
A 0.10, 0.12], 0.8,0.10], 0.10, 0.12], 0.20, 0.22];
2 [0.8,0.10] [0.6,0.8], [0.8,0.10]; [0.18, 0.20],
[0.7,0.11]) [0.5,0.6]) [0.7,0.9]) [0.17,0.19])
([0.16, 0.18, ([0.6, 0.8, ([0.12, 0.14, ([0.4, 0.6,
A 0.20, 0.22], 0.10, 0.12], 0.16,0.18] 0.8,0.10]
3 [0.17,0.21] [0.8,0.10] [0.14,0.16], [0.5,0.9]
[0.15,0.19]) [0.3,0.4]) [0.13,0.15]) [0.14,0.16])
([0.4, 0.6, ([0.5,0.7, ([0.5,0.7, ([0.4, 0.6,
N 0.8, 0.10], 0.9,0.11], 0.9,0.11], 0.8,0.10],
4 [0.6,0.8], [0.7,0.9], [0.7,0.9], [0.6,0.8],
[0.5,0.7]) [0.6,0.8]) [0.6,0.8]) [0.5,0.7])
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Table 14 Utilize the

IVTrFHWA operator Ay {[0.5650, 0.7455, 0.3641, 0.1704]; [0.7455, 0.3641]; [0.5317, 0.7541]}
Ar {[0.3226, 0.4486, 0.1449, 0.0891], [0.4486, 0.1449]; [0.6271, 0.6548]}
Az {[0.3409, 0.4135, 0.3031, 0.2164], [0.3942, 0.3134]; [0.1494, 0.1907]}
Ay {[0.3807,0.5942, 0.8211, 0.0668], [0.5942, 0.8211], [0.6192, 0.9731]}
Table 15 Intuitionistic
trapezoidal fuzzy number [0.6, 0.8, [0.4,0.6, [0.4,0.6, [0.6, 0.8,
Ay 0.10, 0.12] 0.8, 0.10], 0.8, 0.10], 0.10, 0.12],
0.8,0.10] [0.6, 0.8] [0.6,0.8] 0.8,0.10]
[0.6,0.8, [0.4, 0.6, [0.6, 0.8, [0.16,0.18,
As 0.10, 0.12], 0.8, 0.10], 0.10, 0.12], 0.20, 0.22];
0.8,0.10] [0.6,0.8] [0.8,0.10] [0.18,0.20]
[0.16,0.18, [0.6, 0.8, [0.12,0.14, [0.4, 0.6,
Az 0.20, 0.22], 0.10, 0.12], 0.16,0.18] 0.8,0.10]
[0.18, 0.20] [0.8,0.10] [0.14,0.16] [0.6, 0.8]
[0.4, 0.6, [0.5,0.7, [0.5,0.7, [0.4, 0.6,
Ay 0.8, 0.10], 0.9,0.11], 0.9,0.11], 0.8, 0.10],
[0.6,0.8] [0.7,0.9] [0.7,0.9] [0.6,0.8]
Table 16 Overall preference value 8.2 A comparison analysis with the existing MCDM
intuitionistic trapezoidal fuzzy number
A {[0.5068, 0.7143, 0.5367, 0.1100]; [0.7143, 0.3155]}
A 0.4239, 0.6056, 0.4058, 0.2876], [0.4168, 0.2472 . . .. .
. {l I I (Liu et al. 2017) Step 1. According to the decision infor-
Az {[0.3725, 0.5385, 0.4074, 0.1463], [0.5385, 0.2528]} . . . . e ..
mation given in the trapezoidal intuitionistic fuzzy decision
Ay {[0.4586, 0.6528, 0.8579, 0.1051], [0.6528, 0.5751]}
Table 17 Triangular cubic
fuzzy number G = S G
[0.6, 0.8, [0.4, 0.6, [0.4, 0.6, [0.6, 0.8,
0.10] 0.8]; 0.8]; 0.10];
A <[0.12, < [0.10, < [0.10, <[0.12,
0.14], 0.12], 0.12], 0.14],
0.13 > 0.11 > 0.11 > 0.13 >
[0.6,0.8, [0.4, 0.6, [0.8,0.10, [0.16,0.18,
0.10] 0.8]; 0.12], 0.20];
A> < [0.12, < [0.10, < [0.7, < [0.17,
0.14], 0.12], 0.11], 0.19],
0.13 > 0.11 > 0.9 > 0.21 >
[0.16,0.18, [0.6, 0.8, [0.14,0.16, [0.4, 0.6,
0.20], 0.10]; 0.18], 0.8];
A3 < [0.17, < [0.12, < [0.15, < [0.10,
0.19], 0.14], 0.19], 0.12],
0.21 > 0.13 > 0.17 > 0.11 >
[0.4, 0.6, [0.7,0.9, [0.5,0.7, [0.4, 0.6,
0.8]; 0.11]; 0.9], 0.8],
Ay < [0.10, [0.12, < [0.10, < [0.10,
0.12], 0.14], 0.12], 0.12],
0.11 > 0.13 > 0.11 > 0.11 >
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Table 18 Using the TCFHA

{[0.5651, 0.7455, 0.3641]; < [0.0891, 0.1054], 0.1828 >}
{[0.3517, 0.2404, 0.1531]; < [0.3855, 0.1662], 0.1696 >}
{[0.3516, 0.4247,0.3103]; < [0.1098, 0.1306], 0.2195 >}
{[0.4211, 0.6407, 0.4371]; < [0.1246, 0.1481], 0.0743 >}

operator A

As

A3

Ay
Table 19 Comparison analysis Method

with existing methods

Ranking

Trapezoidal cubic fuzzy information

Interval-valued intuitionistic trapezoidal fuzzy number (Wu

and Liu 2013)

Intuitionstic trapezoidal fuzzy number (Liu et al. 2017)

Triangular cubic fuzzy number (Fahmi et al. 2018)

A2>A3>A1>A4
A3 > Ay > Ay > Ay

Al > A3 > Ay > Ay
Ay > Ar > A3 > Ay

matrix R¥ = (rl.kj), and the TIFEWA operator to derive the
individual overall preference trapezoidal intuitionistic fuzzy
values rl.k of the alternative A;, we get:

Step 2. Utilize the individual overall preference trape-
zoidal intuitionistic fuzzy values r{‘ of the alternative A; and
we get

Step 3. Calculate the scores S(r;) of the overall trapezoidal
intuitionistic fuzzy preference values r;

S(r1) = 0.0932,
S(r3) = 0.0523,

S(r2) = 0.0365,
S(r4) = 0.0201.

Step 4. Rank all the alternatives A;(i = 1, ..., n) in accor-
dance with the scores S(r;) of the overall preference values
ri.

A1 > A3 > Ay > Ay, and thus the most desirable alter-
native is Aj.

8.3 A comparison analysis with the existing MCDM
method triangular cubic fuzzy number

(Fahmi et al. 2018) Step 1: According to the decision infor-
mation given in the triangular cubic fuzzy number decision
matrix R¥ = (rikj),

By step 2 using the TCFHA Operator to aggregate all the
decision matrices into single collective decision matrix with
triangular cubic fuzzy ratings. Consider

Step 3. To find the ranking order of the alternatives, use
the score function

S(r1) = 0.0021,
S(r3) = 0.0025,

S(r2) = 0.0316,
S(rs) = 0.0331.

Step 4. Rank all the alternatives A; (i = 1, 2, 3, 4) in accor-
dance with the scores S(r;) of the overall preference values
ri : A4 > Ay > A3z > A, and thus the most desirable alter-

native is A, (Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19).

9 Conclusion

In this paper, we define the new concept of trapezoidal
cubic fuzzy number and Hamming distance. We develop
three arithmetic averaging operators, that is trapezoidal cubic
fuzzy Einstein weighted averaging (TrCFEWA) operator,
trapezoidal cubic fuzzy Einstein ordered weighted averaging
(TrCFEOWA) operator and trapezoidal cubic fuzzy Einstein
hybrid weighted averaging (TrCFEHWA) operator, for gath-
ering cubic fuzzy data. The TrTCFEHWA operator simplifies
both the TrTCFEWA and TrCFEOWA operators. Furthermore,
we originate the relationship between the current aggregation
operators and suggested operators and establish many proper-
ties of these operators. We apply on the TrTCFEHWA operator
to multiple attribute decision making with fuzzy material.
Finally, a numerical example is providing to demonstrate the
submission of the established approach. In group decision-
making problems, because the experts usually come from
different specialty fields and have different backgrounds and
levels of knowledge, they usually have diverging opinions.
These operators can be applied to many other fields, such as
information fusion, data mining, pattern recognition, trian-
gular cubic linguistic fuzzy VIKOR method and trapezoidal
cubic linguistic fuzzy VIKOR method, which may be the
possible topic for the future research.
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Appendix A: Proof of Proposition 1
(1) A1+ A=A+ Ay

max(IA_l, I;z) 7]
|:1+P|_(h)172_(h) ’
q; (W+q, (h)
I+qy (gy ()’
ri (W+ry (h)
I+r (W)ry (h)) ’
sy (h)+s, (h)
I+sy (h)sy (h))
A+ A = < max(I:(l, IXQ) )

_PL+py ()
1+p} (h) p3 ()’
a (W+q3 ()
1+q1+(h) g(h»
i (W) (h)
1+r1+(h)r )’
<h>+s;(h)
L 1+s (h)s5 (h))

min(p4,, MAZ)
[ piL(h)-pa(h)

q1(h)-g2(h)
I+((1=q1 () (1—q2(h)))°
ri(h)-rp(h)
I+((I=r () (1=r2(h)))’
s1(h)-s2
1+((1—Sl(h))(1—52(h))):| i
B max(l_z, IA_l) 7
P,y (W)+py (h)
I4+p; (Wpy (B)’
I+q; (g (h)’
ry (h)+r (h)
141y (W (h)’
55 (h)+sy (h)
T+s; (n)s; (k)
- max(1+ I+) ’
[ piW+pf ()

I+py (Wpy ()’

% <h>+qr(h>
1+q <h>q (h)’
(W ()

1+r;(h)r1+<h) ’
(h)+s (h)

L 1+32+(h)ﬁ(h):|

mln(MAz, MA])
p2(h)-pi(h)
I+((1=p2(h))(1=p1(h)))°
q2(h)-q1(h)
I+((1=g2(h)(1—q1(h)))*
(h).ri(h)

ra(h).ry
I+((1=r2(h)(1=r1(h)))?

s2(h)-s1(h)
1+((1=s2(h))(1=s1(h)))

= A+ A

Hence A1 + Ay = Ay + Aj.

@ Springer

1+((1=p1 (M) (1= p2(h)))° >

(2) A(A1 4+ Ap) =LA + 1A

AMAL + Ap)

max(IX] I;z)
[(A+p} (W) (A= p] NI [(1+p5 () (1—p5 (NT*
[(A+py (W)Y A =py )PF(14py () (A—p5y ()P’

[(1+q; () (1—gy W)TH[(1+¢5 () (1—g5 (A)1*’
[(A+r] (W) A=r] (M [A+r, ()1 —ry ()]
[(L+ry () (I=r ()P [(L4ry () (1=r5 ()
[(+s] (M) A—s{ (W)TP[(1+s5 (1) (1—s5 (M))]*
[(L+s7 () (L—sy ()T [(L+s5 (1) (1—s5 (h)T*
i max(lzllj{z)

[(A+pf () (1— pi(h))]k[<1+p,,2(h>)<1 py )1+
| [A+p{ () A=p{ ()H(1+py (1)1~ p O
(g W)U —g; )P [(+gF () (1—g5 ()T
[<1+qr(h)>(1 ql Fa (1+q§:(h>)(1 §<">) P
[A+r () (L= )P [(L+ry () (L=r3 (W)
[(A+rF () (A=r )P LA+r5 () (A =1 ()]
[<1+s1+(h>>(1—s1+<h))]A
[(1+s, () A=, (h)1*

< [(4g7 ) (U—g7 (W)I*[(1+g5 ())(A—g5 ()]

(1455 (W) (1—s5 (M)]*

min(pa, ia,);

[ 2[p1th) pa ()1

[(4=2p1(h)=2pa(h)—p1(h) pa(W)*+[p1 (h) p2(h)]*
2[g1 (h)ga ()1*

[(4—2q1 (h)—2g2(h)—q1 (h)g2 (W) +(g1 (h)g2 (h)]*
2[r (W (W1

[(4=2r1 (h)=2r2(h)—r1 (W2 (W) +[ri (Wra (W)
2[s1 (Wsa(WT*

WA, :< [(As () +(1=s] (h)*]

L [@=251(W)=2s2(m)—s1(W)s2 (M +[s1 (h)s2 ()]

and we have

- [(1+py (W) =(1=p] ())*]
max Uy ) | {0y oy s (= pr )
[(I+p} () +(1—p] ()*]
[(I+q; ()*—(1—q] ()*]
[(A+g; W) +(1—gp ()1’
(147 ()} == ())*]
[(A4r] () +1=r] ()]
[(1+sf(h>)*—(1—sr<h>>*]}

[(1+p )*—(1 pff(h))*

max(ly )[[<1+p+<h>>*+<1 P
[(+q; ()*—(1— «ﬁ(h))*
[(1+q1+(h>)l+<1 qgh»*]
[(A+r) ) —A=rT ()]
[y () +(1— rﬁ(h»*]
I(1+s1+(h))*—(l—sfr(h))A]}
[y )+ =5 ())*]
mi“(//«A ) |:¢

1 | [@=p1 1 +py i)1*

2q7 (h)
[2—q1 (h)J’\+lq| [V
2r1 (h)
12— fl(h)])‘vL["l(h)])‘ ;
2&1 (h)
[2—s1 (W +[s; (D]

<1+s;(h>>(1—s;(h>)]l}
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max(/,) [
[(1+g, (h)*—(1—g, (h))*]

[(1+p5 ()Y —(1—p; (1)*]
[<1+p‘<h>>k+<1—p§ (h)*1°

[(A+g5 () +(1—gq; ())*]
[(I+ry ()Y —=ry ()]

[(4ry (W) +(1=ry ()1’

A =

—_—

[(1+S{(h))A—(l—s{(h))A]:| .
[y () +(1—s3 ()*]

max(I_) [
[(1+q5 (h))*—(l

[(1+p3 () —(1—p3 (1)*]
[<1+p+ (W) +(1=p3 ()M’
<h>>A]

[(+qy () +(1—q5 (1)*]’
[(1+rg* }

() —(1—ry ()]

(47 () (1= r+(h)))‘]
[(H—si i

() —(1—s;

min(u4,); [[(2

[<1+s;<h>)l+<1—s;<h>m

<h>>ﬂ]

2p% (h)

—pz(h>1*+[pz 1+’
2‘12 (h)
12— qz(h)]*ﬂqz(h)]A

2 (h)
[2— rz(h)]M—[rz(h)]A :

—_—

2s (h)
1(2—s2<h>1*+Lsz<h>J*

Ay +2Ag

= <max(I;2, IXI)

[ [A+pF () (1=p3 )P +pF ) (1—p} ()1

[(14+p5 () (—p5 Y [(A+p] (W) (1—p DT
[(4+q; ()1 =g I*[(1+q; ()1 —g; ()I*
[(14+q5 () (1—g; (M)*[(1+q; () (A—g7 ()*
[(A4ry () (I=ry (A4 () (1=} ()]
[(14ry () A=y NPL(I+r () A=r] DT
[(I4sy () (A=s5 )I*[(1+s] ()1 —s; (W)
[(14s5 (W)(1=s3 (P (A+s7 () (=57 ()1

[(1+P3'(h))(l p%r(h))])\[(l—&-plr(h))(l Jr(h))])"
[(1+g5" ()(1—

S )M+, () (1—q; ()1*

max(13 . 15)

[(1+q2+<h>><1 q;<h>>w<1+qL (h)(1— l(h))V’
[+ () (A=r3 ()[4

(m)(=r" (- |°

(1475 () A=r3 ()M A+ () (A=r ()12

m+s;<h>><1—s;m»ma+sr<h>><1-sr<h>m

(1455 () (A =s3 W) +s7 () (1=s7 ()1

min(ia, 1A, );
2[pa () py () 1*

[[(4*2102(/1)*2171 (M—p2 () p1 (W1 +pa(h) py (WP

2[g2 (g (W1*

[(4—2g2 (1) —2q1 (h)—q2 (Mg (W +1g2 (g1 (W1**

2[ry (yry (W1

[4=2r2 (W) =2r1 () —ra (W)ry (W1 +[ra (W) (W]

2[s5 (h)sy (W]

L [(@4=252(0)=2s1 (W) —s2(W)s1 (W14 +Isa (W)sy ()1*

so, we have A(A| + Az) = LAr + AA7.

[ [(1+py (M) (A=p3 NPI(1+p] () A=py ()P* ]

3) MA+ A =

MA =

and

MA =

(A +212)A

— VI 1 — = (1 TA
max(17), | LEpator i—p; (o1

[+, (W1 —[1—g; ()]
[l+q, MM +[1—g; ()1’
Ltry WP —[1—ry ()]
[y (WP +H[1=ry (D1
[1+s, (W —[1—s, (h)]1
(s, (D1 +[1—s5 (W1
+ [1+p,t(h)1*1—[1 p+(h>]
max (L) | o i i—p [T
[4q (1M —[1—g} ()]
[1+g (WP +[1—gf (W)’
(7 (W) —[1—rf (WM
[L+rf (WP +H[1—rf ()41
(st (P —[1—s 1 ()11
(s (MM +[1—=s 1 ()]

2[pa(m)]*
[Q—pa(M)*1+[pa(m)) 1’
2[ga (W]
[(2—qa (h>111+[qA (mrr’

2[ra (M
[(2—ra (h)]’\1+[rA(h)]‘1 ;

2sa (W1 ]

[2—sa (W) M1 +[s4 ()]*1

min(u) |

=2 1 — = ()T
max(I7), [1+p, (W] 2—[1-p, (M)]*2

[1+p, (WP2+[1-p (P2’
[14+q, (W2 —[1—q; (W)]*2
[l+q, W2 +[1—g, (N2’
[+ ()2 —[1—r, (W)]*2
[+r, (W2 +H[1—r, (]2
[L+s, (P2 —[1—s, (W)]*2
[L+sy (P2 +[1=s, ()]*2
+ [1+pA(h)]*2—[1 mhnh
max(y), | [P ri—p e
[1+qA (W12 —[1-g} (]*2
[+q, (W2 +[1—g (W)]*2°
[1+r‘A*(h)]*2 [1- +<h>]‘2
[+ (P2 +H[1—rf ()12
[1+x;(h)]*z—[l—s;(hﬂ*z
[L+sT (P2 +[1=s] ()]*2
2[pa()1*2
[Q—pa()2+[pa()]2”
2[ga (]2
[2—ga() 2 +[ga())2°
2ra (]2
[Q—ra( 2 +[ram)]*2 !
2[sa(W]*2
[2—sa (NP2 +[s4(M)]*2

min(u) |

[+py (I +[1=py (17
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[ max(17), | LPatr2—li=p, (112 i min(pa, na,); l
A [py (P12 41— py (1427 [ 2[p1 (W) pr(W1*
(g P12 —[1—g; (P12 [4=2p1 (W) =2p2 () —p1 () 2 WV +p1 () p2 (T
(g (D121 =g ()12 7 o T S0t (s T T OO >
= A+ 1 A1 +A —<q1 —<q2 —q1 q2 q1 q2
[lJrrfl(h)]A‘H2 [1 ré(h)]klﬂz’ 20r1 (h)ra (W]
Uory (P24 [1—ry (W)]*1772 [@=2r1 () =2r2 (W) —ri (Wr2 (W Y+ (Dr2 (W1
[1+s, (W2 —[1—s, (W)]*112 2[s1(Wsy (W1*
< [tsy (WP2+[1—s, ()12 L [(4—2s1(h)—2s2(h)—s1 (B)s2 (W) +L[s1 (h)s2 ()] B
= | Dpp P2 —[1—pi 1t
max (/) [[1+pj;(h)]h+'\2+[1—pj{(h)]““2’ and we have
+g; (12 —[1—g 4 ()*1H42 _
[4q (W24 [1—g (WP 122 max(I7) [(A4p] () =1 —py ()*]
[y (P12 —[L—rf ()12 A [ 4pr () +(1—py ()]
[T+rf (W2 +[1—rf () 1+42° [(+g7 Y —(1—q7 ())*]
(s P2 —[1—s 7 (P12 [(tqy ()" +(1=gy ()]’
(s L (T2 11 st ()72 ) [(Atr () =(1=r; ()]

[(Ar (W) +(L=r (h)*]]

z[m%{;‘lﬂz [<1+s1(h>)A<1sl<h>>A1}
[[(2—17A(h)]ﬁ?ﬂz—&-[pA(h)]’\l“Z’ Ay = 1 (h))xf_(l_s‘ (h)m+ ,

20ga(m*1+*2 max (1) [(+pf () = —pf ()"
[@—ga () 172 Fga (71772 (T p WY+ py ()™’

2ra ()12 A + ()]
B el T L(1-tqy ()"~ (1=, ()]
2sa ()12 [(I+g, (W) +(1— qlr(h))A

[(A4r )= =r{ )"

— RERD) *+h
. f}\s;(jﬂ ol [ P+ (= ()
L A2) 8. l(1+s1+(h))*f(1fs]+(h))*l
[(L+s7 () +(1—s] ()*]
s o . . 2p}(h)
Appendix B: Proof of Theorem 1 min(pa,); |:[(2—p1(h)]*+[p1(h)]*’
241(]1)
Assume that n = 1, TrCFEWA (Aj, Ay, ..., A,) = (=g} +g1 W1
69];:1 wiAj &
[Q—r1 ) P+ (T
257 (h)
(max(A(A1 + Az) = AA2 + 2144 [@—s1 ) P +Is1 DT
MAL+ A2) . [(1+py (1) —(1—p; (h)*]
max (I 1)) max(l )| 0 py P+ ps 71’
[[(1+p,(h))(1 Py ()1 [<1+p2 () (1—=p, ()I* [(14g; ()" =(1=g; ()*]
[(+py () (A—p; WP +p; 0)(A—p; )T’ [(I4q; ) +(1—g5 ()*]’
< [(14+gq; () (—g; WP [(1+g5 (1) (1—g5 ()] [A+r, (W) =(1=r) ()]
= [+, ) (A—g; WP (4¢3 () (—g5 BYP" | [(Atry () +(1=ry ()]
[(1+r] (W) (A=r () [A+ry (1) (A—r; (A)]* [(14s5 ()" —(1—s5 (W)*]
[(+r; W)YA—ry ()T[(L+ry (W) (A—ry ()T (455 (1) +(1—s; (h)*]
[(1+s7 D)) (1—s7 P [(1+s55 (1) (1—s5 ()] Adg = _ [ ra+pfmpr—a-prayrr |
[(I4sy (W) (—s; NTI(1+s5 (1) (1—s (h)T* max (7 )[(Hp;(mma “pr YT
r max(1+ 1+) . (45 ()Y —(1—g5 ()*]
s 2 . (1+q%<h»*+<1 qi(h»k]
P ()1 =pi ()L +pS () (1= p3 (h)] [(1+r2 ()Y —(1— - h)*]
[<1+p1+<h)><1 TP IA+pT () (A—pF ()P [(I4ry WY +(1—ry ()1
[(g) () (1—q; (h))]h[(1+q () (1— (h))]A (453 (M) —(1— s;(hm
[(1+q; () (1— qr(h)m “*qi(h))(l q% (h))]“ , (53 (1) +(1—s5 (h)*]

[(1+r]+(h))(l rﬁ(h))] [(L+ry (D) (m)1*
[+ () A=r T )P +ry () (A=r ()] . ) 2p5(h)

[(1+s] () (1—s; (h))]'\[(1+s2+(h))(1—s;(h)m min(x,); |:[(2pz(h)]'\+[pz(h)]“
(s () A=s{ (I [A4sy (M) (A=sy I || 243 () >

[2— qz(h)]*+[qz(h)]
2r5 (h)
[Q=r2 (M) +[r2 ()]
25} (h)

[Q=s2 (] +[s2(M)T*
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My + LAY

max(IA2 IAI)
[(+p5 (W) (A—p5 )" [(1+py () (1—py (M)
[(1+p5 (W) (1= p5 W)TH[(1+py () (1—py (B)TF
[(1+g5 (M))(1—q5 (W) [(1+q; (M) (1—g; (W)T*
[(A+g; ())(1—qy W) [(1+q7 (W) (A—gy (WD |
[(1+ry (W) (L=ry W) [A+ry (R)A—r{ (AT
[(1+ry () (L=r5 ()TL(L+ry () (L=rp (B>
[(L+s5 (1) (1—s5 W) [(L+sy (W) (1—s7 ()T
[(A+s5 (W) (1—s3 (W) [(1+s7 () (1—s7 (A)T*

max(IA_2 IA_l)
[(1+p5 ()= pF (MNP [(1+pf (W) (A—p ()1

[(1+p5 (W) (AL—pF (W) [(1+p] () (A—p ()]*’
[(L+g5 () (1—q3 W) [(L+q; (W) (1—g (W)T*

[(1+q;<h)>(1fq;(h»m<1+q§<h>>(1qu<h))1A ’
(173 (W) (A=r3” (M) [(1+r]T () A= ()1*
[(1+r5 (W) (A=r3 (M) [ +r;T () A =r;F ()]*
[(1+s5 (M) (1—s5" (W) [(1+s] (W) (1—s] (h)]*
[(A+s5 () (1—s3 (W) [(1+s7 (h) (1—si (W)T*

min(a,ita,);

[ 2[pa () pr(W)1*
[

2[g2 (g1 ()1*

[(4—2g2(h)—2q1 (W) —q2 () q1 (W) P +q2 (h)g1 (W]
2[rp (Wyri (W]*

[(@=2r2(h)=2r1 () —r2 (h)r (W) +[s2(W)s1 (W) T*?
2s2(Ws (W]

[(4—252(h)—2s1 (h)—s2(h)s1 (W) *+[s2(h)s1 (h)]* .

(4=2p2(h)=2p1 ()= p2(h) p1 (MT*+[p2 (h) p1 (WT*” >

so, we have A(A] + Ap) = LAz + AAT.

MA+ A= (A1 +1)A

MA

min(ue) |

— | D4py 1 —[1—p ()]
max(l4), [[1+p;(h)]‘1+[1—p;<h>]*l ’
[1+q, (WP —[1—g, (W]

[l+qy W1 +[1—g5 (N1’
[14r, (W1 —[1—r, ()M
[+, (W1 +[1—ry ()]}
[14s, (W1 —[1—s, (W]
[1s, (WP +[1—s, (W]

[1+p (W —[1—p L ()1
[L+pf W +H[1=pf (1P’
[1+q; (WP —[1—gf ()]
[+gf W1 +[1—gF ()11’
[1+ry (W1 —[1—rf ()M

[+ (P L= ] ()L
(s (W1 —[1—sT ()1 }

|

max (7)),

(s 4 (1M +[1=s; ()M i
2[pa(]M
[Q—pa()F T +[pam)]*1’

2[ra(m)]*
[Q—ra(P 1 +[ra(W)1FL ]

2sa(W]M ]
[2—sa ()1 +[s4 (M)]*

2[ga (1
[Q—ga(W* 1 +[ga ()1’ >

and

MA

= max(l/:l)

[1+p; (P2 —[1—p; (]2
[L+p, (WP 2+[1—p, (W2’
[1+q, (W2 —[1—g, ()]*2
[+ (MP2+[1—q5 (N2’
(147, (W2 —[1—r  ()]*2
[1+ry (W P24+ [1—r ()27
[1+s, (W2 —[1-s, (W)]*2
[1+5~[(h)]*2+[1sA(h)]*z

max(/, ),

[1+pF (P2 —[1-p} ()2
[+p} (WP2+[1-p} (12’
(g ) (P2 —[1—gf (W)]*2
[1+q§<h)r2+[1—q,t(h)]l2 ’

[+, (W2 —[1—r 7 ()]*2

[+r) (P2 +[1—rf ())*2°

[1+s) (W2 —[1-s) (W)]*2

(14T (P2 +[1=sF ()12

2[pa(m)]*2

max(17]),

min(p4) [ [@—pa(h)2+[pah) P2’

2[ga (1™

[Q—ga(W2+[ga()]*2’
2[ra(m)]*2

[Q—ra(P2+[ra(W)12
2sa(W)*2 ]

[2—sa ()2 +[s4(W)]*2

[14+p, (W2 —[1—p ()12

[+py (WMHR24[1—po ()P 1H727°

[1+q, W12 —[1—g; ()12

[L+g, (142 +[1—g (142

[1+r, (W12 —[1—r) (W)1+*2

[(Lry (WP T2 (1=, (W12

[1+s, (W2 —[1—s5, (W)]*1T72

[14s5 (P2 4+[1—s7 (W] 1742

[L+pf (P12 —[1-ph (1172

[(1+p; (P12 +[1=ph (P12

[l+g; W12 —[1—gF ()] 1772

(g ) (WP T2 4 [1—g f (172

[+ 7 (P12 —[1—rf (1 H22

[+ (P 124 [L—rf (1 +42°

[1+s) (P12 —[1—s} ()] 1772

[L+sT (P12 +[1—sT ()] 1772

P

max(/,), |:

max(]j'),

2[pa(m)]F 1172

min(4a) [l(2pr(h)l*lﬂszA(h)]M“z ’

2[ga(m]* 172
[2—ga (W1 T24[ga (W] 1727 )
2ra ()12
[Q—ra(W) 124 [ra ()22
2sa (W12
[Q—sa (W1 T2 454 (W) 17722
[ [[1+p; 171 —[1—p; ()]
[+py W17 +01—py (017
4y W17 —[1—g; 11"
gy W17 +H1—qy (17"
4 (17 1=y 170 |
(4ry W17 1=y ()]
sy (17" —[1=s7 (]”!
L (ks 17 =57 ()]

@ Springer



5776

_ o A. Fahmi et al.
+p )™ —1— (h)m . _
(1 0171 (] iz tpi (017 Ty O—pi 0017
(g7 (17" —[1—g; (1" i—l (+p 17+ 15, [1- Py Fam>
max () [1+ql+<h>lw‘+[1—qr<h)]wl’ , l‘l, 1 kg D17 = [T (12, (01"
B LSO 1,[1,r1+(h)]w1 ’ (max(17]) ~i [+ <h>”’+ﬂ (=g ()17
O+ 17 +[l—r1+(h)]w1’ A ﬂ 1 4 1” i J=rfa” |
[:s <Z>l _[1_si(h)]wl ,k=1 (4" (1~ H,=1 IO
L [l ()] +S_S1 7 e [+ (17— H’,‘ st
. [m(h)] ! L Tz Dy 0017 + Ty =5 (1=
[e- m(h) + T B -
wpm )] ; 20115y [pr ()7 7]
min(ua,) | 1@ q1<h> mﬂl(h)] o =1 [@=p1 W17+ Ty L1 (]”
21 (1! : 2015 g ()7
[(2—r1(§E] lh + r}(h)]’”l’ min(ua) '}:1[(2—qléh)]’”+l‘[k- 1[g1 ()17
s1() K @
(=51 IDI° +Is1 ]! . 2[5 ] Dk+1
j=1[(Z—rl(h)]w+1'[’;=1[rl(h)]w ’
Assume that n = k, T 20T s ()7
= k, TICFEWA (A, A e
k 1,A2, ..., A —
ok, wiA; n) 1_[ [@=s1(]” +]‘[’; st ()17
Hi+l [1+p1 ] — ]—[k+1 [1— P1 MW1F
- 1 - T ,
10 LR )y LU E;‘“[uipl EZHJEQ =y (o1
HJ 1 1+p1 (h)] +Hk=1[1 -pr (h)] m ’ _ l_[k+1 [1+ < (W]™ + k+1 - ql ol s
1‘11 ([t (0] mliE i—q; (1”7 (max(1y) | et " N ML R F
( — | Thoiti+ar (h)] +HTE =g (7 i W1~ [y o o1
max ([} ) = - 1 ol Hi ill=g; (W]~ Hk“ [+ (h)]w+nk+1 (—r; ()7
jor Ll O Tl ca” | i
l_[]:1[1+r1 o +1_[]/:1[1 ri s l_[k+l i 4y (]” r[zﬂ sy (]”
Ty (s 0017 =TT =5y (1" L TT5Z0 (s @17+ TTZ (1=sy (17
]_[j ([l (17 +1—[1; sy (17 ‘]‘[’;Jr N4pf ()17 — ]_[k+1[1 ) i
- +1
" oitiot” “ai-ptol” ] l;[+1“1+p L T 0=pr (17
1‘11 [[+p ()7 +n H—p (i”° [ty (17 T, 23 11 g (17
L i 1 ]7 ()] + l_[k+1 1+ e k+1
]‘[ gt 1™ / =g 1™ (max (1) l_[]” 0 ay (] +l_[_] [1— q+(h)]w7 .
max(I ) j g ()] +l_[, -, (h)m9 =l +r+(h)] l_[k == |
1[l+r]+(h)] [1 rl (h)] ) l_[]k+1 [1+r"(WD]” l—[]+11 [1— rr(h)]w’
1—[ 4 ()] +l_[ PR l_lk+1 (s (17— [15E) [1—s (1™
l_[, (s (™ l_[, 1[1 Yf’(h)] I 1[1+s1+(h)w+nk+1 1—s; (1™
L T l+s7 17 +T1-_ [1—s; (17 e 2T (1™
3 21_[]}:1[p1(h)]w 7 Mj=ite- pl(khﬂ +Hk+l[pl(h)]w’
[T 1@=p1 ()7 +TT5= L1 ()7 0 i1
_ 2Mlilaml” min(uy) | [DAHC-a @7 L g 17
min(je.) ]‘[jzl[(z_ql(lf,)]w+]—[1;:1[q1(h)]w, - ]'[’;+]1[r1(h)]
T 2[Tjitnm1” : 5 =) +TT5 5 i ()7
1= ) +TT I (01 _ 21 s ol
_ [(22]'[j:1[sl(h)l]j’ L H+ [2—s1(W)]” +]_[k+1[r1(h)]
L [T l@=s1)” +]Tj= @ k1 _
j=1 [Tizils1(m1™ FI 1 4+pr ()17 nlj‘ (1= pf(h)w

1<+
Hu[lﬂzl m” +H’; =py (17
rlk H1+g; (17 r[, =gy ()
+1
n’k+‘1“+ql W1 +[Th —ay (017
nk 1 L4y ()7 fr[] =l |
n;lml m” +n _ill=ry 1™’
T 2 017 = Ty i 017 ] iUty )" Tl o
+1
H, TRt et | T 0y )7 +TT oyl =sp (017
H, | U+qy ()17 — n, | =gy ()
(max(l;) l_[] 1 +qy (h)]w""l_[ i—1 [1—q; me’
l‘[, Ly 17 =TT =y 1™ |
[T 4y (h)’f’+]—[’; = ()=
H, L sy (W17 = [Ty (=57 ()]”
sy (h)]w+1‘[’;:1 [1—s; ()]

Then when n = k + 1, we have
TrCFEWA (A, A3 Ak+1) =
s sy Agr1) = TICFEWA (A1, A
) 1) ( 17 27

= max(/,)

ceey
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max(lj{)

min(u4)

In particular,

(max(/,)

max(IX)

min(ua)

[ TS 0+ 017 =TT 1= p ()7
Hkﬂum 17+, l1=pf 0017
nﬁﬂmqr(hn —IT_il1—q; (1"
[T +a; (017 +nk 11—, <h)1’”’
nlj‘+l[1+r1+(h)] —[T_il1=r ("
[0+ 1™ +nk i=rf 01”
Hﬁfl[lﬂ M7~ =7 ()17
L Hﬁ-i}[1+s1+<h)1”’+nk~ J[1=s ()™

2[5 )™

[Tiie- m(kh)} +r[k“[p1<h)]
2[T; ﬂ[m(h)

M e-a m” +115 L g 1™
znk*{[mh)]

[TiEe—r (/Z)]1 L™
2[7; *1[s1<h)]

| TTE =007 +TT5E 510017

if w = (n R

T4y 00 1% Ty 11— pi )
7=1[1+p;(h)1%+n';=][1—p;<h>]
T [ay 01" —TT'_y[1—q; ()]
" ,[1+q;(h>]%+n'; [1=g; ()]
[Ty [1rp 17— = ()]
[T [+ (h)]"lm’;:l 1—rf ()]
T sy ()" —TT s ()"

S—= 3|

D= :\._.

=

)T then the TrTCFEWA
operator is reduced to the trapezoidal cubic fuzzy Einstein
weighing averaging operator, which is shown as follows:

|-

:1[1+s;<h)ﬁ+r[';-:1[1—sr(h>1
"-:1[1+p]*(h)]%— h o= pl*(lm%
o pfOl" +H'}- =pfm1”
1[1+q]+(h>] —ITj_i[1—q; <h>”
l‘[, 1+g; (h)] +1_['} (=g 1"
n’,’-:1|1+r1+<h)1 —Ti =r 1"
n <h>]" +HTi—
b st )" —

ne rfr(h)]

= 3|
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1
o= "

T
s 1 +

zn'}zl[puh)]%
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20T} g1 (1"
[Tj=il2—qi " +H?l=1 a1 <h>ﬁ ’

2015 ()"

1 1>
[Tjoi[@=ri )" +[ 1)y [r1 (W)]"
1
2[T}—yls1 ()"

1 1
L [Ti=i[@=s1m1" +]Tj= [s1 (1"

Appendix C: Proof of Proposition 2

(1) (Idempotency) Since A; = A are equal to

(lp= (W), q=(h),r=(h), s~ (M)], (I y)
[P (h), g (h), rt(h), s ()], (1)
[p(h), q(h), r(h),s(h)], (ma))lh € H

for (j = 1,2, ..., n), then TrTCFEWA
(A1, A, ... Ap)
[ T [14+p7 017 [Ty 1= p; 0]
[Tj_il1+p; ()] ’+H, il1=py (] o
"l 1 T =g, ()
_ (g ()] 7 1—g; 17
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hill— ﬁ(h)l

,:1[1+s,-+<h)1 i
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2014 [ ()]
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[
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2T p()” ] 2
_Q=p DT [P
215 la ()™
J= =g W17+ la 1" o 1F Pmin _ 1 1+ Prnax

<
21_[/ lr(h) 2 = 1 } 1= w; = )
=" T ol = (5
20T} wol” N

Q=17 +[Tj—i[s()]” | S 1+ pyin = N\ S
., :
[4p~ (W17 ~[1=p~ ()" 1+1—[j=1( T,%))
[1+p= (W] +[1=p= (W]’ 5
[+q~ (] —[1—g~ ()] - -1
1-
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1-

[
[
[ & P -~ 1< pn.
— o | e wmT | pm‘“—l o\ P
A [—r=(h)] = (57
[
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—_

_|_

|
=
il
S
[ -
+ | |
< |
~. | |~
SN——

&

_

+
"BN
g
=

1 + pmax

min[(1ea)]

[4r~ (h)]’”—
(+r— 17 o= (h)jj’
[1+s~()1" —[1—s~ ()]
s~ (W17 +1—s— (W17

O+pt )™ —[1=p* 1"

H+pt )7 +[1—-pt ()17 _\ Wi Z\ Wi

g )™ —[—g ()] _ 1= <1+P.i> —[Ti= (1—1’/') o
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that is

Similarly, we have

2pm1” w w
n @ j \Wi
P ] o M ()" T ()
AT T T Din = w; w7 = dmax-
[2—q(h)]” +la ()] — min n -\ n -\’
e | (e - M (14a;)" =TT (1-47)
[Q—r(]” +[r()]”° A\ Wi A\ Wi
215 ()] ¢ B v (1 +r; ) = ITj= (1 —7 ) -
[Q—s)1” +Is()]” Fmin < — R R— — 7 = Tmaxs
(lp~(h),q=(h),r=(h), s~ (M)], (1) [Tj=1 (1 t ) ~ 1T <1 —7 )
+ + + + _ \Wj \Wj
[p* (), g (). (), s (W], (Tge) = A oL () e (-s)”
[p(h). q(h). r(h), s, (w))lh € H o < — D < )
e (1457) 7 =Tl (1-57)
TrCFEWA (A1, Ay, ..., A,) = A. max[I;]A;
The proof is completed. . N L\
(2) (Boundary): jZI(HP’;)u;} 71_[]:](17[}’7)1”, ,
Let f(x) = Y= x ¢ [0, 1]; then < 0; that S (1) =TT (107 )
(I+x) )2 n Y —\Wj
. . 11 (14ay) Tl (145 )
is, f(x)is a decreasmg function. S1nce Prin = P i = ; w7
n A 14g7) =11 (1—g7
Pmax» then for all j, we have f(p_.) < f(p;) < = max[/}’] f._lgwqi))w] g'{_l((l qi))w_,- ;
. ) (1=
1—p7 - j=1 J - Jj=l1 J .
pmax pmm n — n - ’
f(Pmax)s thatis +I7max < 1+p’ < 1+pmm. j:l(l-‘rrj;)wj_njzl(l—ri)luj
Let w = (wq, wa, ..., Wy) be the weight vector of j=1(1+sf) __HF‘(I_JJ) _
(A1. Az, ... Ay).such thatw; € [0, 1]and Y/_; w; = i (1) =TT (1-s7)
—_ w;
1. Then, for all w; € [0, 1], we have (1_”#) T < (-
e\ BN 14 Pmax Let g(y) = (1+y) y € [0, 1]; then 2 < 0;that is,
(#) =< <$) . g(y) is adecreasing function. Since pmm < pT j = Pt
J min
Thus then for all j, we have g(py;,) < g(p)) < &(Pihy);
. —\ W;j - pmax 7pj 1- pmm
1_[" 1= P\ 1‘[" L=r )" thatis 2% = L+p} = T
=1\ 1+ pn - =L\ 14 p> et w = (wy, wy, ..., W, e the weight vector o
Pmax Pj L ( ) be th igh f
w; (Ay, Ay, ..., A,), such that wj €[0,1]and Y w; =
<[T. ( —P m‘“) 1 '
. o
=L+ prn Then, for all w; € [0, 1], we have (L;%) T <
—\ W _ . ) max
N 1 - Prmax - 1_[" 1- pj ’ < - Prin lip_;r o < l_prtin wJ
Lt pmax — 2 9= \14+p; ) 7 1t oy pi ) = \MHemn )
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Thus
I () =1 ()
=\ T )~ i \T7
wj
pmm
<
H“(Hpmm)

— pT\™i +

él_pmax<1_[" 1 pj <1_pmin
1 + - i=1\1 + —1 +

~+ Pmax J +Pj + Pmin

2 wo (1=p\" 2
©l—+sl+s]_[/,:11 .
+ Pmax . +P] *+ Pmin
+
1—f_pmin < 1 1+pr-"r;ax
2 - 2
(I
2
¢>1+P$in_

1 p 1+pmdx
e ()

+
< pmin = 1—p w; —-1=< = pmax
n !
e <<1+vf-*))

that is

wj wj
Mo (1+p)) =0 (1= p))
<

+ J=1 +
Pmin = w; w; — Pmax
[T} (1 + P;r) — 1= (1 - Pj)
Similarly, we have
wj wj
ot H};—l (1 + er) - H?:l (1 - q;r) .
min — w; w; max’
[T} (1 + q;r) - 1T} (1 - qj)
+ [T (1 +rJJ'r) — M (1 B r;r) +
Tmin = 0 L\ Wi " L\ Wi = Tmax>
Hj:l(l""’j) _1_[.,':1(1_”]'>
wj UJj
() T )
Smin n L\ Wi " S\ = Smax]’
Mo (1+57) " =0 (1= 57)
max[/]AT
JA

- max[IJ?L] =

and

Let h(z) = @, z € [0, 1]; then ;—2 < 0; that is, h(z)
isa decreasingvfunction. Since pmin < Pj < Pmax. then
for all j, we have h(pmin) < h(pj) < h(pmax); that is

Let w = (wy, wy, ..., w,) be the weight vector of
(A1, Az, ..., Ay), such that w; € [0, 1] and Z;f:l wj =
1. Then, for all w; € [0, 1],

we have

(z_pmax)wj < (2_pj>Wj < <2_pmin)w]
Pmax Pj Pmin

Thus

n 2 — pmax "’ n 2—pj\"
T, (52) =TT, (2

Pmax Pj

n 2 — Pmin Wi
<TT, (50

Pmin

w .
< 2 — Pmin

Pmin

that is

21_[] l(p/) i
Pmin = 7
ﬂ, ](2+P1) ' _Hj:

](pj)wj =< Pmax

Similarly, we have

g 21_[] l(ql) i
mn = l_[J 1 (2+4qp)" = [T (a;)"
2T )™
n w; n W; =< Fmax,
[T @+r)" == (1))
21_[1}:1(31‘)1”"

LIRS R

=< @max>

Fmin =

A

Smin = Smax
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That is min[u ;JA; =

min[ ;]

21_[] l(p]) J

[Tj= 1(24+p)"T = 1_[7 1(pp)"7

n |(qj) i

IT)- 1(2+‘1/)w’ 1_[" 1(a)"°

2[T15- 1(0) !

Ty @)™ =TT ()

21T} 1(91) J

1_[_,'=1(2+V/) T-ITj= 1(sj)"

The proof is completed
(3) (Monotonicity)

Since

{py(h) < pp(h),
gy (W) < qg(h),ry(h) <rg(h),
sy (h) < sp(]. 7)) < U)h:

{pi(h) < pg(h). g5 (h) < q5(h),

ry(h) < rg(h),si(h) < s§ )],
I <UD}

and

{pa(h) < pp(h), qa(h) < qp(h),
ra(h) < rp(h), sa(h) < sp(h)],
(1a) < (up)}

Since

L+ pah) _ 1+ pph)
L+p () ~ 1+ pgh)’
L+gah) _1+q5(h)
L4+g,(h) ~ 1+q50)
L+r, (h) - L+ rg(h)
Lry(h) ~ 1+rgh)
145, (h) - 1455 (h)
L+ () ~ 14s5(h)
max{(/,) < (Iz)}

L+ path) _ 1+ pp(h)
1+ p} (h) 1+ phh)’
1+q;§(h) 1+q5h)
1+qih) ~ 1+q;(h)’
Ltrg(h) _ T4rgh)
i)~ 1+r5h)
1+s1th) - 1+ 55 (h)
L+sih) ~ 1+sp)
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max{(I}) < (I})}
l_[n L+ prm "
=111+ p;(h)

w1+ )"
Sim T

e (Pl
i=1 | 1+ ¢ ()

w [1+qpm )"
5n1=1{1+qg(h)} ’

Hn L+ry]”
=V 1+ (h)

wo [ 14+rpm |
5n1=1{1+r;(h)} ’

—]

w [ 14+sym ]
= T +s,(h)

w [14sym "
Sl—[f=1{l+s§(h)} ’
[I_ao=I]_up

T 1+ prany |
=11+ phh)

IA
—]

1_[" Pl
1+q (h)

w [ 14+gim )"
SH {1+q (h)} ’

1—[n 1+l":(h)
=V L+t

w1+t |
= Hj=1 { 1+ r;(h)}

—]

v [14stay |
=t 1+t

wo [1+sia |
Snj=1{1+s;;(h)} ’

[T_ah=IT_

w1+ pi )"
= 1+ piy |
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2 - 2
M NETR OO0 - w fresion |
U+ [T { +p, () } 1 1T { Lts (h) }
> 2 . T unh<IT_ up.
1+IV4{LW5M}J = i=
]_2 ) We have
LT { Ltg; () } [1joil1 + P 017 — 15[ = py )
e T/ i1+ p 17 + Tl = py (0T
= NS LR _ o+ pp 17 — T4 01— pp (]
T+ 1Tj= { 1+q§(h)} T Tzl 4 ppWI” + T = ppm]7°
2 [Tl + g5 ()7 =Tyl — g (]”
1+H’}:1{ijj—j§ﬁj§} H’:,i[HqA(If)] ZH’:LU_QAU?] )
2 - Hj:l[1+qB(h)] _Hj=1[1_qB(h)]
= T w1 Tl g5 W17 + T =g (W17
1+TL=1{1HMM} [T+ 7y (W17 = [T [ —ry (1"
2 , [T+ g (W17 + [Ty [ =g ()7
L+ {hm I+ g 017 = [Tl = rp (1
A - (2 n - @
> [Tl +rg W17 +TTj=i (1 = rp (W]
= o {HSB(h)}wf’ [T+ 55 D17 =TTy = s ()]
J=1 ] Trsx ) [Tj=ill+ s W17 + [T 11 = sy (17
rﬁzggdsrﬁzggm >rﬁﬁn+ngNW—[wﬁu—qgmn”
2 T Tz 4 s5 )7 + TG = spm]7°
n oY max{(I) = (I)}
1+1—['=1{1+pﬁ( } A B .
B [T 11+ pf 1™ — [Ty [1 = pE ()
> o [Tl + pi (W17 + TGl — pf (17
L[], | e " T T +on®
=1 T oy ) Tl + pg1” — 1511 = py (]
2 T o+ pp W7 + T = pg )™
w f1raton |V "4 gt MW =TT [ — gt )]
VT ) L) el | (Ol
) [Tii[1+ g (W17 + T [1 — g} ()]
= T eam o+ ag oo™ — T —ag )
T+ = { g5, () } T T+ 17 + T2 — g5 ()17
2 _ [Tjoll +rf 17 =TT = i)
r+ / n w n [od
1+Hg4ﬁ&$} mﬂn+qW]+Hﬁn—qW]w
2 T+ 1”7 — 1501 = rg (]

T {Hr;(h)}wf" Tl +rf W17 + T [ = rf(i]7
= [Ty [+ 55 (17 — [Tyl — s ()"
2 - T [+ 5L 17 + T 01— sy ]
n st [ n S n o
1+HF%J&M} >HM“+%W]_Hﬁm_%MH’
T T+ sg )7 + T2 = s5m]°

max{(I}) > (I;)}
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Since

2 — pp(h) - 2 —pa(h)

peh) = pa(h)
2 —qp(h) - 2—qa(h)
geh) = qath) ~
2—rp(h) _ 2= ra(h)
rgth) = rath)
2—sph) _ 2—=sa(h) .
) > Al ,min{(ta) > (up)}

2-pp ) "7 o [ 2=pat) |
the“{ 70 } 2{ path) }

l—[” {2—PB(h)}w’
=t pgh) -
1—[" {Z—PA(h)}w’
=1L pa(h)
1 1

n [2=pp) 2—pat) | " ;
[Tzt { 70 } +11T5- 1{ Q) } +1

{2 qp(h) }w’ -
qg(h) -

2—qa(h) n [2—qph)|"
{ qa(h) } H! 1{ qs(h) } B
1—[" {2 qA(h)}“’f
j= ga(h)
1 1

n 2—gp(h) | n 2—ga(h) | :
[Tj= { 25 (M) } +1H,-=1[ 2t } +1

—rB<h>} §

{ rp(h)
2 — rA(h) n 2—7’3(/1) wj
{ ralh) } [T, 1{ ) } =
1—[" { —VA(h)}

J= rA(h)

1 1

2-rp(h) 2—raly |7 ;
H?=1{ 7 () } +1Tj= 1{ FaAh) } +1

{2—sB(h)}“’f N
N

2—SA(h) wi n 2—S3(h) Wi
{ sa(h) } 1_[,_1{ s5(h) } -
. 5]

=t | "sat)

1 1

n 2—sg(h) | ™I n 2—sa() | ™V ’
Hj=1{—ssfh> } +1H/:1{ S h) } +1

min{(124) = (15))
[T, twan =TT _, tsn™.
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2 - 2 .
no [2=ps) | " T [2=pe |V '
M () 10 e | 5]+
2 - 2
no [2-gp) | " T [2-as | ’
H/:l{ qp(h) } +1 H/=l{ qp(h) } +1
2 - 2
n 2—rgh) | ™I = 2—rg(h) | W ’
Hj=1{ T h) } +1 Hj:l{ T h) } +1
2 - 2
n 2—sph) | W = 2—sph) | W
Hj=1{ 0] } +1 Hj:l{ 710) } +1

min[ua] < min[up];
2[Tjilpem]”
[Tj=il@2 = pem1* + T2 [ps(]”
2[Tiilpam]”
= TS = pa@l + [T patdl”
2[Tiilga()]”
[152102 = gpm1* + [T} [g (W17
2[Tjoilga(]”
- 1_[] 112 = gam 1+ [Tj=1lga(]”
[T} lre(m]”
[T)—1[Q2 = rg(m)1* + [T} [rs(h)]”
20T [ra(h)]”
S ToIC = raF + T lra (O
20T} s ()]”
[Tj_i[@ = sp(MW1* + [T} [s8(m)]”
2T} lsat]”
- H, 112 = sa* + T [samN”’

We can get TTrCFEWA (Ay, A, ..., A,) < TrCFEWA
(B1, By, ..., Bn),
which complete the proof . O
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