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Abstract
Type-2 fuzzy systems have been investigated as an alternative formalism to deal with uncertainty when the classic Type-
1 fuzzy systems do not offer the suitable flexibility for the representation of the information being modeled. The higher
flexibility in representation comes with a higher complexity in the system modeling, mainly in the design of the Type-2 fuzzy
sets and in the definition of the inference engine parameters. In this paper, we focus on the Type-2 fuzzy systems design,
proposing a multi-objective evolutionary approach for tuning the Type-2 inference engine of a fuzzy rule-based classification
system by means of automatically choosing the t-norm used in the inference process. The selection of the t-norm used plays
an important hole, since different operators could lead to different results. In a preliminary version of this work, we have
proposed an approach to design and optimize Type-2 fuzzy systems that includes the tuning of Type-2 fuzzy sets and the
selection of rules. The additional tuning process proposed in this paper is an extension of the previous method in the sense
that the same evolutionary procedure performs simultaneously the tuning of the inference mechanism and the tasks performed
before. The evolutionary process is executed by means of a multi-objective genetic algorithm with three objectives that aim
to balance the accuracy and interpretability of the system generated: the accuracy, the number of rules and the number of
conditions in the rules. The proposed method has been compared with a state-of-the-art method proposed in the literature,
presenting good results.

Keywords Type-2 fuzzy inference system · Fuzzy rule-based classification systems · Tuning · Multi-objective
evolutionary algorithms

1 Introduction

Several computational intelligence techniques have demon-
strated their usefulness and suitability in real-world problems
where complexity and imperfect information are present.
Fuzzy rule-based systems (FRBS), in particular, are recog-
nized as consolidated techniques to deal with imprecision
and uncertainty, besides being attractive for providing a lin-
guistic description of the system in the form of rules.
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Despite being advantageous over the classic counterpart
concerning the modeling of imprecision, the design of fuzzy
systems requires the definition of accurate fuzzy member-
ships for the fuzzy sets that stand for linguistic values (Zadeh
1975), what is not always possible. In this sense, the concept
of Type-2 fuzzy sets has gained importance and received
attention as a means to deal with the type of uncertainty
that Type-1 fuzzy sets cannot handle, such as vagueness and
low reliability of linguistic terms (Karnik and Mendel 1998;
Karnik et al. 1999; Castillo and Melin 2008).

According to Castillo andMelin (2012), experimental evi-
dence of better performance of Type-2 fuzzy systems (T2FS)
over Type-1 fuzzy systems (T1FS) has been reported in an
expressive number of papers, as well as applications in intel-
ligent control, pattern recognition, intelligentmanufacturing,
time series prediction and others. Despite their growing suc-
cess, a general methodology to design and optimize T2FS
is not available. In the Type-1 case, evolutionary techniques
are the most often applied to automatically generate the sys-
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tem components. There are a large variety of approaches that
generate and/or optimize the Data Base, the Rule Base of the
FRBS of both, in sequence or simultaneously. Most relevant
works have been reviewed and classified in Fazzolari et al.
(2013), Herrera (2008), Cordón (2011) and Cordón et al.
(2001).

While allowing a more powerful structure for knowledge
representation and reasoning, T2FS pose additional chal-
lenges concerning their design and execution for the high
number of parameters to be defined. To surpass the prob-
lem of difficult design and costly operations of Type-2 fuzzy
sets, the notion of interval fuzzy sets, based on the concepts of
lower and uppermembership functions, was proposed (Liang
and Mendel 2000). The simplified representation facilitated
the generation and stimulated the use of T2FS, but the com-
plexity remains higher than the one encountered in the T1FS.

Following the successful results regarding T1FS, evolu-
tionary techniques have been shown to be robust and suitable
enough to handle the additional complexity of T2FS. A
thorough review on methods of bio-inspired computation,
including genetic algorithms (GA), used to optimize T2FS
can be found in Castillo and Melin (2012).

The work presented here focuses on the design and tuning
of Type-2 fuzzy rule-based classification systems (FRBCS),
by means of multi-objective genetic algorithms (MOGA).
FRBCS are FRBS composed of rules of a particular format,
dedicated to perform the classification task. According to
the review reported in Castillo and Melin (2012), there are
very few papers that focus on T2FS for the classification
problem, contrary to what happens on the realm of Type-1
fuzzy systems.

1.1 Objectives

The objective of this work is to present a multi-objective
evolutionary approach that optimizes Type-2 FRBCS, called
Multi-Objective Genetic Type-2 Classifier Optimization
(MOG-T2CO), including the tuning of Type-2 fuzzy sets
parameters, the selection of rules and conditions and the tun-
ing of the inference engine. In a previous work (Hinojosa and
Camargo 2018), we presented a preliminary version of the
method described here, where the first step is the generation
of the Data Base (DB) by defining Type-2 fuzzy sets uni-
formly distributed on the dataset domains, and of the Rule
Base (RB), by constructing Type-2 fuzzy classification rules
using an adapted method inspired on the Wang and Mendel
method (Wang and Mendel 1992). The generation of the ini-
tial knowledge base (KB) is followed by a multi-objective
genetic process that simultaneously tunes the Type-2 fuzzy
sets parameters and selects rules and conditions from the
initial RB. The purpose of the Type-2 fuzzy sets tuning is
to improve the system accuracy and, that of the selection
process, is to improve the system complexity, reducing the

number of rules and conditions in the RB and making the
system more easily understandable.

In this paper, we introduce a more elaborated version
of the method presented in Hinojosa and Camargo (2018),
expanding the genetic processwith the tuningof the inference
engine as well. The tuning of the inference engine consists of
selecting the t-norm operator to be used in the inference of
the particular simplified inference method adopted in this
work. The chromosome coding and the genetic operators
used before are expanded to include information about the
t-norms that can be selected by the genetic process. This
proposal aims at facilitating the optimization of T2FS pro-
viding an automatic means of defining another parameter of
the systems that otherwise has to be defined manually.

The evolutionary process developed here is, as in the pre-
liminary version of the method, based on the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002),
modeledwith three objectives. The first objective is related to
the accuracy of the Type-2 FRBCS, measured as the classifi-
cation rate; the second and third objectives are related to the
interpretability of the systems, measured by the number of
rules and number of conditions in the rule base, respectively.

Although the tuning of the inference mechanism is not an
original idea by itself, having already been investigated in the
context of T1FS (Crockett et al. 2006;Hinojosa andCarmago
2012), it has not been addressed in any of the related works
analyzed here in the context of T2FS. In the next section, a
selection of similarworks and their relationwith this proposal
are presented and discussed in more detail.

This paper is organized as follows. Section 2 summarizes
the relatedworks and highlights the relationwith the proposal
presented in this paper. Section 3 describes the basic concepts
of FRBCS and Type-2 fuzzy sets necessary to understand the
proposal. Section 4 presents the process used in this work
for generating the initial RB. The method proposed here to
optimize T2FS is introduced in Sect. 5. In Sect. 6, the exper-
imental study and the results obtained are described. Finally,
in Sect. 7, we point out some conclusions and future works.

2 Related work

In this section, we describe a summary of the representative
work that shows some similarity with the study developed
here and have, in some way, motivated the elaboration of this
research.

In a work by Chua and Tan (2008), a method for
genetically evolving Type-2 fuzzy rule-based classifiers was
proposed. The results show that the performance of a Type-2
fuzzy classifier is better or at least comparable to a Type-1
fuzzy classifier. Although obtaining a successful result in an
application to detect the presence of a human in a vehicle,
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the genetic algorithm used has only one objective and the
interpretability issue was not considered.

In the work of Cai et al. (2007), a novel fuzzy neural net-
work combining a Type-2 fuzzy logic system and a genetic
algorithm based on a Takagi–Sugeno–Kang fuzzy neural net-
work, is presented. An implementation using interval fuzzy
sets was adopted, and the results were compared against a
number of other traditional neuro-fuzzy classifiers, showing
superior performance regarding classification rate. However,
the fuzzy neural model does not allow any optimization of
the interpretability aspects.

In the work presented in Sanz et al. (2013), a method
called IVTURS-FARC is proposed to tune interval-valued
fuzzy sets parameters and select rules, using a MOGA, after
generating an initial Rule Base (RB), using the FARC-HD
method (Alcalá-Fdez et al. 2011a).

Interval-valued fuzzy reasoning method (IV-FRM) with
TUning and Rule Selection (IVTURS) is a linguistic fuzzy
rule-based classification method based on a new completely
interval-valued fuzzy reasoning method. The paper contains
an extensive study of the reasoningmethod based on Interval-
valued fuzzy sets (IVFS), and the method developed there
combines, as we do in our proposal, the tuning of IVFS and
rules selection. According to Alcalá-Fdez et al. (2011a), the
aforementioned combination improves both the interpretabil-
ity and the accuracy of the final fuzzy system. The analysis
of the results has shown that IVTURS outperforms two of
the high performing fuzzy classification algorithms found
in the literature, FARC-HD (Alcalá-Fdez et al. 2011a) and
FURIA (Hühn and Hüllermeier 2009). Despite presenting
good accuracy results compared to the state-of-the-art meth-
ods, the results concerning the complexity of the system
in terms of number of rules and conditions have not been
reported, preventing the readers to evaluate how much the
evolutionary process improves the systems interpretability.
Besides, the method used to generate the initial rule base
is based on the generation of all possible association rules.
Although the size of the rules is limited, the process as a
whole has a high computational cost.

A genetic approach to tune Type-2membership functions,
named lateral displacement and expansion/compression
(LDEC), was proposed in Shukla and Tripathi (2014). In
this paper, α and β parameters are calculated to adjust
the parameters of interval, such that α tuning deals with
lateral displacement, whereas β tuning carries out compres-
sion/expansion operation. Even though the authors mention
that the interpretability and accuracy are taken into account,
the fitness function evaluates only the classification error,
indicating that the complexity of the system is not improved
during the genetic process. Another drawback of this pro-
posal is that the experiments use only one dataset.

In the work described in Lucca et al. (2015), the authors
introduce a family of Choquet-based non-associative aggre-

gation functions for application in the fuzzy reasoning
method proposed by Barrenechea et al. (2013) for fuzzy
rule-based classification systems. Even though the FRBCS
addressed in this paper are T1FS, the study presented sup-
ports the assumption adopted in our work that changes in
the parameters of the reasoning process lead the system to
different results, and that special attention must be directed
to the definition of these parameters.

The works presented in Sanz et al. (2013) and in Lucca
et al. (2015) are the ones that address some kind of optimiza-
tion regarding the inference process. However, their focus
is on the aggregation of the final results of each individual
rule, and not in the inference process itself. Thus, none of the
papers described here perform the tuning of the inference
engine by choosing the t-norm used in the inference step, as
ours does. As stated in the previous discussion, the specific
fuzzy reasoning method used can give different results in
special in T2FS. The standard strategy is to previously select
a particular operator and build the inference system with it,
repeating all the experiments in case a decision to experi-
ment another one is made. This is an advantage offered by
our approach to the construction of T2FS, for yet another
parameter definition can be included in the same evolution-
ary process without compromising the computational cost.

Considering our discussion on the related work, the main
positive impacts of the method proposed here can be sum-
marized as follows:

– Presenting a combined evolutionary process that simul-
taneously optimize parameters of different components
of the T2FS such as the inference engine (t-norm opera-
tor), the DB (Type-2 fuzzy sets parameters) and the RB
(number of rules and conditions) allowing to improve the
accuracy and interpretability of the system in a balanced
way;

– Using a simple and fast method to generate the initial rule
base, as opposed to the ones used in similar work;

– Providing means for a more flexible and extensive search
forT2FS that are good enough for eachparticular applica-
tion, for allowing the automatic selection of the operator
used in the rules inference and freeing the systems
designer from manually making this selection and risk-
ing to repeat experiments when the decision is to change
the operator.

3 Fuzzy rule-based classification systems

A FRBS has five components: fuzzification interface, infer-
ence engine, knowledge base (RB and DB) and defuzzifica-
tion interface. A typical FRBS is depicted in Fig. 1.

FRBCSare FRBS learnedwith the specific purpose of per-
forming the classification task. The main difference between
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Fig. 1 Main elements of a FRBS

a FRBS and FRBCS is that in FRBCS a defuzzification inter-
face is not necessary. The output of the inference engine is a
crisp output, which is the class of the object being classified.

In this work, we used a classic fuzzy reasoning method in
the inference engine. Thismethod classifies an example using
the rule that has the highest compatibility degree with the
example. To define the class C j ∈ C = {C1,C2, . . . ,Cm} of
an example eq represented by n features eq = {aq1, aq2, . . . ,
aqn}, this method applies the following steps:

1. Calculate the compatibility degree between example eq
and all fuzzy rules in the RB. Generally, the evaluation
of the compatibility degree uses a t-norma.

2. Find rule Ri ∈ RB with the highest compatibility degree
with the example eq .

3. Assign the class C j (consequent of class Ri ) to example
eq .

A typical fuzzy classification rule in the RB can be
expressed by:

Ri : IF V1 IS T1l1 AND V2 IS T2l2 AND . . . AND Vn IS Tnln
THEN Class = C j

where Ri , fuzzy rule with identifier i ; V1, V2, . . . , Vn , lin-
guistic variables or features of the set of examples considered
in the problem; T1l1, T2l2 , . . . , Tnln ], linguistic terms used to
represent the feature values; C j , class of rule Ri .

In this work, the linguistic terms are represent by Type-2
fuzzy sets. The Type-2 fuzzy sets theory was proposed by
Zadeh (1975) for modeling the uncertainties inherent to the
definition of the membership functions of antecedents and
consequents in a fuzzy inference system. The basic idea of
Type-2 fuzzy sets is that, for each specific value of x in the
domain of the fuzzy set, there is not a single value for the
membership function, as is the case in Type-1 fuzzy sets, but
instead, themembership function takes on a set of valueswith
different membership degrees. The definition of such sets is
then based on concepts of primary membership function and
secondary membership function.

According to Mendel and John (2002), an interval Type-
2 fuzzy set, Ã on X , is defined by a Type-2 membership
function, 0 ≤ μ Ã(x, u) ≤ 1, where x ∈ X and Jx ⊆ [0, 1],
i.e.,

Ã = {
((x, u), μ Ã(x, u))|∀x ∈ X ,∀u ∈ Jx ⊆ [0, 1]} . (1)

A Type-2 fuzzy set can be defined with different forms.
Figure 2 illustrates a triangular Type-2 fuzzy set, which is
the form of fuzzy sets used in this work. The uncertainty of
a Type-2 fuzzy set Ã is represented by a region called the
Footprint of Uncertainty (FOU(Ã)). The FOU describes the
domain that supports all the secondary degrees of a Type-2
fuzzy set and allows the representation ofType-2 fuzzy sets in
two dimensions instead of three. The FOU of a Type-2 fuzzy
set Ã is delimited by two Type-1 fuzzy sets, the lower mem-
bership function (LMF) and the upper membership function
(UMF).

In Fig. 2, the value μ
Ã(x)

for x is defined by lower mem-
bership function (LMF) for x and the value μ Ã(x) for x is
defined by upper membership function (UMF). The uncer-
tainty of Ã is represented by the Footprint of Uncertainty
(FOU(Ã)).

4 Fuzzy rule learning process

Before the selection and tuning process described in Sect. 4
is applied, the initial RB, from which the rules in the final
rule base will be selected, must be generated. The initial RB
is generated by a fuzzy rule learning process based on an
extend version of the Wang and Mendel algorithm (Wang
and Mendel 1992), adapted to the use of Type-2 fuzzy sets.
The fuzzy rule learning process consists of three steps: DB
generation, rules generation and elimination of redundant
and inconsistently rules.

First, we predefined the DB with Type-2 membership
functions uniformly distributed adopting a process similar to
the one used inTrk et al. (2014) and considering theminimum
andmaximum input values for each attribute in the dataset of
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Fig. 2 Interval Type-2 fuzzy set

examples (min and max). Figure 3 shows an example of five
Type-2 fuzzy sets representing values of a linguistic variable
where each one have five parameters {ai , bi ,mici , di }where
bi − ai = mi − bi = ci − mi = di − ci .

Second, for each example in E = {e1, e2, . . . , ep} labeled
with a class from the set of classes C = {C1,C2, . . . ,Cm},
where each eq ∈ E is defined by a set of n features
eq = {aq1, aq2 , . . . , aqn }, the values of μ

Ã(aq j )
and μ Ã(aq j )

are calculated for each Type-2 fuzzy set in the domain of
feature j.

After that, the linguistic term with maximum value for
μ

Ã(aq j )
+μ Ã(aq j )

is included as a condition in the fuzzy rule.

This calculation is repeated for each one of the features to
form a rule with n conditions. For each eq ∈ E a fuzzy rule
is generated.

Third, for each fuzzy rule in the RB with the same
antecedent (conflicting and redundant) the fuzzy rule with
the highest degree is selected to remain in the RB and the
other ones are eliminated. The degree of each rule is calcu-
lated by applying a t-norm operator among all membership
degrees in the UMF and all membership degrees in the LMF
of the Type-2 fuzzy sets in the rule separately and then sum-
ming these two results.

An example of the calculation of fuzzy rules degrees and
classification method is illustrated in Fig. 4 for the particular
case of a RB with two fuzzy rules and three antecedents in
each fuzzy rule, where λiCi

(x ′) is the rule firing of the rule i
with class Ci for the input x ′.

5 Type-2 fuzzy classifier optimization

In this section, the method we propose for Type-2 fuzzy clas-
sifier optimization using a multi-objective genetic algorithm,
calledMOG-T2CO, is presented. The optimization proposed
includes the tuning of Type-2 fuzzy sets parameters, tuning

the inference engine and selecting rules and conditions. The
MOGA used in this work is the NSGA-II algorithm (Deb
et al. 2002). Since NSGA-II is a very well-known evolu-
tionary algorithm, the basic procedure is not described in
details. In the following, we describe the modeling of the
main components of a MOGA such as the chromosome cod-
ing, the chromosome evaluation procedure and the objectives
defined.

Each chromosome (CRi ) represents an entire knowledge
base and is composed of four distinct parts, organized in a
structure similar to the one proposed in Shukla and Tripathi
(2014), illustrated in (2).

CRi = CRMi + CRRi + CRCoi + CRt_norm. (2)

The first part of the chromosome CRMi encodes the
parameters of all the Type-2 fuzzy sets for each linguistic
variable in the DB, and according to the specific member-
ship function format adopted in this paper, triangular interval
Type-2 membership functions, each function is represented
with five parameters, as explained in the previous section.
Each gene in this part of the chromosome encodes a parame-
ter of a linguistic value as a real value. Figure 5 illustrates the
general form of a CRMi , considering the five parameters that
represent the Type-2 fuzzy sets (a, b, m, c, d) for each lin-
guistic value of each linguistic variable, where v represents
the number of linguistic variables.

In order to preserve the semantics of the fuzzy sets, we
define the limits for the values that the corresponding gene
for each parameter can assume in the chromosome.The upper
and lower limits are defined in a way that two consecutive
parameters cannot swap, as noticed in Eqs. (3)–(8). When
new chromosomes are generated by the genetic operators,
they are checked for validity considering theses limits. The
limits are illustrated in Fig. 6.
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Fig. 3 DB with Type-2 membership functions uniformly distributed

Diff = (b − a)/2

= (m − b)/2 = (c − m)/2 = (d − c)/2 (3)

alower = a − Diff; aupper = a + Diff (4)

blower = aupper; bupper = b + Diff (5)

mlower = bupper; mupper = m + Diff (6)

clower = mupper; cupper = c + Diff (7)

dlower = cupper; dupper = d + Diff. (8)

The fuzzy rules are encoded in the second part of the
chromosome, CRR . Note that the size of this part of the
chromosome is equal to the number of rules in the rule base
generated in the learning process described in Sect. 4, since
each rule is coded in one gene. The upper and lower limits for
each gene representing a rule are 1.0 and 0.0, respectively. A
fuzzy rule is considered valid and part of the RB if its corre-
sponding gene value is greater than 0.5. The inference engine
considers only valid rule in the inference process. Figure 7
shows the general format of this part of the chromosome
(CRR), assuming that the initial rule base has r rules.

The conditions of all rules in the RB are encoded in the
third part of the chromosome, CRCo, where each conditions
is coded in one gene The conditions in the rules are also
explicitly represented in the chromosome so the evolution-
ary process can select them, allowing the appearance of rules
with less conditions. As in CRR , the upper and lower limits
for each gene in CRCo are 1.0 and 0.0, respectively, and
a condition is considered valid and part of the rule if its
corresponding gene value is greater than 0.5. Obviously, a
condition is considered valid if, besides having a code value

higher than 0.5, it belongs to a valid rule. Figure 8 illus-
trates the general format of the chromosome in its third part
assuming that a dataset has v linguistic variable and r rules
were generated for the initial RB. The size of this part of the
chromosome is v ∗ r .

Finally, the fourth part CRt_norm of the chromosome
encodes a t-norm to be used in the inference engine adopted
here, as shown in Fig. 4. The t-norm is encoded using only
one gene, and each possible t-norm is associated to an inter-
val of values. The upper and lower limits for each gene in
CRCo are 1.0 and 0.0, respectively. We consider, at the cur-
rent stage of our research, four possible t-norms,as shown
in Table 1 with their respective range of values used in the
chromosome coding.

To form the initial population of the MOGA, the first
chromosome encodes the KB with the Type-2 fuzzy sets DB
defined by uniform distribution, all fuzzy rules and all con-
ditions obtained in the fuzzy learning process described in
Sect. 4 and the Minimum t-norm. The other chromosomes in
the initial population are encoded randomly, considering the
upper and lower limits of each gene.

Each chromosome is evaluated bymeans of the calculation
of three objectives. The first objective is defined as the error
rate of the FRBCS coded in the chromosome. The error rate is
calculated based on the results of classification of the training
examples using the single winner inference rule. The winner
fuzzy rule is defined among the valid rules, that is, those
rules that the fuzzy corresponding gene value is greater than
or equal to 0.5. The winner inference rule is the one with
higher compatibility degree DRi .
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Fig. 4 Fuzzification interface and inference engine

Fig. 5 Chromosome encoding for the membership functions parameters

The value of the second objective is calculated by count-
ing genes with values greater than 0.5 in CRM . These genes
represent the indexes of the fuzzy rules that are valid for the
RB, that is, rules that are considered in the inference engine.
Similar to the second objective, the third objective is calcu-
lated by counting genes with values greater than 0.5 in CRCo

taking into consideration that this condition is in a fuzzy
rule considered in the inference engine. These two objec-
tives represent the total number of rules and total number of
conditions in the RB, respectively, and are to be minimized,
since the goal is to search for RB with low complexity.

Newpopulations are generated using the genetic operators
of selection, crossover and mutation. Tournament selection,
based on the dominance of the solutions and crowding dis-
tances, is the method used for selecting a chromosome for
crossover operator. Simulated binary crossover (SBX) (Deb

and Kalyanmoy 2001) and polynomial mutation (Deb and
Kalyanmoy 2001) are the crossover and mutation operator
used in our proposal, respectively.

Based on these modeling elements, the evolutionary pro-
cess will search for solutions that present a good accuracy
and a good interpretability in terms of complexity.

An example of tuned Type-2 fuzzy sets on a linguistic
variable domain is shown in Fig. 9.

6 Experiments and results

The method described in Sect. 5 was applied on ten well-
known datasets extracted from KEEL repository (Alcalá-
Fdez et al. 2011b), as shown in Table 2.

Table 3 shows the parameters used in NSGA-II algorithm.
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Fig. 6 Type-2 membership functions limits

Fig. 7 Chromosome encoding for CRR

Fig. 8 Chromosome encoding for CRCo

All experiments were run using fivefold cross-validation.
Results after learning process and multi-objective inference
engine tuning are shown inTable 4. Second and third columns
show the mean error rate in training (Trer) and test (Teer)
dataset, respectively. Fourth andfifth columns show the quan-
tity of fuzzy rules and conditions in the RB, respectively.
Standard deviation is shown next to each result.

In order to obtain a more solid conclusion on the quality
of these results, we compared them with the ones described
in Lucca et al. (2015), which were generated by means of a
method that uses a family of Choquet-based non-associative
aggregation functions in the fuzzy inference reasoning. The
method described in Lucca et al. (2015) was selected to be
compared with our approach because it shares the general
objective of our research, which is to improve the perfor-

mance of fuzzy rule-based classification systems, searching
for the best operator to be used in the inference process,
among a set of candidates. In that work, the best operator
found for each dataset was used in the comparison analy-
sis. Following the same strategy, we also selected the highest
classification rate for each dataset to be used in comparison
with our proposal. The accuracy and standard deviation val-
ues for both methods are shown in Table 5, for 10 datasets. In
bothmethods, the values appearing in the tablewere obtained
from the average of each run of a fivefold cross-validation
testing strategy. These results demonstrate that the method
proposed in our work can offer a performance at least as good
as a state-of-the-art method.

The work in Lucca et al. (2015) did not focused on the
balance between accuracy and interpretability and did not

Table 1 t_norms No. t_norm Equation Range

1 Minimum Min(x, y) = min(x, y) 0.00 ≥ CRt_norm ≤ 0.25

2 Algebraic product AP(x, y) = x · y 0.25 > CRt_norm ≤ 0.50

3 Einstein product EP(x, y) = x ·y
2−[x+y−x ·y] 0.50 > CRt_norm ≤ 0.75

4 Hamacher product HP(x, y) = x ·y
x+y−x ·y 0.75 > CRt_norm ≤ 1.00
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Fig. 9 Tuned Type-2 fuzzy sets in a linguistic variable

Table 2 Datasets used in the experiments

No. Dataset #Attributes #Examples #Classes

1 balance 4 625 3

2 banana 2 5300 2

3 ecoli 7 336 8

4 glass 9 214 7

5 iris 4 150 3

6 led7digit 7 500 10

7 newthyroid 5 215 3

8 pima 8 768 2

9 wine 13 178 3

10 wisconsin 9 683 3

Table 3 Parameters of NSGA-II algorithm

Parameter Value

Size of the population 100.0

Crossover probability 1.0

Mutation probability 0.1

Number of generations 2000.0

present results on the number of rules and conditions of the
generated models. For this reason, the comparison analysis
done in our work includes only the accuracy rates.

Finally, we carried out a Wilcoxon signed-rank test
(Wilcoxon 1945) to compare both methods. Table 6 demon-
strates that the results obtained using MOG-T2CO are
comparable to the ones obtained by the Choquet method,
since neither one is significantly better than the other (con-
sidering a ρ < 0.05).

7 Conclusions

Thiswork presents amulti-objective genetic approach to tune
T2FS, which includes selecting the t-norm used in the infer-
ence, tuning the Type-2 fuzzy sets and selecting rules and
conditions from an initial rule base. The main contribution
of this research is to provide a method capable of handling
the complexity involved in the generation and optimization
of the T2FS for classification, using a dataset. The method
proposed here optimizes, in a coherently combined way, dif-
ferent components of the T2FS simultaneously: the inference
engine, the data base and the rule base. It also takes advantage
of the combined optimization to improve both the systems
accuracy and interpretability. By tuning the Type-2 fuzzy sets
parameters and the t-norm used in the inference process, the
accuracy of the system is improved. By selecting rules and
conditions, the complexity of the system also improves. This
way, at the end of the evolutionary process, it is possible to
obtain a set of systems with a good balance between accu-
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Table 4 Results obtained by
MOG-T2CO

Dataset Trer Teer #Rules #Conditions

balance 0.0000 ± 0.0000 0.1760 ± 0.0316 500.00 ± 0.00 2000.00 ± 0.00

banana 0.2860 ± 0.0460 0.2904 ± 0.0424 6.60 ± 2.42 8.40 ± 4.63

ecoli 0.1362 ± 0.0264 0.2321 ± 0.0069 129.60 ± 14.92 804.40 ± 113.59

glass 0.3504 ± 0.0887 0.3691 ± 0.0159 30.40 ± 15.40 156.20 ± 113.98

iris 0.0350 ± 0.0111 0.0467 ± 0.0267 4.00 ± 1.26 5.40 ± 1.62

led7digit 0.3945 ± 0.0481 0.4180 ± 0.0694 47.80 ± 8.89 251.00 ± 63.47

newthyroid 0.0279 ± 0.0170 0.0233 ± 0.0147 26.80 ± 6.79 97.80 ± 30.22

pima 0.2821 ± 0.0134 0.2649 ± 0.0199 230.20 ± 23.45 1122.80 ± 238.97

wine 0.0366 ± 0.0150 0.0500 ± 0.0111 53.20 ± 8.57 372.40 ± 84.14

wisconsin 0.0190 ± 0.0099 0.0365 ± 0.0206 145.20 ± 27.82 808.60 ± 271.93

Table 5 Comparison of MOG-T2CO and Choquet method

Dataset MOG-T2CO Choquet method

balance 0.1760 ± 0.0316 0.1008 ± 0.0091

banana 0.2904 ± 0.0424 0.3734 ± 0.0092

ecoli 0.2321 ± 0.0069 0.2500 ± 0.0924

glass 0.3691 ± 0.0159 0.4047 ± 0.0279

iris 0.0467 ± 0.0267 0.0533 ± 0.0298

led7digit 0.4180 ± 0.0694 0.3580 ± 0.0563

newthyroid 0.0233 ± 0.0147 0.0651 ± 0.0400

pima 0.2649 ± 0.0199 0.2455 ± 0.0161

wine 0.0500 ± 0.0111 0.0611 ± 0.0444

wisconsin 0.0365 ± 0.0206 0.0409 ± 0.0099

Table 6 Results of Wilcoxon
signed-rank test between
MOG-T2CO and Choquet
method

Value

N 10

Estimated median −0.0081

ρ 0.6100

racy and interpretability, with respect to complexity. As an
additional advantage, the semantics of fuzzy sets are also
preserved, for the tuning process limits the value that can be
generated in the corresponding part of the chromosome.

The most evident practical implication of the study is that
the system designer can avoid using the standard procedure
of manually defining the t-norm operator to be used in the
inference process. On the contrary, this selection can be left
to the optimization process and different t-norms can easily
be tested.

An analysis of the current status of the method allows us
to identify a few limitations that deserve to be investigated
further. Among these, we can say that the definition of the ini-
tial fuzzy sets and fuzzy rules remains an issue. Even though
experiments show that the tuning of T2FS allows delivering
better results in comparison with the non-tuned version, tun-

ing is limited by the initial definition of the fuzzy set. In the
future, different informative methods can be used in the def-
inition of Type-2 fuzzy sets. Several design decisions have
been made to make this research possible. For instance, only
a small set of t-norms was considered in the tuning process.
Running experiments with a larger number of t-norms can
open unknown possibilities of analysis regarding the systems
behavior.

Finally, it is important to notice that results are sensitive to
the particularMOGAused in the evolutionary tuning. As part
of the future work, we also intend to expand the experiments
with the use of others MOGA, specially those that are based
on different elements with respect to the one used in this
research, such as MOEA/D (Martinez and Coello 2014) or
SPEA2 (Zitzler et al. 2001).
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