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Abstract
We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world
and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a
unified framework for scalable computation of high-quality suboptimal solutions and bounds for a number of widely studied
combinatorial optimisation problems in large graphs. The problems currently supported include: maximum clique, graph
colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest
simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics.
GraphCombEx has previously or currently been tested in scenarios of exploring synthetic graph models, as well as real-world
networks ranging from social network samples, biological networks, to very large networks from the SNAP network data
repository. The tool has already been successfully used to support a number of recent studies and is particularly beneficial
in exploring the combinatorial properties of previously unseen network data, before applying more sophisticated custom
optimisation algorithms.

Keywords GraphCombEx · Graph combinatorial explorer · Complex networks · Large sparse graphs · Combinatorial
optimisation problems · Research software

1 Introduction

The demand for research support software has been growing
in the last years in both academic and industrial applica-
tions. As an increasing number of real-world problems are
concerned with analysis of networked data, exploration of
complex networks has become one of the crucial areas of
focus, including social networks (Brandes et al. 2012; Pattillo
et al. 2012), biological networks (Schreiber et al. 2009) or
utility distribution networks (Hawick 2012a, b). This explo-
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ration is usually concerned with both numerical and visual
analysis of networked data.

From the other perspective, combinatorial optimisation
problems and algorithms to solve these problems have been
subject of empirical research for a long time. Nowadays, this
holds mainly for the variety of well-known NP-hard com-
binatorial graph-theoretical optimisation problems (Karp
1972). Over the last decade, there have been a vast number
of papers on algorithms for solving these problems, rang-
ing from graph colouring (Brélaz 1979; Culberson and Luo
1995), through minimum dominating set (Chvátal 1979), to
crossing minimisation problems in graph drawing (Branke
et al. 1996; Garey and Johnson 1983; Rosete-Suárez et al.
1999). The workflow of experimental research on combi-
natorial optimisation usually follows a pattern: an experi-
mental algorithm is proposed, independently implemented
and tested on a standardised benchmark (Abualigah et al.
2017, 2018; Johnson and Trick 1996; Li et al. 2016). In
some studies, a set of problem instances is generated for the
experiments in controlled conditions. The common bench-
mark usually represents the unifying element.
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Even though a number of software tools have been pro-
posed to explore networked data (Bastian et al. 2009; Csardi
and Nepusz 2006; Czech et al. 2011; Ellson et al. 2002; Haw-
ick 2010), this has had little impact on empirical research in
combinatorial optimisation so far. In this paper, we present
a prototype of a software tool that aims at bridging this
gap, providing a unifying platform for exploration of com-
binatorial properties of large-scale synthetic and real-world
complex networks.

The tool is called Graph Combinatorial Explorer (abbr.
GraphCombEx). It is based on a unifying representation
and schematic of a number of NP-hard graph-theoretical
problems. Many of such problems (e.g. maximum clique or
minimum dominating set) are modelled as 0–1 vertex subset
selection problems, while other problems are represented as
labelling (e.g. graph colouring or vertex clique covering). In
GraphCombEx, we provide a unifying platform for explo-
ration of such problems.

GraphCombEx has been designed and implemented in
small steps over the course of several years. The tradi-
tional approach in experimental research on algorithms is
to develop a number of isolated applications to support dif-
ferent problems and algorithms. The tool proposed in this
paper is designed to address the gap between these isolated
applications and provide a common underlying platform. As
a consequence, constructive algorithms or iterative improve-
ment heuristics, for example, maximum clique or maximum
independent set can be implemented in one place, since they
share common traits. This will likely support better software
reuse, maintenance and exploration of the results.

Our tool has already been used to support several studies
on combinatorial properties of complex networks, including
detection of long cycles (Chalupa et al. 2017), k-reachability
problems (Chalupa and Blum 2017) and exploration of
protein–protein interaction networks (Chalupa 2016).Graph-
CombEx has been particularly useful in the practical scenario
of exploring previously unseen problem instances with sim-
ple and scalable heuristics, before applying a more complex
heuristic. The core functionality, therefore, includes a num-
ber of constructive heuristics that can be used to quickly
find good suboptimal solutions and lower bounds for poten-
tially very large networks. With the NP-hardness of many
graph-theoretical problems in mind, the design of Graph-
CombEx fully acknowledges that scaling and generalisation
to previously unseen networks are crucial. The aim is also to
potentially support further problems, algorithms and metrics
in the future.

GraphCombEx currently supports exploration of undi-
rected graphs with up to 5 million vertices, which can easily
be extended to larger graphs. By default, graphs are handled
in a format similar to the DIMACS format for graph colour-
ing (Johnson and Trick 1996). Several graph generators are
supported in GraphCombEx, including complete trees, unit

disc graphs or scale-free and small-world networks. The
tool currently supports suboptimal solution construction and
lower bounds for maximum clique and graph colouring,
maximum independent set and vertex clique covering, mini-
mum dominating set and the longest simple cycle. A number
of graph metrics and visualisation techniques are also sup-
ported.

Examples of the previous use of GraphCombEx in initial
instance exploration and visualisation of networks are sum-
marised in the use case section of this paper. The tool has
been tested with synthetic data generated within it, social
network samples, protein–protein interaction networks from
the UCLA database of interacting proteins (Salwinski et al.
2004;Xenarios et al. 2000, 2001, 2002), aswell as a few large
graphs from the SNAP network data repository (Leskovec
and Krevl 2015).

The rest of the paper is structured as follows. In Sect. 2,
we review the background and related work from rele-
vant perspectives. In Sect. 3, we present the overall design
elements of GraphCombEx. In Sect. 4, the summary of
evaluation of GraphCombEx in several previous projects is
presented, along with a discussion. Last but not least, Sect. 5
summarises this work and hints the future research direc-
tions.

2 Background and related work

At the start of this section, it is first worth noting the rea-
sons for designing a new software platform for these types
of problems. In fact, GraphCombEx draws inspiration from
a number of research projects described below. However,
combinatorial optimisation problems in complex networks
tend to have several very specific properties that need to be
addressed in design of a software to solve them. These can
range from special data structures to complex parameteri-
sations. Each problem and each algorithm tend to be quite
specific, and a good trade-off between reuse and flexibility
is, therefore, vital.

If exploring a previously unseen network, the optimum
for many combinatorial properties may often be unknown.
Furthermore, it is often unknown even how hard it will be
to find the optimum. For some instances, it is possible that a
simple heuristic will be sufficient to find a proven optimum.
Optimality of the solution can sometimesbeprovenby simple
automated bounds.

However, it is also possible that a highly advanced algo-
rithm is required. In such a case, the requirement for a
sophisticated algorithm should first be confirmed by the use
of a simpler heuristic. In addition, some applications require
processing of potentially huge graphs, particularly in the area
of social networks. For small but structurally intricate net-
works, one can use high-performance algorithms to discover
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previously unknown problem solutions. These are frequently
obtained by employing advanced techniques to escape local
optima.

For very large networks, it may be non-trivial to discover
any reasonable solution. This has an impact on graph repre-
sentation, selection of the right scalable heuristics, as well as
the choice of the right data structures that allow the heuristics
to run quickly. These observations have a significant impact
on the overall design of a tool that should be useful for prac-
tice. Such specific demands are perhaps also the reason why
combinatorial optimisation problems in complex networks
are rarely explored by out-of-the-box solutions.

However, such solutions are quite prevalent in the areas of
data mining and visualisation. Several software packages for
complex network exploration and visualisation have been
proposed and developed over the last years. We will now
provide a brief overview of some of these solutions.

The igraph library is one of the most popular open-
source software packages for network exploration (Csardi
and Nepusz 2006). It is available in several variants, includ-
ing interfaces for C, Python and R. The package provides a
general-purpose platform for handling of both undirected and
directed graphs. Solving routines for several classical graph-
theoretical and graph mining problems are supported, e.g.
maximum flow, minimum spanning tree or cluster detection.

Another general-purpose solution is the SNAP network
analysis andgraphmining library (Leskovec andSosič 2016).
This software package is intended as a high-performance
large-scale complex network exploration tool, with sup-
port for handling potentially huge graphs. This platform
is focused primarily on very large-scale network analytics,
using a variety of metrics and simulations on the networks.

Graph drawing and visualisation are another significant
aspect of complex network exploration software (Sugiyama
2002; Tamassia 2013). One of the most successful open-
source software platforms focused mainly on graph visuali-
sation is Gephi (Bastian et al. 2009). The features supported
by Gephi include network exploration, interactive manipula-
tion, 3D rendering, as well as of image exporting.

Another popular software package for graph visualisation
is GraphViz (Ellson et al. 2002). This package is designed as
a collection of customisable graph drawing tools, including
batch layout and graph editors.

GraViz prototype (Hawick 2010) is aimed at interactive
visualisation and exploration of graphs. This tool is particu-
larly well suited for geographical data, for which it is easy
to characterise their vertices by coordinates. As an example
case study, this tool has been used to explore the structure
and properties of power networks (Hawick 2012a). Another
studywas aimed at exploration ofwater distribution networks
(Hawick 2012b).

Another specific property of NP-hard combinatorial opti-
misation problems in networks is that these are often for-
mulated as integer linear programs. Out-of-the-box mixed
integer linear programming (MILP) software tools are
increasingly used in solving these problems inpractical appli-
cations (Bonami et al. 2008; Linderoth and Lodi 2011).
However, open-source MILP software and network explo-
ration software still seem to be perceived in relative isolation,
which is another interesting area of challenge.

3 GraphCombEx: graph combinatorial
explorer and its design

The general idea behind GraphCombEx is quite simple and
emerged from a number of similar problem solving projects.
Usually, if several combinatorial optimisation problems and
algorithms are explored, a suite of isolated ad hoc tools are
developed, especially if new algorithms are designed. In this
paper, a single unified solution for several problems and algo-
rithms is attempted as an alternative.

In principle, GraphCombEx is designed as a platform
for analysis and experimentation with static large sparse
graphs. Specific focus is put on large-scale complex net-
works, as these have been gaining increasing attention in the
last years. With particular interest, GraphCombEx addresses
NP-hard combinatorial optimisation problems. Its design,
therefore, reflects the need to incorporate several efficient and
well-scalable heuristics to compute lower and upper bounds
and high-quality suboptimal solutions to these problems for
potentially very large complex networks.

GraphCombEx currently supports undirected graphs with
up to 5 million vertices. This bound was only chosen for
better predictability in memory management, computational
complexity and testability, even though this bound can in
theory be extended by changing a single constant in the
source code. The graphs are loaded and saved into an exten-
sion of the COL format known in DIMACS graph colouring
benchmarks (Johnson and Trick 1996). This format has been
chosen to achieve simplicity. An example of a simple social
network in this format is given in Listing 1. The tree-based
visualisation and the adjacency matrix visualisation, gener-
ated by GraphCombEx for this particular network, are given
in Fig. 1.

It is worth noting that a simple tool is also available with
GraphCombEx, to allow conversion of the popular GML for-
mat, used in network science, to the extended COL format.
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Listing 1. Representation of a simple artificial social
network graph in the extended DIMACS graph format.

c 1 Alice
c 2 Bob
c 3 Cindy
c 4 Daniel
c 5 Emily
c 6 Frank
p edge 6 8
e 1 2
e 1 3
e 1 5
e 2 3
e 2 4
e 2 6
e 3 4
e 4 5

GraphCombEx supports generating multiple types of
graphs. These currently include:

– complete n-ary trees;
– unit disc graphs;
– scale-free networks generated by the Barabási–Albert
preferential attachment model (Albert and Barabási
2002; Barabási and Albert 1999);

– regular grids with probabilistic rewiring;
– small-world networks generated by the Watts–Strogatz
model (Watts and Strogatz 1998).

Several simple graph manipulation and preprocessing rou-
tines are also included:

– generation of complementary graphs;
– pruning of leaves (iterative, i.e. the resulting graph will
contain only vertices with degree at least 2);

– isolating the largest connected component;
– generation of shortcut graphs used in solving k-reach
-ability problems (Chalupa and Blum 2017).

GraphCombEx computes a number of metrics for the graph
explored. Those, which are currently supported, include:

– the numbers of vertices, edges, connected components,
density,minimum,maximum, average and standard devi-
ation of degrees;

– the number of triangles and the mean clustering coeffi-
cient of a vertex;

– graph girth (length of the shortest cycle) and maximum
diameter of an isolated connected component.

Some of these are computed upon loading or generating the
graph, as long as the complexity of the corresponding algo-
rithms is at mostO(m), wherem is the number of edges. The
numbers of vertices, edges, minimum, maximum and aver-
age degree, standard deviation of the degree are computed
directly when graph is loaded or generated. Upon request,
the number of triangles, the mean clustering coefficient and
the diameter can be computed. The number of triangles is
computed using scanning triplets of adjacent vertices and
may potentially take a long time for very large graphs. The
same holds also for the mean clustering coefficient of a ver-
tex. The maximum diameter of a connected component is
computed inO(nm) time, where n is the number of vertices.

Within GraphCombEx, the graph is represented as adja-
cency lists with sorted adjacencies, to allow for binary search
to be used for efficient checking of adjacencies. An alterna-
tive extension would include a use of a hash table for direct

Fig. 1 A tree-based drawing and an adjacencymatrix visualisation of the artificial social network defined in Listing 1, as generated byGraphCombEx

123



GraphCombEx: a software tool for exploration of combinatorial optimisation graphs. . . 5719

adjacency checking. This would speed up some computa-
tionally intensive routines but is not supported in the pilot
version, as lower memory demands were preferred.

The core functionality of GraphCombEx comprises sev-
eral heuristics and approximation algorithms, with a specific
focus on constructive heuristics. These can be used to com-
pute bounds and suboptimal solutions to a number ofNP-hard
graph-theoretical problems for very large graphs. Suboptima
can then be improved by stochastic optimisation techniques,
which are also partly supported within GraphCombEx. The
problems that are currently supported within the prototype
include:

– maximum clique and graph colouring / chromatic num-
ber problems (representing reciprocal lower and upper
bounds);

– maximum independent set and vertex clique cover-
ing problems (representing reciprocal lower and upper
bounds);

– minimum dominating set problem (both a suboptimum
and simple lower bounds);

– the longest cycle problem (both a suboptimumand simple
upper bounds).

These problems have been chosen for their high relevance for
practice, as well as for their relatively diverse representations
and properties. Maximum clique, maximum independent
set and minimum dominating set problems represent 0–1
constrained substructure detection problems. Graph colour-
ing and vertex clique covering are representatives of vertex
labelling problems. Last but not least, the longest cycle
problem is a problem of identification of specific walks
on network. Extensions to other 0–1 optimisation problems
(e.g. vertex cover), walk problems (e.g. longest path) or
labelling problems (e.g. various community detection prob-
lems) should, therefore, be possible in the chosen framework.

The core of GraphCombEx is represented by techniques
for computing bounds and high-quality suboptimal solu-
tions to combinatorial problems in large sparse graphs. The
heuristics currently supported include both fast constructive
algorithms, as well as a few more computationally intensive
iterative improvement algorithms. The constructive algo-
rithms include the following heuristics and approximation
algorithms:

– For maximum clique, GraphCombEx uses a greedy
heuristic with binary heap, which orders the vertices by
degree from largest to smallest, similar to the greedy
heuristic for maximum independent set (Halldórsson and
Radhakrishnan 1997).

– For the chromatic number problem, Brélaz’s heuristic
DSATUR is employed (Brélaz 1979). It implementation
with binary heap is used, to allow for quick computing of

an upper bound of the chromatic number (Morgenstern
1991; Turner 1988).

– Maximum independent set is estimated by the greedy
approximation heuristic, which orders the vertices by
degree from smallest to largest. In our implementation,
we use a binary heap. This heuristic guarantees O(Δ)-
approximation, where Δ is the maximum degree of a
vertex in the graph (Halldórsson and Radhakrishnan
1997).

– Minimum dominating set is approximated by a classical
greedy algorithm, originally proposed for the set cover-
ing problem. This algorithm guarantees an O(log(Δ))-
approximation for an arbitrary graph (Chvátal 1979).

– The longest cycle problem is solved by a heuristic based
on depth-first search or its improvement with local search
(Chalupa et al. 2017).

The iterative improvement algorithms are used as longer-
running procedures that improve an initially generated solu-
tion. These are, therefore, executed in a separate thread, and
their intermediate results are updated within the user inter-
face over the course of the computation:

– For the chromatic number and maximum clique prob-
lems, GraphCombEx uses the iterated greedy (IG) graph
colouring algorithm (Culberson 1992; Culberson and
Luo 1995), enhanced by an order-based randomised local
search (RLS) for maximum clique, similar to RLS used
for maximum independent set.

– For combined maximum independent set and minimum
vertex clique covering, GraphCombEx employs the IG
clique covering algorithm, combined with RLS for max-
imum independent set (Chalupa 2015).

For graphs with bounded numbers of vertices and edges,
the GraphCombEx prototype also supports several different
forms of their visualisation:

– centrality-based (also sometimes referred to as radial);
– grid-based;
– tree-based (simple hierarchical visualisation);
– circular.

Additionally, GraphCombEx supports visualisation of the
currently longest cycle found, if the heuristic is used. The
vertices of this cycle can also be rearranged as an “outer
circle”, in a modification of the centrality-based visualisa-
tion. This is referred to as a cycle-based visualisation and
was used in the study on the longest cycle problem (Chalupa
et al. 2017).

In the centrality-based (radial) visualisation, the vertex
with maximum degree is put in the middle and other ver-
tices are placed in levels, based on the distance to the centre,
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similarly to the GraViz prototype (Hawick 2010). Radial
drawings are quite popular in graph visualisation in general
(Bachmaier 2007; Brandes and Pich 2011). In the grid-based
visualisation, the vertices are distributed simply in a regular
grid. The third visualisation is the tree-based visualisation, in
which the vertex with maximum degree is placed at the top
and the other vertices are arranged hierarchically, based on
the distance to this vertex. This was chosen as a rather simple
implementation of one of the hierarchical drawings methods
(Binucci et al. 2012; Holten 2006). The last drawing method
supported is the circular drawing method (Baur and Brandes
2004).

Our prototype also visualises a bitmap, which represents
the adjacency matrix of the graph. Visualisation of the shape
of degree distribution is used without restrictions on the size
of the graph. Export features for graph visualisation, as well
as adjacency matrix visualisation and degree distribution in
CSV format, are provided.

GraphCombEx was implemented in C++ using the Qt
framework and is available under the GNU General Pub-
lic License v3. It can, therefore, be used on several operating
systems, including Windows, as well as Unix-like systems.
General information on GraphCombEx is freely available
online,1 along with the source code repository on GitHub.2

4 Use cases for GraphCombEx and discussion

Evaluating software tools and prototypeswith a suitable level
of rigour is a complex task, especially when the software is
designed to explore complex systems such as the networks
studied here. We first illustrate a typical scenario of the use
of GraphCombEx. Next, we will summarise a number of
studies, in which GraphCombEx has already been success-
fully used to support the research projects. We hope that
GraphCombEx will further be extended by more algorithms,
problems to explore and used in further projects. This fol-
lowed by a discussion to provide further context, as well as
the way forward in extensions and applications of this pro-
totype.

Figure 2 shows themain graphical user interface, illustrat-
ing the main features for four complex networks. Networks
explored in (a)–(b) are a regular grid and a scale-free net-
work that were generated, while (c)–(d) represent large-scale
social networks from the SNAP network data repository
(Leskovec and Krevl 2015). These illustrate the function-
ality in an overview, including the metrics provided, as well
as the problems and analytics supported.

IfGraphCombEx is built into a 64-bit binary, it can be used
to explore relatively large graphs. Networks (c)–(d) within

1 http://davidchalupa.github.io/research/software/graphcombex.html.
2 https://github.com/davidchalupa/GraphCombEx.

Fig. 2 are large snapshots of social networks Pokec (Takac
and Zabovsky 2012) and LiveJournal (Backstrom et al. 2006;
Leskovec et al. 2009). The latter consists of more than 4.8
million vertices, and a 64-bit version of GraphCombEx is
required to process a network of this size.

One could argue that potential applications of Graph-
CombEx are numerous, which stems from its relatively
general design. The combinatorial properties supported and
heuristics provided indeed represent a very general view and
are specifically beneficial for initial exploration of previously
unseen networked data. However, specialised computational
problems related to those supported by GraphCombEx range
fromscheduling and routing problems in operations research,
through data analytics for social media (Brandes et al. 2012;
Pattillo et al. 2012), to interaction exploration in bioinfor-
matics in support of drug discovery (Csermely et al. 2013).
This opens a number of pathways for applications of the tool.

A typical use case for GraphCombEx. We will illustrate the
power of GraphCombEx using the simple small network pre-
sented in Listing 1. In principle, this use case can also be
applied to larger networks, even though the tractability of
more computationally intensive routines may depend on the
size of the graph. After opening the graph file using File
> Open, one will see the centrality-based visualisation by
default. By using File > Visualization type, the graph visu-
alisation mode can be changed. By using the options within
the Computemenu, one can compute the on-demand charac-
teristics of the network. For the network from Listing 1, the
values presented in Table 1 will be obtained. GraphCombEx
finds the two triangles in the networks and computes the
mean clustering coefficient. Maximum clique size is 3, and
the graph is 3-colourable. Maximum independent set and
clique covering of size 3 are also computed. Dominating set
of size 2 is also found. From the drawings, one can see that
this dominating set is {Bob, Emily}. The longest cycle of
size 5 is also found. All these values are proven optima for
the network. If only bounds were computed, GraphCombEx
would present intervals for each optimal value. An illustra-
tion of the 3-colouring and the longest cycle on 5 vertices in
different graph layouts supported by GraphCombEx is given
in Fig. 3.

Support for exploration of very large sparse graphs. Graph-
CombEx has been employed to support several previous
studies on combinatorial optimisation in large sparse graphs.
It has been partially used to support a previous study on detec-
tion of long cycles in real-world complex networks (Chalupa
et al. 2017). This included social network samples, as well
as protein–protein interactions. In addition, it supports gen-
eration of shortcut graphs used in solving the k-reachability
problem, in which one aims to find the smallest set such
that each vertex is in distance at most k to at least one ver-
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Fig. 2 Graphical user interface (GUI) of GraphCombEx prototype,
exploring four different complex networks. Network (a) is a 10×10 reg-
ular grid, while network (b) is a scale-free network on 10, 000 vertices
generated by Barabási–Albert model. Networks (c), (d) are large-scale
social snapshots of networks Pokec and LiveJournal from the SNAP

network data repository. GUI shows a visualisation of the graph and
its adjacency matrix, if the graph size is within a suitable range for the
visualisation. Degree distribution shape is also depicted, and properties
are computed for each graph, including ranges for the optima of the
NP-hard problems studied

Table 1 The values ofmetrics and bounds computed byGraphCombEx
for the simple social network from Listing 1

Metric/bound Value

Triangles 2

Mean clustering coefficient 0.277778

Girth 3

Diameter 3

Maximum clique 3

Chromatic number 3

Independent set 3

Clique covering 3

Dominating set 2

Longest cycle 5

tex of such a set (Chalupa and Blum 2017). The iterated
greedy heuristic for vertex clique covering is also supported

in GraphCombEx (Chalupa 2014, 2015). A typical applica-
tion area for these studies is analysis of large-scale social
networks.

Analysis of scientific collaboration networks Collaboration
networks are of a high interest within the scientific com-
munity (Newman 2001). Combinatorial properties can offer
further insights into the phenomena of scientific collabo-
ration patterns and their understanding. In particular, the
k-reachability problem has already been studied for sev-
eral scientific collaboration networks, with partial support
of GraphCombEx. It has been revealed that for most col-
laboration networks studied, there is a single vertex that is
roughly in a distance between 8 and 11 to other vertices of
the collaboration networks (Chalupa and Blum 2017).

Exploration of protein–protein interactions One applica-
tion area of a high interest for GraphCombEx is the study
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Fig. 3 An illustration of the visualisation types provided by GraphCombEx, applied to the simple social network from Listing 1. GraphCombEx
supports different layouts, as well as highlighting of the colouring and the longest cycle identified

of protein–protein interaction networks. A general study of
protein–protein interactions and combinatorial optimisation
has been conducted with the use of GraphCombEx (Chalupa
2016). Further studies can be conducted, especially given the
rich data currently available, e.g. at the UCLA database of
interacting proteins (Salwinski et al. 2004; Xenarios et al.
2000, 2001, 2002). This data on protein–protein interac-
tions have also been tested and used within the framework of
GraphCombEx (Chalupa et al. 2017).

Modelling of randomised lattice-based systems and utility
distribution networks One of the interesting applications
of GraphCombEx, that are still left to be largely explored, is
investigation of lattice-based network models. These poten-
tially have structures similar to power networks (Hawick
2012a) or water distribution networks (Hawick 2012b).
Effects of edge rewiring, insertion or deletion on long cycles,
flows and robustness of these networks can be explored
using efficient mechanisms, expanding on the existing stud-
ies (Chalupa and Blum 2017; Chalupa et al. 2017). Adding
the spatial information for these networks is another inter-
esting future direction.

This list is not necessarily exhaustive and highlights
that the potential of GraphCombEx as a multi-perspective
complex network analysis and visualisation tool. Graph-

CombExhas beendemonstrated as useful in analysis of social
network samples of different scales or analysis and visu-
alisation of protein–protein interactions. Other applications
can follow, including utility distribution networks, further
exploration of biological networks such as gene expression
data, or scheduling and transportation networks in operations
research. In addition, there is further space for extending
GraphCombEx with new combinatorial properties and new
algorithms, including local search and evolutionary algo-
rithms or swarm intelligence algorithms approaches.

Furthermore, these algorithms and applications can fur-
ther be facilitated by integration with integer linear pro-
gramming (ILP) problem solving tools. As the first example,
GraphCombEx currently provides the functionality to export
ILP-based representation of the minimum dominating set
problem, along with its LP relaxation. MPS linear pro-
gramming instance format is currently used for this export.
MILP software can be used to solve these instances, e.g.
the CBC branch-and-cut solver from the COIN-OR pack-
age (Bonami et al. 2008; Linderoth and Lodi 2011). In the
broader context of research software, further applications in,
e.g. cyber-physical systems, may also be of a high interest
(Khosiawan et al. 2018).
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5 Conclusions

We presented a prototype of Graph Combinatorial Explorer
(abbr. GraphCombEx), which is an open-source software
platform aimed at unified exploration of combinatorial prop-
erties of large networks. GraphCombEx takes the specific
properties of the numerous NP-hard combinatorial optimi-
sation problems in networks into account in its design. The
tool currently supports graphs with up to 5 million vertices,
even though this bound is extensible and has been chosen for
practical reasons such as memory management.

GraphCombEx employs several heuristic procedures to
findhigh-quality solutions toNP-hard graph problems. These
problems currently include maximum clique, chromatic
number, maximum independent set, minimum vertex clique
covering, minimum dominating set, as well as the longest
simple cycle problem. However, the tool is designed with
extensibility by further problems and algorithms in mind,
including iterative improvement algorithms. The core func-
tionality consists mainly of constructive heuristics enhanced
by efficient data structures that can be used to find good sub-
optimal solutions and bounds for very large graphs.

Complex networks with no explicit spatial properties are
particularly addressed in the design of the prototype of this
software tool. GraphCombEx has been successfully used as
a support tool in a number of studies, including exploration
of combinatorial properties of protein–protein interactions
(Chalupa 2016), detection of long simple cycles (Chalupa
et al. 2017) or the k-reachability problem in small-world com-
plex networks (Chalupa and Blum 2017), including social
networks or scientific collaboration networks.

Possible future applications of GraphCombEx include
analysis of massive public social networks (Takac and
Zabovsky 2012), further exploration of protein–protein inter-
action networks (Hawick 2014),metabolic pathways (Becker
and Rojas 2001) or utility distribution networks (Hawick
2012a, b).
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