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Abstract
Evolutionary algorithms (EAs) are usually required to solve problems based on domination relationship among solutions.
Often, the domination relationship is almost the sole source of knowledge that EAs can utilize, especially when the problem
solving engine concerned is taken as a black box. In this paper, the domination landscape (DL), onto which an optimization
problem (OP) can be mapped, is introduced. A DL may correspond to a cluster of OPs, implying that a class of OPs may
have the same DL. To illustrate DL, we consider its representation as a directed graph, with its corresponding matrix and
function. Of the various properties of DL, the domination-preserving property is used for the analysis of DL-equivalent OPs,
and for the basis for classification of OPs. Taking DL as a tool for theoretical analysis, parameters determination for fitness
scaling, the convergence property of EAs and the analysis of robustness in light of fitness noise are presented. The study of
DL in this paper establishes the necessary theoretical foundation for future applications of DL equality and similarity based
optimization.
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1 Introduction

Well-characterized optimization problems can usually be
dealt with common mathematical methods, such as deriva-
tive based techniques.However, in reality, there are stillmany
problems whereby only domination relationship is available
(Borenstein and Poli 2007). For such problems, evolution-
ary algorithms (EAs) have been shown to perform relatively
well. In recent years, researchers have focused on develop-
ing sophisticatedEAs for solvinghard optimization problems
(OPs).AmongEAs,GeneticAlgorithm (GA) (Holland 1992)
has emerged as one of the early success stories. Since then,
various nature-inspired meta-heuristic algorithms such as
evolutionary strategy (Beyer 2001), memetic algorithm (Lim
et al. 2011; Ong et al. 2010), particle swarm optimization
(Kennedy and Eberhart 2002), ant colony optimization (Stt-
zle 2004) algorithm, differential evolution (Storn and Price
1997), moth search algorithm (Wang 2016), interactive evo-
lutionary computation (Gong et al. 2015), etc., have emerged
as variable alternatives.

During evolution, the algorithm uses the domination
relationship among solutions as a basis for selective and pref-
erential exploitation. Domination relationship is commonly
used in multi- or many-objective optimization to represent
the relationship between individuals (Martł et al. 2016).Here,
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we also use its original meaning, regardless of the number of
objectives. One of the expressions of domination relationship
is partial order, which has been the issues focused on inmany
papers. For example, Kang and his team (Liu et al. 2004)
studied the multi-objective optimization problems from the
viewpoint of partial ordering. Rudolph (2004) studied the
domination relationship among solutions with fitness noise
and described the change of domination relationship through
partial order.However, these studies have the following short-
comings: (1) The expression style of domination relationship
is limited to graphs and (2) domination relationshipwas stud-
ied only at the level of population and was not extended to
the level of the whole search space. Hence, the application
of domination relationship is limited in this sense.

Nevertheless, with regard to domination relationship,
there are still many questions or issues to be addressed:

– Are there othermodes of expressing domination relation-
ship, for example, in matrix or function form?

– As a result of competition among solutions, can domi-
nation relationship be combined with information land-
scape (Borenstein and Poli 2005) to gain further insights
into EAs?

– It iswell known thatEAspossess property of convergence
robustness against fitness noise. What is the mechanism
behind the robustness? Can this be explained based on
domination relationship?

– Fitness scaling is important not only in adjusting the
selection pressure but also in improving the performance
of algorithms. Are there any rules that can be formulated
to guide the determination of parameters for fitness scal-
ing from the viewpoint of domination relationship?

– There aremany difficult OPs for EAs, and someOPs have
the same or similar domination relationship. An intuitive
question to note is whether more difficult OPs can be
solved by taking advantage of domination relationship
of other OPs.

Wewill try to address these issueswith amore formal con-
cept, referred to as domination landscape (DL) perspective.
To study DL, we restrict our attention to finite search spaces.
For any continuous search space, when represented on a dig-
ital computer, although it is quite large, the continuum of all
possible fitness values is essentially finite (Borenstein and
Poli 2006).

This paper is organized as follows. Section 2 concepts on
domination and evolution history information are introduced.
In Sect. 3, we study DL, DL-equivalent OPs and DL-based
OPs classification. Applications of DL are addressed in
Sect. 4, which includes the theoretical analysis on the param-
eters determination of fitness scaling and EAs’ convergence
robustness against fitness noise. Finally, we conclude this
paper in Sect. 5.

2 Preliminary

This section introduces the concept of domination in opti-
mization algorithms, domination graphs and evolution his-
tory information.

2.1 Domination in evolutionary algorithms

Let the search space be denoted as S and the real space be
R. For single-objective optimization, the optimized function
can be written as f : S → R. The task is to find solutions
X∗ ∈ S, such that ∀X ∈ S, there is X∗ � X. Here, X∗ � X
means that X∗ dominates X according to the OP f . If f is to
be maximized, X∗ � X means f (X∗) ≥ f (X), and if f is
to be minimized, X∗ � X means f (X∗) ≤ f (X) (Hachicha
et al. 2011).

The domination relationship between solutionsX1 andX2

can be expressed as X1 	 X2, which is interpreted accord-
ingly as X1 dominates X2.

Domination relationship has the property of transitivity
such that if Xi 	 X j ,X j 	 Xk , it implies that Xi 	 Xk .

2.2 Domination graphs

In a directed graph D, denote a vertex as v and an arc (or
edge) as e. In Fig. 1, the arc from v2 to v3 can be written in
partial order style as < v2, v3 > which means v3 dominates
v2.

Let the precursor set for vertex v be denoted as �−(v)

(Geng and Qu 2014). For example, consider v3 in Fig. 1
where two arcs, < v1, v3 > and < v2, v3 > are incident
upon it. Therefore, �−(v3) = {v1, v2}, which means that v3
directly dominates v1 and v2. Similarly, denote the successor
set for a vertex v as �+(v) (Geng and Qu 2014). For v3,
two arcs, < v3, v5 > and < v3, v4 >, emanate from v3,
therefore,�+(v3) = {v4, v5}, whichmeans that v3 is directly
dominated by v4 and v5.

The generalized-precursor set �−{v} is the extension of
�−(v) based on domination transitivity. For example, the
generalized-precursor set �−{v5} = {v1, v2, v3, v4}. Simi-
larly, the generalized-successor set �+{v} (Hao et al. 2010b)
is the extension of �+(v) based on domination transitivity.
In Fig. 1, �+{v6} = {v7, v8}. Therefore, ∀v− ∈ �−{v} and

Fig. 1 A directed graph D
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Table 1 Cardinal number of �−{vi }
vi v1 v2 v3 v4 v5 v6 v7 v8 v9

|�−{vi }| 0 0 2 3 4 4 6 7 5

∀v+ ∈ �+{v}, we can deduce:

v+ 	 v 	 v− (1)

If all the arcs that can be obtained according to transitivity
property are deleted, the new graph is also known as Hasse
diagram (Geng and Qu 2014). On the other hand, if all the
arcs, that can be obtained according to transitivity property,
are added, the new graph (Hao et al. 2010b) is also known as
complete diagram. Table 1 shows cardinal number |�−{vi }|
for the vertices of graph in Fig. 1.

2.3 Evolution history information

Let Ih(t) denote the evolutionary information at generation
t . We can then define evolutionary information as:

Ih(t) = {(Xi (t), f (Xi (t)))|i = 1, 2, . . . , |P|} (2)

where P is the population and |P| is the population size.
Hence, the accumulation of evolution history information
can be expressed as (3) below:

IH (t) =
t⋃

i=0

Ih(t) (3)

IH (t) provides an information repository for deducing
domination relationship.

3 Domination landscape

In this section, we consider the domination landscape (DL)
and its representation. Subsequently, the DL-equivalent OPs
(DLEOPs) is proposed and after that, the classification of
OPs will be described.

3.1 Domination landscape

DL refers to the collective representation of domination rela-
tionship among the solutions.

Formally, we define a mapping based on the domination
relationship among solutions in search space S to a set as
follows:

S × S → {0, 1,− 1} (4)

The mapping of solutions is such that: ∀Xi ,X j ∈ S, the
dominance value d(Xi ,X j ) is expressed as follows:

d(Xi ,X j ) =
⎧
⎨

⎩

1, Xi � X j

0, Xi = X j

− 1, X j � Xi

(5)

In order to explainDL,weuse three types of representation
for DL, which includes the directed graph, the corresponding
adjacency matrix and function.

– In the directed graph representation for DL, the vertices
represent solutions, and the arcs represent the domination
relationship, i.e. if there is Xi � X j , then there is an arc
from the corresponding vertex for X j to the vertex for
Xi .

– The matrix representation for DL is the adjacency matrix
of the above directed graph, and the indices of the row or
column correspond to the vertices in the directed graph.
The elements of the matrix are from {0, 1} and represent
the relationship among vertices. If there is an arc from
X j to Xi , then the value of the element on row i and
column j is 1, which represents the domination relation
Xi � X j .

– In the function representation for DL, the function value
of each solution is the number of solutions that it domi-
nates, and the function is defined as:

fDL(Xi ) = |�−{Xi }|
|S| =

∑

X j∈�−{Xi }

d(Xi ,X j )

|S| (6)

where |S| is the number of vertices in the DL graph.

From (5) and (6), it is clear thatDL function has a desirable
property as being single-order function, which transform the
original OPs into a simple form, and this property makes DL
a powerful tool for many applications. For example, con-
sider an OP max F5(x) = x5, x ∈ [0, 1]. For simplicity,
we express DL of F5 with its discrete format and the search
space as {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. F5
and its DL function, DL graph and DL matrix are shown in
Fig. 2a–c, respectively. Figure 2b is one of the DL graphs
for F5. Although not all the domination relationships are
represented, other domination relationships can be deduced
according to the domination transitivity property.

In DL matrix, the upper/lower triangular matrix area
marks the distinct elements of the DL. Diagonal elements are
all 0 because an element is equivalent to itself according to
the domination relationship. The corresponding relationship
among DL matrix, DL graph and the curve of DL function
is depicted in Fig. 3, where a maximizing OP and three vari-
ables X1, X2 and X3 are exemplified.
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Fig. 2 argmax F5 = x5 and its DL representation a curve of F5 at left
side and DL function curve for F5 at right side; b a DL graph for F5; c
DL matrix for F5

Fig. 3 AnOP and its corresponding DL graph, DL function, DLmatrix

The advantage of DL with graph expression is that the
concrete value ofX is unrelated to the graph. In other words,
only the topology of the graph needs to be considered. As
such, the absolute values of the solutions can be ignored in
the DL. Hence, we can say that DL embodies one of the
natural features of OPs.

DL has some useful properties, such as transitivity prop-
erty. Here, we introduce another property, Domination Pre-
serving (DP), in the form of a theorem.
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Fig. 4 Curves of Fk(x) = xk , k = 1, 2, 5, 10, 100, 1/2, 1/5, 1/10 and
1/100

Theorem 1 As a mapping, DL has the property of DP.

Proof Considering an OP f (X) and its corresponding DL
function fDL(X), for ∀Xi ,X j ∈ S, mark � f = f (Xi ) −
f (X j ) 
= 0, �DL = fDL(Xi ) − fDL(X j ) 
= 0. If we can
show that the non-zero condition of the product of � f and
�DL as in (7) is satisfied, then the domination is preserved:

� f · �DL > 0 (7)

We consider the conditions of � f > 0 and � f < 0.
For the first case � f > 0, it follows that:

� f > 0 ⇒ f (Xi ) > f (X j ) ⇒ Xi 	 X j

According to the definitionof�−{·},∀X j ∈ �−{Xi }, there
is �−{X j } ⊂ �−{Xi }. This implies that:

|�−{X j }|
|S| <

|�−{Xi }|
|S| ⇒ �DL > 0.

As such, since � f > 0 implies that �DL > 0, the DP
property is proven, as per condition (7).

Similarly, it can be proven for the case � f < 0. 
�
Consider a series of OPs as follows:

max Fk(x) = xk, x ∈ [0, 1], k ∈ R+ (8)

The plots of some of these OPs are shown in Fig. 4. These
OPs have the same DL as that of F1(x) = x .

Although theOPs in (8) are different from an optimization
viewpoint, they have the same DL. This is because any pair
where x1 > x2, for two different Fk1(x) and Fk2(x), k1 
= k2,
the condition x1 	 x2 holds. From this viewpoint, �Fk1 ·
�Fk2 = (Fk1(x1) − Fk1(x2)) · (Fk2(x1) − Fk2(x2)) ≥ 0.

Based on the DP property of DL, the DL-equivalence is
studied in the following subsection.
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3.2 DL-equivalent optimization problems

With DL, we can derive the notion of DL-equivalent OPs
(DLEOPs).

Definition 1 For two optimization problems, OP1 and OP2,
if they have the same DL, we say that OP1 is DL-equivalent
to OP2 and we denote it as DL(OP1) = DL(OP2).

We also use =DL to express the DL-equivalence rela-
tionship, then we express DL(OP1) = DL(OP2) with =DL

(OP1,OP2) or OP1 =DL OP2.
It can be further deduced that the DL-equivalence rela-

tionship has the properties of symmetry, reflexivity and
transitivity. They are:

– =DL (OP1,OP2) ⇔=DL (OP2,OP1) for symmetry;
– =DL (OP1,OP1) for reflexivity;
– =DL (OP1,OP2)∧ =DL (OP2,OP3) ⇒=DL

(OP1,OP3) for transitivity.

Hence, as a mapping, DL satisfies the condition of relation
of equivalence (Geng and Qu 2014).

For two OPs, how can one judge whether two OPs are
DLEOPs? The following theorem provides the justifications.

Theorem 2 Consider two OPs with the same search space S,
and the corresponding functions are f1 and f2. If ∀X1,X2 ∈
S,�1 = f1(X1)− f1(X2) 
= 0,�2 = f2(X1)− f2(X2) 
= 0,
and if �1 · �2 > 0, then the two OPs are DLEOPs.

Proof For �1 · �2 > 0, there are two cases as: (1) �1 > 0
and �2 > 0 or (2) �1 < 0 and �2 < 0.

For the first case, �1 > 0 ⇒ f1(X1) > f1(X2) ⇒
X1 	 X2 and �2 > 0 ⇒ f2(X1) > f2(X2) ⇒ X1 	 X2.
Therefore, both OPs have the same domination relationship.
Because these two solutions are randomly selected, therefore,
the result is suitable for all the solutions in the search space.
Hence, the two OPs have the same DL.

For the second case, the proof is similar.
The proof is consistent for both maximizing and minimiz-

ing OPs. 
�
Based on the definition of DLEOPs, the classification

of problems is studied in the following subsection and the
parameters determination for fitness scaling is studied in the
next section.

3.3 Optimization problems classification

Based on DL, OPs can be divided into different classes. On
the left part of Fig. 5, we illustrate that these functions have
the same DL with Fk(x) as in (8). The center of the left part
of Fig. 5 is the DL function, and other functions surrounding

Fig. 5 Classification of optimization problems according to DL: the
left DL is composed of one line and the right DL is composed of three
lines

it are those problems with the same DL as Fk(x). From this
viewpoint, all theseOPs belong to the same class.On the right
part of Fig. 5, we illustrate a DL with three line segments in
the center, aroundwhich,many other complex problems have
the same DL.

DL can serve as the basis for the classification of some
complex problems. Accordingly, we say that those problems
sharing the same DL belong to the same class. One example
is Fk(x) in (8). Another two examples are shown in Fig. 5.
In fact, many other OPs are in the same class as F1(x), such
as Fk(x) + c, x ∈ [0, 1], k ∈ R+ and c ∈ R. Furthermore,
another example that a cluster OPs belongs to the same clas-
sification is shown in (9):

max Fk,c1,c2(x) = xsink(10πx+c1)+c2, x ∈ [−1, 2] (9)

which has three real constant parameters, k > 0, c1, c2 ∈ R,
and k is a odd number. We depicted some of their figures in
Fig. 6, where k = 1, 9, 39, 509 and 809. (For the cases of
k = 39, 509 and 809, the curves are so steep that it is difficult
to figure their value out when x > 0 until we enlarge part of
them as shown in (d)). For this class of OPs, although they
have different optima which depends on c1, they have the
same DL.

Formally, let Wi and Wj be the DL matrices of OPi and
OP j respectively. If they satisfy the equation as per (10):

Wi = Wj (10)

OPi and OP j belong to the same class. Intuitively, the opti-
mum can be transferred among the OPs that belong to the
same class. The issues pertaining to this will be addressed in
another paper.

4 Application of domination landscape

We apply DL to the analysis of parameters determination for
fitness scaling, and fitness noise robustness of EAs.
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Fig. 6 Another example of OPs in (9) with c1 = c2 = 0 belong to
the same classification from the viewpoint of DL. a k = 1, b k = 9, c
k = 39, d k = 1, 9, 39, 509, 809

4.1 Parameters determination for fitness scaling

Fitness scaling (Jong 1975) plays an important role not only
in adjusting the selection pressure, but also in improving the
performance of algorithms. There are many popular fitness
scaling functions, including the linear function, logarithmic
function, power function, exponential function, etc.

The parameters of fitness scaling are not randomly deter-
mined. Although there have been some theoretical studies
on how these parameters should be determined (Hao et al.
2010a), however, their theoretical basis was not given. Here,
we show that the notion of DLEOPs can be a feasible and
effective approach for such purpose.

DL-equivalence relation can be an effective representa-
tion of fitness scaling. If OPs before and after fitness scaling
are not DLEOPs, then the domination relationship will be
changed, which means that the rule of survival of the fittest
will be violated and the population may proceed to deteri-
orate as it evolves. Therefore, it is the necessary condition
for fitness scaling function to be a DL preserving function.
Based on this condition, the parameters of fitness scaling can
be determined.

Here, we consider the linear fitness scaling (LFS), which
is:

F(X) = α f (X) + β (11)

where f (X) is the original optimization function, and F(X)

is the function after LFS, and α and β are the constant param-
eters of LFS.

Theorem 3 For the OP max f (X), the parameter of LFS
should satisfy the condition α > 0. If roulette wheel selec-
tion operation is used, the parameters of LFS should satisfy
the conditions α > 0 and β ≥ −α f (X0), where X0 =
argminXi∈P f (Xi ) where P is the current population.

Proof Firstly, LFS is a DP map. Then ∀X1,X2 ∈ S:

�F = F(X1) − F(X2)

= α f (X1) + β − (α f (X2) + β)

= α( f (X1) − f (X2))

= α� f

Therefore, there is:

�F · � f = α(� f )
2

If we want �F · � f > 0, then we should have α > 0 except
for the case when � f = 0.

Secondly, taking roulette wheel selection operation into
consideration, there is a constraint for F(X) ≥ 0. For the
solution X0 = argminXi∈P f (Xi ), it follows that F(X0) =
α f (X0) + β ≥ 0. Therefore, we get β ≥ −α f (X0). 
�

For other fitness scaling functions, the determination of
parameters is similar to the case of LFS.

4.2 EAs’ convergence robustness against fitness
noise

It has been reported that EAs are generally noise robust
(Buche et al. 2002; Arnold and Beyer 2006). However, the
reason for this robustness is rarely studied. Here, based on
DL, we study EA’s robustness subject to fitness noise.

In theory, robustness means that EAs will converge even
under the condition of fitness noise. Fitness noisemay change
the difficulty level of problems, making them harder or easier
(Beyer 2000). Here, we do not focus on the hardness issue,
but rather study the convergence robustness subject to fitness
noise. From the theory of EAs convergence (Rudolph 1998),
only if the domination relationship remains unchanged, the
convergence will not change. Therefore, the noise robustness
can be studied based on DP, which means that we can study
the fitness noise robustness based on DLEOPs.

If the noise does not alter the domination relationship
among solutions, then EA will be convergence robust (Hao
et al. 2006). In other words, if the original OP and the OP
with fitness noise are DLEOPs, then EA would be conver-
gence robust.

Denoting the original fitness as f (X), and the fitness with
noise as follows (Arnold and Beyer 2006):

F(X) = f (X) + N (X) (12)
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where N (X) is the mapping of fitness noise. F(X) can be
seen as the result of from f (X) and can be denoted as:

f (X)
noise−→ F(X) (13)

From the above discussion, we can see that if there is
DL(F(X)) = DL( f (X)), then EAs are convergence robust.
In otherwords, EAs are robust for theDLEOPs kind of fitness
noise.

We study the robustness from two different viewpoints:
(1) the whole search space; (2) the population.

Theorem 4 EAs are convergence robust against the fitness
noise which belongs to DP mapping on the whole search
space or on the population.

If we can prove that the domination of the optimum over
other solutions is not changed by fitness noise, then EAs are
convergence robust.

Proof Firstly, we consider the fitness noise on whole search
space S. For ∀X1,X2 ∈ S, there is:

�F = F(X1) − F(X2)

= ( f (X1) + N (X1)) − ( f (X2) + N (X2))

= f (X1) − f (X2) + N (X1) − N (X2)

= � f + �N

Therefore, for the original fitness and fitness with noise,
we can conclude that:

�F · � f = (� f )
2 + � f · �N

To ensure �F · � f > 0, there should be � f · �N > 0,
which satisfies the condition as per Eq. (7). Therefore, EAs
are convergence robust against the fitness noise that satisfies
DP property.

Secondly, we consider the fitness noise that does not sat-
isfy DP on the whole search space but satisfy DP only on the
population.

Denote the t th population as P(t) and the optimum in
P(t) as X∗(t).

Similar to the proof derived from a search space perspec-
tive, we have �F · � f > 0 in P(t).

According to the elitist preservation strategy, we can
assume X∗(t) ∈ P(t + 1). This means that under the
condition that fitness with noise belongs to DP, the popu-
lation optimum will not only remain dominant over all other
solutions in P(t), but also will be retained into the next gen-
eration.

Since S = limt→∞
⋃t

i=1 P(i), and the optimum in the
population at any point in time exerts domination over the
other solutions, the global optimumkeeps its dominationover
all other solutions in the whole search space. 
�

For this theorem,we summarize it as follows. Firstly, from
the viewpoint of search space, if the real OP and noised OP
are DLEOPs, EAs are noise robust. However, this is a very
strong condition, because it requires the DP property to hold
for the whole search space. It is therefore not appropriate for
consideration.

Secondly, a somewhat weak condition is given on the
population. Since evolution is carried out on the popula-
tion in each generation, it is not a strong condition for
original OP and the noised OP to be DLEOPs in each pop-
ulation than that on the whole search space. This relaxes
the condition for fitness noise mapping, which enables EAs
to maintain convergence robustness by allowing the fitness
noise mapping to be changeable during the evolution pro-
cess.

As an illustrative example of fitness noise, consider the
case of interactive genetic algorithms. Fitness is assigned by
one or more users according to preference or subjective judg-
ment. Generally, it is assumed that the user knows nothing
about the search space in advance before the evolutionary
process. Therefore, the fitness he/she assigns in the first and
later generation is likely to be very different from the “real
fitness” (Wang et al. 2006) and tends to be noisy or uncertain.
However, the noise does not break the domination relation-
ship among the individuals in the same population, i.e., the
DP property is preserved according to the user-assigned fit-
ness.

5 Conclusions

In this paper, DL is studied, including its representations
graph, matrix and function. Using the notion of DL, the
classification of OPs based on DL-equivalence is pre-
sented. The application of DL in parameters determina-
tion for fitness scaling and EA’s convergence robustness
against fitness noise are presented. DL’s properties such
as transitivity and DP are utilized in DLEOPs justifica-
tions.

As mentioned before, there are many OPs which have the
sameDL, amongwhich some are hard for EAs. By exploiting
DPmapping, these hard OPs can be easy for EAs. Therefore,
the judgement of DLEOPs and the methods for knowledge
transfer from easy to hard problems is our direction for future
work.

Besides DL equality, DL similarity is also a future topic.
For those DL similar problems, knowledge derived from
conquered problems can be transferred to hard problems to
enhance the search process.
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