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Abstract
The covering rough set (CRS) theory and themulti-granulation rough set (MGRS) theory are both the important generalizations
of Pawlak rough set theory. Up to now, substantial contributions have been made to the development of CRS and MGRS. In
this paper, in order to shed some light on the comparison and combination of CRS theory andMGRS theory, we investigate the
relationship between CRS and MGRS based on different aspects. We firstly put forward an effective approach to describe the
covering rough sets by means of the multi-granulation rough sets. Then, we, respectively, study the differences and relations
of lower and upper operators, reduction, operation properties and algebraic properties between CRS and MGRS.
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1 Introduction

The theory of rough sets, initiated by Pawlak (1982, 1991,
2002) and Pawlak and Skowron (2007), is an excellent tool
for dealing with vagueness, uncertainty and incompleteness
in data analysis. The theory has been applied successfully in
the fields of pattern recognition, medical diagnosis, process
control, data mining, conflict analysis, economics, environ-
mental science, topology and algebra (Ananthanarayana et al.
2003; Swiniarski and Skowron 2003; Grzy mala-Busse and
Siddhaye 2004; Jeon et al. 2006).

It is well known that the rough set theory is constructed
on the basis of an equivalence relation. The equivalence rela-
tion plays an important role in Pawlak rough sets. The key
idea of rough set theory is the use of some known knowledge
to approximate the inaccurate and uncertain knowledge in
information systems. However, the equivalence relation in
Pawlak rough set theory is still restrictive for many applica-
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tions. Then, the generalization of rough sets is an interesting
topic not only in mathematical point of view but also in prac-
tical point of view. Along this direction, Zakowski (1983)
has used coverings of a universe for establishing the cover-
ing rough set model. Covering rough set theory is a desirable
direction in the field of rough sets. At present, more and
more researchers devote to the study of the covering rough
set theory. Yao and Yao (2012) study dual approximation
operators by using coverings produced by the predecessor
and/or successor neighborhoods of serial or inverse serial
binary relations. Zhu and Wang (2007) and Zhu (2007a, b,
2009a, b) researched six types of approximation operators
and investigated their properties. Meanwhile, the relation-
ships of them have been discussed. Pomkala (1987, 1988)
investigated additional pairs of dual approximation operators
and studied coverings produced by tolerance relations. Kong
andWei (2015) studied the operation and algebraic properties
of covering rough sets in fuzzy information system.

From the perspective of granular computing, an equiva-
lence relation on the universe can be regarded as a granularity,
and the corresponding partition can be regarded as a gran-
ular structure. Hence, Pawlak rough set theory is based on
a single granularity. However, the classical rough set the-
ory based on an equivalence relation does not deal with
many problems in practical applications. Firstly, Qian et al.
(2010a, b) extended the single-granulation rough sets to the
multiple granulation rough sets, where the set approxima-
tions were defined using multiple equivalence relations on
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the universe. Recently, more and more attention has been
paid to extending the multi-granulation rough set theory (Li
et al. 2016, 2017; Liu and Wang 2011; Lin et al. 2013). Xu
et al. (2012) developed themulti-granulation rough setmodel
in ordered information systems, multi-granulation rough set
model based on the tolerance relations. In addition, based
on the multi-granulation rough set theory and fuzzy set the-
ory, Xu et al. (2014) proposed a multi-granulation fuzzy
rough set model and multi-granulation fuzzy rough sets in
a fuzzy tolerance approximation space. Meanwhile, Yang
et al. (2011) also generalized the multi-granulation rough
sets into fuzzy rough sets and discussed the correspond-
ing properties in incomplete information systems. Kong and
Wei (2017) studied the operation and algebraic properties
of multi-granulation rough sets in fuzzy information sys-
tem. She and He (2012) explored the topological structures
and obtained many excellent conclusions. Recently, Xu et al.
(2011) proposed a generalized multi-granulation rough set
model by introducing a support characteristic function and
an information level.

As is well known, the properties of the multi-granulation
rough sets based on the multiple equivalence relations are
better than those of the covering rough sets based on the
covering relation. If we could find some way to describe the
covering rough sets by means of the multi-granulation rough
sets, then we will study the covering rough set theory by
using the multi-granulation rough set theory.

Motivated by the aboveproblem, this studymainly focuses
on the comparison and combinationof covering rough set the-
ory andmulti-granulation rough set theory.More specifically,
we put forward an effective way of transforming a covering
approximation space into a multi-granulation approximation
space, and the relationship between covering rough sets and
multi-granulation rough sets is analyzed.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review some basic concepts of Pawlak rough
sets, multi-granulation rough sets and covering rough sets.
In Sect. 3, we transform covering approximation space into
multi-granulation approximation space and discuss some
useful properties. In Sect. 4, the relationship between cover-
ing approximation operators and multi-granulation approx-
imation operators is analyzed. In Sect. 5, we discuss the
differences and relations of covering and multi-granulation
rough sets via reduction. In Sect. 6, we firstly investi-
gate the operation properties of multi-granulation rough
sets and then further study the operation properties of
covering rough sets. In Sect. 7, based on the operation
properties of multi-granulation and covering rough sets,
we study the algebraic properties of multi-granulation and
covering rough sets, respectively. Section 8 concludes this
study with a brief summary and an outlook for further
research.

2 Preliminaries

In this section, we review some basic concepts and notions
in the theory of Pawlak rough sets, multi-granulation rough
sets and covering rough sets. More details can be seen in
references (Pawlak 1982; Qian et al. 2010b; Zhang and Kong
2016). Meanwhile, in this paper, we assume that the universe
U is a finite nonempty set.

2.1 Pawlak rough sets

Let R be an equivalence relation of U . Denote [x]R =
{y|(x, y) ∈ R}, U/R = {[x]R |x ∈ U }; then [x]R is called
the equivalence class of x and the quotient setU/R is called
the equivalence class set of U . If X ⊆ U and R is an equiv-
alence relation of U , then

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ X �= ∅}

are called Pawlak lower and upper approximations, respec-
tively. The ordered pair (R(X), R(X)) is said to be Pawlak
rough set of X with respect to R.

2.2 Multi-granulation rough sets

Different fromPawlak rough sets based on single equivalence
relation,multi-granulation rough setmodelswere established
on the basis of multiple equivalence relations.

Definition 2.1 Let (U ,R) be amulti-granulation approxima-
tion space and R1, R2, . . . , Rs ∈ R the equivalence relations.
For each X ⊆ U

∑s

i=1
R O
i (X) = {x | ∨s

i=1([x]Ri ⊆ X)},
∑s

i=1
R O
i (X) = {x | ∧s

i=1([x]Ri ∩ X �= ∅)}.

are called the multi-granulation lower and upper approxi-
mations of X with respect to equivalence relations R1, R2,

. . . , Rs , respectively.∑s
i=1 R

O
i (X) and

∑s
i=1 R

O
i (X) are, respectively, called

the optimistic multi-granulation lower and upper approxima-
tions of X by Qian et al. (2010b).

For each X ⊆ U , the pair (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X))

is called the optimistic multi-granulation rough sets of

X . Obviously, {(∑s
i=1 R

O
i (X),

∑s
i=1 R

O
i (X)) | X ⊆

U } is a set of all the optimistic multi-granulation rough
sets in approximation space and is denoted as B

O =
{(∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)) | X ⊆ U } .

Definition 2.2 Let (U ,R) be amulti-granulation approxima-
tion space and R1, R2, . . . , Rs ∈ R the equivalence relations.
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For each x ∈ U , [x]R1, [x]R2 , . . . , [x]Rs are equivalence
classes of x . If there exists [x]Ri such that [x]Ri ⊆ [x]R j , j =
1, 2, . . . , s, then R1, R2, . . . , Rs are called the minimum
equivalence relations.

For any x ∈ U , theminimumoneof [x]R1 , [x]R2 , . . . , [x]Rs

is denoted by [x]Rmin . Clearly, [x]Rmin = ∩s
i=1[x]Ri .

Furthermore, for X ⊆ U , we denote X/ ∪s
i=1 Ri =

{[x1]Rmin , [x2]Rmin , . . . , [xr ]Rmin}, where X/∪s
i=1 Ri satisfies

two conditions: (1) For any [xi ]Rmin , [x j ]Rmin ∈ X/ ∪s
i=1 Ri ,

we have [xi ]Rmin ∩ [x j ]Rmin = ∅, where i, j ∈ {1, 2, . . . , r}
and i �= j ; (2) ∪r

i=1[xi ]Rmin = X .

Definition 2.3 Let (U ,R) be a multi-granulation approx-
imation space and R1, R2, . . . , Rs ∈ R the equivalence
relations. We say that R j ∈ R is lower approximation sig-
nificant in R, if for each X ⊆ U , we have

∑s
i=1 R

O
i (X) ⊃

∑s
i=1,i �= j R

O
i (X), and that R j ∈ R is not lower approx-

imation significant in R, if for each X ⊆ U , we have∑s
i=1 R

O
i (X) = ∑s

i=1,i �= j R
O
i (X).

Definition 2.4 Let (U ,R) be a multi-granulation approx-
imation space and R1, R2, . . . , Rs ∈ R the equivalence
relations. We say that R j ∈ R is upper approximation sig-

nificant in R, if for each X ⊆ U , we have
∑s

i=1 R
O
i (X) ⊂

∑s
i=1,i �= j R

O
i (X), and that R j ∈ R is not upper approx-

imation significant in R, if for each X ⊆ U , we have∑s
i=1 R

O
i (X) = ∑s

i=1,i �= j R
O
i (X).

Let (U ,R) be a multi-granulation approximation space.
Given a equivalence relation R ∈ R and a subset X ⊆ U , the
concepts of lower and upper approximation significant in R

with respect to X were introduced by Qian et al. (2010b).

2.3 Covering rough sets

Covering rough sets were proposed to extend the range of
applications of Pawlak rough sets. The key idea is to replace
the partition of the universe by a covering. It is clear that a
partition generalized by an equivalence relation on universe
is a special case of a covering, so the notion of covering is
an extension of a partition.

Definition 2.5 Let U be the universe and C a family of
nonempty subsets of U . If ∪C = U , then C is called a
covering of U . We call the ordered pair (U , C) a covering
approximation space.

Definition 2.6 Let (U , C) be a covering approximation space
and K ∈ C. If K is a union of some sets in C − {K }, we say
that K is a union reducible element of C; otherwise, we say
that K is a union irreducible element of C.
Definition 2.7 Let (U , C) be a covering approximation space
and K ∈ C. If K is an intersection of some sets in C −

{K }, we say that K is an intersection reducible element of
C; otherwise, we say that K is an intersection irreducible
element of C.
Definition 2.8 SupposeC is a covering ofU . A neighborhood
system Cx of x is defined by:

Cx = {K ∈ C|x ∈ K }.

Definition 2.9 Suppose Cx is the neighborhood system of x
induced by a covering C. The minimum description of x is
defined by:

md(x) = {K ∈ Cx |(∀S ∈ Cx )(S ⊆ K ⇒ K = S)}

Theminimum descriptionmd(x) of x has been proposed and
studied by many authors (Bonikowski et al. 1998; Yang et al.
2011; Zhang and Kong 2016).

Definition 2.10 Let C be a covering of U . C is called unary
covering, if ∀x ∈ U , |md(x)| = 1.

In 1983, Zakowski was the first to propose the lower and
upper approximation operators in a covering approximation
space (Zakowski 1983). And then more and more atten-
tion has been paid to investigate the covering rough sets.
For example, Pomkala (1987, 1988); Yao (2001); Yao and
Yao (2012); Yao (1996, 1998); Zhu and Wang (2007); Zhu
(2007a, b, 2009a, b); Bonikowski et al. (1998) continued to
study other approximation operators. In this paper, we focus
on studying the following covering approximation operators.

Definition 2.11 Let (U , C) be a covering approximation
space. For each X ⊆ U ,

C(X) = ∪{K ∈ C|K ⊆ X}, C(X) =∼ C(∼ X).

are, respectively, called the lower and upper covering approx-
imations of X .

The pair (C(X),C(X)) is called the covering rough set of
X . Clearly, C = {(C(X),C(X)) | X ⊆ U } is a set of all the
covering rough sets.

The covering rough sets listed in Definition 2.11 can go
back to the papers by Pomkala (1987, 1988). But the explicit
definition in terms of dual pairs has been given byYao (2001).

Definition 2.12 Let (U , C) be a covering approximation
space. We say that K ∈ C is lower approximation significant
in C, if for each X ⊆ U , we have C(X) ⊃ (C − {K })(X),
and that K ∈ C is not lower approximation significant in C,
if for each X ⊆ U , we have C(X) = (C − {K })(X).

Definition 2.13 Let (U , C) be a covering approximation
space. We say that K ∈ C is upper approximation significant
in C, if for each X ⊆ U , we have C(X) ⊂ (C − {K })(X),
and that K ∈ C is not upper approximation significant in C,
if for each X ⊆ U , we have C(X) = (C − {K })(X).

123



3240 Q. Kong , W. Xu

Table 1 A covering approximation space with respect to hobby

U Basketball Football Swimming Running

x1
√ √ √ √

x2
√ × × √

x3 × √ × √
x4 × √ √ ×
x5

√ × × √
x6 × × × √

3 Transforming covering approximation
space intomulti-granulation
approximation space

In this section, we focus on transforming a covering approxi-
mation space into a multi-granulation space and illustrate the
process with an example to facilitate our subsequent discus-
sion.

Let (U , C) be a covering approximation space with C =
{K1, K2, . . . , Ks}. For each Ki ∈ C, we can obtain an
equivalence relation Ri on U , i.e., U/Ri = {Ki ,∼ Ki }.
Clearly, U/Ri is a partition of U , i = 1, 2, . . . , s. Then,
we get a multi-granulation approximation space (U ,R) and
R = {R1, R2, . . . , Rs} is a set of the equivalence relations
induced by C = {K1, K2, . . . , Ks}. Therefore, we say that
themulti-granulation approximation space (U ,R) is induced
by the covering approximation space (U , C).

Now, we use a real-world example to show the process of
transforming a covering approximation space into a multi-
granulation approximation space.

Example 3.1 Let (U , C) be a covering approximation space
with respect to hobby, where U = {x1, x2, . . . , x6}, C =
{K1, K2, K3, K4} = {{x1, x2, x5}, {x1, x3, x4}, {x1, x4},
{x1, x2, x3, x5, x6}}. Note that (U , C) can be represented as a
two-dimensional table. More details can be found in Table 1.

where “
√
" means the person xi has the hobby; “×" means

the person xi does not have the hobby, i = 1, 2, . . . , 6.
For K1 = {x1, x2, x5}, we obtain an equivalence R1 such

that U/R1 = {{x1, x2, x5}, {x3, x4, x6}};
For K2 = {x1, x3, x4}, we have an equivalence R2 such

that U/R2 = {{x1, x3, x4}, {x2, x5, x6}};
For K3 = {x1, x4}, we get an equivalence R3 such that

U/R3 = {{x1, x4}, {x2, x3, x5, x6}};
For K4 = {x1, x2, x3, x5, x6}, we obtain an equivalence

R4 such that U/R4 = {{x1, x2, x3, x5, x6}, {x4}}.
Therefore,wegenerate amulti-granulation approximation

space (U ,R), and R = {R1, R2, R3, R4} is a set of equiva-
lence relations induced by C = {K1, K2, K3, K4}.

By the transforming approach, we have the following
results.

Theorem 3.1 Let (U , C) be a covering approximation space,
and (U ,R)amulti-granulationapproximation space induced
by (U , C). If C = {K1, K2, . . . , Ks} is a unary covering of U
and for each K ∈ C, we have∼ K ∈ C, then R1, R2, . . . , Rs

induced by K1, K2, . . . , Ks are minimum equivalence rela-
tions on U.

Proof Suppose C = {K1, K2, . . . , Ks} is a unary covering
of U . For each x ∈ U , denote Cx = {K 1

x , K
2
x , . . . , K

mx
x },

then there exists Kmin
x ∈ Cx such that Kmin

x ⊆ Ki
x , i =

1, 2, . . . ,mx . Let Rmin be an equivalence relation induced
by Kmin

x . So, U/Rmin = {Kmin
x ,∼ Kmin

x } = {[x]Rmin ,∼
[x]Rmin}. By the assumption, for each [x]R j , we have that
[x]Rmin ⊆ [x]R j , j = 1, 2, . . . , s. Hence, R1, R2, . . . , Rs

are minimum equivalence relations on U . �

Theorem 3.2 Let (U , C) be a covering approximation space,
and Kl and K p =∼ Kl both the elements of C. If Rl and Rp

induced by Kl and K p are both the equivalence relations of
U, then Rl is identical to Rp.

Proof It is immediate. �

Remark 3.1 Let (U , C) be a covering approximation space,
Kl and Kp =∼ Kl are both the elements of C, Rl and Rp

induced by Kl and Kp are both the equivalence relations of
U . Then

(1)we say that Rl is lower approximation significant, if for
each X ⊆ U , we have

∑s
i=1 R

O
i (X) ⊃ ∑s

i=1,i �=l,p R
O
i (X),

and that Rl is not lower approximation significant, if for each
X ⊆ U , we have

∑s
i=1 R

O
i (X) = ∑s

i=1,i �=l,p R
O
i (X).

(2)We say that Rl is upper approximation significant, if for

each X ⊆ U , we have
∑s

i=1 R
O
i (X) ⊂ ∑s

i=1,i �=l,p R
O
i (X),

and that Rl is not upper approximation significant, if for each

X ⊆ U , we have
∑s

i=1 R
O
i (X) = ∑s

i=1,i �=l,p R
O
i (X).

4 Differences and relations of approximation
operators between CRS andMGRS

In this section, we mainly discuss the differences and rela-
tions of approximation operators between CRS and MGRS.

Theorem 4.1 Let (U , C) be a covering approximation space,
and (U ,R)amulti-granulationapproximation space induced
by (U , C). For each X ⊆ U, the following properties are true.

(1) C(X) ⊆ ∑s
i=1 R

O
i (X);

(2)
∑s

i=1 R
O
i (X) ⊆ C(X).

Proof (1) Let C = {K1, K2, . . . , Ks} be a covering of U ,
and R1, R2, . . . , Rs ∈ R the equivalence relations induced
by K1, K2, . . . , Ks . For each x ∈ C(X), there exists Ki ∈ C
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such that x ∈ Ki ⊆ X . By the transforming approach, there
exists an equivalence relation Ri induced by Ki such that
U/Ri = {Ki ,∼ Ki } = {[x]Ri ,∼ [x]Ri }. So we have x ∈
Ki = [x]Ri ⊆ X . Therefore, x ∈ ∑s

i=1 R
O
i (X). Hence,

C(X) ⊆ ∑s
i=1 R

O
i (X).

(2) This item can be obtained similarly. �

Example 4.1 (Continued from Example 3.1) For X1 =
{x1, x3, x4, x6}, we have C(X1) = {x1, x3, x4},∑4

i=1 R
O
i

(X1) = {x1, x3, x4, x6}; For Y1 = {x3}, we have C(Y1) =
{x3, x6},∑4

i=1 R
O
i (Y1) = {x3}.

Theorem 4.2 Let (U , C) be a covering approximation space,
and (U ,R)amulti-granulationapproximation space induced
by (U , C). For each K ∈ C, we have ∼ K ∈ C, then the fol-
lowing properties are true.

(1) C(X) = ∑s
i=1 R

O
i (X);

(2) C(X) = ∑s
i=1 R

O
i (X).

Proof (1) For each x ∈ ∑s
i=1 R

O
i (X), based on the assump-

tion, there exists K ∈ C such that x ∈ K ⊆ X or
x ∈∼ K ⊆ X . By Definition 2.1, we have x ∈ C(X).

(2) The proof is similar to that of the item (1). �

5 Differences and relations of reduction
between CRS andMGRS

In this section, we will study the differences and relations of
reduction between CRS and MGRS.

Theorem 5.1 Let (U , C) be a covering approximation space,
and (U ,R)amulti-granulationapproximation space induced
by (U , C). If Kl and K p =∼ Kl are both the union reducible
elements of C, then Rl induced by Kl is not lower approxi-
mation significant in R.

Proof For each x ∈ ∑s
i=1 R

O
i (X), there exists Rk ∈ R such

that [x]Rk ⊆ X . Case 1: If [x]Rk �= Kl and [x]Rk �=∼ Kl ,
thenwehave x ∈ ∑s

i=1,i �=l,p R
O
i (X); Case 2: If [x]Rk = Kl ,

based on the assumption, there exists Rm ∈ R such that
[x]Rm ⊆ [x]Rk ⊆ X . Therefore, x ∈ ∑s

i=1,i �=l,p R
O
i (X);

Case 3: If [x]Rk =∼ Kl , based on the assumption, there
exists Rt ∈ R such that [x]Rt ⊆ [x]Rk ⊆ X . Therefore, x ∈∑s

i=1,i �=l,p R
O
i (X). In summary, we have

∑s
i=1 R

O
i (X) ⊆

∑s
i=1,i �=l,p R

O
i (X). On the other hand, by Definition 2.1,

we have
∑s

i=1,i �=l,p R
O
i (X) ⊆ ∑s

i=1 R
O
i (X). Hence,

∑s
i=1,i �=l,p R

O
i (X) = ∑s

i=1 R
O
i (X). �

Theorem 5.2 Let (U , C) be a covering approximation space
and (U ,R)amulti-granulationapproximation space induced

by (U , C). If Kl and K p =∼ Kl are both the intersection
reducible elements of C, then Rl induced by Kl is not upper
approximation significant in R.

Proof For each x ∈ ∑s
i=1,i �=l,p R

O
i (X), we have [x]Ri ∩

X �= ∅, i = 1, 2, . . . , s, i �= l, p. If x ∈ Kl , based on the
assumption, we have Kl = [x]Rl such that [x]Rl ∩ X �= ∅.
If x ∈∼ Kl , according to the assumption, we have ∼ Kl =
[x]Rl such that [x]Rl ∩X �= ∅. Therefore, x ∈ ∑s

i=1 R
O
i (X).

Hence
∑s

i=1 R
O
i (X) = ∑s

i=1,i �=l,p R
O
i (X). �

Example 5.1 Let C = {K1, K2, K3, K4} = {{x1, x2},
{x2, x3, x5}, {x4, x6}, {x1, x2, x3, x4, x5}}. The equivalence
relations R1, R2, R3, R4 are induced by K1, K2, K3, K4. Let
X = {x1, x2, x3, x5, x6},∑4

i=1 R
O
i (X) = {x1, x2, x3, x5,

x6},C(X) = {x1, x2, x3, x5}. Suppose C ′ = {K1, K2, K3},
we have

∑3
i=1 R

O
i (X) = C

′
(X) = {x1, x2, x3, x5}.

Example 5.1 shows that R4 is lower approximation signifi-
cant inR = {R1, R2, R3, R4}, K4 is not lower approximation
significant in C.
Example 5.2 (Continued fromExample 5.1)LetY = {x3, x4,
x5, x6},∑4

i=1 R
O
i (Y ) = {x3, x4, x5, x6},C(Y ) = {x4, x6}.

SupposeC ′′ = {K1, K2, K4}, we have R1 + R2 + R O
4 (Y ) =

{x3, x4, x5, x6},C ′′
(Y ) = ∅.

Example 5.2 shows that R3 is lower approximation sig-
nificant in C, K4 is not lower approximation significant in
R = {R1, R2, R3, R4}.

Based on the process of transforming a covering approxi-
mation space into a multi-granulation approximation space,
the following result is shown as follows.

Theorem 5.3 Let (U , C) be a covering approximation space,
and (U ,R)amulti-granulationapproximation space induced
by (U , C). If for each K ∈ C, we have ∼ K ∈ C, then the
following properties are true.

(1) For each K ∈ C, K is lower approximation significant in
C if and only if R induced by K is lower approximation
significant in R induced by C;

(2) For each K ∈ C, K is upper approximation significant in
C if and only if R induced by K is upper approximation
significant in R induced by C.

6 Differences and relations of operation
properties between CRS andMGRS

In this section, we mainly discuss the differences and rela-
tions of operation properties between CRS and MGRS.
Firstly, we discuss the operation properties of MGRS. Then,
based on the operation properties of MGRS, we investigate
corresponding operation properties of CRS.
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6.1 Operation properties of MGRS

In this section, in order to better study the operationproperties
of CRS, we will explore some basic operation properties of
MGRS.

According to the reference (Qian et al. 2010b), we have
the following results.

Theorem 6.1 Let (U ,R) be an approximation space and
R1, R2, . . . , Rs ∈ R the equivalence relations. For any
X ,Y ⊆ U, then

(1)
∑s

i=1 R
O
i (U ) = U ,

∑s
i=1 R

O
i (U ) = U;

(2)
∑s

i=1 R
O
i (∅) = ∅,

∑s
i=1 R

O
i (∅) = ∅;

(3)
∑s

i=1 R
O
i (X) ⊆ X , X ⊆ ∑s

i=1 R
O
i (X);

(4) X ⊆ Y ⇒ ∑s
i=1 R

O
i (X) ⊆ ∑s

i=1 R
O
i (Y ) and

∑s
i=1 R

O
i (X) ⊆ ∑s

i=1 R
O
i (Y );

(5)
∑s

i=1 R
O
i (∼ X) =∼ ∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i

(∼ X) =∼ ∑s
i=1 R

O
i (X);

(6) ∀x ∈ U,
∑s

i=1 R
O
i ([x]Ri ) = [x]Ri and

∑s
i=1 R

O
i

([x]Ri ) = [x]Ri , i = 1, 2, . . . s.

Theorem 6.2 Let (U ,R) be an approximation space and
R1, R2, . . . , Rs ∈ R the minimum equivalence relations. For
any X ,Y ⊆ U, then the following properties hold.

(1)
∑s

i=1 R
O
i (

∑s
i=1 R

O
i (X) ∪ ∑s

i=1 R
O
i (Y ))

= ∑s
i=1 R

O
i (X) ∪ ∑s

i=1 R
O
i (Y );

(2)
∑s

i=1 R
O
i (

∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ))

= ∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y );

(3)
∑s

i=1 R
O
i (

∑s
i=1 R

O
i (X) ∪ ∑s

i=1 R
O
i (Y ))

= ∑s
i=1 R

O
i (X) ∪ ∑s

i=1 R
O
i (Y );

(4)
∑s

i=1 R
O
i (

∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ))

= ∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ).

Proof Since the number of the granulation is finite, we only
prove the results are true when the approximation space has
two equivalence relations (R1, R2 ∈ R) for convenience. It
is obvious that the proposition holds when R1 = R2. When
R1 �= R2, the proposition can be proved as follows.

(1)(⇐): For each x ∈ R1 + R O
2 (X) ∪ R1 + R O

2 (Y ),

we have that x ∈ R1 + R O
2 (X) or x ∈ R1 + R O

2 (Y ).
That is to say that [x]R1 ⊆ X or [x]R2 ⊆ X or
[x]R1 ⊆ Y or [x]R2 ⊆ Y . According to Theorem 6.1,
we have that [x]R1 = R1 + R O

2 ([x]R1) ⊆ R1 + R O
2 (X)

or [x]R2 ⊆ R1 + R O
2 (X) or [x]R1 ⊆ R1 + R O

2 (Y ) or

[x]R2 ⊆ R1 + R O
2 (Y ), so it can be obtained that [x]R1 ⊆

R1 + R O
2 (X) ∪ R1 + R O

2 (Y ) or [x]R2 ⊆ R1 + R O
2 (X) ∪

R1 + R O
2 (Y ). Hence, x ∈ R1 + R O

2 (R1 + R O
2 (X) ∪

R1 + R O
2 (Y )).

(⇒): It is easy to prove by Theorem 6.1.
(2)(⇐): For each x ∈ R1 + R O

2 (X) ∩ R1 + R O
2 (Y ), we

have that x ∈ R1 + R O
2 (X) and x ∈ R1 + R O

2 (Y ). So, not
only [x]R1 ⊆ X or [x]R2 ⊆ X hold , but [x]R1 ⊆ Y or
[x]R2 ⊆ Y hold at the same time.

Then, we have two cases as follows:
Case 1. [x]R1 ⊆ X and [x]R1 ⊆ Y , or [x]R2 ⊆ X and

[x]R2 ⊆ Y ;
Case 2. [x]R1 ⊆ X and [x]R2 ⊆ Y , or [x]R2 ⊆ X and

[x]R1 ⊆ Y .
If [x]R1 ⊆ X and [x]R1 ⊆ Y hold in Case 1, we have

that [x]R1 ⊆ R1 + R O
2 (X) and [x]R1 ⊆ R1 + R O

2 (Y ) by
Theorem 6.1. Then

[x]R1 ⊆ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ). (6.1)

In the same way, if [x]R2 ⊆ X and [x]R2 ⊆ Y hold in Case
1, we have

[x]R2 ⊆ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ). (6.2)

So, we have x ∈ R1 + R O
2 (R1 + R O

2 (X) ∩ R1 + R O
2 (Y ))

by (6.1), (6.2) and Definition 2.1.
If [x]R1 ⊆ X and [x]R2 ⊆ Y hold in Case 2. Suppose that

[x]R1 ⊆ [x]R2 , then we have that [x]R1 ⊆ R1 + R O
2 (X) and

[x]R2 ⊆ R1 + R O
2 (Y ) by Theorem 6.1. Then

[x]R1 ⊆ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ). (6.3)

At the same time, if [x]R2 ⊆ X and [x]R1 ⊆ Y hold in Case
2, we have that

[x]R1 ⊆ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ). (6.4)

So, we have that x ∈ R1 + R O
2 (R1 + R O

2 (X) ∩ R1 + R O
2

(Y )) by (6.3), (6.4) and Definition 2.1.
(⇒): It is easy to prove by Theorem 6.1.
(3)This item can be proved by Theorem 6.1 and the item

(2).
(4)The property can be proved by Theorem 6.1 and the

item (1). �

Theorem 6.3 Let (U ,R) be an approximation space, and
R1, R2, . . . , Rs ∈ R theminimum equivalence relations, and
X ,Y ⊆ U. For each x ∈ ∑s

i=1 R
O
i (X)∩∑s

i=1 R
O
i (Y ), we

have [x]Rmin ⊆ ∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ).

Proof Since the number of the granulation is finite, we only
prove the results are true when the approximation space has
two equivalence relations (R1, R2 ∈ R) for convenience. It
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is obvious that the proposition holds when R1 = R2. When
R1 �= R2, the proposition can be proved as follows.

For each x ∈ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ), let [x]R1 ⊆
[x]R2 , i.e., [x]Rmin = [x]R1 , then not only [x]R1 ⊆ X or
[x]R2 ⊆ X hold, but also [x]R1 ⊆ Y or [x]R2 ⊆ Y hold.
So we have that [x]R1 ⊆ X and [x]R1 ⊆ Y hold. According
to Theorem 6.1, it can be found that [x]R1 ⊆ R1 + R O

2 (X)

and [x]R1 ⊆ R1 + R O
2 (Y ). Hence, [x]R1 ⊆ R1 + R O

2 (X)∩
R1 + R O

2 (Y ), i.e., [x]Rmin ⊆ R1 + R O
2 (X)∩R1 + R O

2 (Y ).
�

In what follows, we propose the definitions of comple-
ment, intersection, union of the multi-granulation rough sets.
And then, we discuss some basic operation properties of the
multi-granulation rough sets.

Definition 6.1 Let (U ,R) be an approximation space and
R1, R2, . . . , Rs ∈ R the equivalence relations. For each X ⊆
U , the complement of (

∑s
i=1 R

O
i (X),

∑s
i=1 R

O
i (X)) ∈

B
O is defined as follows:

∼
(∑s

i=1
RO
i (X),

∑s

i=1
R O
i (X)

)

=
(

∼
∑s

i=1
RO
i (X),∼

∑s

i=1
RO
i (X)

)
.

Remark 6.1 According to Theorem 6.1, we have

∼ (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)) = (∼ ∑s

i=1 R
O
i (X),∼

∑s
i=1 R

O
i (X)) = (

∑s
i=1 R

O
i (∼ X),

∑s
i=1 R

O
i (∼ X)). In

other words, BO is closed under set complement.

Definition 6.2 Let (U ,R) be an approximation space, and
R1, R2, . . . , Rs ∈ R the equivalence relations. For any

(
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)) ,(

∑s
i=1 R

O
i (Y ),

∑s
i=1 R

O
i (Y )) ∈ B

O , the intersection and union of them
are defined as follows.

(∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∩
(∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

)

=
(∑s

i=1
R O
i (X) ∩

∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (X) ∩

∑s

i=1
R O
i (Y )

)
;

(∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∪
(∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

)

=
⎛

⎝
s∑

i=1

R O
i (X) ∪

∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (X) ∪

∑s

i=1
R O
i (Y )

)
.

It is natural to raise such a question: Is BO closed under
set intersection and union?

In the following, we will employ an example to illustrate
the question.

Example 6.1 Let (U ,R) be an approximation space, where
U = {x1, x2, . . . , x8} and R1, R2 ∈ R are the equivalence
relations. Let U/R1 = {{x1, x3, x7}, {x2, x4}, {x5, x6, x8}},
U/R2 = {{x1, x5}, {x2, x6}, {x3, x4, x7, x8}}, X = {x1, x3,
x4},Y = {x4, x6, x8}. Then, we have R1 + R O

2 (X) =
{x1, x3, x4, x7}, R1 + R O

2 (Y ) = {x2, x4, x6, x8}, R1 + R O
2

(X) ∪ R1 + R O
2 (Y ) = {x1, x2, x3, x4, x6, x7, x8}. It is

obvious that there does not exist W ⊆ U such that
R1 + R O

2 (W ) = R1 + R O
2 (X) ∪ R1 + R O

2 (Y ).

Example 6.1 indicates that BO is not closed under set
union. Meanwhile, it is easy to find that BO is not closed
under set intersection.

Let (U ,R) be an approximation space, R1, R2, . . . , Rs ∈
R theminimum equivalence relations, and X ,Y ⊆ U . Mean-
while, U/ ∪s

i=1 Ri = {[x]min | x ∈ U }. Next, we will intro-
duce an approach to construct two subsets V ,W ⊆ U such

that for any (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)), (

∑s
i=1 R

O
i

(Y ),
∑s

i=1 R
O
i (Y )) ∈ B

O , we have that

(∑s

i=1
RO
i (V ),

∑s

i=1
RO
i (V )

)

=
(∑s

i=1
RO
i (X),

∑s

i=1
RO
i (X)

)

∩
⎛

⎝
s∑

i=1

RO
i (Y ),

s∑

i=1

RO
i (Y )

⎞

⎠

=
(∑s

i=1
RO
i (X) ∩

∑s

i=1
RO
i (Y ),

∑s

i=1
RO
i (X) ∩

∑s

i=1
RO
i (Y )

)
;

(∑s

i=1
RO
i (W ),

∑s

i=1
RO
i (W )

)

=
(∑s

i=1
RO
i (X),

∑s

i=1
RO
i (X)

)

∪
⎛

⎝
s∑

i=1

RO
i (Y ),

s∑

i=1

RO
i (Y )

⎞

⎠
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=
(∑s

i=1
RO
i (X) ∪

∑s

i=1
RO
i (Y ),

∑s

i=1
RO
i (X) ∪

∑s

i=1
RO
i (Y )

)
.

Let A = A1/A2, and A1 = ∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ),

A2 = ∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i (Y ). Denote P =

{[xi ]Rmin |xi ∈ A, i = 1, 2, . . . ,m}, and P satisfies the fol-
lowing twoconditions: (1) For∀x ∈ A, there exists [xi ]Rmin ∈
P such that x ∈ [xi ]Rmin ; (2) For ∀[xi ]Rmin , [x j ]Rmin ∈ P , we
have [xi ]Rmin ∩ [x j ]Rmin = ∅, i �= j, i, j = 1, 2, . . . ,m.
Denote M = {xi , i = 1, 2, . . . ,m}, V = M ∪ A2.

Let B = B1/B2, and B1 = ∑s
i=1 R

O
i (X)∪∑s

i=1 R
O
i (Y ),

B2 = ∑s
i=1 R

O
i (X)∪∑s

i=1 R
O
i (Y ). Denote Q = {[xi ]Rmin |

xi ∈ B, i = 1, 2, . . . , n}, and Q satisfies the following two
conditions: (1) For ∀x ∈ B, there exists [xi ]Rmin ∈ Q such
that x ∈ [xi ]Rmin ; (2) For ∀[xi ]Rmin , [x j ]Rmin ∈ Q, we have
[xi ]Rmin ∩ [x j ]Rmin = ∅, i �= j, i, j = 1, 2, . . . , n. Denote
N = {xi , i = 1, 2, . . . , n}, W = N ∪ B2.

According to the approach presented above, we can prove
that the MGRS with respect to the minimum equivalence
relations is closed under set intersection and union. So, we
have the following result.

Theorem 6.4 Let (U ,R) be an approximation space, R1, R2,

. . . , Rs ∈ R the minimum equivalence relations, and X ,Y ⊆
U. For V ,W constructed above, then the following proper-
ties hold, i.e., BO is closed under set intersection and union.

(1)
∑s

i=1 R
O
i (V ) = ∑s

i=1 R
O
i (X) ∩ ∑s

i=1 R
O
i (Y );

(2)
∑s

i=1 R
O
i (V ) = ∑s

i=1 R
O
i (X) ∩ ∑s

i=1 R
O
i (Y );

(3)
∑s

i=1 R
O
i (W ) = ∑s

i=1 R
O
i (X) ∪ ∑s

i=1 R
O
i (Y );

(4)
∑s

i=1 R
O
i (W ) = ∑s

i=1 R
O
i (X) ∪ ∑s

i=1 R
O
i (Y ).

Proof Since the number of the granulation is finite, we only
prove the results are true when the approximation space has
two equivalence relations (R1, R2 ∈ R) for convenience. It
is obvious that the proposition holds when R1 = R2. When
R1 �= R2, the proposition can be proved as follow.

(1) (⇒:)For each x ∈ R1 + R O
2 (V ), let [x]R1 ⊆ [x]R2 ,

then we have [x]R1 ⊆ V . By Theorem 6.3 and the con-
struction of V , it can be obtained that

[x]R1 ⊆ R1 + R O
2 (X) ∩ R1 + R O

2 (Y ).

Then, we have that

x ∈ R1 + R O
2 (R1 + R O

2 (X) ∩ R1 + R O
2 (Y )).

Hence, it follows that x ∈ R1 + R O
2 (X)∩R1 + R O

2 (Y )

by Theorem 6.2.

(⇐:) It can be proved easily by Theorem 6.1 and the
construction of V .

(2) (⇒:)By the construction of V , we have that V ⊆
R1 + R O

2 (X)∩ R1 + R O
2 (Y ). Then, according to The-

orem 6.1, we have that

R1 + R O
2 (V ) ⊆ R1 + R O

2 (R1 + R O
2 (X)∩R1 + R O

2 (Y )).

Hence, it can be obtained that R1 + R O
2 (V ) ⊆

R1 + R O
2 (X) ∩ R1 + R O

2 (Y ) by Theorem 6.2.

(⇐:) It can be obtained easily by Theorem 6.1 and the
construction of V defined above.

(3) The item can be proved similarly to (1).
(4) The property can be proved similarly to (2).

�

To apply this approach to practical issues, we present an
algorithm which may compute subset V ⊆ U . The detailed
algorithm is formally described as follows.

Algorithm 1: An algorithm for computing subset V
Input : A multi-granulation approximation space

(U , C), where R1, R2, . . . , Rs ∈ R are
minimum equivalence relations and
X ,Y ⊆ U ;

Output : Subset V .
begin1

Compute2
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X),

∑s
i=1 R

O
i (Y ),

∑s
i=1 R

O
i (Y );

Compute {[x1]Rmin , [x2]Rmin , . . . , [xm]Rmin} =3

{[x]Rmin |x ∈ (
∑s

i=1 R
O
i (X) ∩

∑s
i=1 R

O
i (Y ))/(

∑s
i=1 R

O
i (X)∩∑s

i=1 R
O
i (Y ))};

P ← ∅;4

for i = 1 : m; i <= m; i + + do5

P ← P ∪ {xi }6

end7

Compute (
∑s

i=1 R
O
i (X) ∩ ∑s

i=1 R
O
i (Y )) ∪ P;8

// V = (
∑s

i=1 R
O
i (X) ∩ ∑s

i=1 R
O
i (Y )) ∪ P by the

construction of V ;
end9

It is clear that the time complexity of Algorithm 1 is
o(s|U |2).
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Similar to Algorithm 1, we can also employ an algorithm
to compute subset W ⊆ U .

Algorithm 2: An algorithm for computing subset W
Input : A multi-granulation approximation space

(U , C), where R1, R2, . . . , Rs ∈ R are
minimum equivalence relations and
X ,Y ⊆ U ;

Output : Subset W .
begin1

Compute2
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X),

∑s
i=1 R

O
i (Y ),

∑s
i=1 R

O
i (Y );

Compute {[x1]Rmin , [x2]Rmin , . . . , [xn]Rmin} =3

{[x]Rmin |x ∈ (
∑s

i=1 R
O
i (X) ∪

∑s
i=1 R

O
i (Y ))/(

∑s
i=1 R

O
i (X)∪∑s

i=1 R
O
i (Y ))};

Q ← ∅;4

for j = 1 : n; j <= n; j + + do5

Q ← Q ∪ {x j }6

end7

Compute (
∑s

i=1 R
O
i (X) ∪ ∑s

i=1 R
O
i (Y )) ∪ Q;8

// W = (
∑s

i=1 R
O
i (X) ∪ ∑s

i=1 R
O
i (Y )) ∪ Q by the

construction of W ;
end9

Similarly, the time complexity of Algorithm 2 is also
o(s|U |2).

Anexample is presented to show the effectiveness ofAlgo-
rithms 1 and 2.

Example 6.2 Let U = {x0, x1, . . . , x10},U/R1 = {{x0,
x1, x2}, {x3, x4, x5, x6}, {x7, x8, x9, x10}},U/R2 = {{x0,
x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9, x10}}. Clearly, R1

and R2 are the minimum equivalence relations. For X =
{x0, x1, x3, x5, x7, x9},Y = {x1, x2, x4, x6, x8, x9}, we have
that

R1 + R2 + RO
3 (X) = ∅,

R1 + R2 + RO
3 (Y ) = ∅

R1 + R2 + RO
3 (X) = U ,

R1 + R2 + RO
3 (Y ) = U .

Let V = {x0, x3, x5, x7, x9},W = {x0, x3, x5, x7, x9},
then we have that

(R1 + R2 + RO
3 (V ), R1 + R2 + RO

3 (V ))

= (R1 + R2 + RO
3 (X), R1 + R2 + RO

3 (X))

∩ (R1 + R2 + RO
3 (Y ), R1 + R2 + RO

3 (Y )) (6.5)

(R1 + R2 + RO
3 (W ), R1 + R2 + RO

3 (W ))

= (R1 + R2 + RO
3 (X), R1 + R2 + RO

3 (X))

∪ (R1 + R2 + RO
3 (Y ), R1 + R2 + RO

3 (Y )) (6.6)

It is easy to find that the selections of V ,W which
satisfy Eqs. (6.5) and (6.6) are not unique. For X =
{x0, x1, x3, x5, x7, x9},Y = {x1, x2, x4, x6, x8, x9}, all the
selections of V ,W obtained from Algorithms 1 and 2 are
given in Table 2.

In addition, for Z = {x0, x4, x5, x8, x9, x10}. Let C =
{x0, x3, x5, x7, x9}, D = {x0, x3, x5, x7, x9, x10}; then we
have that

(R1 + R2 + RO
3 (C), R1 + R2 + RO

3 (C))

= ((R1 + R2 + RO
3 (X), R1 + R2 + RO

3 (X))

∪ (R1 + R2 + RO
3 (Y ), R1 + R2 + RO

3 (Y )))

∩ (R1 + R2 + RO
3 (Z), R1 + R2 + RO

3 (Z)) (6.7)

(R1 + R2 + RO
3 (D), R1 + R2 + RO

3 (D))

= ((R1 + R2 + RO
3 (X), R1 + R2 + RO

3 (X))

∩ (R1 + R2 + RO
3 (Y ), R1 + R2 + RO

3 (Y )))

∪ (R1 + R2 + RO
3 (Z), R1 + R2 + RO

3 (Z)) (6.8)

In the same way, the selections of C, D which sat-
isfy Eqs. (6.7) and (6.8) are also not unique. For X =
{x0, x1, x3, x5, x7, x9},Y = {x1, x2, x4, x6, x8, x9}, Z =
{x0, x4, x5, x8, x9, x10}, all the selections of C, D obtained
from Algorithms 1 and 2 are given in Table 3.

Remark 6.2 The proof of Theorem 6.4 and the development
of Algorithms 1 and 2 are both based on the constructions
of V ,W . We can use the constructions of V ,W to prove
that BO is closed under set union and intersection. Mean-
while, from the constructions of V ,W , we further develop
two algorithms to compute subsets V ,W . Therefore, accord-
ing to Theorem 6.4, Algorithms 1 and 2, we can find subsets
V ,W such that Eqs. (6.5) and (6.6) hold. In fact, more
other subsets can be evaluated to satisfy the above two
equations. For instance, by Example 6.2, the subsets V

′ =
{x0, x1, x3, x5, x7, x9},W ′ = {x0, x2, x3, x5, x7, x9} satisfy
Eqs. (6.5) and (6.6), too. But V

′
,W

′
cannot be obtained from

Theorem 6.4, Algorithms 1 and 2. Similarly, we can also find
two subsets to meet Eqs. (6.7) and (6.8), but they cannot be
computed by Theorem 6.4, Algorithms 1 and 2.

6.2 Operation properties of CRS

In this section, based on the operation properties of MGRS,
we will study some basic operation properties of CRS. Since
the duality of covering lower and upper approximation oper-
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Table 2 All the selections of V ,W

X , Y V W

{x0, x1, x3, x5, x7, x9} {x0, x3, x5, x7, x9} {x0, x3, x5, x7, x9}
{x1, x2, x4, x6, x8, x9} {x1, x3, x5, x7, x9} {x1, x3, x5, x7, x9}

{x2, x3, x5, x7, x9} {x2, x3, x5, x7, x9}
{x0, x4, x5, x7, x9} {x0, x4, x5, x7, x9}
{x1, x4, x5, x7, x9} {x1, x4, x5, x7, x9}
{x2, x4, x5, x7, x9} {x2, x4, x5, x7, x9}
{x0, x3, x6, x7, x9} {x0, x3, x6, x7, x9}
{x1, x3, x6, x7, x9} {x1, x3, x6, x7, x9}
{x2, x3, x6, x7, x9} {x2, x3, x6, x7, x9}
{x0, x4, x6, x7, x9} {x0, x4, x6, x7, x9}
{x1, x4, x6, x7, x9} {x1, x4, x6, x7, x9}
{x2, x4, x6, x7, x9} {x2, x4, x6, x7, x9}
{x0, x3, x5, x8, x9} {x0, x3, x5, x8, x9}
{x1, x3, x5, x8, x9} {x1, x3, x5, x8, x9}
{x2, x3, x5, x8, x9} {x2, x3, x5, x8, x9}
{x0, x4, x5, x8, x9} {x0, x4, x5, x8, x9}
{x1, x4, x5, x8, x9} {x1, x4, x5, x8, x9}
{x2, x4, x5, x8, x9} {x2, x4, x5, x8, x9}
{x0, x3, x6, x8, x9} {x0, x3, x6, x8, x9}
{x1, x3, x6, x8, x9} {x1, x3, x6, x8, x9}
{x2, x3, x6, x8, x9} {x2, x3, x6, x8, x9}
{x0, x4, x6, x8, x9} {x0, x4, x6, x8, x9}
{x1, x4, x6, x8, x9} {x1, x4, x6, x8, x9}
{x2, x4, x6, x8, x9} {x2, x4, x6, x8, x9}
{x0, x3, x5, x7, x10} {x0, x3, x5, x7, x10}
{x1, x3, x5, x7, x10} {x1, x3, x5, x7, x10}
{x2, x3, x5, x7, x10} {x2, x3, x5, x7, x10}
{x0, x4, x5, x7, x10} {x0, x4, x5, x7, x10}
{x1, x4, x5, x7, x10} {x1, x4, x5, x7, x10}
{x2, x4, x5, x7, x10} {x2, x4, x5, x7, x10}
{x0, x3, x6, x7, x10} {x0, x3, x6, x7, x10}
{x1, x3, x6, x7, x10} {x1, x3, x6, x7, x10}
{x2, x3, x6, x7, x10} {x2, x3, x6, x7, x10}
{x0, x4, x6, x7, x10} {x0, x4, x6, x7, x10}
{x1, x4, x6, x7, x10} {x1, x4, x6, x7, x10}
{x2, x4, x6, x7, x10} {x2, x4, x6, x7, x10}
{x0, x3, x5, x8, x10} {x0, x3, x5, x8, x10}
{x1, x3, x5, x8, x10} {x1, x3, x5, x8, x10}
{x2, x3, x5, x8, x10} {x2, x3, x5, x8, x10}
{x0, x4, x5, x8, x10} {x0, x4, x5, x8, x10}
{x1, x4, x5, x8, x10} {x1, x4, x5, x8, x10}
{x2, x4, x5, x8, x10} {x2, x4, x5, x8, x10}
{x0, x3, x6, x8, x10} {x0, x3, x6, x8, x10}
{x1, x3, x6, x8, x10} {x1, x3, x6, x8, x10}
{x2, x3, x6, x8, x10} {x2, x3, x6, x8, x10}
{x0, x4, x6, x8, x10} {x0, x4, x6, x8, x10}
{x1, x4, x6, x8, x10} {x1, x4, x6, x8, x10}
{x2, x4, x6, x8, x10} {x2, x4, x6, x8, x10}

ators, C is closed under set complement. On the other hand,
isC closed under set intersection and union?We will answer
the question through the following example.

Example 6.3 (Continued from Example 3.1) For X1 =
{x1, x4},Y1 = {x1, x2, x3, x5, x6}, we have that C(X1) =
{x1, x4},C(Y1) = {x1, x2, x3, x5, x6},C(X1) ∩ C(Y1) =
{x1}. Clearly, there does not exist subset V ⊆ U such that
C(V ) = C(X1) ∩ C(Y1).

For X2 = {x4},Y2 = {x2, x3, x5, x6}, we have C(X2) =
{x4},C(Y2) = {x2, x3, x5, x6},C(X2) ∪ C(Y2) = {x2, x3,
x4, x5, x6}. Similarly, there does not exist subset W ⊆ U
such that C(W ) = C(X2) ∪ C(Y2).

Example 6.3 shows that C is not closed under set inter-
section and union.

By Theorems 3.1, 4.2 and 6.4, we have the following
result.

Theorem 6.5 Let (U , C) be a covering approximation space.
If C is a unary covering of U, and for each K ∈ C, we have
∼ K ∈ C, then C is closed under set intersection and union.

Remark 6.3 Let (U , C) be a covering approximation space.
If C is a unary covering of U , and for each K ∈ C, we have
∼ K ∈ C, then there exist subsets V ,W ⊆ U such that the
following Eqs. (6.9) and (6.10) are satisfied.

(C(V ),C(V )) = (C(X),C(X)) ∩ (C(Y ),C(Y )) (6.9)

(C(W ),C(W )) = (C(X),C(X)) ∪ (C(Y ),C(Y )) (6.10)

Example 6.4 Let (U , C) be a covering approximation space,
where U = {x1, x2, . . . , x9}, C = {{x1, x2}, {x1, x2, x3, x6,
x7, x8, x9}, {x1, x2, x3, x4, x5}, {x1, x2, x4, x5, x6, x7, x8, x9},
{x3}, {x4, x5}, {x6, x7, x8, x9}, {x3, x4, x5, x6, x7, x8, x9}}.
Then, a multi-granulation approximation space (U ,R) can
be inducedby (U , C),whereR = {R1, R2, R3, R4},U/R1 =
{{x1, x2}, {x3, x4, x5, x6, x7, x8, x9}},U/R2 = {{x1, x2, x3,
x6, x7, x8, x9}, {x4, x5}},U/R3 = {{x1, x2, x3, x4, x5}, {x6,
x7, x8, x9}} and U/R4 = {{x1, x2, x4, x5, x6, x7, x8, x9},
{x3}}. Clearly, R1, R2, R3, R4 are the minimum equivalence
relations.

For X = {x1, x4, x6},Y = {x3, x5, x6}, let V =
{x4, x6},W = {x1, x4, x6}, Eqs. (6.9) and (6.10) are satisfied.
It is easy to see that the selections of V ,W which satisfy Eqs.
(6.9) and (6.10) are not unique. For X = {x1, x4, x6}, Y =
{x3, x5, x6}, all the selections of V ,W obtained by Algo-
rithms 1 and 2 are given in Table 4.

Furthermore, for Z = {x1, x6}. LetC = {x0, x3, x7}, D =
{x0, x1, x2, x3, x7}, then we have that

(C(C),C(C)) = ((C(X),C(X)) ∪ (C(Y ),C(Y )))

∩ (C(Z),C(Z)) (6.11)
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Table 3 All the selections of
C, D

X , Y , Z C D

{x0, x1, x3, x5, x7, x9} {x0, x3, x5, x7, x9}, {x0, x3, x5, x7, x10} {x0, x3, x5, x7, x9, x10}
{x1, x2, x4, x6, x8, x9} {x1, x3, x5, x7, x9}, {x1, x3, x5, x7, x10} {x1, x3, x5, x7, x9, x10}
{x0, x4, x5, x8, x9, x10} {x2, x3, x5, x7, x9}, {x2, x3, x5, x7, x10} {x2, x3, x5, x7, x9, x10}

{x0, x4, x5, x7, x9}, {x0, x4, x5, x7, x10} {x0, x4, x5, x7, x9, x10}
{x1, x4, x5, x7, x9}, {x1, x4, x5, x7, x10} {x1, x4, x5, x7, x9, x10}
{x2, x4, x5, x7, x9}, {x2, x4, x5, x7, x10} {x2, x4, x5, x7, x9, x10}
{x0, x3, x6, x7, x9}, {x0, x3, x6, x7, x10} {x0, x3, x6, x7, x9, x10}
{x1, x3, x6, x7, x9}, {x1, x3, x6, x7, x10} {x1, x3, x6, x7, x9, x10}
{x2, x3, x6, x7, x9}, {x2, x3, x6, x7, x10} {x2, x3, x6, x7, x9, x10}
{x0, x4, x6, x7, x9}, {x0, x4, x6, x7, x10} {x0, x4, x6, x7, x9, x10}
{x1, x4, x6, x7, x9}, {x1, x4, x6, x7, x10} {x1, x4, x6, x7, x9, x10}
{x2, x4, x6, x7, x9}, {x2, x4, x6, x7, x10} {x2, x4, x6, x7, x9, x10}
{x0, x3, x5, x8, x9}, {x0, x3, x5, x8, x10} {x0, x3, x5, x8, x9, x10}
{x1, x3, x5, x8, x9}, {x1, x3, x5, x8, x10} {x1, x3, x5, x8, x9, x10}
{x2, x3, x5, x8, x9}, {x2, x3, x5, x8, x10} {x2, x3, x5, x8, x9, x10}
{x0, x4, x5, x8, x9}, {x0, x4, x5, x8, x10} {x0, x4, x5, x8, x9, x10}
{x1, x4, x5, x8, x9}, {x1, x4, x5, x8, x10} {x1, x4, x5, x8, x9, x10}
{x2, x4, x5, x8, x9}, {x2, x4, x5, x8, x10} {x2, x4, x5, x8, x9, x10}
{x0, x3, x6, x8, x9}, {x0, x3, x6, x8, x10} {x0, x3, x6, x8, x9, x10}
{x1, x3, x6, x8, x9}, {x1, x3, x6, x8, x10} {x1, x3, x6, x8, x9, x10}
{x2, x3, x6, x8, x9}, {x2, x3, x6, x8, x10} {x2, x3, x6, x8, x9, x10}
{x0, x4, x6, x8, x9}, {x0, x4, x6, x8, x10} {x0, x4, x6, x8, x9, x10}
{x1, x4, x6, x8, x9}, {x1, x4, x6, x8, x10} {x1, x4, x6, x8, x9, x10}
{x2, x4, x6, x8, x9}, {x2, x4, x6, x8, x10} {x2, x4, x6, x8, x9, x10}

Table 4 All the selections of V ,W

X , Y V W

{x1, x4, x6} {x4, x6}, {x4, x7} {x1, x4, x6}, {x1, x4, x7}
{x3, x5, x6} {x4, x8}, {x4, x9} {x1, x4, x8}, {x1, x4, x9}

{x5, x6}, {x5, x7} {x2, x4, x6}, {x2, x4, x7}
{x5, x8}, {x5, x9} {x2, x4, x8}, {x2, x4, x9}

{x1, x5, x6}, {x1, x5, x7}
{x1, x5, x8}, {x1, x5, x9}
{x2, x5, x6}, {x2, x5, x7}
{x2, x5, x8}, {x2, x5, x9}

(C(D),C(D)) = ((C(X),C(X)) ∩ (C(Y ),C(Y )))

∪ (C(Z),C(Z)) (6.12)

Similarly, the selections ofC, D which satisfy Eqs. (6.11)
and (6.12) are also not unique. For X = {x1, x4, x6},Y =
{x3, x5, x6}, Z = {x1, x6}, all the selections ofC, D obtained
by Algorithms 1 and 2 are given in Table 5.

Table 5 All the selections of C, D

X , Y , Z C D

{x1, x4, x6} {x1, x6}, {x1, x7} {x1, x4, x6}, {x1, x4, x7}
{x3, x5, x6} {x1, x8}, {x1, x9} {x1, x4, x8}, {x1, x4, x9}
{x1, x6} {x2, x6}, {x2, x7} {x2, x4, x6}, {x2, x4, x7}

{x2, x8}, {x2, x9} {x2, x4, x8}, {x2, x4, x9}
{x1, x5, x6}, {x1, x5, x7}
{x1, x5, x8}, {x1, x5, x9}
{x2, x5, x6}, {x2, x5, x7}
{x2, x5, x8}, {x2, x5, x9}

7 Differences and relations of algebraic
properties between CRS andMGRS

An algebraic approach to rough set theory was first presented
by Iwiński (1987). Since then, substantial conclusions on the
algebraic properties of rough sets have been done (Pawlak
1982; Comer 1991; Biswas and Nanda 1994; Kuroki and
Paul 1996; Kuroki 1997; Yao 1996, 1998; Pagliani 1998; Li
2002; Kong and Wei 2015, 2017).
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In this section, we mainly discuss the differences and
relations of algebraic properties between CRS and MGRS.
Firstly, we discuss the algebraic properties of MGRS. Then,
based on the algebraic properties of MGRS, the correspond-
ing algebraic properties of CRS are discussed.

7.1 Algebraic properties of MGRS

Since Pawlak proposed the theory of rough sets in 1982,
the researches of algebraic properties on rough sets have
been started. However, it is still an open problem regarding
the algebraic properties of multi-granulation rough sets. As
an application on operation properties of multi-granulation
rough sets, we will investigate some basic algebraic proper-
ties of multi-granulation rough sets in this section. Firstly,
we review some basic concepts of algebraic theory.

A partial order on a nonempty set L is a binary relation
≤ such that, for all x, y, z ∈ L, (1)x ≤ x, (2)x ≤ y and
y ≤ x imply x = y, (3)x ≤ y and y ≤ z imply x ≤ z. A set
L equipped with a partial order is called a partially ordered
set. Let S ⊆ L , an element x ∈ L is an upper bound of S if
s ≤ x for all s ∈ S. Meanwhile, a lower bound can be defined
dually. The set of all upper bounds of S is denoted by Su and
the set of all lower bounds of S is denoted by Sl . If Su has
a least element x , then x is called the least upper bound of
S. Dually, if Sl has a greatest element x , then x is called the
greatest lower bound of S. In what follows, we will denote
the least upper bound of S by ∨S and denote the greatest
lower bound of S by ∧S when they exist. In particular, we
will write x ∨ y in place of ∨{x, y} when it exists, and x ∧ y
in place of ∧{x, y} when it exists.

Definition 7.1 A partially ordered set L is a lattice, if a∨b ∈
L and a ∧ b ∈ L , for all a, b ∈ L .

Definition 7.2 A lattice L is a distributive lattice, if a ∨ (b∧
c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
for all a, b, c ∈ L .

Definition 7.3 A distributive lattice 〈L,∨,∧,∼〉 is a soft
algebra, if for ∀a, b ∈ L , the following three properties are
satisfied:

(1) a ∨ 0 = a, a ∧ 0 = 0, a ∨ 1 = 1, a ∧ 1 = a;
(2) ∼ (∼ a) = a;
(3) ∼ (a∨b) = (∼ a)∧(∼ b),∼ (a∧b) = (∼ a)∨(∼ b).

Definition 7.4 A lattice 〈L,∨,∧,∼, 0〉 is a pseudo-comp-
lement lattice, if for each a ∈ L , there must exist a∗ ∈ L
such that a∗ is the pseudo-complement element of a, i.e., the
following two properties are satisfied:

(1) a ∨ a∗ = 0;
(2) For each b ∈ L , if a ∨ b = 0, then we have that b ≤ a∗;

In what follows, based on the operation properties ofMGRS,
the algebraic properties of MGRS will be discussed. Let
(U ,R) be an approximation space, and R1, R2, . . . , Rs ∈ R

the minimum equivalence relations. In order to make the dis-
cussion more accurate and consistent, we write “∪" in place
of “∨", and “∩" in place of “∧". Then, we have the following
conclusions.

Theorem 7.1 (BO ,∪,∩) is a distributive lattice.

Proof For any (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)), (

∑s
i=1 R

O
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(Y ),
∑s
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i (Y )), (
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O
i (Z),
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O
i (Z)) ∈ B

O ,
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(∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∩
((∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

)

∪
(∑s

i=1
R O
i (Z),

∑s

i=1
R O
i (Z)

) )

=
((∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∩
(∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

))

∪
((∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∩
(∑s

i=1
R O
i (Z),

∑s

i=1
R O
i (Z)

))

(∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∪
((∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

)

∩
(∑s

i=1
R O
i (Z),

∑s

i=1
R O
i (Z)

) )

=
((∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∪
(∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

))

∩
((∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∪
(∑s

i=1
R O
i (Z),

∑s

i=1
R O
i (Z)

))

Thus the proposition hold. �

Let (∅,∅) = 0, (U ,U ) = 1, we have the following propo-
sition.

Theorem 7.2 (BO ,∪,∩,∼) is a soft algebra.

123



The comparative study of covering rough sets and multi-granulation rough sets 3249

Proof For any (
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i (Y )

))

=
(

∼
∑s

i=1
R O
i (X),∼

∑s

i=1
R O
i (X)

)

∪
(

∼
∑s

i=1
R O
i (Y ),∼

∑s

i=1
R O
i (Y )

)

=
(

∼
(∑s

i=1
R O
i (X),

∑s

i=1
R O
i (X)

)

∪
(

∼
(∑s

i=1
R O
i (Y ),

∑s

i=1
R O
i (Y )

))
.

Similarly, we have that

∼
⎛

⎝

⎛

⎝
s∑

i=1

R O
i (X),

s∑

i=1

R O
i (X)

⎞

⎠

∪
⎛

⎝
s∑

i=1

R O
i (Y ),

s∑

i=1

R O
i (Y )

⎞

⎠

⎞

⎠

=
⎛

⎝∼
⎛

⎝
s∑

i=1

R O
i (X),

s∑

i=1

R O
i (X)

⎞

⎠

∩
⎛

⎝∼
⎛

⎝
s∑

i=1

R O
i (Y ),

s∑

i=1

R O
i (Y )

⎞

⎠

⎞

⎠ .

Hence, it can be known that (BO ,∪,∩,∼) is a soft alge-
bra. �

For each (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)) ∈ B

O , let

(
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X))∗ = (∼ ∑s

i=1 R
O
i (X),∼

∑s
i=1 R

O
i (X)), then we have the following conclusion.

Theorem 7.3 (BO ,∪,∩,∼, 0) is a pseudo-complement lat-
tice.

Proof For each (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)) ∈ B

O , we
have that

(1)

⎛

⎝
s∑

i=1

RO
i (X),

s∑

i=1

RO
i (X)

⎞

⎠

∩
⎛

⎝
s∑

i=1

RO
i (X),

s∑

i=1

RO
i (X)

⎞

⎠
∗

=
⎛

⎝

⎛

⎝
s∑

i=1

RO
i (X),

s∑

i=1

RO
i (X)

⎞

⎠

∩
⎛

⎝∼
s∑

i=1

RO
i (X),∼

s∑

i=1

RO
i (X)

⎞

⎠

⎞

⎠

=
⎛

⎝
s∑

i=1

RO
i (X) ∩

⎛

⎝∼
s∑

i=1

RO
i (X)

⎞

⎠

s∑

i=1

RO
i (X) ∩

⎛

⎝∼
s∑

i=1

RO
i (X)

⎞

⎠

⎞

⎠

= (∅,∅)

= 0

(2) For any (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i (X)), (

∑s
i=1 R

O
i

(Y ),
∑s

i=1 R
O
i (Y )) ∈ B

O . Let (
∑s

i=1 R
O
i (X),

∑s
i=1 R

O
i
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(X))∩(
∑s

i=1 R
O
i (Y ),

∑s
i=1 R

O
i (Y )) = 0.Then (

∑s
i=1 R

O
i

(X) ∩ ∑s
i=1 R

O
i (Y ),

∑s
i=1 R

O
i (X) ∩ ∑s

i=1 R
O
i

(Y )) = 0. We have that
∑s

i=1 R
O
i (X) ∩ ∑s

i=1 R
O
i (Y ) =

∅. That is to say that
∑s

i=1 R
O
i (Y ) ⊆∼ ∑s

i=1 R
O
i (X).

Since
∑s

i=1 R
O
i (X) ⊆ ∑s

i=1 R
O
i (X), then we have that

∑s
i=1 R

O
i (Y ) ⊆∼ ∑s

i=1 R
O
i (X). So, (

∑s
i=1 R

O
i (Y ),

∑s
i=1 R

O
i (Y )) ⊆ (∼ ∑s

i=1 R
O
i (X),∼ ∑s

i=1 R
O
i (X)))

= (OM∑s
i=1 Ri

(X),
∑s

i=1 R
O
i (X))∗. Therefore, (BO ,∪,

∩,∼, 0) is a pseudo-complement lattice. �

7.2 Algebraic properties of CRS

According to the operation properties of CRS, we will
investigate corresponding algebraic properties in this sec-
tion. In order to illustrate the relationship between the
algebraic properties of MGRS and CRS, we, respectively,
denote that Condition 1 stands for “C is a unary cover-
ing of U”; Condition 2 means "for each K ∈ C, we have
∼ K ∈ C"; Condition 3 is "R1, R2, . . . , RS are minimum
equivalence relations". By Theorem 3.1, we know that if C
satisfies Conditions 1 and 2, then R1, R2, . . . , RS induced
by C = {K1, K2, . . . , KS} are minimum equivalence rela-
tions. According to Theorem 4.2, if C satisfies Condition 1,
then multi-granulation lower and upper approximations are
equal to covering lower and upper approximations. More-
over, by Theorems 6.4 and 6.5, MGRS under Condition 3
and CRS under Conditions 1 and 2 are both closed under set
intersection and union. Therefore, the algebraic properties of
CRS under Conditions 1 and 2 are similar to the algebraic
properties of MGRS under Condition 3. Thus, the algebraic
properties of CRS can be studied by using of the algebraic
properties of MGRS.

In this section, we suppose that (U , C) is a covering
approximation space, and C satisfies Conditions 1 and 2.
Thus, the proofs of the theorems in this subsection are similar
to those of the theorems in Sect. 7.1 and are thus omitted.

Theorem 7.4 (C,∪,∩) is a distributive lattice.

Theorem 7.5 (C,∪,∩,∼) is a soft algebra.

Theorem 7.6 (C,∪,∩,∼, 0) is a pseudo-complement lat-
tice.

8 Conclusion

In this paper, we firstly introduced an effective approach to
describe a covering approximation space bymeans of amulti-
granulation approximation space. Then, we investigated
the differences and relations of many different properties

between CRS andMGRS. Lots of excellent results have been
presented and enriched the rough set theory.

On the other hand, it is possible to comparatively study
the differences and relations of many different properties
between CRS and MGRS based on fuzzy system, ordered
information system.We will research these issues in the near
future.
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