
Soft Computing (2019) 23:3217–3228
https://doi.org/10.1007/s00500-018-3197-7

FOUNDATIONS

The characterizations of upper approximation operators based on
coverings

Pei Wang1,2 ·Qingguo Li1

Published online: 16 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this paper, We propose a condition of symmetry for the covering C in a covering-based approximation space (U ,C ). By
using this condition, we obtain general, topological and intuitive characterizations of the coveringC for two types of covering-
based upper approximation operators being closure operators. We investigate axiomatic systems for apr S and discuss the
relationships among upper approximation operators. We also give a description of (U ,C ) in terms of information exchange
systems when these operators are closure ones. We also solve an open problem raised by Ge et al.
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1 Introduction and background

In order to obtain useful information and deal with uncertain
data, many methods have been proposed, such as statistical
methods, fuzzy set theory (Zadeh 1965, 1996), comput-
ing words, etc. (Zadeh 1996). But these methods have their
limitations. In view of this, Pawlak proposed the theory
of rough sets (Pawlak 1982) and did many works (Pawlak
1991; Pawlak and Skowron 2007b, c). It is a useful tool for
handing uncertain things. Comparing with the above meth-
ods, the rough set theory has its advantages. For example,
it does not need any additional information about data in
the process of dealing with uncertain data. Therefore, it
has been applied successfully in evidence theory (Skowron
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1989), process control (Mrozek 1996), economics (Zhang
2017), medical diagnosis (Tsumoto 1996), biochemistry
(Wang 2004), environmental science (Liu 2003), biology
(Zhao 2010), chemistry (Zhang 2017), psychology (Tang
2015), conflict analysis (Gao 2008), and so on. From then
on, many researchers have made some significant contribu-
tions to develop the rough theory. Kondo (2005) investigated
the structure of generalized rough sets. Qin and Pei (2005)
obtained the topological properties of fuzzy rough sets. Yao
(1998a, b) studied fuzzy sets and rough sets and constructed
algebraic methods of theory of rough sets. Zhu et al. inves-
tigated the rough sets based on coverings and discussed the
relations among them (Zhu and Wang 2007; Zhu 2007; Zhu
and Wang 2007; Zhu 2007, 2009a, b; Zhu and Wang 2012).
Fan et al. (2011, 2012) discussed the covering approximation
spaces. However, a problem with Pawlak’s rough set theory
is that partition or equivalence relation is explicitly used in
the definition of the lower and upper approximations. Such
a partition or equivalence relation is too restrictive for many
applications because it can only deal with complete informa-
tion systems. To address that issue, generalizations of rough
set theory were considered by scholars. One approach was to
extend the equivalence relation to the tolerance (Skowron
and Stepaniuk 1996; Slowinski and Vanderpooten 2000;
Yao 1998) and others (Zhu 2007, 2009a; Zhu and Zhang
2002; Zhang and Luo 2013). The other important approach
was to relax the partition to a covering of the universe. In
1983,W. Zakowski generalized the classical rough set theory
using coverings of a universe instead of partitions (Zakowski
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1983). A pair of lower and upper approximation operators are
defined, but the generalized approximation operators are no
longer dual to each otherwith respect to set complement (Yao
1998; Pomykala 1987). This new model is often referred as
the first type of covering-based rough set. Such a generaliza-
tion leads to various covering approximation operators with
both theoretical and practical importance (Chen and Wang
2007; Ge 2010, 2014). The relationships between properties
of covering-based approximation and their corresponding
coverings have attracted intensive researches. Based on the
mutual correspondence of the concepts of extension and
intension, Bryniarski (1989) and Bonikowski et al. (1998)
gave the second type of covering-based rough sets. The third
and the fourth type of covering-based rough sets were intro-
duced in Thomas (2003). Subsequently, Zhu (2007) utilized
the topological method to characterize covering rough sets.
Zhu andWang discussed the relationship between properties
of four types of covering-based upper approximation oper-
ators and their corresponding coverings (Zhu 2009a, b; Zhu
and Wang 2012). Yang et al. (2010) investigated attribute
reduction of covering information systems. Deer et al. (2016)
discussed neighborhood operators for covering-based rough
sets and defined the partial relation on the universe. Yang
and Hu (2016) obtained some interesting results based on
covering-based rough set and fuzzy lattice. Chen et al. (2015)
studied the relations of reduction between covering general-
ized rough sets and concept lattices. Liu studied the two types
of rough sets induced by coverings and obtained some inter-
esting results. Cattaneo et al. obtained the algebraic structures
of generalized rough set theory (Cattaneo 1998; Cattaneo and
Ciucci 2004; Liu and Sai 2009; Liu and Zhu 2008). Liu also
used the axiomatic method to characterize covering-based
rough sets (Liu 2013, 2006, 2008). Bian et al. (2015) gave
characterizations of covering-based approximation operators
being closure operators. Ge et al. proposed not only general,
but also topological characterizations of coverings for these
operators being closure operators (Ge and Li 2011; Ge 2010,
2014; Ge et al. 2012). Furthermore, they gave intuitive char-
acterizations of covering-based upper operators. At the end
of Ge et al. (2012), Ge et al. raised the following question:

Question 1 (Question 9.4 of Ge et al. 2012 ) What are gen-
eral, topological or intuitive characterizations of covering
C for them to be closure operators? What kind of informa-
tion exchanges systems does covering-based approximation
space (U ,C ) represent when any of them is a closure oper-
ator?

Since this question was put forward, many scholars did a lot
of work about it. Their work focuses on N (x) is a neighbor-
hood of x . Yao defined themap n whichmay not be reflexive,
therefore n(x) may not be a neighborhood of x . How to deal
with the above question when n(x) may not be a neighbor-
hood of x? We will investigate the approximation operators

aprn , apr N3
proposed byYao andYao (2012), andwill focus

on these two approximation operators to answer the above
question.

This paper is arranged as follows: In Sect. 2, we present
some basic concepts in covering-based rough sets and obtain
characterization of C4(X). Sections 3, 4 and 5 are the core
content of this paper. In Sect. 3, we investigate the charac-
terizations of coverings C for aprn being a closure operator
and get the general, topological, intuitive and information
exchange characterization for aprn being a closure operator.
In Sect. 4, we obtain the characterizations of coverings C
for apr N3

being a closure operator. We also obtain topology
characterization of C for apr N3

to be a closure operator. In
Sect. 5, we discuss the relationships between aprn and unary
covering. In Sect. 6,we obtain some propositions about aprv

n .
In Sects. 7 and 9, we get the characterizations of aprv

n and
apr S being a closure operator. In Sect. 8, we discuss the
relationship between aprv

n and aprn . In Sect. 10, we draw a
conclusion.

2 Preliminaries

In this section,we introduce the fundamental concepts used in
this paper. In the following discussion, unless it is mentioned
specially, the universe of discourse U is considered finite.
P(U ) denotes the family of all subsets ofU . C is a family of
subsets ofU . If none of subsets in C is empty, and ∪C = U ,
then C is called a covering of U .

Definition 1 (Covering approximation space Zhu and Wang
2012) Let U be an universe, C a covering of U , then we
call U together with covering C a covering approximation
space, denoted by (U ,C ).

Definition 2 Let (U ,C ) be a covering approximation space.
For any x ∈ U and X ⊆ U , the operators are defined as
follows:

(1) C(X) = ∪{C ∈ C : C ⊆ X};
(2) md(x) = {C ∈ C : (x ∈ C) ∧ (∀K ∈ C )(x ∈ K ∧ K ⊆

C ⇒ C = K )};
(3) N (x) = ∩{C ∈ C : x ∈ C};
(4) Friends(x) = ∪{C ∈ C : x ∈ C};
(5) MD(x) = {C ∈ C : (x ∈ C) ∧ (∀K ∈ C ) ∧ (C ⊆

K ) ⇒ C = K };
(6) n0(MD(x)) = ∩{C : C ∈ MD(x)};
(7) N3(x) = n0(MD(x)).

Remark 1 MD(x) and md(x) denote subsets of P(U ), the
others represent subsets of U .

Definition 3 Let (U ,C ) be a covering approximation space.
(U ,C ) is called a strongly discrete space, if for any x ∈ U ,
we have {x} ∈ C .
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Definition 4 Let (U ,C ) be a covering approximation space
and X ⊆ U . It is easy to check C

′ = {C ∩ X : C ∈ C }
is a covering on X . C

′
is called the induced covering, and

covering approximation space (X ,C
′
) is called a subspace

of (U ,C ).

We use Cn (1 ≤ n ≤ 8) to present some different types
of covering-based upper approximation operators listed in
Samanta and Chakraborty (2009). Note that these opera-
tors were denoted by different symbols in Samanta and
Chakraborty (2009) and other rough-set literature.

Definition 5 Let (U ,C ) be a covering approximation space.
For any X ⊆ U , upper approximation operators are defined
as follows:

(1) C1(X) = C(X) ∪ (∪{∪md(x) : x ∈ X\C(X)});
(2) C2(X) = ∪{C ∈ C : C ∩ X �= ∅};
(3) C3(X) = ∪{∪md(x) : x ∈ X};
(4) C4(X) = C(X) ∪ (∪{C ∈ C : C ∩ (X\C(X) �= ∅});
(5) C5(X) = {y : ∀C(y ∈ C ⇒ C ∩ X �= ∅)};
(6) C6(X) = {x ∈ U : ∀u(u ∈ N (x) → N (u) ∩ X �= ∅)};
(7) C7(X) = ∪{N (x) : N (x) ∩ X �= ∅};
(8) C8(X) = {z : ∀y(z ∈ Friends(y) ⇒ Friends(y) ∩

X �= ∅)};
(9) aprn(X) = {x : n(x) ∩ X �= ∅};

(10) apr N3
(X) = {x : N3(x) ∩ X �= ∅}.

Definition 6 (Yao and Yao 2012; Lin 1997) A mapping n :
U → P(U ) is called a neighborhood operator.

n is said to be serial, if n(x) �= ∅ for all x ∈ U .
n is said to be reflexive, if x ∈ n(x) for all x ∈ U .
n is said to be transitive, if x ∈ n(x) and y ∈ n(z) ⇒ x ∈

n(z) for all x, y, z ∈ U .
n is said to be Euclidean, if y ∈ n(x) ⇒ n(x) ⊆ n(y) for

all x, y ∈ U .

Definition 7 (Yao and Yao 2012) Suppose that n : U →
P(U ) is a neighborhood operator. It defines an upper operator
of X as follows:

aprn(X) = {x ∈ U : n(x) ∩ X �= ∅}.

Definition 8 Suppose that n : U → P(U ) is a neighborhood
operator. The upper operator has non-reflexive property if n
is non-reflexive.

Definition 9 (Zhang et al. 2015) Suppose that n : U →
P(U ) is a neighborhood operator. It defines a pair of approx-
imation operator of X as follows:

aprv
n(X) =

⋃

x∈X
n(x);

aprv

n
(X) = −aprv

n(−X).

Definition 10 (Zhang et al. 2015) A family of subsets of uni-
verse U is called a closure system over U if it contains U
and is closed under set intersection. Given a closure system
S, one can define its dual system S as follows:

S = {−X : X ∈ S}.

Definition 11 (Subsystem-baseddefinitionZhanget al. 2015)
Suppose S = (S, S) is a pair of subsystems of P(U ), S is
a closure system and S is the dual system of S. A pair of
lower and upper approximation operators (apr S, apr S)with
respect to S is defined as:

apr S(X) = ∩{K ∈ S : X ⊆ K };
apr

S
(X) = ∪{K ∈ S : K ⊆ X} for any X ⊆ U .

The following topological concepts and facts are elemen-
tary and can be found in Engelking (1989). We list them
below for the purpose of being self-contained in this paper.

1. A topological space is a pair (U , τ ) consisting of a setU
and a family τ of subsets of U satisfying the following
conditions:

a. ∅ ∈ τ and U ∈ τ ;
b. If U1,U2 ∈ τ , then U1 ∩U2 ∈ τ ;
c. IfA ⊆ τ , then ∪A ∈ τ . τ is called a topology onU

and the members of τ are called open sets of (U , τ ).

A set F in (U , τ ) is called closed set if the complement
set −F of F is an open set.

2. A set F is called a clopen set, if F in (U , τ ) is both an
open set and a closed set.

3. A family B ⊆ τ is called a base for (U , τ ) if for every
non-empty open subset O of U and each x ∈ O , there
exists a set B ∈ B such that x ∈ B ⊆ O . Equivalently, a
family B ⊆ τ is a base if every non-empty open subset
O ofU can be represented as union of a subfamily ofB.

4. For any x ∈ U , a familyB ⊆ τ is called a local base at x
for (U , τ ) if x ∈ B for each B ∈ B, and for every open
subset O ofU with x ∈ O , there exists a set B ∈ B such
that B ⊆ O .

5. If P is a partition of U , the topology τ = {O ⊆ U :
O is the union of some members of P} ∪ {∅} is
called a pseudo-discrete topology inPawlak andSkowron
(2007a) (also called a closed-open topology in Pawlak
1991).

6. Let (U , τ ) be a topological space. If for each pair of
points x, y ∈ U with x �= y, there exist open sets O, O

′

such that x ∈ O , y ∈ O
′
and O ∩ O

′ = ∅, then (U , τ )

is called a T2-space and τ a T2-topology.

Definition 12 (Induced topology and subspace) Let (U , τ )

be a topological space and X ⊆ U . It is easy to check that

123



3220 P. Wang, Q. Li

τ
′ = {O ∩ X : O ∈ τ } is a topology on X . τ

′
is called a

topology induced by X , and the topology space (X , τ
′
) is

called a subspace of (U , τ ).

Definition 13 (Closure operator) An operator H : P(U ) →
P(U ) is called a closure operator on U if it satisfies the
following conditions: for any X ,Y ⊆ U ,

(H1)H(X ∪ Y ) = H(X) ∪ H(Y );
(H2)X ⊆ H(X);
(H3)H(∅) = ∅;
(H4)H(H(X)) = H(X).

Definition 14 (Interior operator) An operator I : P(U ) →
P(U ) is called an interior operator on U if it satisfies the
following conditions: for any X ,Y ⊆ U ,

(I1)I (X ∩ Y ) = I (X) ∩ I (Y );
(I2)I (X) ⊆ X;
(I3)I (U ) = U ;
(I4)I (I (X)) = I (X).

Definition 15 (Dual operator) Assume that H , I : P(U ) →
P(U ) are two operators onU . If for any X ⊆ U , H(X) =∼
I (∼ X). Then we say that H , I are dual operator or H is the
dual operator of I .

From the definition, it is obvious that each interior operator
on U is the dual operator of a closure operator on U .

We give a characterization of C4 below.

Lemma 1 (Zhu and Wang 2012) C4 is a closure operator
if and only if C satisfies the following condition: for any
K1, K2 ∈ C , if K1 �= K2 and K1 ∩ K2 �= ∅, then for any
x ∈ K1 ∩ K2,we have {x} ∈ C .

Lemma 2 Let (U ,C ) be a covering approximation space.
C4 a closure operator and for any K1, K2 ∈ C , if K1 �= K2

and X = K1 ∩ K2 �= ∅, then (X ,C
′
) is a strongly discrete

space, where C
′ = {C ∩ X : C ∈ C }.

Proof If X has only one point, the result is obvious. Other-
wise, we assume that X has no less than two points. From
Definition 2.5, (X ,C

′
) is a subspace of (U ,C ), for any

x, y ∈ X and x �= y, since C4 is a closure operator and from
Lemma 1, we have {x}, {y} ∈ C

′
. So (X ,C

′
) is a strongly

discrete space. ��

Lemma 3 Let (U ,C ) be a covering approximation space.
For any K1, K2 ∈ C , K1 �= K2 and X = K1 ∩ K2 �= ∅.
If (X ,C

′
) is a strongly discrete space, then C4 is a closure

operator, where C
′ = {C ∩ X : C ∈ C }.

Proof For any x ∈ X , since (X ,C
′
) is a strongly discrete

space, from Definition 2.4, we have {x} ∈ C . From Lemma
1, C4 is a closure operator. ��

Each member of U is a person or a machine (such as
a computer and so on) that can exchange information with
other members and each C ∈ C is an information exchange
group. That is, for each pair x, y ∈ U , if there is a C ∈ C
such that x, y ∈ C , we say that x and y can exchange or share
certain information. If there is a C ∈ C such that x ∈ C and
y /∈ C , we say that x has some information which cannot be
shared with y.

From Lemmas 2, 3 and the above description, we obtain
the following results:

Theorem 1 (Characterization of coverings C for C4 being
a closure operator) Let (U ,C ) be a covering approximation
space.C4 is a closure operator if and only if for any K1, K2 ∈
C , if K1 �= K2 and X = K1 ∩ K2 �= ∅, then (X ,C

′
) is a

strongly discrete space, where C
′ = {C ∩ X : C ∈ C }.

From Lemma 2 and Theorem 1, we get the following
result:

Theorem 2 (Information exchange system description of an
approximation space (U ,C ) forC4 being a closure operator)
For a covering-based approximation space (U ,C ), C4 is
a closure operator if and only if the approximation space
(U ,C ) can be described as an information exchange system
in which for any K1, K2 ∈ C , K1 �= K2 and X = K1 ∩
K2 �= ∅, such that for any x, y ∈ X, they can not share any
information with each other.

In order to answer Question 1, substantial progress has
been made on searching for general, topological and intu-
itive characterizations of C , and also on giving information
systems representation of (U ,C ), when these operators are
closure operators. We summarize these results in the follow-
ing table:

3 Characterization of covering C for aprn
being a closure operator

Theorem 3 (General characterization of coverings C for
aprn being a closure operator) Let n be a reflexive neigh-
borhood operator, then aprn is a closure operator if and
only if for any x, y ∈ U, n(x) ⊆ n(y) whenever x ∈ n(y) .

Proof (⇒) For any x, y ∈ U with x ∈ n(y), we claim that
n(x) ⊆ n(y). If not, there exists a z ∈ n(x) such that
z /∈ n(y). Since n is a reflexive neighborhood operator,
we have x ∈ aprn({z}). So aprn is a closure opera-
tor, thus x ∈ aprn(aprn({z})). By x ∈ n(y), we have
n(y) ∩ aprn({z}) �= ∅. Thus y ∈ aprn(aprn({z})). Since
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Fig. 1 The relationship

aprn is a closure operator, so y ∈ aprn({z}). Therefore,
n(y)∩{z} �= ∅, hence z ∈ n(y). This contradicts the assump-
tion that z /∈ n(y).

(⇐) For any x, y ∈ U , if x ∈ n(y), then n(x) ⊆ n(y). To
prove aprn is a closure operator, we only need to prove aprn
is a closure operator which satisfies Definition 6. It is easy
to obtain aprn(∅) = ∅, since n is a reflexive neighborhood
operator. For any A, B ⊆ U , we have A ⊆ aprn(A). By
the definition of aprn , aprn(A ∪ B) = aprn(A) ∪ aprn(B)

is obvious for any A, B ⊆ U . Thus, it remains to prove that
aprn(aprn(A)) = aprn(A) for any A ⊆ U . From the above,
we have aprn(A) ⊆ aprn(aprn(A)). We need to prove that
aprn(aprn(A)) ⊆ aprn(A). Let x ∈ aprn(aprn(A)), by the
definition of aprn , n(x) ∩ aprn(A) �= ∅. Pick p ∈ n(x) ∩
aprn(A). Then p ∈ n(x) and n(p) ∩ A �= ∅. Thus n(p) ⊆
n(x), and hence n(x) ∩ A �= ∅. Therefore, we know that
x ∈ aprn(A). By the arbitrariness of x , we obtain that aprn
is a closure operator. ��

Figure 1 gives a simple example of Theorem 3.

Lemma 4 (Engelking 1989) Suppose we are given a set X
and a familyB of subsets of X which has properties:

(1) For any U1,U2 ∈ B and every point x ∈ U1 ∩U2 there
exists a U ∈ B such that x ∈ U ⊆ U1 ∩U2;

(2) For every x ∈ X there exists a U ∈ B such that x ∈ U.

Then B is a base for X.

Theorem 4 (Topological characterization of coveringsC for
aprn being a closure operator) Let n be a reflexive neighbor-
hood operator. Then aprn is a closure operator if and only
if there exists a topology τ on U such that {n(x) : x ∈ U } is
a base of (U , τ ).

Proof (⇒) Assume that aprn is a closure operator. Since n
is a reflexive neighborhood operator, so {n(x) : x ∈ U } is a
covering of U . For any n1(x), n2(x) ∈ {n(x) : x ∈ U } and
any y ∈ n1(x) ∩ n2(x), we have y ∈ n1(x) and y ∈ n2(x).
By Theorem 3, n(y) ⊆ n1(x) and n(y) ⊆ n2(x). Hence
n(y) ⊆ n1(x)∩n2(x). Therefore y ∈ n(y) ⊆ n1(x)∩n2(x).

Fig. 2 The third condition of symmetry

By Lemma 4, we know that there exists a topology τ on U
such that {n(x) : x ∈ U } is a base of (U , τ ).

(⇐) Let n be a reflexive neighborhood operator, and
assume there exists a topology τ on U such that {n(x) :
x ∈ U } is a base of (U , τ ). By the definition of base and
Lemma 4, for any y ∈ n(x), we have n(y) ⊆ n(x). From
Theorem 3, aprn is a closure operator. ��
With this description, we have the following results.

Theorem 5 (Information exchange system description of
approximation space (U ,C ) for aprn being a closure oper-
ator) Let n be a reflexive neighborhood operator, aprn is
a closure operator if and only if the approximation space
(U ,C ) can be described as such an information exchange
system that for any x, y ∈ U, if x ∈ n(y), then y knows all
the information which x has.

4 Characterization of covering C for aprN3
being a closure operator

Definition 16 (The third condition of symmetry) Let C be a
covering of U . We say that C satisfies the third condition of
symmetry if the following condition is true:

For any x, y ∈ U , if there exists a p ∈ U such that p ∈ C
for any C ∈ MD(p) with x ∈ C or y ∈ C , then there exists
a z ∈ U such that x ∈ C

′
and y ∈ C

′
for any C

′ ∈ MD(z).

Figure 2gives an intuitive illustrationof the third condition
of symmetry.
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Lemma 5 Let C be a covering of U. Then C satisfies the
third condition of symmetry if and only if for every x, y ∈ U,
if N3(x) ∩ N3(y) �= ∅, there is a z ∈ U such that N3(x) ∪
N3(y) ⊆ N3(z).

Proof (⇒) Assume that C satisfies the third condition of
symmetry. If x, y ∈ U and N3(x) ∩ N3(y) �= ∅, take p ∈
N3(x)∩N3(y). For anyC ∈ MD(p), x ∈ C or y ∈ C . By the
third condition of symmetry of C , there exists a z ∈ U such
that x ∈ C

′
and y ∈ C

′
for any C

′ ∈ MD(z). If C ⊆ C
′
,

then N3(x) ⊆ N3(z). If C ∩ C
′ �= ∅, it is easy to obtain

N3(x) ⊆ N3(z). If N3(z) ⊆ N3(x), then y ∈ N3(z), so there
existsC0 ∈ MD(p) such that x, y ∈ C0. It is a contradiction
because x ∈ C0 or y ∈ C0. We can prove N3(y) ⊆ N3(z) by
the same method. Thus N3(x) ∪ N3(y) ⊆ N3(z).

(⇐)Assume that for any x, y ∈ U , and N3(x)∩N3(y) �=
∅, there exists a z ∈ U such that N3(x)∪N3(y) ⊆ N3(z). Let
x, y ∈ U . If there is a p ∈ U such that for any C ∈ MD(p)
with x ∈ C or y ∈ C , then p ∈ N3(x) ∩ N3(y), and hence
N3(x) ∩ N3(y) �= ∅. By the assumption, there is a z ∈ U
such that N3(x) ∪ N3(y) ⊆ N3(z), which means that x ∈ C

′

and y ∈ C
′
for any C

′ ∈ MD(z). ��
Lemma 6 Let (U ,C ) be a covering-based approximation
space. apr N3

satisfies the condition apr N3
(apr N3

(X)) =
apr N3

(X) for every X ⊆ U if and only if for every x, y ∈ U,
if N3(x) ∩ N3(y) �= ∅, then there is a z ∈ U such that
N3(x) ∪ N3(y) ⊆ N3(z).

Proof (⇒) Suppose that apr N3
satisfies the condition

apr N3
(apr N3

(X)) = apr N3
(X) for every X ⊆ U . Take

any x, y ∈ U with N3(x) ∩ N3(y) �= ∅. If N3(x) ⊆ N3(y)
or N3(y) ⊆ N3(x), we only need to take z = x or z = y.
Hence, we assume N3(x) � N3(y) and N3(y) � N3(x).
Without loss of generality, we can pick X = {x}.

We prove that y ∈ apr N3
(X).Otherwise, by N3(x) ⊆

apr N3
(X), N3(x)∩N3(y) �= ∅, we get N3(y)∩apr N3

(X) �=
∅, and hence N3(y) ⊆ apr N3

(apr N3
(X)). It follows that

y ∈ apr N3
(apr N3

(X)), which contradicts the fact that
apr N3

(apr N3
(X)) = apr N3

(X). This contradiction shows
that y ∈ apr N3

(X) = ∪{apr N3
(z) : z ∈ X}, and hence there

is a z ∈ U such that x ∈ N3(z) and y ∈ N3(z). It follows
that N3(x) ⊆ N3(z) and N3(y) ⊆ N3(z), which means that
N3(x) ∪ N3(y) ⊆ N3(z).

(⇐) Assume that for any x, y ∈ U with N3(x) ∩
N3(y) �= ∅, there exists a z ∈ U such that N3(x) ∪
N3(y) ⊆ N3(z). By the definition of apr N3

, it is easy
to check that apr N3

(X) = ∪{apr N3
(x) : x ∈ X}.

Thus, to prove that apr N3
(apr N3

(X)) = apr N3
(X) for

every X ⊆ U , it is enough to prove that for every x ∈
U , apr N3

(apr N3
({x})) = apr N3

({x}). It is obvious that
apr N3

({x}) ⊆ apr N3
(apr N3

({x})). Sowe only need to prove
the converse.

Otherwise, we take y ∈ apr N3
(apr N3

({x}))\apr N3
({x}).

By apr N3
({x}) = ∪{N3(z) : x ∈ N3(z)} and y /∈

apr N3
({x}), we know that for every z ∈ U , x ∈ N3(z)

implies y /∈ N3(z). On the other hand, there is a z0 ∈
U such that x ∈ N3(z0), N3(y) ∩ N3(z0) �= ∅, y ∈
apr N3

(apr N3
({x})). By our assumption, there exists a z

′ ∈ U

such that N3(z0) ∪ N3(y) ⊆ N3(z
′
). It follows that x ∈

N3(z0) ⊆ N3(z
′
) and y ∈ N3(y) ⊆ N3(z

′
), which con-

tradicts the fact that for any z ∈ U , x ∈ N3(z) implies
y /∈ N3(z). ��
Theorem 6 (General characterization of coverings C for
apr N3

being a closure operator) Let (U ,C ) be a covering-
based approximation space. Then apr N3

is a closure opera-
tor if and only if C satisfies the third condition of symmetry.

Proof (⇒) Assume that apr N3
is a closure operator. Then

by (H4), apr N3
(apr N3

(X)) = apr N3
(X) for every X ⊆ U .

Hence by Lemma 6, for any x, y ∈ U , if N3(x)∩N3(y) �= ∅,
there is a z ∈ U such that N3(x)∪N3(y) ⊆ N3(z). ByLemma
5, C satisfies the third condition of symmetry.

(⇐)Assume thatC satisfies the third condition of symme-
try. By Lemma 5, for any x, y ∈ U with N3(x)∩N3(y) �= ∅,
there is a z ∈ U such that N3(x) ∪ N3(y) ⊆ N3(z). By
Lemma 6, apr N3

satisfies (H4). From Definition 5, it is easy
to prove (H1),(H2) and (H3) holds for any covering C , and
hence apr N3

is a closure operator. ��
Theorem 7 (Topological characterization of coveringsC for
apr N3

being a closure operator) Let (U ,C ) be a covering-
based approximation space. Then apr N3

is a closure opera-
tor if and only if N = {N3(x) : x ∈ U } is a base for some
topology τ on U such that in the topological space (U , τ ),
each element of N is contained in a clopen element ofN .

Proof (⇒) Assume that apr N3
is a closure operator. For any

N ∈ N , let N1 = N . If for every y /∈ N , N3(y) ∩ N = ∅,
then N = U\ ∪ {N3(y) : y /∈ N }. Since N is a base for
the topology τ , both N and ∪{N3(y) : y /∈ N } are open
sets in the topological space (U , τ ). Hence, N is a clopen
set in (U , τ ), and we can stop. Otherwise, there is a y ∈ N
with N3(y) ∩ N �= ∅. Then by Theorem 6 and Lemma 6,
there is a z ∈ U such that N ∪ N3(y) ⊆ N3(z). Let N2 =
N3(z). If for every w /∈ N3(z), N3(w) ∩ N3(z) = ∅, then
N3(z) = U\∪{N3(w) : w /∈ N3(z)} is a clopen set in (U , τ )

containing N , and we can stop. Otherwise, we can continue
in this way. Finally, either we can find a clopen element Ni

of N containing N for some positive integer i , or we can
get infinitely many different elements Ni of N such that
N1 ⊆ N2 ⊆ N3 ⊆ ... ⊆ Ni ⊆ Ni+1 ⊆ .... However, U
is a finite sets, so is N , and hence the latter is impossible.
Therefore, we must stop at getting some clopen elements of
N containing N .

(⇐) Assume that N = {N3(x) : x ∈ U } is a base for
some topology τ on U such that in the topological space
(U , τ ), each element ofN is contained in a clopen element
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ofN . If x, y ∈ U and N3(x) ∩ N3(y) �= ∅, there is a z ∈ U
such that N (z) is a clopen in the topological space (U , τ )

and N3(x) ⊆ N3(z). Since N (z) is clopen,U\N3(z) is open,
and we may assume that U\N3(z) = ∪{N3(w) : w ∈ K }
for some K ⊆ U , because N = {N3(x) : x ∈ U } is a
base for τ . If y ∈ U\N3(z), then there is a w ∈ K such that
y ∈ N3(w), thus N3(y) ⊆ N3(w) ⊆ U\N3(z). It follows
that N3(x) ∩ N3(y) = ∅. By N3(x) ⊆ N3(z), we obtain
that N3(x) ∩ N3(y) = ∅, which is a contradiction because
N3(x)∩N3(y) �= ∅. This contradiction shows that y ∈ N3(z)
and hence N3(y) ⊆ N3(z). Thus, N3(x) ∪ N3(y) ⊆ N3(z).
By Lemma 6, C satisfies the third condition of symmetry.
By Theorem 6, apr N3

is a closure operator. ��

5 The relationships among different
covering approximation operators

In this section, we first give some basic concepts and discuss
the relationships among different covering approximation
operators. Let (U ,C ) be a covering-based approximation
space and K ∈ C , x ∈ K , x is called a representative ele-
ment of K if ∀S ∈ C (x ∈ S ⇒ K ⊆ S).

Let C be a covering of U . C is called unary if ∀x ∈ U ,
|md(x)| = 1. CL(X) = ∪{n(x) : n(x) ⊆ X}, apr

n
(X) =

{x : n(x) ⊆ X} for any X ⊆ U .

Lemma 7 (Zhu and Wang 2012) C is a unary covering of U
if and only if N (x) ∈ C for any x ∈ U.

Theorem 8 Let n be a reflexive neighborhood operator. Then
{n(x) : x ∈ U } is a unary covering of U if and only if
CL(X) = apr

n
(X) for any X ⊆ U.

Proof (⇒) We prove CL(X) ⊆ apr
n
(X) for any X ⊆ U .

Otherwise, we can pick an x ∈ CL(X)\apr
n
(X). By the

definition of CL(X), there exists x0 ∈ X such that x ∈
n(x0) ⊆ X . Since n is a reflexive neighborhood opera-
tor and {n(x) : x ∈ U } is a unary covering of U , we
have x ∈ N (x) ⊆ n(x0) ⊆ X . Thus x ∈ apr

n
(X) by

the definition of apr
n
(X) and Lemma 7, a contradiction.

Thus CL(X) ⊆ apr
n
(X) for any X ⊆ U . Now we prove

apr
n
(X) ⊆ CL(X) for any X ⊆ U . Otherwise, we can

pick a y ∈ apr
n
(X)\CL(X). Since y ∈ apr

n
(X), we have

n(y) ⊆ X . By n(y) ∈ {n(x) : x ∈ U } and the definition of
CL , we have y ∈ n(y) ⊆ CL(X), a contradiction.

(⇐) Assume that {n(x) : x ∈ U } is not a unary covering
of U . Then by Lemma 7, there exists an x0 ∈ X such that
N (x0) /∈ C . Take X = N (x0). It is obvious that x ∈ apr

n
(X)

and x /∈ CL(X). It contradicts the assumption thatCL(X) =
apr

n
(X) for any X ⊆ U . ��

The relationship between C3 and apr
n
is given by the

following theorem.

Theorem 9 Let n be a reflexive neighborhood operator. Then
{n(x) : x ∈ U } is a unary covering of U if and only if
C3(aprn(X)) = CL(X) for any X ⊆ U.

Proof (⇒) Let n be a reflexive neighborhood operator and
{n(x) : x ∈ U } a unary covering of U . By Theorem 8, We
have CL(X) = apr

n
(X) for any X ⊆ U . It is easy to check

that CL(X) is either a union of finite union of members of
{n(x) : x ∈ U } or an empty set, and in both cases we have
C3(CL(X)) = CL(X) and hence CL(X) = C3(CL(X)) =
C3(aprn(X)) for any X ⊆ U .

(⇐) Assume that {n(x) : x ∈ U } is not a unary covering
ofU . Then by Lemma 7, there is an x ∈ X such that N (x) /∈
{n(x) : x ∈ U }. Take X = N (x). It is easy to prove that
apr

n
(X) = X and hence x ∈ X ⊆ C3(aprn(X)). On the

other hand, since ∀K ∈ {n(x) : x ∈ U }with x ∈ K , we have
X ⊆ K and X �= K , and it follows that x /∈ CL(X), which
contradicts the assumption that CL(X) = C3(aprn(X)) for
any X ⊆ U . ��

Theorem 10 Let n be a reflexive neighborhood operator.
Then {n(x) : x ∈ U } is a unary covering of U if and only if
{md(x) : x ∈ U } is a base for some topology τ on U and
|md(x)| = 1 for each x ∈ U.

Proof (⇒) Since n is a reflexive neighborhood operator and
{n(x) : x ∈ U } is a unary covering of U , we have {md(x) :
x ∈ U } is a cover of U and |md(x)| = 1 for each x ∈
U . For any md(y), md(z) ∈ {md(x) : x ∈ U } and any
p ∈ md(y) ∩ md(z), we have md(p) ⊆ md(y) ∩ md(z).
Otherwise, it contradicts {n(x) : x ∈ U } be a unary covering
of U .

(⇐) Since {md(x) : x ∈ U } is a base for some topology τ

onU , we have ∪{md(x) : x ∈ U } = U . {md(x) : x ∈ U } ⊆
{n(x) : x ∈ U }, thus {n(x) : x ∈ U } is a covering of U .
From |md(x)| = 1 for each x ∈ U , we have {n(x) : x ∈ U }
is a unary covering. ��

Theorem 11 Let n be a reflexive neighborhood operator and
{n(x) : x ∈ U } is a unary covering of U. Then for any
x, y, z ∈ U and z ∈ n(y) ∩ n(x), there exists x0 ∈ U such
that z ∈ n(x0) ⊆ n(y) ∩ n(x).

Proof Since n is a reflexive neighborhood operator and
{n(x) : x ∈ U } is a unary covering of U , we have
|md(z)| = 1 and N (z) = md(z). By Lemma 7, we have
N (z) ∈ {n(x) : x ∈ U }. For any x, y, z ∈ U and
z ∈ n(y) ∩ n(x), we have N (z) ⊆ n(y) and N (z) ⊆ n(x).
Thus N (z) ⊆ n(y) ∩ n(x). Pick n(x0) = N (z), therefore
z ∈ n(x0) ⊆ n(y) ∩ n(x).

��
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6 Some propositions of aprvn

Zhang et al. defined aprv
n and discussed the relationships

between generalized rough sets based on covering and reflex-
ive neighborhood system (Zhang et al. 2015). We will
investigate the properties of aprv

n .

Proposition 6.1 Suppose that n : U → P(U ) is a neighbor-
hood operator. For any X ,Y ∈ U, we have the following
statements:

(1) aprv
n(∅) = ∅;

(2) aprv
n
(U ) = U;

(3) aprv
n(X) = ⋃

x∈X
aprv

n({x});
(4) If X ⊆ Y , then aprv

n(X) ⊆ aprv
n(Y );

(5) aprv
n(X ∪ Y ) = aprv

n(X) ∪ aprv
n(Y ).

Proof For (1) and (2), they are easy to prove by Definition 9.
(3) For any y ∈ aprv

n(X), by Definition 9, there exists
x0 ∈ X such that y ∈ n(x0) = aprv

n({x0}). So aprv
n(X) ⊆

aprv
n(X).
We only need to prove the converse. For any y ∈⋃

x∈X
aprv

n({x}), there exists x0 ∈ X such that y ∈ aprv
n({x0}) =

n(x0) ⊆ ⋃
x∈X

n(x) = aprv
n(X). Therefore aprv

n(X) =
⋃
x∈X

aprv
n({x}).

(4) The proof is obvious by Definition 9.
(5) aprv

n(X)∪aprv
n(Y ) ⊆ aprv

n(X ∪Y ) is obvious by (3).
Weonly need to prove the converse. For any y ∈ aprv

n(X∪
Y ) = ⋃

x∈X∪Y
aprv

n(X ∪Y ), there exists x0 ∈ X ∪Y such that

y ∈ aprv
n({x0}) = n(x0). If x0 ∈ X , then y ∈ aprv

n(X);
if x0 ∈ Y , then y ∈ aprv

n(Y ), therefore aprv
n(X ∪ Y ) =

aprv
n(X) ∪ aprv

n(Y ). ��
However, the following properties may not hold:

(1) aprv
n(U ) = U ;

(2) X ⊆ aprv
n(X);

(3) aprv
n(apr

v
n)(X) = aprv

n(X);
(4) aprv

n
(X) ⊆ X .

Example 6.1 Let U = {a, b, c} and n : U → P(U ) is a
neighborhood operator.

n : a �→ {a};
b �→ {a};
c �→ {a}.
It is easy to see aprv

n(U ) = {a} �= U .

Example 6.2 Let U = {a, b, c} and n : U → P(U ) is a
neighborhood operator. Pick X = {a, b} and

n : a �→ {c};
b �→ {c};

c �→ {c}.
It is easy to see aprv

n(X) = {c}. Therefore X � aprv
n(X).

Example 6.3 Let U = {a, b, c} and n : U → P(U ) is a
neighborhood operator. Pick X = {a, b} and

n : a �→ {c};
b �→ {c};
c �→ U .
It is easy to see aprv

n(apr
v
n(X)) = U and aprv

n(X) = {c}.
aprv

n(apr
v
n(X)) �= aprv

n(X).

Example 6.4 Let U = {a, b, c} and n : U → P(U ) is a
neighborhood operator. Pick X = {a, b} and

n : a �→ U ;
b �→ U ;
c �→ {a},then −X = {c}.
By Definition 9, it is easy to see aprv

n
(X) = {b, c}. There-

fore aprv
n
(X) � X .

Proposition 6.2 Let n : U → P(U ) is a neighborhood oper-
ator of U. Then the following are equivalent:

(1) n is reflexive;
(2) X ⊆ aprv

n(X);
(3) aprv

n
(X) ⊆ X.

Proof (1) ⇒ (2) Since n is reflexive, we have x ∈ n(x) for
any x ∈ X . Thus x ∈ ⋃

x∈X
n(x) = aprv

n(X).

(2) ⇒ (1) For any x ∈ U , x ∈ aprv
n({x}) = ⋃

x∈{x}
n(x) =

n(x), we have x ∈ n(x). Therefore n is reflexive.
(2) ⇔ (3) It can be obtained by the duality. ��

Corollary 6.1 Let n : U → P(U ) is a neighborhood opera-
tor of U. If n is reflexive, then aprv

n(X) ⊆ aprv
n(apr

v
n(X)).

Proposition 6.3 Let n : U → P(U ) is a neighborhood oper-
ator of U. Then the following are equivalent:

(1) n is reflexive and transitive;
(2) aprv

n(apr
v
n(X)) = aprv

n(X) for any X ⊆ U.

Proof (1) ⇒ (2) For any X ⊆ U and y ∈ aprv
n(apr

v
n(X)),

by Definition 9, there exists y0 ∈ aprv
n(X) such that y ∈

n(y0). It must be y0 ∈ aprv
n(X), there exists x0 ∈ X such

that y0 ∈ n(x0). Since n is transitive, we have x ∈ n(x0).
By Definition 9, we can obtain aprv

n(apr
v
n(X)) ⊆ aprv

n(X).
From Proposition 6.2, we have aprv

n(X) ⊆ aprv
n(apr

v
n(X)).

Therefore aprv
n(apr

v
n(X)) = aprv

n(X) for any X ⊆ U .
(2) ⇒ (1) For any X ⊆ U , since aprv

n(apr
v
n(X)) =

aprv
n(X), by Proposition 6.2, we obtain that n is reflexive.

We only need to prove n is transitive.
For any x, y, z ∈ U , x ∈ n(y) and y ∈ n(z). Pick X = {z}.

According to Definition 9 and (2), we have y ∈ aprv
n(X) =
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n(z) = aprv
n(apr

v
n(X)) = ⋃

p∈n(z)
n(p). Thus n(y) ⊆ n(z),

therefore x ∈ n(z) and n is transitive. ��
Proposition 6.4 Let n : U → P(U ) is a neighborhood oper-
ator of U. Then the following are equivalent:

(1) n is symmetric;
(2) aprv

n(apr
v
n
(X)) ⊆ X;

(3) X ⊆ aprv
n
(aprv

n(X)) for any X ⊆ U.

Proof (1) ⇒ (2) For any X ⊆ U and x ∈ aprv
n(apr

v
n
(X)).

By Definition 9, there exists y0 ∈ aprv
n
(X) such that

x ∈ n(y0). Since y0 ∈ aprv
n
(X) = −aprv

n(−X), so
y0 /∈ aprv

n(−X). Thus for any a ∈ U \ X , y0 /∈ n(a).
From n is symmetric, we have y0 ∈ n(x), therefore x ∈ X ,
it follows that aprv

n(apr
v
n
(X)) ⊆ X .

(2) ⇒ (1) For any x, y ∈ U and x ∈ n(y), we claim that
y ∈ n(x). If not, let A = U \ {x}. Since y /∈ n(x), we have
y /∈ aprv

n(U \ A) = aprv
n({x}). From x ∈ n(y), it can obtain

x ∈ aprv
n(apr

v
n
(A)) = aprv

n(apr
v
n
(U \ {x})) ⊆ U \ {x}.

This contradiction shows that y ∈ n(x).
(2) ⇔ (3) It can be obtained by the duality. ��

7 Characterizations of aprvn being a closure
operator

Theorem 12 (General characterization of aprv
n being a clo-

sure operator) Let n be a neighborhood operator of U. Then
aprv

n is a closure operator if and only if n is reflexive and
transitive.

Proof It is easy to prove by Propositions 6.2 and 6.3. ��
Lemma 8 Engelking (1989) Suppose we are given a set X
and a familyB of subsets of X which has properties:

(1) For any U1,U2 ∈ B and every point x ∈ U1 ∩U2 there
exists a U ∈ B such that x ∈ U ⊆ U1 ∩U2;

(2) For every x ∈ X there exists a U ∈ B such that x ∈ U.

Then B is a base for X.

Theorem 13 (Topological characterization of aprv
n being a

closure operator) Let n be a reflexive neighborhood operator.
Then aprv

n is a closure operator if and only if there exists a
topology τ onU such that {n(x) : x ∈ U } is a base of (U , τ ).

Proof (⇒) Assume that aprv
n is a closure operator. Since n

is a reflexive neighborhood operator, so {n(x) : x ∈ U } is a
covering of U . For any n1(x), n2(x) ∈ {n(x) : x ∈ U } and
any y ∈ n1(x) ∩ n2(x), we have y ∈ n1(x) and y ∈ n2(x).
By Theorem 12, there exists n(y) such that n(y) ⊆ n1(x)
and n(y) ⊆ n2(x). Hence n(y) ⊆ n1(x) ∩ n2(x). Therefore

y ∈ n(y) ⊆ n1(x)∩n2(x). By Lemma 8, we know that there
exists a topology τ on U such that {n(x) : x ∈ U } is a base
of (U , τ ).

(⇐) Let n be a reflexive neighborhood operator, and
assume there exists a topology τ on U such that {n(x) : x ∈
U } is a base of (U , τ ). By the definition of base and Lemma
8, for any y ∈ n(x), we have n(y) ⊆ n(x). Therefore n is
transitive. From Theorem 12, aprv

n is a closure operator. ��

8 The relation between aprvn and aprn

aprn was proposed and investigated by Yao and Yao (2012).
aprv

n was proposed and investigated by Zhang et al. (2015).
In this section, we will discuss the relation between aprv

n and
aprn . The following example shows that they are different.

Example 8.1 Let U = {a, b, c} and n : U → P(U ) is a
neighborhood operator.

n : a �→ ∅;
b �→ {a};
c �→ {c}.
Let X = {b}, then aprv

n(X) = {a}, but aprn(X) = {y :
n(y) ∩ X �= ∅} = ∅. Therefore they are different.

It is natural to ask: What condition is necessary to make
themequal? The following proposition gives positive answer.

Proposition 8.1 Let n : U → P(U ) be a neighbor-
hood operator of U. If n is reflexive and Euclidean, then
aprv

n(X) = aprn(X) for any X ⊆ U.

Proof For any X ⊆ U and y ∈ aprv
n(X) = ⋃

x∈X n(x),
there exists an x0 ∈ X such that y ∈ n(x0). Since n is
a reflexive and Euclidean neighborhood operator, so x0 ∈
n(x0) ⊆ n(y) and n(x0) ∩ X �= ∅. Thus n(y) ∩ X �= ∅.
Therefore aprv

n(X) ⊆ aprn(X) for any X ⊆ U .
For any X ⊆ U and y ∈ aprn(X) = {x ∈ U : n(x)∩X �=

∅}. Then n(y)∩X �= ∅. There exists a x0 ∈ n(y)∩X such that
x0 ∈ n(y) and x0 ∈ X . Since n is a reflexive and Euclidean
neighborhood operator, so y ∈ n(y) ⊆ n(x0) ⊆ ⋃

x∈X
n(x) =

aprv
n(X). Therefore aprn(X) ⊆ aprv

n(X) for any X ⊆ U .
��

9 Characterizations of NS being a closure
operator

Yu et al. defined 1-neighborhoods systems and N S inYu et al.
(2013). They called the set {y ∈ U : n(y) = n(x)} the core
of n(x) and denoted it with cn(x), where n : U → P(U ) is
a neighborhood operator of U . Let {n(x) : x ∈ U } be a 1-
neighborhoods system of universeU . They got the following
facts:
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Table 1 The results of operators

A. op. G.Ch. Top.Ch. In.Ch. In.S.Re.

C1 Zhu and Wang (2012) Ge et al. (2012), Zhu (2009b) / /

C2 Zhu and Wang (2012) Ge et al. (2012) Ge et al. (2012) Ge et al. (2012)

C3 Zhu (2009b) Ge (2014) / /

C4 Zhu (2009b), Ge et al. (2012) Ge et al. (2012) Ge et al. (2012) Ge et al. (2012)

C5 Zhu and Wang (2012) Zhu (2009b), Ge et al. (2012) / /

C6 Bian et al. (2015) Bian et al. (2015) Bian et al. (2015) Bian et al. (2015)

C7 Bian et al. (2015) Bian et al. (2015) Bian et al. (2015) Bian et al. (2015)

C8 Bian et al. (2015) Bian et al. (2015) Bian et al. (2015) Bian et al. (2015)

aprn – – – –

apr N3
– – – –

Fact 1 x ∈ cn(x) for any x ∈ U.

Fact 2 {cn(x) : x ∈ U } forms a partition of U.

Definition 17 (Yu et al. 2013) Let {n(x) : x ∈ X} be a
neighborhood on U . For any set X ⊆ U , it defines an upper
operator of X as follows:

Ns(X) =
⋃

{cn(y) : cn(y) ∩ X �= ∅} ∪
⋃

{cn(y) : n(y) ∩ X �= ∅}.

Theorem 14 (General characterization of N S being a closure
operator) {n(x) : x ∈ U } be a 1-neighborhoods system of
universe U. For any X ⊆ U, N S is a closure operator if and
only if for any x, y ∈ U, x ∈ n(y) implies that n(x) = n(y)
or n(x) ⊂ n(y).

Proof (⇐) Assume that for any x, y ∈ U , x ∈ n(y) implies
that n(x) = n(y) or n(x) ⊂ n(y). We show that NS satisfies
Definition 17. By the definition, it is easy to check that NS

satisfies (H1),(H2),(H3). We only need to prove NS satisfies
(H4). By (H2), it is easy to prove NS(X) ⊆ NS(NS(X)) for
any X ⊆ U . We only need to prove the converse.

For any y ∈ NS(NS(X)), from Definition 17, we have
cn(y) ∩ NS(X) �= ∅ or n(y) ∩ NS(X) �= ∅.

Case 1 cn(y) ∩ NS(X) �= ∅.
There exists x0 ∈ cn(y)∩ NS(X) such that n(y) = n(x0)

and cn(x0) ∩ X �= ∅ or n(x0) ∩ X �= ∅. If n(y) = n(x0) and
cn(x0) ∩ X �= ∅, then cn(x0) = cn(y) and cn(y) ∩ X �= ∅.
Therefore y ∈ NS(X); If n(y) = n(x0) and n(y)∩NS(X) �=
∅, then there exists p ∈ n(y) ∩ NS(X) such that p ∈ n(y)
and cn(p) ∩ X �= ∅ or n(p) ∩ X �= ∅. If p ∈ n(y) and
n(p) = n(y), we have cn(y) ∩ X �= ∅. Thus y ∈ NS(X);
If p ∈ n(y) and n(p) ⊆ n(y), then n(y) ∩ X �= ∅, Thus
y ∈ NS(X). So NS is a closure operator.

Case 2 n(y) ∩ NS(X) �= ∅.

There exists x0 ∈ n(y) ∩ NS(X) such that x0 ∈ n(y) and
cn(x0) ∩ X �= ∅ or n(x0) ∩ X �= ∅. If n(y) = n(x0) and
cn(x0)∩ X �= ∅, then cn(x0) = cn(y). Thus cn(y)∩ X �= ∅.
Therefore y ∈ NS(X); If n(y) = n(x0) and n(x0) ∩ X �= ∅,
then n(y) ∩ X �= ∅, so y ∈ NS(X); If n(x0) ⊂ n(y) and
n(x0)∩X �= ∅, thenwehaven(y)∩X �= ∅. Thus y ∈ NS(X).
So NS is a closure operator.

(⇒) Assume that NS is a closure operator. We only need
to prove that for any x, y ∈ U , x ∈ n(y) implies that n(x) =
n(y) or n(x) ⊂ n(y). If not, there exists z ∈ U such that z ∈
n(x) but z /∈ n(y). By Definition 17, we have x ∈ NS({z}).
Since NS is a closure operator, so x ∈ NS(NS({z})). Thus
cn(x) ∩ NS({z}) �= ∅ or n(x) ∩ NS({z}) �= ∅. If n(x) ∩
NS({z}) �= ∅ and x ∈ n(y), then n(y) ∩ NS({z}) �= ∅. Thus
y ∈ NS(NS({z})) = NS({z}). Therefore cn(y) ∩ {z} �= ∅
or n(y) ∩ {z} �= ∅. We have n(y) = n(x) or z ∈ n(y). It is
contradiction to z /∈ n(y).

If cn(x) ∩ NS({z}) �= ∅, by Fact 1 and the above proof,
we have x ∈ cn(x) and x ∈ NS({z}). Since x ∈ n(y),
so y ∈ NS(NS({z})) = NS({z}). Therefore z ∈ cn(y) or
z ∈ n(y). It is contradiction to z /∈ n(y). ��
Theorem 15 (Topological characterization for NS being a
closure operator) Let {n(x) : x ∈ U } be a 1-neighborhoods
system of universe U. Then N S is a closure operator if and
only if there exists a topology τ onU such that {n(x) : x ∈ U }
is a base of (U , τ ).

Proof The proof is similar to that of Theorem 13. ��

10 Conclusions and future work

In this paper, we not only give general characterization of
covering C for the fourth type of covering-based upper
approximation operator C4, but also describe information
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exchange systemwhenC4 is a closure operator. Besides this,
we obtain general, topological characterizations of cover-
ing C for two types of covering-based upper approximation
operators aprn and apr N3

to be closure operators. We also
propose intuitive characterizations of covering C for aprn
or apr N3

to be a closure operator. Using these character-
izations, we describe covering-based approximation space
(U ,C ) as some special types of information exchange sys-
tems when aprn is a closure operator. The results in this
paper have solved Question 1. Beside this, we also discuss
the relationship between aprn and unary covering. We shall
further investigate the relations among the covering-based
upper approximation operators listed in Table 1.
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