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Abstract
Open-shop scheduling problem (OSSP) is a well-known topic with vast industrial applications which belongs to one of
the most important issues in the field of engineering. OSSP is a kind of NP problems and has a wider solution space than
other basic scheduling problems, i.e., Job-shop and flow-shop scheduling. Due to this fact, this problem has attracted many
researchers over the past decades and numerous algorithms have been proposed for that. This paper investigates the effects
of crossover and mutation operator selection in Genetic Algorithms (GA) for solving OSSP. The proposed algorithm, which
is called EGA_OS, is evaluated and compared with other existing algorithms. Computational results show that selection of
genetic operation type has a great influence on the quality of solutions, and the proposed algorithm could generate better
solutions compared to other developed algorithms in terms of computational times and objective values.
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1 Introduction

In open-shop scheduling problem (OSSP), n jobs are pro-
cessed by m machines. If all of the jobs are processed in a
constant route bym machines (e.g., all jobs are processed by
machine 1 at first, then by machine 2, and so on until they are
processed by machine m), the problem will be a flow-shop
type problem. If each job is processed in a specific route by
m machines, the problem will be a job-shop type problem;
and if the routes of job processing are not deterministic, the
problem will be classified as open-shop type (Shamshirband
et al. 2015a; Hosseinabadi et al. 2015; Shojafar et al. 2016).

In OSSP, m machines process a set of jobs. Each job
includes n operations that must be processed in a determin-
istic processing time interval by a machine (Hosseinabadi
et al. 2013). Operations can be processed through following
any possible order. At a specified time, each machine is able
to process only one operation of a job. Operations of each
job can be processed only after a time called release time
for each job. During the process of an operation, no interrupt
or tardiness is allowed; and the jobs are independent. The
goal of this problem is to find an optimal scheduling with
makespan Cmax for the completion of n jobs. To achieve this
result, the jobs processing sequence and the routes that jobs
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pass through must be considered (Tavakkolai et al. 2015;
Farahabadi and Hosseinabadi 2013).

For simplicity, it is assumed that all jobs in most problems
are accessible at zero time. According to the scheduling stan-
dard introduced by Graham et al. (1979), the problem can be
defined in the form of Omax||Cmax, where m is the number
of machines. Pinedo (1995) proposed a prioritization rule
in the form of the Longest Alternate Processing Time First
(LAPT) for the O2||Cmax problembywhich optimal schedul-
ing was obtained in a polynomial time complexity. Gonzalez
and Sahni (1976) proved O3||Cmax is an NP-hard problem,
and, in 1993, Lawler et al. (1993) proved that Om |3|Cmax

is strongly an NP-hard problem, which means that the opti-
mal solution for the problem is not obtained in a polynomial
time complexity. Branch and bound algorithms were used to
solve small problems, and heuristic algorithms, which could
find approximately optimal solutions, are suitable for solving
large problems (Vasant et al. 2016; Vasant 2014).

Broadly speaking, the optimization algorithms can be
divided into two categories of exact and approximate meth-
ods (Talbi 2009).

In this paper, a new extended GA is proposed to solve the
OSSP with the aim of minimizing the end time of all jobs.
Also, various efficient crossover and mutation operators are
studied in the proposed algorithm. Jobs and operations are
as inputs, and the minimization of the finish time of all jobs
is the output of the proposed algorithm.

The remaining of the paper is organized as follows: Sect. 2
reviews related works on the subject covered in this paper.
Section 3 describes the statement of the problem. Section 4
discusses the proposed algorithm. Sections 5 and 6 present
themechanismof theEGA_OS and the computational results,
respectively. Finally, the conclusion is presented in Sect. 7.

2 Related work

In this section, some recent works on OSSP are investigated.
The parallel OSSP was studied by Chen et al. (2013) with
the purpose of minimizing makespan. But due to the NP-
hard nature of the problem, it was proposed that approximate
algorithms can be used for solving them. Goldansaz et al.
(2013) dealt with the multi-processor OSSP with different
limitations including independent setup time, process time,
and sequence-dependent removal time. It applied the combi-
nation of the Imperialist Competitive Algorithm (ICA) and
Genetic Algorithm (GA) in order to solve the problem with
the objective ofminimizingmakespan. It has beenproved that
if restrictions for machine loads were considered, the three-
machine proportionate open-shop problem could be solved
in O (n log n) time, and if these restrictions were not con-
sidered, approximate methods are a suitable alternative for
solving them (Koulamas and Kyparisis 2015).

Low and Yeh (2009) first defined the OSSP problem as
a binary programming model and then introduced a Hybrid
Genetic Algorithm (HGA) considering various restrictions
including independent setup and dependent removal time for
solving the problem with the purpose of makespan reduc-
tion. Other researchers (Shamshirband et al. 2015a) studied
a special type of the open-shop problem called no-wait open-
shop with the purpose of reducing the makespan. They then
used three mathematical models in the form of integer linear
programming models and patterns for coding and decoding.
Furthermore, these patterns were used to introduce a method
based onGA and variable neighborhood search for optimally
solving the problem. The Lagrange expansion was used to
total quadratic completion time reduction in scheduling small
open-shops (Zhang and Bai 2014).

An efficient HGA called Hybrid Non-dominated Sort-
ing Genetic Algorithm (HNSGA) was developed to solve
the multi-objective open-shop problem in Noori-Darvish
and Tavakkoli-Moghaddam (2011). This method applied the
Local Search Algorithm (LSA) in order to generate an initial
population for solving medium- and large-sized problems.
Results obtained after the implementation with respect to
qualitative criteria, variety, and space were found to be supe-
rior to the Strength ParetoEvolutionaryAlgorithm (SPEA-II)
method.

Several two-phase heuristic algorithms were applied for
solving the OSSP with portable dedicated machines and
without time limitations in Hosseinabadi et al. (2014),
Hosseinabadi et al. (2012) and Rostami et al. (2015). Fur-
thermore, another HGA with special operations (Ahmdizar
and Hosseinabadi 2012) was proposed for solving the OSSP.
The suggested operations could omit the sequence of per-
forming the jobs by the machines, and the proposedmutation
operation could prevent search process for redundant solu-
tions. The proposed method was a combination of iterative
randomized active scheduling concepts, a dispatching index,
and a lower bound.

In Ciro et al. (2016), two multi-objective methods named
Non-dominated Sorting Genetic Algorithm (NSGA-II) and
NSGA-III were proposed and compared. Different con-
straints, such as tools allocation and multi-skills staff assign-
ment, were considered in thesemethods. The objectives were
to minimize total flow time of jobs in the production system,
workload balancing in bothmanpower andmachine points of
view. They generated some small- and large-sized instances
to show the general performance of these algorithms. Results
showed that when the size of instances increases, the perfor-
mance of NSGA-III was better than that of NSGA-II.

The asymptotic optimality of the General Dense Schedul-
ing (GDS) algorithm was investigated for the static and
dynamicversions of theFlexibleOpen-Shop (FOS)makespan
problem in Baia et al. (2016). A GDS-based algorithm was
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utilized to improve the original GDS algorithm for large- and
average-scale problems.

A mechanical workshop-based OSSP was discussed in
Ciro et al. (2015). The problem was formulated as a
fuzzy Mixed-Integer Linear Programming (MILP) model
and solved using an Ant Colony Optimization (ACO).

A recent study in Azadeh et al. (2016) has developed a
novel bi-objective MILP model for multi-objective OSSP.
Independent setup time and sequence-dependent transporta-
tion time were the main constraints considered in the model.
The aim of the proposed model was to minimize the total
makespan of jobs as well as the workload of all machines.

Harmanani and Ghosn (2016) proposed a Simulated
Annealing Algorithm (SA) for solving the non-preemptive
open-shop scheduling problem in order to minimize the
makespan by determining a schedule for operations on the
machines. Makespan was defined as the time starts from the
beginning of the first operation until the end of the last oper-
ation.

Other recent studies (Karagöz and Yıldız 2017; Hossein-
abadi et al. 2016a, 2017b; Shamshirband et al. 2015b; Hos-
seinabadi et al. 2016b, 2017a) evaluated the performances
of some recent optimization algorithms, such as Particle
Swarm Algorithm (PSO), Cuckoo Search Algorithm (CSA),
Gravitational Search Algorithm (GSA), Hybrid Gravita-
tional Search-Nelder Mead Algorithm (HGSANM), League
Championship Algorithm (LCA), Firefly Algorithm (FA),
Bat Algorithm (BA), Interior Search Algorithm (ISA), ICA,
Gravitational Emulation Local Search Algorithm (GELS),
and SA in terms of finding the optimal thin-walled tube
design and Vehicle Routing Problem (VRP).

Yildiz (2012) investigated some population-based opti-
mization methods to solve multi-pass turning optimization
problems. The outcome of the investigation was a proposed
differential evolution algorithm based on a hybrid technique
for solving manufacturing optimization problems.

Another study presented in Yıldız et al. (2007) aimed to
develop a more efficient shape optimization approach using
GAand robustness issues to release the restrictions caused by
a larger population of solutions in the pure Multi-Objective
Genetic Algorithm (MOGA).

Recently, Tellache and Boudhar (2017) have introduced
open shops considering some conflicting jobs that cannot be
processed simultaneously on different machines. They pro-
posed heuristics and lower bounds for the general cases of
the problem.

3 Problem description

OSSP is considered as a kind of general job scheduling
problem and consists a set of n jobs J = {J1, J2, . . . , Jn}
and must be processed on one of the m machines M =

Table 1 A 4 × 4 Taillard Benchmark instance for the OSSP (Taillard
1993)

Jobs (Processing time, machine)

Job 1 (54,M3) (34,M1) (61,M4) (2,M2)

Job 2 (9,M4) (15,M1) (89,M2) (70,M3)

Job 3 (38,M1) (19,M2) (28,M3) (87,M4)

Job 4 (95,M1) (34,M3) (7,M2) (29,M4)

{M1,M2, . . . ,Mm}. Each job Ji ∈ J consists m operations
oi, j that is processed on the machine Mi . At any moment,
each machine can only process one operation related to the
job. Two or more operations of a job cannot be processed on
differentmachines at the same time. The problem is to find an
optimal schedule for the operations on machines that mini-
mizesmakespan (Cmax); makespan is the calculated from the
beginning time of the first operation until the last one (Bai and
Tang 2013). A schedule of optimumfinishing time is a sched-
ule containing at least the finishing time among all schedules.
If there is at least a triad <i, s (i) , f (i)> for each machine
and each job, which must be scheduled, then the schedule is
non-preemptive. S(i) denotes the i th scheduling, and f (i)
denotes the objective function value of i th scheduling. A
preemptive schedule is the one that has no constraint for the
number of triads for jobs and machines. It has been demon-
strated that non-preemptive open-shop scheduling problem
is an NP-hard problem because it converts the problem into a
scheduling problem (Gonzalez and Sahni 1976). It is proved
that the following lower bound is correct for scheduling with
optimum finishing time (Gonzalez and Sahni 1976).

L =
⎧
⎨

⎩
max
i

m∑

j=1

pi, j ,max
j

n∑

i=1

pi, j

⎫
⎬

⎭
, where 1 ≤ i ≤ n

and 1 ≤ j ≤ m. (1)

The first part of Eq. (1) is related to the maximum com-
pletion time of all jobs that must be processed on machines.
On the other hand, it indicates that the total processing time
of jobs must at least be equal to their defined required time
to process their operations. The second part shows the max-
imum completion time of jobs assigned to a given machine.
Therefore, the processing time of each machine must at
least be equal to the sum of all times required for operat-
ing its assigned jobs. The optimal makespan of an open-shop
scheduling is never less than L, but it does not indicate that
it should be necessarily equal to L (Harmanani and Ghosn
2016).

This research evaluates the OSSP using the 4× 4 Taillard
Benchmark (Taillard 1993) as shown in Table 1. The bench-
mark instance consists of 4 jobs and 4 machines. Figure 1
shows a possible schedule with an optimal makespan of 193.

123



5102 A. A. Rahmani Hosseinabadi et al.

Fig. 1 Optimal schedule for Taillard Benchmark instance with the makespan of 193

4 The proposed algorithm

There are many exact methods, heuristics and metaheuris-
tics developed for all introduced optimization problems in
order to solve them (Deb and Jain 2014; Khuri and Miryala
1999; Fang et al. 1994; Prins 2000; Colak andAgarwal 2005;
Tellache and Boudhar 2017; Tirkolaee et al. 2018, 2017;
Mirmohammadi et al. 2017; Babaee Tirkolaee et al. 2016;
Alinaghian et al. 2014). In this paper, GA is implemented
for developing a novel method in order to solve the OSSP.
Also, the effects of the implemented crossover and mutation
operations on the proposed approach are investigated to yield
the high-quality solutions. Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
and 4.7 describe the parameters of the proposed algorithm
(EGA_OS).

4.1 Chromosome representation

The proposed EGA_OS applies a single-dimensional array
with the same length as the total number of the operations
to show each chromosome. Each gene of each chromosome
contains a unique integer that indicates one operation in one
job. Table 2 shows the procedure of numbering the example
system in Table 1.

An example chromosome for the example system in
Table 1 is shown in Fig. 2.

As shown in Fig. 2, the first gene is the number 5, which
refers to the operation 1 in job number 2 that must be
performed by machine 4. In this method of chromosome
representation, each chromosome shows a schedule for per-
forming all the operations in each job.

4.2 Fitness function

Makespan is used to determine chromosome fitness and is
calculated based on Eq. (2):

Fitness = Max1 < I ≤ n {Ti } (2)

where n is the number of jobs and Ti is the completion time
for job i .

Table 2 The procedure of numbering the operations for the example
system in Table 1

Job Machine Operation no.

1 1 2

1 2 4

1 3 1

1 4 3

2 1 2

2 2 3

2 3 4

2 4 1

3 1 1

3 2 2

3 3 3

3 4 4

4 1 1

4 2 3

4 3 2

4 4 4

4.3 Parent selection

The EGA_OS used the tournament method to select the par-
ents. In this method, a small subset of the chromosomes is
randomly selected and twoof the best chromosomes that have
the highest fitness values are selected as the parents.

4.4 Crossover operation

Four different crossover operations are used in the EGA_OS
to study the effects on the type of the selected crossover
operation on solving the problem.

4.4.1 Homologous Crossover Genetic Operation (C.S)

Once the parents are selected, the Homologous Crossover
Genetic Operation (C.S) first passed the homologous genes
in the two parents on to the child, and then the remaining
of the genes are stochastically selected from parent 1 or 2
and passed on to the child. In this kind of crossover in the
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Fig. 2 Structure of a sample
chromosome 5 12 6 8 10 9 3 1 14 7 4 16 13 2 15 11

Fig. 3 Homologous Crossover Genetic Operation

Fig. 4 Row Crossover Operation

early generations, different childrens with greater variety are
produced because the chromosomes are different. Therefore,
there would be greater diversity in the population. Figure 3
shows the operations performed by the C.S.

4.4.2 Row Crossover Operation (C.R)

Once two parents are selected, the Row Crossover Operation
(C.R) randomly selects one of the two parents first and passes
its first gene on to the child. This gene is then omitted from the
other parent. This process continues until the child received
all its genes. In this crossover method, diverse chromosomes
are generated. Figure 4 implies an example of the application
of the C.R.

4.4.3 One-point crossover operation (C.O)

The One-Point Crossover Operation (C.O) first selects one
number stochastically from the interval 1 to n (length of the
chromosome) and the genes in the interval from 0 to the
randomly selected number are passed on to the child. Homol-
ogous genes in parent 2 are then omitted, and the remaining
of the genes are embedded, respectively, in the empty cells

Fig. 5 One-point crossover operation

Fig. 6 Two-point crossover operation

of the child. Figure 5 illustrates the application of the C.O in
the proposed algorithm.

4.4.4 The two-point crossover operation (C.D)

The Two-Point Crossover Operation (C.D) first selects two
random numbers in the interval from 0 to n (length of the
chromosome). The genes between these two stochastically
selected numbers are passed on fromparent 1 to the child, and
the homologous genes in parent 2 are omitted. The remaining
of the genes are embedded, respectively, from parent 2 in the
empty cells of the child. Figure 6 implies an example of the
application of the C.D.

4.5 Mutation operation

In the EGA_OS, two different mutation operations were used
to study the effects of the selected type of the mutation oper-
ation on solving the problem.

123



5104 A. A. Rahmani Hosseinabadi et al.

Fig. 7 Displacement Mutation Operation

4.5.1 Displacement Mutation Operation (M.A)

After the selection of the parents, the DisplacementMutation
Operation (M.A) randomly selects two genes and displaces
them. Figure 7 indicates the application of the M.A.

Fig. 8 Shift mutation operation

4.5.2 Shift mutation operation (M.S)

After the parent chromosome is selected, two points are ran-
domly selected in the interval from 1 to n (length of the
chromosome) and the genes located between these two points

Function EGA_OS  (problem) 
Input: Populationsize, Problemsize, Pcrossover, Pmutattion, StopConditionNumber
Output: Sbest
Population←Initalize Population (Populationsize, Problemsize);
Evaluate Population (Population);
Sbest←Get Best Solution (Population);
int number Repeat=1;
While number Repeat <= Stop ConditionNumber do

int i=0;
While i < Pcrossover do

Child = Parent1= Parent2= ø;
Select Parents (&Parent1, &Parent2, Population, Populationsize);

if Random(100)>30 then
Child ←Crossover C.O(Parent1, Parent2);

else
Child ←Crossover C.D(Parent1, Parent2);

end
Evaluate Fitness (Child);
Population←Insert (Population, Child);
i++;

end
i=0;
While i< Pmutation do

Child = Parent1= ø;
Select Parents (&Parent1, Population, Populationsize);

if Random(100)>40 then
Child ← Mutate M.A (Parent1);

else
Child ← Mutate M.S (Parent1);

end
Evaluate Fitness (Child);

Population←Insert Population (Population, Child);
i++;

end
Population←Select Generation (Population, Populationsize);
Sbest←Get Best Solution (Population);

end
Return Sbest

Fig. 9 The pseudo-code of the EGA_OS
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Table 3 The parameters of the EGA_OS

Population
size

Maximum number
of generations

Crossover
ratio

Mutation
ratio

92 250 0.8 0.2

are rotationally shifted to the left. Figure 8 shows an example
of M.S.

4.6 Selection of chromosomes for the next
generation

Chromosomes for the next generation are selected in the
EGA_OS using a hybrid approach. The chromosomes are
ordered based on their fitness at first, and repetitive chro-
mosomes are then omitted. Only 10% of the chromosomes
with higher fitness values are then selected for the next gen-
eration. The remaining of the chromosomes are selected at
random because this method tried to maintain chromosome
dispersion in each iteration.

4.7 Termination condition

Termination condition ofGAdepends on the type of the prob-
lem and the external knowledge about it. In the EGA_OS, the
specified maximum number of generations is considered as
the termination condition, i.e., if the desired number of gen-
erations is reached, the best chromosome is found and the
algorithm is terminated.

Figure 9 shows the pseudo-code of the EGA_OS.
After the initial evaluation of the various mentioned

crossover and mutation operations for the OSSP, we reach
the conclusion that the mutation and crossover operations
substantially influence the achievement of optimal solutions.
The conclusion from the initial evaluation is that the One-
point andTwo-point crossover operations performbetter than
the other crossover operations. The greater utilization of the
mentioned mutation operations enhances scanning capabil-

ity of the GA in solving the OSSP. Therefore, the EGA_OS
pseudo-code algorithm is a combination of the two crossover
operations (the One-point and Two-point crossover opera-
tions), with theC.Ohaving a 70%chance, and theC.Dhaving
a 30% chance, of being selected for creating children. More-
over, both displacement and shift mutation operations are
selected to apply mutation, with an M.A and M.S having
a 60 and 40% chances, respectively, of being selected for
creating the children. In the initial evaluations, 60 and 70%
probabilities are obtained.

4.8 Parameter setting

The parameters of the EGA_OS are determined as below:
Crossover probability is equal to 0.8, and mutation prob-

ability is equal to 0.2. The number of generations is 250,
and the population size is considered to be 92 according to
Deb and Jain (2014). Table 3 shows the parameters of the
EGA_OS.

5 Evaluation of the proposed algorithm

This section discusses the evaluation of the EGA_OS using
different crossover and mutation operations to see for which
operations the EGA_OS provided optimal solutions. This
process is described in detail below. The C#.Net program-
ming language was used to implement the algorithms. The
algorithmswere executed on a computer equipped by Intel�
Pentium� 4 CPU 3.00GHz processor and 2.00GB of RAM.
In order to investigate the efficiency of the EGA_OS and the
effects of crossover and mutation operations on solving the
OSSP, 9 datasets in three different groups were designed.

The designed datasets were named Test_N_M, where N
is the number of jobs and M is the number of operations in
each job of the designed datasets. Table 4 shows the designed
datasets.

Table 4 The designed test
datasets

Groups of datasets Test Number of
jobs

Number of
operations

Initial
population

Number of
generations

Group 1 test datasets Test_4_4 4 4 100 500

Test_5_5 5 5 100 500

Test_6_6 6 6 100 1000

Group 2 test datasets Test_7_7 7 7 150 20,000

Test_8_8 8 8 150 3000

Test_10_10 10 10 150 4000

Group 3 test datasets Test_15_15 15 15 200 5000

Test_20_20 20 20 250 6000

Test_30_20 30 20 250 7000
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Table 5 Results of executing the EGA_OS on group one test datasets

Test_N_M LB UB CPUs MU CR

Test_4_4 287 774 18 MA C.O

287 775 17 C.D

287 826 19 C.S

287 868 20 C.R

Test_4_4 287 723 17 M.S C.O

295 750 18 C.D

317 781 18 C.S

313 815 20 C.R

Test_5_5 350 838 18 M.A C.O

371 918 18 C.D

356 1034 22 C.S

356 1048 22 C.R

Test_5_5 364 796 19 M.S C.O

350 899 20 C.D

400 1083 21 C.S

389 964 23 C.R

Test_6_6 436 1232 40 M.A C.O

439 1254 39 C.D

488 1396 47 C.S

487 1365 50 C.R

Test_6_6 477 1254 41 M.S C.O

445 1262 42 C.D

497 1643 45 C.S

486 1638 51 C.R

Bold indicates the highest fitness value

Table 5 shows the results of the execution of the EGA_OS
on the test datasets in group 1, where LB shows the high-
est fitness value, UB is the lowest fitness value, CPUs is the
time (in seconds) required for executing the algorithm, and
MU and CR are the type of mutation and crossover oper-
ation, respectively, employed in the EGA_OS. As shown
in Table 5, in group 1 dataset the use of the C.O yielded
better solutions compared to the other crossover opera-
tions. The M.S Mutation Operation together with the C.D
performed relatively better compared to the other opera-
tions.

Table 6 lists results of executing the EGA_OS on group
2 test datasets. Here too, the use of the C.O yielded better
solutions, and theM.A performed relatively better compared
to the M.S.

Table 7 illustrates the results of executing the EGA_OS on
group 3 test datasets. As observed in Table 7, once again
the use of the C.O and the M.A was more suitable and
yielded better solutions, whereas theM.Smutation operation
together with the C.O crossover operation performed poorly.
Moreover, the C.D performed better than the C.R and the
C.S.

Table 6 Results of executing the EGA_OS on group 2 test datasets

Test_N_M LB UB CPUs MU CR

Test_7_7 522 1513 123 MA C.O

559 1560 124 C.D

552 1841 160 C.S

536 1758 177 C.R

Test_7_7 654 1543 115 M.S C.O

552 1529 123 C.D

625 1794 123 C.S

588 1769 175 C.R

578 1584 202 C.O

578 1625 202 C.D

578 2074 272 C.S

633 2138 302 C.R

Test_8_8 613 1543 197 M.S C.O

582 1707 198 C.D

618 1959 216 C.S

608 2002 298 C.R

Test_10_10 635 2085 336 M.A C.O

672 2063 324 C.D

683 2527 476 C.S

661 2481 543 C.R

Test_10_10 652 1987 333 M.S C.O

653 2041 330 C.D

709 2537 381 C.S

759 2437 535 C.R

Bold indicates the highest fitness value

Figure 10 shows the fitness diagramof theEGA_OS for the
Test_7_7 dataset based on different crossover and mutation
operations (M.A).

Figures 11 and 12 show the dispersion diagrams for the
Test_8_8 dataset and Test_5_5, respectively. Population dis-
persion is always maintained in the EGA_OS. This is one of
the reasons for using the hybrid approach that prevented pre-
mature convergence of the chromosomes. Moreover, com-
parison of the dispersion diagrams of the various crossover
operations in Figs. 11 and 12 implies the C.R and C.S
crossover operations searched greater space of the problem
compared to the other crossover operations reason being they
generated more diverse chromosomes compared to the other
crossover operations but did not find better solutions than
the C.O crossover operation. The C.O crossover operation
generated more desirable chromosomes, and better solutions
compared to the other crossover operations were obtained
because it merged information that resulted from the two
parents better.

Figure 13 shows fitness comparison on Test_15_15 using
various crossover and mutation operations. As shown in
Fig. 13 the M.A mutation operation was more efficient com-
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Table 7 Results of executing the EGA_OS on group 3 test datasets

Test_N_M LB UB CPUs MU CR

Test_15_15 1256 3923 999 MA C.O

1303 4253 1034 C.D

1432 5585 1470 C.S

1422 6051 1802 C.R

Test_15_15 1358 3901 1047 M.S C.O

1403 4032 978 C.D

1708 5768 1209 C.S

1695 6043 1916 C.R

1694 4396 2801 C.O

1766 4790 2685 C.D

1909 6755 3014 C.S

1900 5064 4119 C.R

Test_20_20 1752 4458 2790 M.S C.O

1753 4806 2559 C.D

2141 8340 3231 C.S

2213 7449 5922 C.R

Test_30_20 2470 9483 7453 M.A C.O

2499 9565 7739 C.D

2922 11926 8577 C.S

2453 11629 12481 C.R

Test_30_20 2706 9483 6043 M.S C.O

2466 9483 9390 C.D

3413 11926 13424 C.S

3601 12121 20718 C.R

Bold indicates the highest fitness value

pared to the M.S mutation operation. Moreover, Fig. 13
indicates better solutions could be obtained by using theM.A
mutation operation together with the C.O crossover opera-
tion. By applying the M.A mutation operation, the generated
children are very similar to the parents. These children dif-
fered in only two genes, and this similarity to the parents gave
better parents a greater opportunity to create children, which
made it easier to obtain the solution in the problem space.
However, if the M.S mutation operation was used, children
very different from the parents could be created. This would
cause greater diversity in chromosomes, but, compared to the
M.A mutation operation, the solution would be found much
more slowly.

Figure 14 shows the Gantt chart of an example of open-
shop scheduling for the Test_6_6 dataset in which the C.O
and the M.A were used for solving the problem. Figure 15
shows the Gant chart of an example of open-shop scheduling
of the Test_7_7 dataset.

6 Computational results for the designed
test problems

For this study, 20 test datasets were considered to investigate
the efficiency of the EGA_OS and the effects of the selection
of crossover and mutation operators on solving the OSSP.
The test datasets are named as Test_N_M, where N was the
number of jobs and M was the number of operations of each
job in the dataset. The designed test datasets were divided
into three groups. The first group represented small systems,

Fig. 10 Fitness diagram of the EGA_OS for the Test_7_7 dataset, based on various crossover and mutation operations (M.A)
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Fig. 11 Dispersion diagram of the various crossover operations for the Test_8_8 dataset

Fig. 12 Dispersion diagram of the various crossover operations for the Test_5_5 dataset

the second group indicated medium systems, and the third
group represented large systems.

Table 8 presents results of executing the EGA_OS on
the test datasets of small, medium, and large systems and
compares these results with those of the ACO and ICAAlgo-
rithm. In Table 8, LB represents the highest fitness value,
UB the lowest fitness value, and CPUs the time (in seconds)
required for executing the algorithm. As shown in Table 8,

the EGA_OS could find more optimal solutions for all kinds
of problems compared to the other two algorithms and could
be executed in a shorter time.

Figures 16, 17, 18, 19, 20, and 21 compare thefitness of the
EGA_OS and those of ACO and the ICA algorithms for some
of the designed datasets. As evident from Figs. 16, 17, 18, 19,
20, and 21, EGA_OS could solve the problem considered for
this study efficiently and competewith compared algorithms.
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Fig. 13 Fitness diagram of various crossover and mutation operations for the Test_15_15 dataset

Fig. 14 Gantt chart of an example of open-shop scheduling for the Test_6_6 dataset

Fig. 15 Gantt chart of an example of open-shop scheduling for the Test_7_7 dataset

123



5110 A. A. Rahmani Hosseinabadi et al.

Table 8 Results of executing the EGA_OS, ACO, and ICA algorithms on various test data

Types of test data Problem (Test_N_M) EGA_OS ACO ICA

LB UB CPUs LB UB CPUs LB UB CPUs

Small test data set Test_2_2 132 215 6 132 215 4 132 215 6

Test_3_3 225 373 7 225 422 5 225 489 8

Test_4_4 287 669 18 318 733 15 306 788 19

Test_5_5 350 904 39 354 828 29 361 871 38

Test_6_6 471 1301 68 479 1297 53 473 1297 63

Test_7_7 514 1409 108 570 1760 92 566 1541 100

Medium test data sets Test_8_8 578 1472 153 578 1624 153 578 1624 154

Test_9_9 604 1863 188 647 1942 211 640 1979 223

Test_10_10 628 2015 266 705 2015 224 681 2060 247

Test_12_12 979 2751 632 957 3094 238 972 3068 248

Test_15_15 1256 3906 1017 1273 3906 937 1393 3906 1027

Test_18_18 1512 5088 1160 1568 5088 1049 1526 5088 1172

Test_20_20 1774 4597 1524 1776 4432 1275 1789 4342 1453

Large test data sets Test_25_25 2468 5681 2809 2544 5468 2300 2479 5513 2702

Test_30_20 2445 9483 5871 2448 9483 3143 2538 9483 5579

Test_30_25 2768 11,055 6981 2944 11,098 4609 2807 11,212 8150

Test_30_30 3134 10,555 8263 3213 1207 6386 3255 12,017 12,414

Test_40_20 3064 7722 6395 3067 7113 6277 3112 7694 9213

Tesr_40_25 3447 7911 9449 4458 8595 7310 3767 8686 12,808

Test_50_30 7342 19,653 50,050 8242 19,001 44,200 8765 20,155 52,650

Fig. 16 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Test_5_5 dataset

123



Extended Genetic Algorithm for solving open-shop scheduling problem 5111

Fig. 17 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Test_8_8 dataset

Fig. 18 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Test_18_18 dataset

The main objective of this assessment was to investigate
the convergence of the algorithm in achieving an optimal or
a near-optimal solution. In approximation algorithms, popu-
lation convergence had a direct impact on ending and finding
the optimal solution. Generally, some approximation algo-
rithms were converged in a lower number of repetitions and
this convergence may occur in an inappropriate space of

the problem, so that obtained solution was not optimal. In
addition, in some algorithm which emphasizes on popula-
tion diversity, population convergence occurs slowly and it
takes longer time. Thus, an algorithm is useful if it could
investigate more space of solutions in a shorter time and also
convergence occurs in a short time. Hence, it can generate
better solutions than other algorithms.
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Fig. 19 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Test_30_20 dataset

Fig. 20 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Tset_30_30 dataset

Generally, solutions’ diversity has a direct impact on
finding the optimal solution. If an algorithm investigates
more space of problem in a shorter time, and it gets more
time to converge, the chance of achieving optimum solution
increases.

7 Computational results for the benchmarks

This section provides some scenarios containing different
jobs and machines for solving the problem considered for
this study using the EGA_OS. The created scenarios were

divided into three groups according to the number of jobs
and scenario complexity. Table 9 shows these scenarios with
their number of jobs and machines.

The EGA_OS was tested on Taillard Benchmarks (Tail-
lard 1993). Tables 10 and 11 describe the obtained results
of Taillard Benchmark using determined parameters. As it
can be seen, the EGA_OS could obtain optimum solutions
in most benchmark instances and compete with compared
algorithms. The running time of all benchmark instances is
less than five minutes.

Figure 22 shows the best solution for the instance problem
of benchmark 10 × 10−2 obtained by the EGA_OS.
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Fig. 21 Fitness diagram of the
EGA_OS vs ICA and ACO for
the Test_40_20 dataset

Table 9 The classified instances

Classes Number
of jobs

Number of
machines

Representation

Small-sized instances 4 4 4 × 4

5 5 5 × 5

Medium-sized instances 7 7 7 × 7

10 10 10 × 10

Large-sized instances 15 15 15 × 15

20 20 20 × 20

8 Conclusion

In this paper, the effects of selected crossover and muta-
tion operators on the proposed algorithm (EGA_OS) for
solving the Open-Shop Scheduling Problem are investigated
and it has been proved that these operators have greatly
influenced the efficiency of the Genetic Algorithm. Also,
the proposed algorithm is compared with the other algo-
rithms, and the results showed the EGA_OS could find more
optimal solutions for all kinds of problems and could find
them in shorter computational times compared to the other
algorithms. In other words, applying the proposed Genetic
Algorithm (EGA_OS) for solving the Open-Shop Schedul-
ing Problem was largely dependent on selecting the type of

Table 10 Computational results for the Benchmark of Taillard (Taillard 1993) 4 × 4, 5 × 5, 7 × 7, and 10 × 10

Problem instance Optimal SA (Harmanani
and Ghosn 2016)

GA (Khuri and
Miryala 1999)

Hybrid GA
(Khuri and
Miryala 1999)

Hybrid GA (Fang
et al. 1994)

GA (Prins
2000)

EGA_OS

4 × 4 − 1 193 193 193 213 193 193 193

4 × 4 − 2 236 236 236 240 236 239 236

4 × 4 − 3 271 271 271 293 271 271 271

4 × 4 − 4 250 250 250 253 250 250 250

4 × 4 − 5 295 295 295 303 295 295 295

4 × 4 − 6 189 189 189 209 189 189 189

4 × 4 − 7 201 201 201 203 201 201 201

4 × 4 − 8 217 217 217 224 217 217 217

4 × 4 − 9 261 261 261 281 261 261 261

4 × 4 − 10 217 217 217 230 217 217 217

5 × 5 − 1 300 300 301 323 300 301 300
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Table 10 continued

Problem instance Optimal SA (Harmanani
and Ghosn 2016)

GA (Khuri and
Miryala 1999)

Hybrid GA
(Khuri and
Miryala 1999)

Hybrid GA (Fang
et al. 1994)

GA (Prins
2000)

EGA_OS

5 × 5 − 2 262 262 262 269 262 263 262

5 × 5 − 3 323 323 331 353 323 335 323

5 × 5 − 4 310 310 N/A N/A 310 316 310

5 × 5 − 5 326 326 N/A N/A 326 330 326

5 × 5 − 6 312 312 312 327 312 312 312

5 × 5 − 7 303 303 N/A N/A 303 308 303

5 × 5 − 8 300 300 N/A N/A 300 304 300

5 × 5 − 9 353 353 353 373 353 358 353

5 × 5 − 10 326 326 326 341 326 328 326

7 × 7 − 1 435 435 438 447 435 436 435

7 × 7 − 2 443 443 455 454 443 447 443

7 × 7 − 3 468 468 N/A N/A 468 472 468

7 × 7 − 4 463 463 N/A N/A 463 463 463

7 × 7 − 5 416 416 N/A N/A 416 417 416

7 × 7 − 6 451 451 N/A N/A 451 455 451

7 × 7 − 7 422 422 443 450 422 426 422

7 × 7 − 8 424 424 N/A N/A 424 424 424

7 × 7 − 9 458 458 465 467 458 458 458

7 × 7 − 10 398 398 405 406 398 398 398

10 × 10 − 1 637 637 667 655 637 637 637

10 × 10 − 2 588 588 N/A N/A 588 588 588

10 × 10 − 3 598 598 N/A N/A 598 598 598

10 × 10 − 4 577 577 586 581 577 577 577

10 × 10 − 5 640 640 N/A N/A 640 640 640

10 × 10 − 6 538 538 555 541 538 538 538

10 × 10 − 7 616 616 N/A N/A 616 616 616

10 × 10 − 8 595 595 N/A N/A 595 595 595

10 × 10 − 9 595 595 627 598 595 595 595

10 × 10 − 10 596 596 623 605 596 596 596

Table 11 Computational results for the Benchmark of Taillard (Taillard 1993) 15 × 15 and 20 × 20

Problem Instance Optimal SA (Harmanani
and Ghosn 2016)

GA (Khuri
and Miryala
1999)

Hybrid GA
(Khuri and
Miryala 1999

Hybrid GA
(Fang et al.
1994)

GA (Prins
2000)

AugNN (Colak
and Agarwal
2005)

EGA_OS

15 × 15 − 1 937 937 967 937 937 937 937 937

15 × 15 − 2 918 918 N/A N/A 918 918 918 918

15 × 15 − 3 871 871 904 871 871 871 871 871

15 × 15 − 4 934 934 969 934 934 934 934 934

15 × 15 − 5 946 946 N/A N/A 946 946 946 946

15 × 15 − 6 933 933 N/A N/A 933 933 933 933

15 × 15 − 7 891 891 N/A N/A 891 891 891 891

15 × 15 − 8 893 893 928 893 893 893 893 893

15 × 15 − 9 899 899 N/A N/A 899 899 899 899

15 × 15 − 10 902 902 N/A N/A 902 902 902 902

20 × 20 − 1 1155 1155 1230 1165 1155 1115 1115 1155

20 × 20 − 2 1241 1241 N/A N/A 1241 1241 1242 1241

20 × 20 − 3 1257 1282 1292 1257 1257 1257 1173 1257

20 × 20 − 4 1248 1274 N/A N/A 1248 1248 1248 1248

20 × 20 − 5 1256 1289 1315 1256 1256 1256 1256 1256

20 × 20 − 6 1204 1204 1266 1207 1204 1204 1204 1204
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Table 11 continued

Problem Instance Optimal SA (Harmanani
and Ghosn 2016)

GA (Khuri
and Miryala
1999)

Hybrid GA
(Khuri and
Miryala 1999

Hybrid GA
(Fang et al.
1994)

GA (Prins
2000)

AugNN (Colak
and Agarwal
2005)

EGA_OS

20 × 20 − 7 1294 1294 N/A N/A 1294 1294 1294 1294

20 × 20 − 8 1169 1169 N/A N/A 1173 1169 1173 1170

20 × 20 − 9 1289 1307 1339 1289 1289 1289 1289 1289

Fig. 22 Schedule for an instance of benchmark 10 × 10−2 with a makespan of 588

crossover and mutation operators. Employment of suitable
crossover and mutation operators in the EGA_OS led to a
goal-oriented dispersion of the chromosomes in the problem
space and to find better solutions. Results show that hybrid
selection in the Genetic Algorithm worked well for solving
the Open-Shop Scheduling Problem and that the use of the
One-point Crossover Operator together with the Displace-
ment Mutation Operator resulted in finding solutions better
and faster. However, applying different operators resulted
in increasing the time complexity of the proposed solution
method compared to the state-of-the-art methods. As a future
work, it is recommended to make some changes in the pro-
posed method that can parallelly work for different types
of mutation and crossover operators. Also, we can consider
more real assumptions in the model such as jobs release date
and synchronous processing cycles.
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