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Abstract
Absolute deviation is a commonly used risk measure, which has attracted more attentions in portfolio optimization. Most of
existing mean–absolute deviation models are devoted to stochastic single-period portfolio optimization. However, practical
investment decision problems often involve the uncertain dynamic information. Considering transaction costs, borrowing
constraints, threshold constraints, cardinality constraints and risk control, we present a novel multiperiod mean absolute
deviation uncertain portfolio selection model, which an optimal investment policy can be generated to help investors not
only achieve an optimal return, but also have a good risk control. In proposed model, the return rate of asset and the risk
are quantified by uncertain expected value and uncertain absolute deviation, respectively. Cardinality constraints limit the
number of risky assets in the optimal portfolio. Threshold constraints limit the amount of capital to be invested in each asset
and prevent very small investments in any asset. Based on uncertainty theories, the model is transformed into a crisp dynamic
optimization problem. Because of the transaction costs and cardinality constraints, the multiperiod portfolio selection is a
mix integer dynamic optimization problem with path dependence, which is “NP hard” problem that is very difficult to solve.
The proposed model is approximated to a mix integer dynamic programming model. A novel discrete iteration method is
designed to obtain the optimal portfolio strategy and is proved linearly convergent. Finally, an example is given to illustrate
the behavior of the proposed model and the designed algorithm using real data from the Shanghai Stock Exchange.

Keywords Uncertain modeling · Multiperiod portfolio optimization · Mean absolute deviation model · Uncertainty theory ·
The discrete iteration method

1 Introduction

Portfolio selection aims at choosing the proportions of vari-
ous securities tomake the portfolio better than any other ones
according to some criteria. These criteria will combine the
considerations of expected value and risk of the portfolio.
Markowitz (1952) proposed the well-known mean–variance
model by maximizing the expected return for a given risk
or minimizing the risk for a given expected return. After
Markowitz, variance is widely accepted as a risk measure,
andmost of the research is devoted to the extensions ofmean–
variance model. A typical extension is Konno and Yamazaki
(1991), which employed absolute deviation to measure the
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risk of the portfolio return and formulated a mean–absolute
deviation model. This model can cope with large-scale port-
folio selection because it can remove most of the difficulties
associated with the classical Markowitz’s model while main-
taining its advantages. When all the returns are normally
distributed random variables, the authors showed that the
mean–absolute deviation model gave essentially the same
results as the mean–variance model. One of the commonly
used downside risk measures is semi-variance originally
introduced in Markowitz (1959). Another one is semiabso-
lute deviation proposed by Speranza (1993), which can be
easily evaluated since it could be determined using linear
programming models.

InMarkowitz’s theoretical framework, an implicit assump-
tion is that future returns of securities can be correctly
reflected by past performance. In other words, security
returns should be represented by random variables whose
characteristics such as expected value and risk may accu-
rately be calculated based on the sample of available his-
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torical data. It keeps valid when large amounts of data are
available such as in the developed financialmarket. However,
investors often encounter the situation that there is a lack of
data about security returns just like in an emerging market.
In many cases, security returns are beset with ambiguity and
vagueness. In particularly, when little information is avail-
able, fuzzy approaches are, in general, more appropriate.
Thus, it is worthwhile to use fuzzy set theory to investigate
the uncertainty of financial markets. Following the widely
used fuzzy set theory in Zadeh (1965), researchers used the
fuzzy set theory to investigate portfolio selection problems
under uncertain environment. Numerous models have been
proposed by using different approaches.Qin (2017) proposed
a random fuzzy mean absolute deviation portfolio selection
model. Some researchers extend the single-period fuzzy port-
folio selection into multiperiod setting. By using experts’
judgments, Sadjadi et al. (2011) formulated a fuzzy mul-
tiperiod portfolio selection model with different rates for
borrowing and lending by using fuzzy set theory. Zhang et al.
(2012, 2014), and Liu et al. (2012, 2013) proposed sev-
eral kinds of multiperiod fuzzy portfolio selection models,
respectively. Zhang and Zhang (2014) proposed a multi-
period mean absolute deviation fuzzy portfolio selection
model with cardinality constraints.

Though possibility measure has been widely used in port-
folio selection, it has limitation. One great limitation is that
possibility measure is not self-dual. Using possibility mea-
sure which has no self-duality property, we can find that two
fuzzy events with different occurring chances may have the
same possibility value. In addition, whenever the possibil-
ity value of a portfolio returns greater than a target value
is lower than 1, the possibility value of the opposite event
(i.e., the portfolio return less than or equal to the target
value) is the maximum value of 1; or whenever the pos-
sibility value of a portfolio return less than or equal to a
target value is lower than 1, the possibility value of the
opposite event (i.e., the portfolio returns greater than the
target value) is the maximum value of 1. These results are
quite awkward and will confuse the decision maker. Thus,
Huang (2008) presented credibilitic mean–semi-variance
model, Li et al. (2010) proposed credibilitic cross-entropy
minimization model, Zhang and Liu (2014) proposed a cred-
ibiliticmultiperiodmean–variance portfolio selectionmodel.
Mehlawat (2016) proposed amultiperiodmean entropy cred-
ibilitic portfolio selection model.

Another alternative way to describe the subjective impre-
cise quantity is uncertainty theory proposed by Liu (2007)
by estimating indeterministic quantities subject to experts’
estimations. Based on this framework, much work is under-
taken to develop the theory and related practical applications.
Uncertainty theory is also applied to model the portfolio
selection. Huang (2012) established a risk index model for
uncertain portfolio selection and further employed the cri-

terion to consider a portfolio adjusting problem. Different
from a risk index model, Liu et al. (2012) presented a semi-
absolute deviation of an uncertain variable to measure risk
and formulated a mean–semiabsolute deviation criterion.
Qin and Kar (2013) formulated the uncertain counterpart
of mean–variance model. As extensions, Huang and Qiao
(2012) presented a risk index model for multiperiod case.
Different from these, Zhu (2010) applied uncertain optimal
control to model continuous-time problem, but Yao and Ji
(2014) considered the problem by using uncertain decision
making.

Although the case of a long-term investment horizon is
of greater importance in practice, much less has been done
in that area. The first formulation of the multiperiod port-
folio selection problem has already been given in the book
of Markowitz (1959). Although it is heavily discussed in
recent literature, to the best of our knowledge, a closed-form
solution is not available in the general case up to now.Closed-
form solutions are presented only under the assumption of
frictionless market, i.e., Li and Ng (2000) used dynamic pro-
grammingmethod to dealwith themultiperiodmeanvariance
portfolio selection problem by using the idea of embed-
ding the problem in a tractable auxiliary problem. Then,
they obtained breakthrough result, that is, the optimal mean–
variance portfolio policy and the efficient frontier; Zhu et al.
(2004) incorporated a control of the probability of bankruptcy
in the generalizedmean variance formulation formultiperiod
portfolio optimization; Yu et al. (2010), Yu andWang (2012)
discussed a dynamic portfolio optimization problemwith risk
control for the absolute deviation model; Wu and Li (2012)
investigate a non-self-financing portfolio optimization prob-
lem under the framework of multiperiodmean–variance with
Markov regime switching and a stochastic cash flow; Li
and Li (2012) represented a multiperiod portfolio optimiza-
tion problem for asset–liability management of an investor
who intends to control the probability of bankruptcy before
reaching the end of an investment horizon. Cui et al. (2012,
2014, 2017) studied the time-consistent optimal strategies
of the multiperiod mean–variance model. Gao et al. (2015)
considers the time cardinality constrained mean–variance
dynamic portfolio selection problem in markets with corre-
lated returns and inwhich the number of timeperiods to invest
in risky assets is limited. Zhou et al. (2016) propose a mul-
tiperiod portfolio optimization model with stochastic cash
flows. Chen et al. (2014, 2016) discussed the time-consistent
strategies for different portfolio optimizationmodels.Wuand
Zeng (2015) studied a generalizedmultiperiodmeanvariance
portfolio selection problem within the game theoretic frame-
work for a defined-contribution pension schememember. For
more general models, the solution is frequently determined
by a numerical procedure, i.e., van Binsbergen and Brandt
(2007) compared the numerical performance of value func-
tion iterations with portfolio weight iterations in the context
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of the simulation-based dynamic programming approach;
Mansini et al. (2007) presentedmultiperiodmeanCVaRport-
folio selection model; Gülpınar and Rustem (2007) extend
the multiperiod mean–variance optimization framework to
worst-case design with multiple rival return and risk sce-
narios; Yan et al. (2007), Yan and Li (2009) proposed a
hybrid genetic algorithm with particle swarm optimizer to
solve a class of multiperiod semi-variance portfolio selec-
tion with a four-factor futures price model and a multiperiod
semi-variance portfolio selection;Köksalan and Şakar (2016)
consider expected return, conditional value at risk, and liq-
uidity criteria in a multiperiod portfolio optimization setting
modeled by stochastic programming.

In many existing models are proposed on the framework
of Markowitz’s mean variance with cardinality constraints,
threshold constraints and so on. These real constraints come
from real-world practice where the administration of a port-
folio made up of many assets is clearly not desirable because
of transaction costs, complexity of management, or pol-
icy of the asset management companies. Because of its
practical relevance, this cardinality constrained model, and
some variations have been intensively studied in the last
decade. Especially from the computational viewpoint, some
researchers proposed exact solution methods, i.e., Bertsimas
and Shioda (2009); Li et al. (2006); Shaw et al. (2008); Mur-
ray and Shek (2012); Cesarone et al. (2013); Cui et al. (2013);
Sun et al. (2013); Le Thi et al. (2009), Le Thi and Moeini
(2014). Since exact solution methods are able to solve only
a fraction of practically useful cardinality constrained mod-
els, many heuristic algorithms have also been proposed, i.e.,
Fernández and Gómez (2007); Ruiz-Torrubiano and Suarez
(2010); Anagnostopoulos and Mamanis (2011); Woodside-
Oriakhi et al. (2011); Deng et al. (2012). In these studies, it
appears that the computational complexity for the solution
of the cardinality constrained model is much greater than the
one required by the classical Markowitz model or by sev-
eral other of its refinements. Indeed, the standard Markowitz
model is a convex quadratic programming problem,while the
cardinality constrained model is a mixed integer quadratic
programming problem which is a “NP hard” problem.

The contribution of this work is as follows. We originally
represent uncertain absolute deviation to measure portfolio
risk, and propose a new multiperiod mean absolute devi-
ation uncertain portfolio selection model with borrowing
constraints, transaction costs, threshold constraints and car-
dinality constraints. Based on uncertain theories, themodel is
converted to a crisp dynamic optimization problem. Because
of the transaction costs and cardinality constraints, the
multiperiod portfolio selection is amix integer dynamic opti-
mization problemwith path dependence, which is “NP hard”
problem that is very difficult to solve. The proposed model is
approximated to amix integer dynamic programmingmodel.
A novel discrete iteration method is designed to obtain the

optimal portfolio strategy and is proved linearly convergent.
Finally, we give an example to illustrate the idea of themodel
and demonstrate the effectiveness of the designed algorithm.

This paper is organized as follows. In Sect. 2, several con-
cepts, properties of uncertain measure, the definitions of the
uncertainmean and the uncertain absolute deviation are intro-
duced, respectively. In Sect. 3, the borrowing constraints,
transaction costs, threshold constraints and cardinality con-
straints are formulated into the multiperiod portfolio, and a
newmultiperiod uncertain portfolio selectionmodelwith real
constraints is proposed. A novel discrete iteration method is
proposed to solve it in Sect. 4. In Sect. 5, a numerical exam-
ple is also presented to illustrate the modeling idea and the
effectiveness of the designed algorithm. Finally, some con-
clusions are given in Sect. 6.

2 Preliminaries

Let Γ be a nonempty set, and let A be a σ -algebra over Γ .
Each element of A is called an event. A set function is called
an uncertain measure (Liu 2007) if and only if it satisfies

Axiom 1. (Normality) M{Γ } = 1;
Axiom 2. (Self-duality) M{A} + M{Ac} = 1 for any event

A;
Axiom 3. (Subadditivity) M(∪i Ai ) ≤ ∑∞

i=1M(Ai ) for any
countable sequence of events {Ai}.

Definition 1 (Liu 2007) Let Γ be a nonempty set, and let A
be a σ -algebra over it. If M is an uncertain measure, then the
triplet (Γ , A, M) is called an uncertainty space.

Definition 2 (Liu 2007) Uncertain variable ξ is defined as a
measurable function from an uncertainty space (Γ , A, M) to
the set of real numbers �. That is, for any Borel set B, we
have

{γ ∈ �, ξ(γ ) ∈ B} ∈ A (1)

Definition 3 (Liu 2007) Let ξ be an uncertain variable. Then
the expected value of ξ is defined as

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx (2)

provided that at least one of the two integrals is finite.

Based on Definition 3, Liu (2009) deduced the following
two theorems.

Theorem 1 (Liu 2009) Let ξ be an uncertain variable with
finite expected value. Then, for any real numbers a and b, it
holds that
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E[a ξ + b] = a E[ξ ] + b (3)

Theorem 2 (Linearity of Expected Value Operator, Liu
2009) Let ξ and η be independent uncertain variables with
finite expected values. Then, for any real numbers a and b,
it holds that

E(aξ + bη) = aE(ξ) + bE(η) (4)

Definition 4 (Liu 2007) An uncertain variable ξ can be char-
acterized by an uncertainty distribution which is a function
�: � → [0, 1] is defined as

�(t) = M{ξ ≤ t} (5)

Definition 5 Let ξ be an uncertain variable with finite
expected value e. Then the absolute deviation of ξ is defined
by

AD(ξ) = E[|ξ − e|] (6)

If ξ is an uncertain variable with expected value e, then
its absolute deviation is used to measure the spread of its
distribution about e.

Theorem 3 Let ξ be an uncertain variable with finite
expected value e. Then its uncertain absolute deviation is
defined as

AD(ξ) =
∫ +∞

e
(1 − �(r))dr +

∫ e

−∞
�(r)dr (7)

Proof From Definitions 5 and 3, it follows that

AD(ξ) = E[|ξ − e|]
=

∫ +∞
0

M{|ξ − e| ≥ x}dx −
∫ 0

−∞
M{|ξ − e| ≤ x}dx

=
∫ +∞
0

M{|ξ − e| ≥ x}dx

=
∫ +∞
0

M{{ξ − e ≥ x}
⋃

{ξ − e ≤ −x}}dx

=
∫ +∞
0

M{{ξ ≥ x + e}
⋃

{ξ ≤ e − x}}dx

=
∫ +∞
e

(1 − M{ξ ≤ r})dr +
∫ e

−∞
M{ξ ≤ r}dr

=
∫ +∞
e

(1 − �(r))dr +
∫ e

−∞
�(r)dr

Thus, the proof of the theorem is ended. 	

Theorem 4 Let ξ be an uncertain variable with finite
expected value e. Then for any nonnegative real numbers
λ, it holds

AD(λξ) = λAD(ξ) (8)

Proof From Definition 5, it follows that

AD(λξ) = E[|λξ − λe|] = λE[|ξ − e|]
= λAD(ξ)

Thus, the proof of the theorem is ended. 	

Theorem 5 Let ξ be an uncertain variable with finite
expected value e. Then for any nonnegative real numbers
λ and for any real numbers η, it holds

AD(λξ + η) = λAD(ξ) (9)

Proof From Definition 5, it follows that

AD(λξ + η) = E[|λξ + η − (λe + η)|]
= E[λ |ξ − e|] = λE[|ξ − e|]
= λAD(ξ)

Thus, the proof of the theorem is ended. 	

If r = (a, α, β) be a triangular uncertain variable, then

uncertainty distribution Φ(r) can be described as:

�(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if r ≤ a − α,
r−(a−α)

2α , if a − α ≤ r ≤ a,
r+β−a

2β , if a ≤ r ≤ a + β,

1, if r ≥ a + β.

(10)

The triangle uncertain variable is denoted by r(a, α, β),
where α ≥ 0, β ≥ 0.

Theorem 6 If r = (a, α, β) be a triangle uncertain variable,
the expected value of r can be given by:

E(r) = a + β − α

4
(11)

Proof From Definition 3 and Theorem 6, it follows that

E(r) =
∫ +∞

0
M{r ≥ x}dx −

∫ 0

−∞
M{r ≤ x}dx

=
∫ +∞

0
(1 − M{r ≤ x})dx −

∫ 0

−∞
M{r ≤ x}dx

=
∫ +∞

0
(1 − �(r))dr −

∫ 0

−∞
�(r)dr (12)

According to Eq. (10), the right-hand side of Eq. (12) is

∫ +∞

0
(1 − �(r))dr −

∫ 0

−∞
�(r)dr =

∫ a−α

0
(1 − 0)dr
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+
∫ a

a−α

(

1 − r − (a − α)

2α

)

dr

+
∫ a+β

a

(

1 − r + a + β

2β

)

dr +
∫ +∞

a+β

(1 − 1)dr

= a − α + 3α

4
+ β

4
= a + β − α

4
(13)

According to Eqs. (12) and (13), we can get

E(r) = a + β − α

4

Thus, the proof of the theorem is ended. 	

Theorem 7 Let r = (a, α, β) be a triangle uncertain vari-
able, which E(r) = a + β−α

4 . Then, the uncertain absolute
deviation of ξ can be given by:

AD(r) =

⎧
⎪⎨

⎪⎩

4a2−12(a−α)a+4a(a+β)−6(a−α)(a+β)+9(a−α)2+(a+β)2

32α ,

if β ≤ α
(3β+α)2

32β , if β ≥ α

(14)

Proof From Theorem 3, it follows that

AD(r) =
∫ +∞

e
(1 − �(r)dr +

∫ e

−∞
�(r)dr

=
∫ +∞

a+ β−α
4

(1 − �(r))dr +
∫ a+ β−α

4

−∞
�(r)dr (15)

If β ≤ α, the right-hand side of Eq. (15) is

∫ +∞

a+ β−α
4

(1 − �(r))dr +
∫ a+ β−α

4

−∞
�(r)dr =

∫ b

a+ β−α
4

(

1 − r − (a − α)

2α

)

dr +
∫ a+β

a

(

1 − r + a + β

2β

)

dr

+
∫ +∞

a+β

(1 − 1)dr +
∫ a

0
0dr +

∫ a+ β−α
4

a−α

r − (a − α)

2α
dr

= 20a2 − 28(a − α)a − 12a(a + β) + 10(a − α)(a + β) + 9(a − α)2 + (a + β)2

64α

+ β

4
+ (3α + β)2

64α

= 4a2 − 12(a − α)a + 4a(a + β) − 6(a − α)(a + β) + 9(a − α)2 + (a + β)2

32α
(16)

If β ≥ α, the right-hand side of Eq. (15) is

∫ +∞

a+ β−α
4

(1 − �(r))dr +
∫ a+ β−α

4

−∞
�(r)dr

=
∫ a+β

a+ β−α
4

(

1 − r + β − a

2β

)

dr

+
∫ +∞

a+β

(1 − 1)dr +
∫ a−α

0
0dr +

∫ a

a−α

r − (a − α)

2α
dr

+
∫ a+ β−α

4

a

r − (a − α)

2α
dr

= (3β + α)2

64β
+ (3β + α)2

64β

= (3β + α)2

32β
(17)

According to Eqs. (16) and (17), we can get

AD(r) =

⎧
⎪⎨

⎪⎩

4a2−12(a−α)a+4a(a+β)−6(a−α)(a+β)+9(a−α)2+(a+β)2

32α ,

if β ≤ α
(3β+α)2

32β , if β ≥ α

Thus, the proof of the theorem is ended. 	


3 Themultiperiod portfolio selectionmodel

Assume that there are n risky assets and one risk-free asset
in financial market for trading. An investor wants to allocate
his/her initial wealthW1 among n+1 assets at the beginning
of period 1, and obtains the final wealth at the end of period
T . He/She can reallocate his/her wealth among the n + 1
assets at the beginning of each of the following T consecu-
tive investment periods. Suppose that the return rates of the n
risky assets at each period are denoted as triangular uncertain
variables. For the sake of description, let us first introduce
the following notations. Let xi0 be the initial investment pro-

portion of risky asset i at period 0, xit be the investment
proportion of risky asset i at period t, x f t be the investment
proportion of risk-free asset at period, xt be the portfolio
at period t , where xt = (x f t , x1t , x2t , . . . , xnt ), xbf t be the
lower bound of the investment proportion of risk-free asset
at period t , where x3f t ≥ xbf t , Rit be the return of risky asset i
at period t, rpt be the return rate of the portfolio xt at period
t, rbt be the borrowing rate of the risk-free asset at period
t, rlt be the lending rate of the risk-free asset at period t, uit
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be the upper bound constraints of xit , rNt be the net return
rate of the portfolio xt at period t,Wt be the crisp form of the
holding wealth at the beginning of period t, cit be the unit
transaction cost of risky asset i at period t, K be the desired
number of risky assets in the portfolio at period t .

3.1 Return, risk and real constraints

In this section, we employ the uncertain mean value of the
return on the portfolio at each period to measure the return of
portfolio.The riskon the return rate of portfolio at eachperiod
is quantified by the uncertain absolute deviation. The return
rate of security i at period t, Rit = (ait , αi t , βi t ), is triangular
uncertain variable for all i = 1, . . ., n and t = 1, . . .T .

The expected return rate of the portfolio xt = (x f t , x1t , x2t ,
. . . , xnt )′ at period t can be expressed as

rpt =
n∑

i=1

E(Rit )xit + r f t

(

1 −
n∑

i=1

xit

)

=
n∑

i=1

(

ait + βi t − αi t

4

)

xit

+ r f t

(

1 −
n∑

i=1

xit

)

, t = 1, . . . , T (18)

where r f t =

⎧
⎪⎪⎨

⎪⎪⎩

rlt , 1 −
n∑

i=1
xit ≥ 0

rbt , 1 −
n∑

i=1
xit ≤ 0

, rbt ≥ rlt . When

1 − ∑n
i=1 xit ≥ 0, it denotes that lending is allowed on

the risk-free asset; When 1−∑n
i=1 xit ≤ 0, it represents that

borrowing is allowed on the risk-free asset.
Let the preset value be xbf t , where x

b
f t ≤ 0, the borrowing

constraint of risk-free asset at period t is

x f t = 1 −
n∑

i=1

xit ≥ xbf t (19)

We assume in the sequel that the transaction costs at period
t is a V shape function of difference between the t th period
portfolio xt = (x f t , x1t , x2t , . . . , xnt ) and the t-1th period
portfolio x(t−1) = (x f (t−1), x1(t−1), x2(t−1), . . . , xn(t−1)).
The transaction cost for asset i at period t can be expressed
by

Cit = cit
∣
∣xit − xi(t−1)

∣
∣ (20)

Hence, the total transaction costs of the portfolio xt =
(x1t , x2t , . . . , xnt ) at period t can be represented as

Ct =
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣, t = 1, . . . , T (21)

Thus, the net expected return rate of the portfolio xt at
period t can be denoted as

rNt =
n∑

i=1

n∑

i=1

(

ait + βi t − αi t

4

)

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣.t = 1, . . . , T (22)

Then, the crisp form of the holdingwealth at the beginning
of the period t can be written as

Wt+1 = Wt (1 + rNt )

= Wt

(

1 +
n∑

i=1

(

ait + βi t − αi t

4

)

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

)

, t = 1, . . . , T (23)

The absolute deviation of the portfolio xt can be expressed
as

ADt (xt ) = ADt (r1t x1t + r2t x2t + · · · + rnt xnt ) (24)

Threshold constraints limit the amount of capital to be
invested in each stock and prevent very small investments in
any stock. The threshold constraints of multiperiod portfolio
selection can be expressed as

0 ≤ xit ≤ uit (25)

where uit is the upper bound of xit .
To formulate cardinality constraints into the multiperiod

portfolio model, zero-one decision variables are added as:

zit =
⎧
⎨

⎩

1 if any of asset i of period
t (i= 1, . . . ,n; t= 1, . . . ,T ) is held

0 otherwise
(26)

where
∑n

i=1 zit ≤ K .

3.2 The basic multiperiod portfolio optimization
models

When the investors can give a tolerable level of risk at period
t , andwant tomaximize the terminal wealth at the given level
of risk, the multiperiod uncertain mean absolute deviation
model with real constraints is as follows:

max
T


t=1

[
n∑

i=1

(

ait + βi t − αi t

4

)

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

]
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s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt+1 =
(

1 +
(

n∑

i=1

(
ait + βi t−αi t

4

)
xit

+r f t

(

1 −
n∑

i=1
xit

)

−
n∑

i=1
cit

∣
∣xit − xi(t−1)

∣
∣
))

Wt (a)

ADt (r1t x1t + r2t x2t + · · · + rnt xnt ) ≤ AD0t (b)

1 −
n∑

i=1
xit ≥ xbf t (c)

n∑

i=1
zit ≤K , zit ∈ {0, 1} (d)

0 ≤ xit ≤ uit zi t , i = 1, . . . , n, t = 1, . . . , T (e)

(27)

whereAD0t denotes themaximum risk level the investors can
tolerate. The model (27) consists of an objective, namely the
maximization of the investors’ terminal wealth. Constraint
(a) denotes the wealth accumulation constraint; constraint
(b) states that the absolute deviation of the portfolio xt can-
not exceed the given minimum risk AD0t at each period;
constraint (c) indicates that the investment proportion of risk-
free asset at period t must exceed the given lower bound;
constraint (d) represents the desired number of assets in the
portfolio must not exceed a given value K ; constraint (e)
states the lower and upper of xit .

According to Qin et al. (2011), if r1t , r2t , . . ., rnt are inde-
pendent triangular uncertain variables, and xit ≥ 0, i =
1, . . ., n,

ADt (r1t x1t + r2t x2t + · · · + rnt xnt )

=
n∑

i=1

xitADt (rit ). (28)

where

AD(rit )

=

⎧
⎪⎪⎨

⎪⎪⎩

4a2i t−12(ait−αi t )ait+4ait (ait+βi t )

32α

− 6(ait−αi t )(ait+βi t )+9(ait−αi t )
2+(ait+βi t )

2

32α , if βi t ≤ αi t
(3βi t+αi t )

2

32βi t
, if βi t ≥ αi t

.

(29)

According to Eq. (28), the Model (27) can be turned into
as follows:

max
T


t=1

[
n∑

i=1

[

ait + βi t − αi t

4

]

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

]

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt+1 =
(

1 +
(

n∑

i=1

(
ait + βi t−αi t

4

)
xit + r f t

(

1 −
n∑

i=1
xit

)

−
n∑

i=1
cit

∣
∣xit − xi(t−1)

∣
∣
))

Wt

n∑

i=1
ADt (rit )xit ≤ AD0t

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤K , zit ∈ {0, 1}

0 ≤ xit ≤ uit zi t , i = 1, . . . , n, t = 1, . . . , T

(30)

4 Solution algorithm

In this section, the multiperiod mean absolute deviation
uncertain portfolio selection model with real constraints will
be approximated into a mix integer dynamic programming
problem with linear inequality constraints. A novel discrete
iteration method will be proposed to solve the problem, and
will be proved the linear convergence.

4.1 The proposedmodel approximated to dynamic
programming problem

The sub-problem of Model (30) at period t is as follows:

max
n∑

i=1

[

ait + βi t − αi t

4

]

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
ADt (rit )xit ≤ AD0t

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤ K , zit ∈ {0, 1}, i = 1, . . . , n

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(31)

Let xit−1 = xit−1, where xit−1 is preset value,
∑n

i=1
xit−1 = 1 − xbf t , the Model (30) can be approximated into
the following model:
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max
T


t=1

[
n∑

i=1

[

ait + βi t − αi t

4

]

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

]

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt+1 = (1 +
(

n∑

i=1

(
ait + βi t−αi t

4

)
xit + r f t (1 −

n∑

i=1
xit ) −

n∑

i=1
cit

∣
∣xit − xi(t−1)

∣
∣
)

)W

n∑

i=1
ADt (rit )xit ≤ AD0t

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤ K

zit ∈ {0, 1}, i = 1, . . . , n
0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(32)

The sub-problem of model (32) at period t is as follows:

max

[
n∑

i=1

[

ait + βi t − αi t

4

]

xit + r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

]

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
ADt (rit )xit ≤ AD0t

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤ K , zit ∈ {0, 1}, i = 1, . . . , n

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(33)

Theorem 8 Let the optimal solutions and objective func-
tion values of Model (31) and Model (33), respectively be
x1∗,G(x1∗), and x2∗, F(x2∗). Then G(x1∗) − G(x2

∗
) ≤

4maxni=1{cit }(1 − xbf t ).

Proof Because the feasible solution set of the Model (31) is
same as Model (33), x1∗ and x2∗ are the feasible solutions
of Model (31) and Model (33), respectively. Then,

G(x1∗) ≥ G(x2∗) and F(x2∗) ≥ F(x1∗)
then G(x1∗) + F(x2∗) ≥ G(x2∗) + F(x1∗)
so

G(x1∗) − G(x2∗) + F(x2∗) − F(x1∗) ≥ 0 (34)

The left-hand side of Eq. (34) is

G(x1∗) − G(x2∗) + F(x2∗) − F(x1∗)

=
[

n∑

i=1

cit
∣
∣
∣x1∗i t − xi(t−1)

∣
∣
∣ −

n∑

i=1

cit
∣
∣
∣x1∗i t − xi(t−1)

∣
∣
∣

]

+
[

n∑

i=1

cit
∣
∣
∣x2∗i t − xi(t−1)

∣
∣
∣ −

n∑

i=1

cit
∣
∣
∣x2∗i t − xi(t−1)

∣
∣
∣

]

≤ 2
n∑

i=1

cit
∣
∣xi(t−1) − xi(t−1)

∣
∣ (35)

Because xi(t−1) ≥ 0, xit ≥ 0,

2
n∑

i=1

cit
∣
∣xi(t−1) − xi(t−1)

∣
∣ ≤ 2

n∑

i=1

cit xi(t−1)

+ 2
n∑

i=1

cit xi(t−1)

= 2
n

max
i=1

{cit }
n∑

i=1

xit + 2
n

max
i=1

n∑

i=1

xi(t−1)

≤ 2
n

max
i=1

{cit }(1 − xbf t ) + 2
n

max
i=1

{cit }(1 − xbf t )

= 4
n

max
i=1

{cit }(1 − xbf t )

So G(x1∗) − G(x2
∗
) ≤ 4maxni=1{cit }(1 − xbf t ).

Which ends the proof.

Because maxni=1{cit } << rit , where asset i ∈ efficient
asset set of portfolio,

4maxni=1{cit }(1 − xbf t ) is small, and G(x1∗) − G(x2
∗
) is

also small.
If cit = 0.003, xbf t = −0.5,G(x1∗) − G(x2

∗
) ≤

4maxni=1{cit }(1 − xbf t ) ≤ 4 × 0.003 × 1.5 = 0.018.
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4.2 The smallest and biggest value of state variable
at every period

In Model (32), investors can choose Wt between Wmin
t and

Wmax
t .Wmin

t and Wmax
t can be, respectively, obtained as fol-

lows:
The investor considers to maximize the expected return of

the portfolio at period t .

max
n∑

i=1

[

ait + βi t − αi t

4

]

xit + r f t

⎛

⎝1 −
n∑

i=1

xit

⎞

⎠

−
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

s.t

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤ K , zit ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T

0 ≤ xit ≤ uit zi t , i = 1, . . . , n, t = 1, . . . , T

(36)

Let yit = ∣
∣xit − xi(t−1)

∣
∣. Then the Model (36) can be

turned into as follows.

max
n∑

i=1

[

ait + βi t − αi t

4

]

xit

+ r f t

(

1 −
n∑

i=1

xit

)

−
n∑

i=1

cit yit

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
n∑

i=1
xit ≥ xbf t

yi t ≥ xit − xi(t−1)

yi t ≥ −(xit − xi(t−1))
n∑

i=1
zit ≤ K , zit ∈ {0, 1}, i = 1, . . . , n

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(37)

xmax ∗
t (the optimal solution xt = (x f t , x1t , x2t , . . . , xnt )′)
can be obtained solving Model (37) by the CPLEX. rmax

Nt

(the biggest of
∑n

i=1 [ait + βi t−αi t
4 ]xit +r f t (1−∑n

i=1 xit )−∑n
i=1 cit yit ) can also be obtained. Then, Wmax

t+1 can be
obtained as follows:

Wmax
t+1 = Wmax

t

⎛

⎝1 +
n∑

i=1

[

ait + βi t − αi t

4

]

xmax
i t

+ r f t

⎛

⎝1 −
n∑

i=1

xmax
i t

⎞

⎠ −
n∑

i=1

cit y
max
i t

⎞

⎠ , t = 1, .. . ., T

(38)

where W1 is initial wealth, which is preset value.

The biggest value of the absolute deviation of the port-
folio selection at period t(

∑n
i=1 x

max
i t ADt (rit )) can be also

obtained.
The investor only considers tominimize the absolute devi-

ation of the portfolio at period t , that is, the smallest value of
the rNt can be obtained as follows:

min
n∑

i=1

ADt (rit )xit

s.t

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤ K , zit ∈ {0, 1}, i = 1, . . . , n

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(39)

xmin ∗
t (the optimal solution xt = (x f t , x1t , x2t , . . . , xnt )′)
can be obtained solving the Model (39) by the CPLEX.
Simultaneously, rmin

Nt (the smallest of
∑n

i=1[ait + βi t−αi t
4 ]

xit + r f t (1 − ∑n
i=1 xit ) − ∑n

i=1 cit
∣
∣xit − xi(t−1)

∣
∣) is also

obtained. Then, Wmin
t+1 can be obtained as follows:

Wmin
t+1 = Wmin

t

⎛

⎝1 +
n∑

i=1

[

ait + βi t − αi t

4

]

xmin
i t

+ r f t

⎛

⎝1 −
n∑

i=1

xmin
i t

⎞

⎠ −
n∑

i=1

cit
∣
∣
∣xmin
i t − xmin

i(t−1)

∣
∣
∣

⎞

⎠ ,

t = 1, .. . ., T (40)

where W1 is initial wealth, which is preset value.
The smallest value of the absolute deviation of the port-

folio selection at period t(
∑n

i=1 x
min
i t ADt (rit )) can be also

obtained.

4.3 The discrete iterationmethod

In this section, the max-plus algebra, which is proposed by
Heidergott et al. (2006), will be used. The method solving
the longest path of the multiperiod weighted digraph, which
is from the starting point to the ending point, will be pro-
posed, and some definitions will be introduced first. Then,
the method of finding the longest path of the multiperiod
weighted digraph can be obtained. Finally, k + 1th iteration
method will be presented.

Definition 6 A semi-field (or semi-ring) is a triplet A =
{Q,⊕,⊗} consisting of nonempty setQ and twobinary oper-
ations⊕ and⊗, calledmodi-addition andmodi-multiplication,
respectively, defined on Q, such that for all a1, a2, a3 in Q

(i) each of the operations ⊕ and ⊗ is commutative

a1 ⊕ a2 = a2 ⊕ a1, a1 ⊗ a2 = a2 ⊗ a1
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(ii) each of the operations ⊕ and ⊗ is associative

(a1 ⊕ a2) ⊕ a3 = a1 ⊕ (a2 ⊕ a3), (a1 ⊗ a2) ⊗ a3

= a1 ⊗ (a2 ⊗ a3)

(iii) the operation ⊗ is distributive with respect to the oper-
ation ⊕

a1 ⊗ (a2 ⊕ a3) = a1 ⊗ a2 ⊕ a1 ⊗ a3

(iv) there exists an element in Q which is the zero element,
denoted by ε, such that for all a in Q, we have ε ⊕a =
a, ε ⊗ a = ε

If there exists an element denoted by e in a semi-field
A = {Q,⊕,⊗}, such that for all ain Q, we have e ⊗
a=a
then e is called an identity element of the semi-field.

Definition 7 a1, a2 ∈ R, in semi-field A = {R,max,+},
then ε = −∞ and e = 0.

Definition 8 Let us consider matrices An×n = (ai j )n×n,

Bn×n = (bi j )n×n, ai j , bi j ∈ R, in semi-field A =
{R,max,+}. Then C = A ⊕ B,Cn×n = (ci j )n×n , where
ci j = max{ail , bl j }.
Definition 9 Let us consider matrices An×m = (ai j )n×m,

Bm×k = (bi j )m×k, ai j , bi j ∈ R, in semi-field A =
{R,max,+}. Then C = A ⊗ B,Cn×k = (ci j )n×k , where
ci j = maxml=1{ail + bl j }.

The Model (32) is a mix integer dynamic programming
problem with linear inequality constraints, the optimal solu-
tion can’t be obtained by the dynamic programming recursive
relationship. In this section, a novel discrete iteration method
is proposed. The method is as follows: Firstly, according
to the network approach, discretizes the state variables and
transforms the model into multiperiod weighted digraph.
Secondly, the max-plus algebra is used to obtain the largest
path that is the admissible solution. Thirdly, based on the
admissible solution, continues iterating until the two admis-
sible solutions are real near. Finally, the method is proved
linearly convergent.

The state variable Wt of the period t is discretized into
four intervals of same widths from the smallest value to the
biggest one. It means that there are five discrete values for
the state variable in every period. In this way, Model (32) is
transformed into a multiperiod weighted digraph as shown in
Fig. 1. The investment period, the value of the objective func-
tion of the period t and a discrete value of the state variable
are represented by the stage, the weight of the period t and
the point of the multiperiod weighted digraph, respectively.

In this section, a discrete iterationmethodwill be proposed
to solve the Model (32).

Step 1: The discrete state variables at period t (t =
2, .. . ., T + 1) can be obtained by discretizing the interval
value of Wmax

t − Wmin
t into four equalities. That is

Wit = Wmin
t + (Wmax

t − Wmin
t )(i − 1)/4, i = 1, . . . , 5

Step 2: The weight of the arcs in Fig. 1 can be obtained
following three steps:

Step2.1:Thenet expected returnof theportfolio rN1(1, j),
j = 1, .. . ., 5, can be obtained as follows:

rN1(1, j) = Wj2/W1 − 1

Step 2.2: The net expected return of portfolio rNt ( j, k)
at period t , which j is the number of the point at period
t, j = 1, .. . ., 5 and k is the number of the point at period
t + 1, k = 1, .. . ., 5, can be obtained as follows:

rNt ( j, k) = Wkt+1/Wjt − 1

Step 2.3: Theweights of the side at period t , which the val-
ues of the objective function F1(1, j) and Ft ( j, k) in Fig. 1,
can be obtained as follows:

When rNt (k, l) is known, the sub-problem at period t of
the Model (32) can be turned into

max
n∑

i=1

[

ait + βi t − αi t

4

]

xit −
n∑

i=1

cit
∣
∣xit − xi(t−1)

∣
∣

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

[
ait + βi t−αi t

4

]
xit

−
n∑

i=1
cit |xit − xit−1| ≥ rNt (k, l)

1 −
n∑

i=1
xit ≥ xbf t

n∑

i=1
zit ≤K , zit ∈ {0, 1}

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(41)

Let yit = ∣
∣xit − xi(t−1)

∣
∣. Then the Model (41) can be

turned into as follows.

max
n∑

i=1

[

ait + βi t − αi t

4

]

xit −
n∑

i=1

cit yit
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Fig. 1 The multiperiod
weighted digraph

1W

12W
13W

53W52W

... ...

TW1 11 +TW

15 +TWTW5

... ...

s.t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

i=1

[
ait + βi t−αi t

4

]
xit + r f t

(

1 −
n∑

i=1
xit

)

−
n∑

i=1
cit yit

)

≥ rNt (k, l)

1 −
n∑

i=1
xit ≥ xbf t

yi t ≥ xit − xi(t−1)

yi t ≥ −(xit − xi(t−1))
n∑

i=1
zit ≤K , zit ∈ {0, 1}

0 ≤ xit ≤ uit zi t , i = 1, . . . , n

(42)

x∗
t (the optimal solution xt = (x f t , x1t , x2t , . . . , xnt )′) can be
obtained solving the Model (42) by the CPLEX. Simultane-
ously, the objective function value Ft ( j, k) can be obtained
as follows:

Ft ( j, k) =
n∑

i=1

[

ait + βi t − αi t

4

]

x∗
i t −

n∑

i=1

cit y
∗
i t .

Step 3: Calculation of the longest path of the multiperiod
weighted digraph

According to Definition 9, the longest path F (1) of the
multiperiod weighted digraph of the first iteration can be
obtained as follows:

F (1) = F (1)
1 ⊗ F (1)

2 ⊗ · · · ⊗ F (1)
T (43)

where F (1)
1 = (F (1)(1, j))1×5, F

(1)
2 = (F (1)

2 (i, j))5×5, .. . .,

F (1)
T = (F (1)

T (i, j))5×5.
Step 4: The discrete iteration method k+1th iteration can

be described as follows:
Let the longest path of the kth iteration be W1 →

W (k)
i22

→ W (k)
i33

→ · · · → W (k)
iT+1T+1. The optimal solutions

of the longest path of Fig. 1 are also feasible solutions of
the multiperiod mean–absolute deviation portfolio selection
model. Based on the (W1,W

(k)
i22

,W (k)
i33

, . . . ,W (k)
iT+1T+1), the

state variables from period 1 to period T are discretized into
four intervals as following three steps.

Step 4.1: Wmin
2 and W (k)

i22
,W (k)

i22
and Wmax

2 are discretized
into two same internals, respectively. The five discrete points

of S2, i.e., Wmin
2 ,W (k+1)

22 ,W (k+1)
i12

,W (k+1)
32 ,Wmax

2 can be
obtained.

Step 4.2: Based on (W (k)
i33

, . . . ,W (k)
iT+1T+1), using the same

method, the state variables from period 3 to period T + 1 are
discretized into the five points, respectively. The wealth of
period tcan also be obtained.

Step 4.3: The longest path of the k+1th iteration F (k+1)

and another feasible solution can be obtained as follows:

F (k+1) = F (k+1)
1 ⊗ F (k+1)

2 ⊗ · · · ⊗ F (k+1)
T (44)

where F (k+1)
1 = (F (k+1)(1, j))1×5, F

(k+1)
2 = (F (k+1)

2

(i, j))5×5, .. . ., F
(k+1)
T = (F (k+1)

T (i, j))5×5.
If

∣
∣F (k+1) − F (k)

∣
∣ ≤ 10−6, then the optimal solution of

the longest path F (k+1) is also the optimal solution of the
Model (32). Otherwise turn Step 2.

4.4 Convergence property of the discrete iteration
method

Theorem 9 The discrete iteration method is linearly conver-
gent.

Proof Let the longest path in period 1 and the longest path in
period t , respectively be Fmax

1 (1, j2), and Fmax
t (it , jt+1), t =

2, . . ., T . Then the upper bound of the solution ofModel (32)
is

Fmax
1 (1, j2) × Fmax

2 (i2, j3) × · · · × Fmax
T (iT , jT+1)

The longest path of the multiperiod weighted digraph of
the kth iteration F (k) is obtained as follows:

F (k) = F (k)
1 ⊗ F (k)

2 ⊗ · · · ⊗ F (k)
T (45)

where F (k)
1 = (F (k)(1, j))1×5, F

(k)
2 = (F (k)

2 (i, j))5×5, .. . .,

F (k)
T = (F (k)

T (i, j))5×5.

Let the longest path of the kth iteration beW1 → W (k)
i22

→
W (k)

i33
→ · · · → W (k)

iT+1T+1. Using the Step 4, the multiperiod
weighted digraph of the k+1th iteration can be obtained.
F (k+1), which is the value of the longest path of the mul-
tiperiod weighted digraph of the k+1th iteration, can be
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Table 1 The optimal solution
when K = 4,ADt = 0.01

t Asset i

The optimal investment proportions

1 Asset3 Asset 17 x f 1 Otherwise asset

0.1853448 0.2 0.6146552 0

2 Asset 15 Asset 17 x f 2 Otherwise asset

0.0772222 0.2 0.7227778 0

3 Asset 15 Asset 24 x f 3 Otherwise asset

0.2 0.1408867 0.6591133 0

4 Asset 20 Asset 25 x f 4 Otherwise asset

0.1985612 0.2 0.6014388 0

5 Asset 20 Asset 25 Asset 30 x f 5 Otherwise asset

0.2 0.2 0.094241 0.505759 0

obtained by Eq. (45). So F (k+1) ≥ F (k). The solution is
becoming bigger and bigger. Because the solutions of Model
(32) are increasing sets and there is an upper bound of the
solution of Model (32), the discrete iteration method is con-
vergent.

Let the optimal value of period tofModel (32) be F∗
t , F (k)

t
be the optimal solution of the kth iteration at period t .

Because the objective function of Model (32) is linear,∣
∣
∣F

(k+1)
t − F∗

t

∣
∣
∣ ≤

∣
∣
∣F (k)

t − F∗
t

∣
∣
∣. Because F∗

t ≥ F (k+1)
t , F∗

t ≥

F (k)
t , F∗

t − F (k+1)
t ≤ F∗

t − F (k)
t , ie., 0 ≤

∑T
t=1

∣
∣
∣F

(K+1)
t −F∗

t

∣
∣
∣

∑T
t=1

∣
∣
∣F

(K )
t −F∗

t

∣
∣
∣

≤
1. So the discrete iteration method is linearly convergent.
Thus, the proof of Theorem 9 is ended. 	


5 Numerical example

In this section, a numerical example is given to express
the idea of the proposed model. Assume that an investor
chooses thirty stocks from Shanghai Stock Exchange for his
investment. The stocks codes are, respectively, S1, .. . .,S30.
He/She intends to make five periods of investment with ini-
tial wealth W1 = 1 and his wealth can be adjusted at the
beginning of each period. He/she assumes that the returns
and risk of the thirty stocks at each period are represented
as triangular uncertain numbers. We collect historical data
of them from April 2006 to March 2017 and set every
3months as a period to handle the historical data. By using
the estimation method in Vercher et al. (2007) to handle their
historical data, the triangular uncertain distributions of the
return rates of assets at each period can be obtained as shown
in Appendix A. According to Eq. (14) and Appendix A,
ADt (rit ) (i = 1, . . ., 30; t = 1, . . ., 5) can be obtained as
shown in Appendix B.

Suppose that the unit transaction costs of assets of the two
periods investment take the same value cit = 0.003 (i =

1, . . ., 30; t = 1, . . ., 5), the lower bound of the investment
proportion of risk-free asset xbf t = −0.5, the borrowing rate
of the risk-free asset rbt = 0.017, the lending rate of the risk-
free asset rlt = 0.009, t = 1, . . ., 5, upper bound constraints
uit = 0.2(i = 1, . . ., 30; t = 1, . . ., 5), the desired number
of risky assets in the portfolio K = 0, . . ., 9 at period t, t =
1, . . ., 5.

In case when the K = 4,ADt = 0.01, the multiperiod
uncertain mean absolute deviation portfolio selection model
maximizing the terminal utility is set as follows:

If K = 4,ADt = 0.01, the optimal solution of Model
(32) will be obtained as Table 1 using the discrete iteration
method.

When K = 4,ADt = 0.01, the optimal investment strat-
egy at period 1 is x31 = 0.1853448, x171 = 0.2, x f 1 =
0.6146552 and being the rest of variables equal to zero,
which means investor should allocate his initial wealth on
asset 3, asset 17, risk-free asset and otherwise asset by the
proportions of 18.53448, 20, 61.46552%and being the rest of
variables equal to zero among the thirty stocks, respectively.
From Table 1, the optimal investment strategy at period 2,
period 3, period 4 and period 5 can also be obtained. In this
case, the available terminal wealth is 1.321556.

If K = 4,ADt = 0.03, the optimal solution of Model
(32) will be obtained as Table 2 using the discrete iteration
method.

When K = 4,ADt = 0.03, the optimal investment
strategy at period 1 is x31 = 0.2, x171 = 0.2, x281 =
0.1935484, x f 1 = 0.4064516 and being the rest of variables
equal to zero, whichmeans investor should allocate his initial
wealth on asset 3, asset 17, asset 28, risk-free asset and other-
wise asset by the proportions of 20, 20, 19.35484, 40.64516%
and being the rest of variables equal to zero among the thirty
stocks, respectively. From Table 2, the optimal investment
strategy at period 2, period 3, period 4 and period 5 can also
be obtained. In this case, the available terminal wealth is
1.804082.
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Table 2 The optimal solution
when K = 4,ADt = 0.03

t Asset i

The optimal investment proportions

1 Asset13 Asset 17 Asset 28 x f 1 Otherwise asset

0.2 0.2 0.1935484 0.4064516 0

2 Asset13 Asset 15 Asset 17 Asset 24 x f 2 Otherwise asset

0.1892683 0.2 0.2 0.2 0.2107317 0

3 Asset13 Asset 15 Asset 17 Asset 24 x f 3 Otherwise asset

0.1857385 0.2 0.2 0.2 0.2142615 0

4 Asset13 Asset 15 Asset 20 Asset 25 x f 4 Otherwise asset

0.2 0.2 0.2 0.2 0.2 0

5 Asset1 Asset13 Asset 17 Asset 20 x f 5 Otherwise asset

0.1995261 0.2 0.2 0.2 0.2004739 0

Table 3 The optimal terminal wealth and risk of the portfolio when ADt = 0.07, K = 0, 1, 2, . . ., 9

K 0 1 2 3 4 5 6 7 8

W6 1.045817 1.315544 1.505725 1.706080 1.923746 2.158884 2.408406 2.652415 2.764959

K 9 10

W6 2.765641 2.765641

W6 is denoted the terminal wealth of the portfolio

For a given investment period t , if different parameters of
AD t , t = 1, . . ., 5 are specified for the risk of the portfolio,
the corresponding optimal strategies and terminal wealth can
also be derived. The detailed results are shown inTables 1 and
2. For some rational investors, they might not only consider
the expectations the terminal wealth of the portfolio, but also
concern about the risk, and we can see when the absolute
deviations of the portfolio ADt , t = 1, . . ., 5 increase, the
amounts of borrowing risk-free asset decrease. FromTables 1
and 2, it is easy to find that the terminal wealth become bigger
when the ADt become bigger.

If ADt = 0.07, K = 0, 1, 2, .. . ., 9, the optimal solution
of Model (32) will be obtained as the Table 3 using the dis-
crete iteration method.

From Table 3, Fig. 2 which reflects the relationship
between K and the terminal wealth of the Model (32) can
be obtained as follows.

In the used data sets, the experiments in this paper corre-
spond to the values of K in the interval [0, 9]. It can be seen
that, as will be seen in Fig. 2, the terminal wealth becomes
bigger, when 0 ≤ K ≤ 9, become larger; the terminal wealth
is same, when K ≥ 9; which reflects the influence of K on
portfolio selection.

If K = 4,ADt = 0, 0.005, 0.01, . . ., 0.07, the optimal
solution of Model (32) will be obtained as the Table 4 using
the discrete iteration method.

Fig. 2 The relationship between the K and the terminal wealth of the
model (32), where x axis is K , y axis is W6

From Table 4, Fig. 3 which reflects the relationship
between ADt and the terminal wealth of the Model (32) can
be obtained as follows.

In the used data sets, the experiments in this paper cor-
respond to the values of ADt in the interval [0, 0.7]. It can
be seen that, as will be seen in Fig. 3, the terminal wealth
becomes bigger, when 0 ≤ ADt ≤ 0.05, become larger, the
terminal wealth is same, when ADt ≥ 0.05; which reflects
the influence of ADt on portfolio selection.
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Table 4 the optimal terminal wealth and risk of the portfolio when K = 4,ADt = 0, 0.005, 0.01, .. . ., 0.07

ADt 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

W6 1.045817 1.204630 1.321556 1.442145 1.566482 1.687916 1.804082 1.886100 1.908496

ADt 0.045 0.05 0.055 0.06 0.065 0.07

W6 1.920493 1.923746 1.923746 1.923746 1.923746 1.923746

W6 is denoted the terminal wealth of the portfolio

Fig. 3 The relationship between the ADt and the terminal wealth of
the model (32), where x axis is ADt , y axis is W6

6 Conclusions

In this paper, we consider the multiperiod portfolio selection
problem in uncertain environment. We measure the return
and the risk of the multiperiod portfolio using the uncer-
tain mean value and the absolute deviation, respectively. A
new multiperiod portfolio optimization model with transac-
tion cost, borrowing constraints, threshold constraints and
cardinality constraints is proposed. Based on the uncertain
theories, the proposed model is transformed into a crisp
dynamic optimization problem. Because of the transaction
costs and cardinality constraints, the multiperiod portfolio
selection is a mix integer dynamic optimization problem
with path dependence, which is “NP hard” problem. The
model is approximated to a mix integer dynamic program-
ming model. A novel discrete iteration method is designed
to obtain the optimal portfolio strategy and is proved lin-

early convergent. Finally, we give an example to illustrate
the idea of the model and demonstrate the effectiveness of
the designed algorithm
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Appendix A

The codes of thirty stocks are, respectively, S1 (600,000),
S2 (600,005), S3 (600,015), S4 (600,016), S5 (600,019),
S6 (600,028), S7 (600,030), S8 (600,036), S9 (600,048),
S10 (600,050), S11 (600,104), S12 (600,362), S13 (600,519),
S14 (600,900), S15 (601,088), S16 (601,111), S17 (601,166),
S18 (601,168), S19 (601,318), S20 (601,328), S21 (601,390),
S22 (601,398), S23 (601,600), S24 (601,601), S25 (601,628),
S26 (601,857), S27 (601,919), S28 (601,939), S29 (601,988),
S30 (601,998). The triangle uncertain distributions, ξi t =
(ait , αi t , βi t ), of the return rates of assets at each period can
be obtained as shown in Tables 5, 6, 7, 8, 9, 10, 11, 12, 13
and 14.

Table 5 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 1 Asset 2 Asset 3

1 0.1430 0.1049 0.1156 0.0750 0.0657 0.1664 0.1083 0.0832 0.060

2 0.1449 0.0881 0.1136 0.0813 0.0708 0.1600 0.1085 0.0681 0.0603

3 0.1458 0.0800 0.1127 0.0857 0.0666 0.1556 0.1139 0.0725 0.0548

4 0.1516 0.0620 0.1070 0.0930 0.0579 0.1483 0.1152 0.0560 0.0540

5 0.1532 0.0609 0.1054 0.1053 0.0662 0.1359 0.1172 0.0570 0.0516
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Table 6 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 4 Asset 5 Asset 6

1 0.1172 0.0731 0.0813 0.0801 0.0791 0.0616 0.1064 0.1635 0.0616

2 0.1203 0.0743 0.0782 0.0847 0.0772 0.0571 0.1073 0.1634 0.0608

3 0.1255 0.0749 0.0730 0.0900 0.0503 0.0517 0.1083 0.1093 0.0598

4 0.1274 0.0733 0.0710 0.0906 0.0507 0.0512 0.1091 0.0763 0.0590

5 0.1289 0.0633 0.0700 0.0926 0.0495 0.0492 0.1129 0.0727 0.0551

Table 7 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 7 Asset 8 Asset 9

1 0.0798 0.0562 0.1694 0.1238 0.0815 0.1023 0.0639 0.1522 0.0951

2 0.0907 0.0643 0.1750 0.1259 0.0760 0.1003 0.0790 0.0673 0.0866

3 0.0992 0.0555 0.1500 0.1277 0.0765 0.0985 0.0818 0.0606 0.0839

4 0.1029 0.0551 0.1462 0.1383 0.0538 0.0878 0.0861 0.0645 0.0800

5 0.1069 0.0534 0.1423 0.1457 0.0612 0.0805 0.0884 0.0650 0.0773

Table 8 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 10 Asset 11 Asset 12

1 0.0377 0.0325 0.0414 0.0575 0.0403 0.1282 0.1243 0.1170 0.1840

2 0.0410 0.0292 0.0379 0.0592 0.0403 0.1264 0.1303 0.1007 0.1781

3 0.0469 0.0318 0.0321 0.0669 0.0374 0.1188 0.1380 0.0827 0.1704

4 0.0480 0.0314 0.0309 0.0724 0.0400 0.1133 0.1491 0.0843 0.1593

5 0.0492 0.0318 0.0298 0.0741 0.0453 0.1116 0.1540 0.0752 0.1544

Table 9 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 13 Asset 14 Asset 15

1 0.2049 0.1244 0.1331 0.0254 0.1000 0.0743 0.0893 0.2079 0.1463

2 0.2102 0.1182 0.1277 0.0667 0.0604 0.0443 0.1518 0.1015 0.0859

3 0.2194 0.1236 0.1186 0.0700 0.0563 0.0411 0.1538 0.1033 0.0840

4 0.2225 0.1248 0.1154 0.0716 0.0500 0.0395 0.1565 0.0534 0.0812

5 0.2238 0.1029 0.1142 0.0731 0.0399 0.0379 0.1600 0.0553 0.0778

Table 10 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 16 Asset 17 Asset 18

1 0.0615 0.0622 0.4819 0.1665 0.1188 0.0375 0.0675 0.1157 0.0586

2 0.0625 0.2795 0.2306 0.1550 0.0984 0.0772 0.1183 0.1137 0.4232

3 0.0656 0.0514 0.2276 0.1553 0.0893 0.0769 0.1349 0.1165 0.4066

4 0.0747 0.0460 0.2185 0.1575 0.0844 0.0747 0.1467 0.1225 0.3947

5 0.0835 0.0506 0.2096 0.1579 0.0535 0.0744 0.1664 0.1122 0.3750
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Table 11 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 19 Asset 20 Asset 21

1 0.2500 0.0736 0.0896 0.0825 0.1559 0.0853 0.0536 0.0817 0.0403

2 0.0916 0.0716 0.0634 0.1217 0.0633 0.0619 0.0704 0.0544 0.1220

3 0.0928 0.0708 0.0622 0.1218 0.0620 0.0618 0.0838 0.0666 0.1087

4 0.0940 0.0500 0.0610 0.1243 0.0516 0.0593 0.0880 0.0681 0.1045

5 0.0952 0.0472 0.0600 0.1269 0.0267 0.0568 0.0917 0.0703 0.1007

Table 12 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 22 Asset 23 Asset 24

1 0.1083 0.1197 0.0684 0.0413 0.0149 0.0749 0.1430 0.0458 0.0141

2 0.1170 0.0618 0.0739 0.0454 0.1137 0.2040 0.0947 0.0637 0.0393

3 0.1200 0.0623 0.0708 0.0531 0.1209 0.1963 0.0984 0.0628 0.0355

4 0.1235 0.0656 0.0674 0.0574 0.0930 0.1920 0.1005 0.0548 0.0334

5 0.1254 0.0488 0.0654 0.0718 0.0716 0.1777 0.1021 0.0493 0.0319

Table 13 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 25 Asset 26 Asset 27

1 0.0589 0.1432 0.1024 0.0783 0.1712 0.1096 0.0690 0.0047 0.1634

2 0.1021 0.0652 0.0591 0.1276 0.0906 0.1263 0.0438 0.1623 0.1828

3 0.1037 0.0567 0.0574 0.1329 0.0949 0.1210 0.0506 0.1526 0.1760

4 0.1044 0.0314 0.0567 0.1432 0.0812 0.1105 0.0562 0.1232 0.1694

5 0.1090 0.0243 0.0521 0.1445 0.0777 0.1093 0.0619 0.0511 0.1647

Table 14 The uncertain return
rates on assets of five periods
investment

Asset t

Asset 28 Asset 29 Asset 30

1 0.1551 0.1128 0.0498 0.0994 0.1233 0.0677 0.0674 0.1355 0.0854

2 0.1382 0.0789 0.0969 0.1123 0.0641 0.0498 0.1037 0.0636 0.0438

3 0.1395 0.0679 0.0956 0.1134 0.0648 0.0488 0.1048 0.0645 0.0426

4 0.1426 0.0379 0.0924 0.1157 0.0416 0.0464 0.1060 0.0574 0.0414

5 0.1470 0.0364 0.0880 0.1175 0.0312 0.0446 0.1061 0.0350 0.0413

Appendix B

According Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14,
and Eq. (25), ADt (Rit )(i = 1, . . ., 30; t = 1, . . ., 5)

can be obtained as shown in Tables 15, 16, 17 and
Table 18.

Table 15 The uncertain
absolute deviation of assets of
five periods investment

i Asset t

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

1 0.0551 0.0599 0.0232 0.0386 0.0179 0.0280 0.0588 0.0461

2 0.0506 0.0593 0.0268 0.0381 0.0183 0.0282 0.0620 0.0443

3 0.0504 0.0571 0.0261 0.0331 0.0255 0.0263 0.0532 0.0439

4 0.0428 0.0533 0.0333 0.0340 0.0255 0.0245 0.0521 0.0358

5 0.0422 0.0516 0.0330 0.0395 0.0259 0.0258 0.0507 0.0356
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Table 16 The credibilistic
absolute deviation of assets of
five periods investment

i Asset t

Asset 9 Asset 10 Asset 11 Asset 12 Asset 13 Asset 14 Asset 15 Asset 16

1 0.0374 0.0185 0.0440 0.0760 0.0563 0.0228 0.0573 0.0894

2 0.0386 0.0168 0.0435 0.0708 0.0615 0.0143 0.0360 0.0765

3 0.0363 0.0160 0.0408 0.0647 0.0589 0.0150 0.0357 0.0740

4 0.0362 0.0156 0.0398 0.0620 0.0588 0.0162 0.0399 0.0704

5 0.0356 0.0123 0.0405 0.0587 0.0543 0.0195 0.0335 0.0688

Table 17 The credibilistic
absolute deviation of assets of
five periods investment

i Asset t

Asset 17 Asset 18 Asset 19 Asset 20 Asset21 Asset 22 Asset 23 Asset 24

1 0.0285 0.0666 0.0409 0.0356 0.0119 0.0229 0.0240 0.0230

2 0.0361 0.0592 0.0338 0.0342 0.0453 0.0339 0.0319 0.0197

3 0.0393 0.0608 0.0217 0.0349 0.0443 0.0333 0.0311 0.0203

4 0.0417 0.0801 0.0278 0.0278 0.0435 0.0333 0.0346 0.0229

5 0.0322 0.0735 0.0269 0.0214 0.0430 0.0287 0.0373 0.0255

Table 18 The credibilistic
absolute deviation of assets of
five periods investment

i Asset t

Asset 25 Asset 26 Asset 27 Asset 28 Asset 29 Asset 30

1 0.0240 0.0456 0.0568 0.0434 0.0279 0.0379

2 0.0254 0.0545 0.0638 0.0441 0.0273 0.0233

3 0.0285 0.0542 0.0599 0.0411 0.0272 0.0271

4 0.0224 0.0482 0.0581 0.0426 0.0288 0.0257

5 0.0196 0.0470 0.0564 0.0411 0.0292 0.0191
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