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Abstract
In the present work, the working of an electro discharge machining process was studied in which four factors, namely pulse
on time, duty cycle, discharge current, and gap voltage, were considered to be the controllable parameters, each at three
levels, for monitoring three responses, namely material removal rate, tool wear ratio, and tool overcut. Statistical design of
experiments using Taguchi’s orthogonal array (OA) technique has been utilized to determine the optimum level of process
parameters so that they are least affected by noise factors for obtaining a robust design of the parameters. Acknowledging the
limitation that Taguchi’s OA technique can determine optimal setting of controllable parameters for one output or response
at a time, integrated fuzzy AHP and fuzzy TOPSIS methods were used in the scheme of multi-response experiment so that
Taguchi’s OA technique may be applied successfully for parametric optimization. The results show that none of the factors
were highly significant although discharge current had the highest contribution (31.63%) among all.

Keywords EDM · Fuzzy AHP · Fuzzy TOPSIS · Taguchi’s orthogonal array · Multi-objective optimization

1 Introduction

Electro discharge machining (EDM) is a popular mate-
rial removal technique based upon the concept of material
removal from a metallic part by electric discharges. The
emergence of electrical discharge machining (EDM) from
an innovation to a highly practical and profitable process is
clearly reflected in its numerous applications and the chal-
lenges being faced by the modern manufacturing industries
from the development of newmaterials that are hard and diffi-
cult tomachine such as carbides, composites, ceramics, super
alloys, stainless steels, heat resistant steel. This noncontact
machining technique has been continuously evolving from
a mere tool and die making process to a micro-/nanoscale
manufacturing applications (Kunieda et al. 2005). Paramet-
ric optimization has been carried out by several researchers
to find out the machine settings that yield single responses,
viz. optimum material removal rate (MRR), surface rough-
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ness (SR), tool overcut (TOC), tool wear ratio (TWR), etc.,
based on Taguchi’s robust design technique (Spedding and
Wang 1997; Puri and Bhattacharyya 2003; Ramakrishnan
et al. 2003). However, multiple responses need to be opti-
mized in order to have a better control over the process and
increase production rate, which are not possible with con-
ventional Taguchi’s orthogonal array technique. ANNmodel
was developed, and multi-objective optimization of process
parameters of wire EDM was performed based on multi-
response signal-to-noise ratio (MRS/N) (Ramakrishnan and
Karunamoorthy 2008). Different weights were assigned to
responses, and subsequently MRS/N ratio was obtained for
optimization. Technique for order preference by similarity
to ideal solution (TOPSIS) was applied to optimize multiple
responses, viz.MRR, TWR, SR in EDM (Senthil et al. 2014).
The optimal parameters obtained using TOPSIS were agreed
upon by practitioners. Taguchi-based grey relational analysis
(GRA) was used to optimize SR and kerf width in WEDM
(Khan et al. 2014). Pulse on time was found to be the most
significant of all process parameters used. A multi-response
optimization approach was presented (Nayak and Mahap-
atra 2013) to determine the optimal process parameters in
wire electrical discharge machining process. They combined
the multiple responses into a single response using ana-
lytic hierarchy process (AHP) and TOPSIS. Optimal cutting
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parameters were determined using Taguchi’s robust design
technique. Multiple responses were optimized, viz. white
layer thickness (WLT), surface crack density (SCD), and sur-
face roughness (SR), based on different input parameters in
EDMwith the help of grey relational analysis combined with
fuzzy logic (Dewangan et al. 2015). Analysis of variance
(ANOVA) showed pulse on time to be the most significant
factor responsible for multiple performance characteristics
of surface integrity based. A fuzzy TOPSIS method was
used (Pattnaik et al. 2015) to optimize multiple responses,
viz. surface roughness, material removal rate, and tool wear
rate in EDM based on various process parameters. Recast
layer thickness and SR were optimized (Rupajati et al. 2014)
using Taguchi-based fuzzy logic technique. This technique
significantly improved multiple responses in WEDM. A
combination of Taguchi and fuzzy TOPSIS methods was
developed that deals with multi-response optimization prob-
lems in green manufacturing (Sivapirakasam et al. 2011).
They have considered the case of EDM and tried to minimize
the hazardous effects of EDM. Based on previous studies,
it has been seen that coupling fuzzy logic with optimiza-
tion technique could provide better results since fuzzy logic
is suitable in uncertain environments like in EDM where
responses calculated ormeasured always have some error due
to characterization technique, resolution ofmeasuring instru-
ments, random errors, etc. An attempt has been made in this
paper to utilize Taguchi’s orthogonal array (OA) technique
for parametric optimization of multiple responses by inte-
grating fuzzy AHP and fuzzy TOPSIS methods. Fuzziness
was introduced to account for the uncertainty in the responses
due to various controllable and uncontrollable factors.

2 Evaluation framework

Multi-criteria decision making (MCDM) is a powerful tool
used widely for solving decision and planning problems
involving multiple criteria (Majumder 2015). A clear and
systematic structuring of the decision-making problem is car-
ried out byMCDM techniques. It therefore becomes easy for
decision makers to examine the problem and scale it as per
their requirements (Isiklar and Buyukozkan 2006). The main
objective of this paper as mentioned above is to select the
optimal parameters of machining in EDM based on multiple
responses. To achieve this, fuzzy AHPwas used to determine
the priorities of different responses followed by fuzzy TOP-
SIS to convert the multiple responses to single response and
finally optimize the response using Taguchi’s OA technique.
The scheme for evaluation is shown in Fig. 1 and described
in the following steps below.

(a) Identification of responses that are considered to be the
most important from manufacturing point of view.

Identification of input 
process parameters 

Identification of 
multiple responses 

Construction of 
hierarchical structure 

for responses 

 Weights of responses 
by fuzzy AHP 

Conversion of multiple 
responses to single response 

 Closeness co-efficient 
using fuzzy TOPSIS 

Determination of 
optimal parameters 

 Taguchi’s OA 
technique/ Signal to 

Noise ratio 

Fig. 1 Flowchart for multi-response optimization

(b) Construction of hierarchical structure for responses and
process parameters.

(c) Calculation of weights of responses with the help of
fuzzy AHP method.

(d) Conversion of multiple responses into signal response
using fuzzy TOPSIS.

(e) Performing signal-to-noise ratio to determine optimal
parameters

(f) Analysis of variance (ANOVA) to determine significance
of process parameters on the response.

3 Fuzzy AHP and fuzzy TOPSIS methods

3.1 Fuzzy AHP

AHP was proposed (Saaty 1977, 1980) to model subjective
decision-making processes based on multiple attributes in
a hierarchical system (Tzeng and Huang 2011). The AHP
model has some limitations. The AHP method is suitable
in cases having crisp information decision application. The
scale of converting subjective responses into numerical form
in AHP has a very unbalanced scale of judgment. The rank-
ing is basically done with the opinion of humans but does
not take into consideration the uncertainty in judgment due
to natural language. The judgment of decision maker has a
great effect on their preferences. This indirectly affects the
results of AHP. To avoid these, several researchers have inte-
grated fuzzy theory with AHP to improve the uncertainty.
The process of fuzzy AHP is as follows (Sun 2010):

(a) Construct the hierarchical structure of goal, criteria
(responses), and alternatives of the multi-response opti-
mization problem (Fig. 2).

(b) Construct pairwise comparison matrices among all the
criteria/alternatives of the hierarchy system. Assign
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Goal 

Criteria/ Responses

MRR

TWR

TOC

Alternatives

Experiment 
number of 

Taguchi’s L9
array

Fig. 2 Hierarchical structure of AHP/fuzzy AHP

Table 1 Membership function of linguistic scale

Fuzzy number Linguistic Scale of fuzzy number

9̃ Perfect (8, 9, 10)

8̃ Absolute (7, 8, 9)

7̃ Very good (6, 7, 8)

6̃ Fairly good (5, 6, 7)

5̃ Good (4, 5, 6)

4̃ Preferable (3, 4, 5)

3̃ Not bad (2, 3, 4)

2̃ Weak advantage (1, 2, 3)

1̃ Equal (1, 1, 1)

appropriate linguistic terms to the pairwise comparisons
with the help of questionnaires or decision maker regard-
ing which criteria/alternative is more important for each
of two dimensions. The linguistic termswill be converted
to fuzzy numbers shown in Table 1. The matrices formed
will be of the form as shown by Eq. (1):

Ã =

⎡
⎢⎢⎢⎢⎣

1 ã12 . . . ã1n
ã21 1 . . . ã2n
. . . . . .

. . . . . .

ãn1 ãn2 . . . 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 ã12 . . . ã1n
1/ã12 1 . . . ã2n

. . . . . .

. . . . . .

1/ã1n 1/ã2n . . . 1

⎤
⎥⎥⎥⎥⎦

ãi j = 9−1, 8−1, 7−1, 6−1, 5−1, 4−1, 3−1, 2−1,

2, 3, 4, 5, 6, 7, 8, 9; i �= j

ãi j = 1; i = j (1)

(c) To determine fuzzy weights of each criterion, geometric
mean method is used. Fuzzy addition and fuzzy multi-
plication are used to determine the fuzzy weights (Hsieh
et al. 2004).

Let two fuzzy numbers Ã = (l,m, n) and B̃ = (p, q, r),
where l,m, n denote the lower, middle, and upper bounds of
fuzzy number Ã and p, q, r denote the lower, middle, and
upper bounds of fuzzy number B̃, respectively. Therefore,

Fuzzy addition:

Ã ⊕ B̃ = (l,m,n) ⊕ (p,q,r) = (l + p,m + q,n + r)

Fuzzy multiplication:

Ã ⊗ B̃ = (l,m, n) ⊗ (p, q, r) = (lp,mq, nr)

l,m,n, p, q, r > 0

The fuzzy weights can then be determined by Eqs. (2–3):

r̃ j = (
ã j1 ⊗ ã j2 ⊗ . . . ã jn

) 1
n (2)

w̃ j = r̃ j ⊗ (r̃1 ⊕ r̃2 ⊕ . . . r̃n)
−1 (3)

ãi j Comparative fuzzy value of criterion i to criterion j
r̃ j Geometric mean of fuzzy comparison value of criterion

j to each of the other criteria
w̃ j Fuzzy weight of the j th criterion. It is indicated by a

triangular fuzzy number
w̃ j = (

lw j ,mw j , nw j
)
, where lw j ,mw j , nw j repre-

sent the lower, middle, and upper values of the fuzzy
weight of the j th criterion.

3.2 Fuzzy TOPSIS

In order to use fuzzy logic in EDM,we deliberately transform
the existing precise values to five levels after normalizing
the ratings. Fuzzy linguistic variables selected are: Very Low
(VL), Low (L),Medium (M), High (H), and Very High (VH).
A triangular fuzzy number has been used to represent the
five-level fuzzy linguistic variables. Each rank was assigned
an evenly spread membership function with interval of 0.30
or 0.25 (Table 2) (Torfi et al. 2010). For example, the fuzzy
variable, L, has its associated triangular fuzzy number with
the minimum of 0.15, mode of 0.30, and maximum of 0.45.
The same definition is then applied to all other fuzzy vari-
ables (Fig. 3) [19]. Decision makers find it difficult to assign

Table 2 Transformation for fuzzy membership functions

Rank Sub-criteria grade Membership function

Very low (VL) 1 (0.00, 0.10, 0.25)

Low (L) 2 (0.15, 0.30, 0.45)

Medium (M) 3 (0.35, 0.50, 0.65)

High (H) 4 (0.55, 0.70, 0.85)

Very high (VH) 5 (0.75, 0.90, 1.00)
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VL L M H VH

1

0

0 0.1 0.3 0.5 0.7 0.9 1

Fig. 3 Fuzzy triangular membership functions

performance based on crisp values; hence, the use of fuzzy
numbers allows them to assign relative importance of criteria.
The process of fuzzy TOPSIS is described in the following
steps (Torfi et al. 2010):
Let us consider a set of alternatives, A = {Ai |i = 1, 2 . . . n},
and a set of criteria, C = {C j | j = 1, 2 . . .m}

(a) A matrix is constructed with performance rating of each
alternative with respect to each criterion. Rows should be
criteria, and columns should be the alternatives. In case of
quantitative analysis, these ratings can be the experimen-
tal data, which correspond to each alternative or some
quantity provided by the company/organization. In case
of qualitative analysis, the ratings can be given with the
help of questionnaires or can be based upon the expe-
rience of the decision maker. The fuzzy MCDM can be
conveniently expressed in the following matrix format as
Eqs. (4–5).

A =

⎡
⎢⎢⎢⎢⎣

x̃11 x̃12 . . . x̃1n
x̃21 x̃22 . . . x̃2n
. . . . . .

. . . . . .

x̃m1 x̃m1 . . . x̃mn

⎤
⎥⎥⎥⎥⎦

(4)

W = [
w̃1w̃2 . . . w̃ j

]
(5)

x̃i j i = 1, 2, . . .m; j = 1, 2, . . . n; represents performance
rating of the i th alternative Ai with respect to j th crite-
rion, C j

w̃ j Represents weight of j th criterion,C j . The weights are
calculated using fuzzy AHP.
x̃i j and w̃ j are linguistic triangular fuzzy numbers, x̃i j =(
ai j , bi j , ci j

)
and w̃ j = (

a j1, b j2, c j3
)
; a, b, c represent

lower, modal, and upper bounds of the fuzzy numbers.
Since the range of normalized triangular fuzzy numbers
lies in the interval [0, 1], it eliminates the process of
normalization. However, for experimental results, data
obtained have to be normalized and then appropriate
linguistic variables are plotted against each rating,which

corresponds to a particular interval of the fuzzy number
x̃i j .

(b) Normalize the fuzzy decisionmatrix and prepare normal-
ized fuzzy decision matrix shown in Eqs. (6–7).

R̃ = [
r̃i j

]
m×n (6)

r̃i j =
(
ai j
c+
j

,
bi j
c+
j

,
ci j
c+
j

)
(7)

r̃ij normalized value of fuzzy number x̃ij

c+
j = maxi

{
ci j |i = 1, 2, . . . n

}

(c) Construct theweighted normalized fuzzy decisionmatrix
as shown inEq. (8). To construct this, the values of Eq. (6)
and weights w̃ j obtained from fuzzy AHP are required.

V =

⎡
⎢⎢⎢⎢⎣

ṽ11 ṽ12 . . . ṽ1n
ṽ21 ṽ22 . . . ṽ2n
. . . . . .

. . . . . .

ṽm1 ṽm2 . . . ṽmn

⎤
⎥⎥⎥⎥⎦

= w̃ j ⊗ r̃i j

=

⎡
⎢⎢⎢⎢⎣

w̃1 × r̃11 w̃2 × r̃12 . . . w̃n × r̃1n
w̃1 × r̃21 w̃2 × r̃22 . . . w̃n × r̃2n

. . . . . .

. . . . . v.

w̃1 × r̃m1 w̃2 × r̃m2 . . . w̃n × r̃mn

⎤
⎥⎥⎥⎥⎦

(8)

(d) Identify positive ideal
(
V+)

and negative ideal
(
V−)

solutions from the weighted normalized matrix. The
fuzzy positive ideal solution

(
FP I S, V+)

and the
fuzzy negative ideal solution

(
FN I S, V−)

are shown
in Eqs. (9–10).

V+ = {
ṽ+
1 , ṽ+

2 , . . . ṽ+
m

}

= {(
max ṽi j (x) | j ∈ J1

) ∣∣(min ṽi j (x) | j ∈ J2
)∣∣

i = 1, 2, . . . n} (9)

V− = {
ṽ−
1 , ṽ−

2 , . . . ṽ−
m

}

= {(
min ṽi j (x) | j ∈ J1

) ∣∣(max ṽi j (x) | j ∈ J2
)∣∣

i = 1, 2, . . . n} (10)

J1 and J2 are benefit and cost attributes, respectively.

Max and min operations do not give triangular fuzzy
numbers. However, ideal solutions can be obtained as
fuzzy numbers. The elements ṽi j ∀i, j are normalized
positive triangular fuzzy numbers whose ranges lie in
the interval [0, 1]. Thus, we can define the FPIS ṽ+

j as

123



Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective... 5057

Display unit showing the 
parameters of the current operation 
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Fig. 4 Die-sinking EDM

(1, 1, 1) for benefit criteria or (0, 0, 0) for cost criteria.
Likewise, the FNIS ṽ−

j is (0, 0, 0) for benefit criteria or
(1, 1, 1) for cost criteria.

(e) The distance between two fuzzy numbers ãand b̃ can be
found out by the following formula:

d
(
ã, b̃

)
=

√
1

3

[
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

]
,

where ã = (a1, a2, a3) and b̃ = (b1, b2, b3)

The separation measures are calculated based on the above
formula. The distance of each alternative from V+ and V−
can be calculated usingEqs. (11–12), respectively (Torfi et al.
2010).

d+
i =

n∑
j=1

d
(
ṽi j , ṽ

+
j

)
; i = 1, 2, . . .m (11)

d−
i =

n∑
j=1

d
(
ṽi j , ṽ

−
j

)
; i = 1, 2, . . .m (12)

(f) The similarities to ideal solution (closeness coefficients)
are calculated. This step solves the similarities to an ideal
solution using Eq. (13).With the help of closeness coeffi-
cient, the multiple responses obtained from experiments
have been converted to single response with priorities as
obtained from fuzzy AHP.

Table 3 Machine specification of the EDM process

Particulars Specification

Machine Model ZNC 450

Machine Number 1104011

Manufacturer J.K. Machines

Memory 100×40000 points

Data storage 60 sets

CCi = d−
i

d+
i + d−

i

CCi ∈ [0, 1] ∀i = 1, 2, . . . n (13)

4 Experimental details

4.1 Details of experiment

The experimentswere conductedon adie-sinkingEDMsetup
at CNC Laboratory of Tool Room Training Centre (Fig. 4).
The specifications of the machine are given in Table 3.
The workpiece material (anode) used was stainless steel
(AISI304). The tool (cathode) material was copper. The
dimensions of tool and workpiece are shown in Table 4.
Straight polarity was used for all the experiments.
During experiments, therewere some parameterswhichwere
kept constant throughout. Figure 5 shows the process param-
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Table 4 Dimensions of tool and workpiece

Dimensions Stainless steel (AISI304) Copper

Length (mm) 15 70

Diameter (mm) 16 3

eters, viz. input parameters, constant parameters (with their
fixed values during experiment), and the responses obtained
after experimentation. The input parameters (four in num-
ber at three levels each) used to determine the responses are
given in Table 5. The dielectric fluid used was SERVO oil
(Grade 52).
The input parameters considered during experiments were
pulse on time (TON), duty cycle (DC), discharge current (I),
and gap voltage (V). Since four factors were chosen with
three levels each, L9 orthogonal array was selected for con-
ducting the experiments. It is worthwhile to mention that no
significant interaction effect was found among the factors as
observed during initial set of experiments. The L9 orthogo-
nal array is shown in Table 6. The table contains the input
parameters in coded form.

4.2 Determination of output parameters

4.2.1 Material removal rate (MRR)

MRR is defined as the ratio of the difference in weight of the
workpiece before and after machining to the density of the
material and the machining time (mm3/min). This is shown
in Eq. (14)

MRR = WWi − WWf

ρW × t
(14)

Table 5 Input parameters

Input Parameters Unit Symbol Level

1 2 3

Pulse on time µs TON 200 500 800

Duty cycle % DC 20 60 80

Discharge current Ampere I 10 25 40

Gap voltage Volt V 50 70 90

Table 6 L9 orthogonal array (refer to Table 3 for data)

Treatment condi-
tion/alternatives

TON DC I V

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

WWi = Initial weight of the workpiece before machining
(g)
WWf = Final weight of the workpiece after machining (g)
t = Machining time (s)
ρW = Density of stainless steel (SS304) = 8000 kg/m3

Fig. 5 Process parameters and
responses in EDM process (used
in our study)

EDM 

Input Response

Polarity: 
Straight

Pulse on 
time

Gap 
voltage

Discharge 
current

Duty 
cycle

MRR

Work 
time: 1 s

High Volt: 
200 V 

TWR

TOCJump length: 
0.8 m

Depth of 
cut: 3 mm

Dielectric pressure: 
0.5 kg/cm2

Parameters 
used for 

optimisation 

Constant 
parameters
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Table 7 Normalized responses of EDM process

Treatment condition/
alternatives:

MRR (mm3/min) TWR TOC (mm)

1 0.00 0.10 0.48

2 0.18 0.81 0.50

3 0.72 0.66 0.80

4 0.38 0.35 1.00

5 1.00 1.00 0.52

6 0.27 0.00 0.94

7 0.49 0.15 0.62

8 0.17 0.08 0.00

9 1.00 0.39 0.98

4.2.2 Tool wear ratio (TWR)

Tool wear ratio (TWR) is defined as the ratio of the volume
of material removed from the tool to the volume of material
removed from the workpiece. It is generally expressed in
percentage. It is given by Eq. (15)

TWR = WTi − WTf

WWi − WWf

× ρW

ρT
(15)

WTi = Initial weight of the tool before machining (g)
WTf = Final weight of the tool after machining (g)
ρT = Density of copper = 8940 kg/m3

4.2.3 Tool overcut

Tool overcut (TOC) is calculated as half the difference of the
diameter of the hole produced on the workpiece to the tool
diameter as shown in Eq. (16)

TOC = D0 − Di

2
(16)

D0 = Diameter of the hole on the workpiece (mm)
Di = Tool diameter (mm)

The experimental data obtained were normalized and are
shown in Table 7. Normalization of responses were carried
out to convert them into fuzzy numbers. Normalization of
MRR is done by using Eq. 17, where high amount of material
removal is desired, whereas normalization of TWR and TOC
is done based on Eq. 18, where minimal amount of tool wear
and overcut is required.

• For benefit criteria (larger is better),

rk j (x) = xk j − xmin

xmax − xmin
(17)

Table 8 Pairwise comparison of criteria

Response MRR TWR TOC

MRR 1̃ 5̃ 7̃

TWR 5̃−1 1̃ 3̃

Tool Overcut 7̃−1 3̃−1 1̃

Table 9 Fuzzy weights of the responses

Response Fuzzy weights (w̃i )

MRR (0.45, 0.71, 1.18)

TWR (0.11, 0.21, 0.32)

TOC (0.05, 0.08, 0.14)

xmax = Desired/aspired level
xmin = Worst level

• For cost criteria (smaller is better),

rk j (x) = xmin − xk j
xmin − xmax

(18)

5 Optimization by integrated Taguchi’s OA,
fuzzy AHP, and fuzzy TOPSIS

5.1 Fuzzy AHP

The weights of responses were assigned linguistic variables
as shown in Table 1. Each linguistic variable was described
using a triangular fuzzy number, and the scale of fuzzy num-
ber was also shown. Four experts in the field of EDM rated
weight of each attribute with respect to a linguistic term.
The pairwise comparison of responses is shown in Table 8.
The fuzzy weights of the criteria are calculated (Eqs. 2–3) as
shown in Table 9. These weights indicate the lower, modal,
and upper values of the fuzzy number, respectively.

5.2 Fuzzy TOPSIS for determination of closeness
coefficients

In fuzzy TOPSIS, the alternatives were chosen as the nine
experiments inL9 array. Table 10 shows the normalized fuzzy
decisionmatrix. It is expressed byfirst normalizing the exper-
imental data. The normalized data are shown in Table 7. They
are then converted into fuzzy numbers usingTable 2. Table 11
shows theweightednormalized ratings by taking into account
the fuzzy weights obtained in Table 9. The weighted nor-
malized ratings basically combine the fuzzy weights of the
criteria and the performance ratings of the alternatives with
respect to criteria. It is calculated using Eq. 8. Considering

FPIS
(
ṽ+
j

)
as (1, 1, 1) for MRR and (0, 0, 0) for TWR &

123



5060 T. Roy, R. K. Dutta

Table 10 Normalized fuzzy
decision matrix

Responses MRR TWR Tool overcut

Alternatives 1 (0.000, 0.100, 0.250) (0.000, 0.100, 0.250) (0.350, 0.500, 0.650)

2 (0.000, 0.100, 0.250) (0.750, 0.900, 1.000) (0.350, 0.500, 0.650)

3 (0.550, 0.700, 0.850) (0.550, 0.700, 0.850) (0.750, 0.900, 1.000)

4 (0.150, 0.300, 0.450) (0.150, 0.300, 0.450) (0.750, 0.900, 1.000)

5 (0.750, 0.900, 1.000) (0.750, 0.900, 1.000) (0.350, 0.500, 0.650)

6 (0.150, 0.300, 0.450) (0.000, 0.100, 0.250) (0.750, 0.900, 1.000)

7 (0.350, 0.500, 0.650) (0.000, 0.100, 0.250) (0.550, 0.700, 0.850)

8 (0.000, 0.100, 0.250) (0.000, 0.100, 0.250) (0.000, 0.100, 0.250)

9 (0.750, 0.900, 1.000) (0.150, 0.300, 0.450) (0.750, 0.900, 1.000)

Table 11 Weighted normalized
matrix

Criteria alternatives MRR TWR Tool overcut
ṽi1 = w̃1 × r̃i1 ṽi2 = w̃2 × r̃i2 ṽi3 = w̃3 × r̃i3

1 (0.000, 0.071, 0.295) (0.000, 0.021, 0.080) (0.018, 0.040, 0.091)

2 (0.000, 0.071, 0.295) (0.083, 0.189, 0.320) (0.018, 0.040, 0.091)

3 (0.248, 0.497,1.003) (0.061, 0.147, 0.272) (0.038, 0.072, 0.140)

4 (0.068, 0.213, 0.531) (0.017, 0.063, 0.144) (0.038, 0.072, 0.140)

5 (0.338, 0.639, 1.180) (0.083, 0.189, 0.320) (0.018, 0.040, 0.091)

6 (0.068, 0.213, 0.531) (0.000, 0.021, 0.080) (0.038, 0.072, 0.140)

7 (0.158, 0.355, 0.767) (0.000, 0.021, 0.080) (0.028, 0.056, 0.119)

8 (0.000, 0.071, 0.295) (0.000, 0.021, 0.080) (0.000, 0.008, 0.035)

9 (0.338, 0.639, 1.180) (0.017, 0.063, 0.144) (0.038, 0.072, 0.140)

Table 12 Separation measures from ideal solutions

Criteria alternatives d+
i d−

i

1 0.9930 2.0931

2 1.1598 1.9349

3 0.7945 2.4087

4 0.9389 2.1751

5 0.7207 2.5344

6 0.8959 2.2151

7 0.7525 2.3882

8 0.9554 2.1279

9 0.6320 2.6196

TOC and the FNIS
(
ṽ−
j

)
as (0, 0, 0) for MRR and (1, 1, 1)

for TWR& TOC, the respective separation measure for each
alternative is found out using Eqs. (11–12). The values are
shown in Table 12. Next, using Eq. 13, the closeness coef-
ficient of each alternative has been found out (Table 13). It
indicates which alternative is nearest to PIS and farthest from
NIS. Higher value of closeness coefficients indicate higher
rank.

A short interpretation of Table 12 is as follows: d+
i for

alternative 1 is higher compared to alternative 9. This indi-
cates that alternative 1 is at a greater distance from PIS than

Table 13 Signal-to-noise ratio (S/N ratio)

Criteria alternatives CCi S/N ratio (dB)

1 0.6782 6.17009

2 0.6252 5.46317

3 0.7520 7.06637

4 0.6985 6.42563

5 0.7786 7.36877

6 0.7120 6.59218

7 0.7604 7.16322

8 0.6901 6.32102

9 0.8056 7.66516

alternative 9. Same principle can be used for separation mea-
sures with respect to NIS.

5.3 Signal-to-noise ratio (S/NR)

After determination of closeness coefficient (CCi ) val-
ues using fuzzy TOPSIS, the preferred parameter set-
tings in EDM are then determined through analysis of
the “signal-to-noise” (S/N) (measured in dB) ratio using
the CCi values, where factor levels that maximize the
appropriate S/NR are optimal. There are three standard
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Fig. 6 Mean of S/N ratio versus
process parameters

Table 14 Optimum cutting
parameters

Input parameter Level

Pulse on time 3

Duty cycle 3

Discharge current 3

Gap voltage 1

types of S/N ratios depending on the desired performance
response. The S/N ratio can be obtained using Eq. 19
(larger the better) as higher closeness coefficients are pre-
ferred. This is shown in Table 13 along with the closeness
coefficients.

S/Nratio = −10 log

(
1

n

n∑
i=1

1

y2i

)
(19)

n Number of trials/experiments
yi Response of i th experiment
ȳ Mean of the responses = 1

n

∑n
i=1 yi

Now, plotting S/N ratio against each factor, we get the main
effects plot. These graphs are shown in Fig. 6. It indicates
the effect of parameters at each level on the S/N ratio. The
optimum level is selected based on this graph. It is done
by considering the levels of factors which have the highest
S/N ratio following the concept of larger-the-better design
of parameters. From Fig. 6, the optimum cutting parameters
of the die-sinking EDM obtained are shown in Table 14.
At the optimum condition, the S/N ratio is found out to be
7.38.

5.4 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) was done which shows the
percentage contribution of each factor on the responses and
the significant factors. This is shown in Table 15.

The degree of freedom for the error is zero. Hence, an
approximate estimate of the error sum of squares is obtained
by pooling the sum of squares corresponding to the factors
having the lowest mean square. As a rule of thumb, the sum
of squares corresponding to the bottom half of the factors (as
defined by lower mean square) is used to estimate the error
sum of squares (NPTEL IITB). It indicates the percentage
contribution of factors with respect to the responses, and the
F ratio suggests which factor is significantly affecting the
response. From Table 15, no significance was observed at
conventionally used value of 95%. It is seen that discharge
current

(I) has the highest contribution on the response (31.63%)
while gap voltage has the least (18.37%). A summary of the
results is shown in Table 16.

Confirmation experiments were conducted for validat-
ing conclusions drawn from Table 16, and the S/N ratio
at optimal setting along with that obtained from fuzzy
AHP–fuzzy TOPSIS–Taguchi’s OA technique is also pre-
sented in Table 17. Experimental results correlated well with
the optimal settings predicted based on fuzzy AHP–fuzzy
TOPSIS–Taguchi’s OA technique.

6 Conclusion

The present work combines Taguchi’s orthogonal array (OA)
technique with integrated fuzzy AHP and fuzzy TOPSIS
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Table 15 ANOVA table

Factor DOF Sum of squares Mean square = sum of
squares/degree of freedom

% Contribution Calculated F ratio Tabulated F ratio

Ton 2 1.0477 0.5238 27.8029 1.3707 6.9443

DC 2 0.8364* 0.4182 22.1971 -

I 2 1.1919 0.5959 31.6293 1.5593 6.9443

V 2 0.6922* 0.3461 18.3707 –

Error 0 0.0000 – – –

Total 8 3.7682 – 100

(Error) (4) (1.5287) (0.3822) – –

* indicates the sum of squares added together to estimate the pooled error sum of squares shown within parenthesis. F ratio is calculated as the ratio
of factor mean square to the error mean square (IITB, Module 5 Design for Reliability and Quality)

Table 16 Summary of Results

Basis of
judgement

Factor Numerical
values

Remark

Percentage
Contribution of
factors

TON 27.80% Highest contributing
factor on overall basis
is discharge current
(I), although not very
high.

DC 22.20%

I 31.63%

V 18.37%

F ratio for factors TON 1.37 Pooled ANOVA: All
nonsignificant factors.
So decision is to be
based on percentage
contribution and/or S/i
ratio.

DC -

I 1.56

V -

S/N ratio for
factor levels

TON Level 3 Optimal setting of the
machine for EDM
process.

DC Level 3

I Level 3

V Level 1

Table 17 Results of the confirmation experiment

Performance
response

Optimal
setting

Predicted
S/N ratio

Experimental
S/N ratio

S/N ratio TON (3), DC (3),
I (3), V (1)

7.38 7.45

methods to convert multiple responses to a single response
so that Taguchi’s OA technique may be applied successfully.
Moreover, this was done in order to avoid the tedious pro-
cess of using each response and finding their signal-to-noise
ratio separately in numerous tabular forms for optimizing
the machining parameters. The following conclusions can
be derived from this study:

• Priorities of the responses can be incorporated by using
fuzzy AHP as required by the decision maker or the
expert.

• Closeness coefficients obtained from fuzzy TOPSIS
enable to convert multiple responses to a single output,
which helps in finding optimal solution using signal-to-
noise ratio.

• The proposed method of integration of Taguchi’s OA,
fuzzy AHP, and fuzzy TOPSIS is quite suitable for deter-
mining optimum level of parameters of any machining
process which may involve uncertainties in the maxi-
mization or minimization of responses.
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