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Abstract
The hesitant fuzzy linguistic (HFL) variable can handle the uncertainty very well, and Muirhead mean (MM) operator can
consider correlations among any amount of inputs by an alterable parameter, which is a generalization of some existing
operators by changing the parameter values. However, the traditional MM is only suitable for crisp numbers. In this article,
we enlarge the scope of theMMoperator to the HFL circumstance, and two new aggregation operators are proposed, including
the HFL Muirhead mean operator and the weighted HFL Muirhead mean (WHFLMM) operator. Simultaneously, we discuss
some worthy characters and some special cases concerning diverse parameter values of these operators. Moreover, a multiple-
attribute decision-making method under the HFL environment is developed based on the WHFLMM operator. Lastly, a
numerical example is applied to explain the feasibility of the proposed method.

Keywords HFL · MM operator · MADM

1 Introduction

Since fuzzy set is firstly proposed by Zadeh (1965), the
researches about it and its extensions have gotten a rapid
development and obtained a number of applications (Abdul-
lah et al. 2017; Qayyum et al. 2016). However, it is unable
to express the complex fuzzy information occasionally. With
the further research on fuzzy set theory, it develops in two
aspects. One aspect is to add nomembership degree, and then
intuitionistic fuzzy set (IFS)Atanassov (1986)was proposed;
another aspect is to add multiple membership degrees, and
then hesitant fuzzy set (HFS)Torra (2010)was proposed. The
membership degree in HFS can be expressed by a number
of possible values (Torra 2010; Torra and Narukawa 2009),
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and many research results about HFS have been achieved.
Torra (2010) explored the correlation between HFS and IFS
and then discovered that the envelope of HFS is IFS. Xia and
Xu (2011) proposed some aggregation techniques on HFS
and applied them to solve the MADM problems. Xu and Xia
(2011) proposed diverse distance measures of HFSs. Wei
(2012) proposed some prioritized aggregated operators for
HFSs.

Due to the complexity of the practical decision problems,
people generally give the attribute values for a given project
by combining qualitative evaluation with quantitative evalu-
ation. Especially, natural language term like “very good,”
“good,” “bad,” “very bad,” and so on is easy to express
the people’s judgment for special object. On the basis of
HFS and linguistic term (LT), Lin et al. (2014) put for-
ward the definition of HFL set (HFLS), which enables some
membership degrees belonging to a certain LT, and fur-
ther proposed some HFL aggregation operators, especially,
proposed induced HFL correlated aggregation operators,
HFL prioritized aggregation operators, HFL power aggre-
gation operators. Obviously, HFLS can more conveniently
express the uncertain information than HFS or linguistic
variables.

In the last fewyears,many newaggregation operators have
been researched (Liu et al. 2016a; Liu and Tang 2016; Liu
and Teng 2016; Liu andWang 2017; Rahman et al. 2017a, b).
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Especially, some of them can consider relationship among
any numbers; for example, based on Bonferroni mean (BM),
Zhu et al. (2012) proposed geometric BM for HFSs, which
combined the BM with the geometric mean (GM). Xu and
Yager (2011) put forward the BM for IFNs, and Liu et al.
(2017) proposed interactionPBMoperators for IFNs. Liu and
Li (2017) proposed power BM operators for interval-valued
IFNs (IVIFNs), Liu et al. (2014b) proposed the intuitionistic
linguistic (IL) weighted BM, Liu and Liu (2016) put for-
ward the intuitionistic uncertain linguistic (IUL) partitioned
BM (PBM), and Liu et al. (2016b) put forward the improved
BM for multi-valued neutrosophic numbers. Liu and Chen
(2017) proposed some Heronian mean (HM) operators for
IFNs, Yu andWu (2012) proposedHMoperators for IVIFNs,
and Liu (2017) proposed some power HM operators for
IVIFNs.

Liu et al. (2014a) put forward the IULHM operators, and
Liu and Teng (2017) proposed the normal neutrosophic num-
ber HM operators. Liu and Shi (2017) developed some HM
operators for neutrosophic and linguistic information. The
BM and HM operators just take the two input arguments
interrelationships into account. In order to consider the rela-
tionship among any numbers of parameters, the Maclaurin
symmetric mean (MSM) Maclaurin (1729) was firstly pro-
posed byMaclaurin and thenDetemple andRobertson (1979)
proposed the generalized MSM. Further, a more generalized
operator, Muirhead mean (MM) Muirhead (1902) was pro-
posed, which can consider correlations among any amount
of inputs by an alterable parameter, and BM operator and
MSM Qin and Liu (2014) operator are the special cases of
MM operator. Thus, the MM is a generalization of some
existing operators and it is more suitable to solve MADM
circumstance.

As the above discussed, we will find that the HFLS is
good at expressing the uncertainty, so it is very helpful to
handle the uncertain and vague information, and the MM
can consider correlations among any amount of inputs by
an alterable parameter, and it is a generalization of some
existing operators. Hence, it is significant and indispensable
to extend the MM to aggregate HFL information. Moti-
vated by this idea, the goal and contributions of this article
are (1) to extend MM operator to HFL information; (2) to
explore some worthy characters and some special cases of
these proposed operators; (3) to develop a MADM method
for HFL information based on the proposed operators; and
(4) to show the feasibility and advantages of the proposed
method.

So as to achieve above goal, the remaining part of the arti-
cle is organized as follows. In Sect. 2, we briefly introduce
some concepts of linguistic information, HFL information,
and the MM operator. In Sect. 3, we put forward some the
HFLMuirheadmean operators and also exploreworthy char-
acters and some special cases. In Sect. 4, we put forward a

decision-making method with HFL information based on the
proposed operators. In Sect. 5, we use a practical example to
verify the effectiveness of the proposed method in the article
and compare this method with the other methods. In Sect. 6,
we end the article.

2 Preliminaries

In this section,wewill present some concepts and operational
laws of the HFLS and the MM operator.

2.1 HFS

Definition 1 (Torra 2010) Given a fixed set Y , then a HFS on
Y is described as follows:

F = (〈y, hF (y)〉|y ∈ Y ), (1)

where hF (y) is a set of some values in [0,1], expressing the
possible membership degree of the element y ∈ Y to the set
F .

Definition 2 (Xia and Xu 2011) For a given HFE h f , we
define s(h f ) = 1

#h f

∑
γ∈h f γ as the score function of h f ,

where #h f is the number of the elements in h f .

For any two HFEs h f1 and h f2 , if s(h f1) > s(h f2), then
h f1 > h f2, and if s(h f1) = s(h f2), then h f1 = h f2.

2.2 Linguistic term set (LTS)

Let S f = {s ft |t = 1, 2, . . . , u} be a set of LTs with an odd
cardinality, the label s ft represents a linguistic variable with
a possible value, and it shall meet the features as follows
[4]:

(1) The ordered set: if t > v, s ft > s fv;
(2) The negation operator: neg(s ft ) = s fv that t+v = u+1;
(3) The max operator: if s ft ≥ s fv,max(s ft , s fv) = s ft ;
(4) The min operator: if s ft ≤ s fv,min(s ft , s fv) = s ft ;

For example, S f can be defined as:
S f = {s f1, s f2, s f3, s f4, s f5} ={very poor, poor, med-

ium, good, very good}.

2.3 HFLS

Definition 3 (Lin et al. 2014) As a regular set Y , the HFLS
can be described as follows:

A = (〈y, sθ(y), hA(y)〉|y ∈ Y ), (2)
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where hA(y) is a sunset of [0,1], expressing the possible
membership degree of the element y ∈ Y to the linguistic set
sθ(y), and θ(y) ∈ [1, u]. For convenience, we called a f =
〈sθ(y), hA(y)〉 as a HFL element (HFLE) and A have all the
HFLEs in it.

Definition 4 (Lin et al. 2014) For a HFLE a f = 〈sθ(y),

hA(y)〉,wedefined s(a f ) = ( 1
#h f

∑
γ∈h f γ )sθ(y) as the score

function of a f , where #h f is the number of the elements in
h f .

For two HFLEs a f1 and a f2, if s(a f1) > s(a f2), a f1 >

a f2, and if s(a f1) = s(a f2), a f1 = a f2.
For the HFLEs a f = 〈sθ(a f ), hA(a f )〉, a f1 = 〈sθ(a f1),

hA(a f1)〉, and a f2 = 〈sθ(a f2), hA(a f2)〉, some new opera-
tions on them are given as follows:

(1) a f1 ⊕ a f2 =
〈

sθ(a f1)+θ(a f2),

⋃

γ (a f1)∈h(a f1),γ (a f2)∈h(a f2)

{γ (a f1) + γ (a f2) − γ (a f1) γ (a f2)}
〉

,

(3)

(2) a f1 ⊗ a f2 =
〈

sθ(a f1)×θ(a f2),

⋃

γ (a f1)∈h(a f1),γ (a f2)∈h(a f2)

{γ (a f1) γ (a f2)}
〉

, (4)

(3)
λa f =

〈

sλθ(a f ),
⋃

γ (a f )∈h(a f )

{1 − (1 − γ (a f ))λ}
〉

,

(5)

(4)
a f λ =

〈

sθ(a f )λ ,
⋃

γ (a f )∈h(a f )

{γ (a f )λ}
〉

. (6)

2.4 MM operator

Muirhead (1902) originally put forward the MM operator,
which is shown as follows:

Definition 5 (Muirhead 1902) Let φi (i = 1, 2, 3, . . . , n) be
a set of positive numbers, the parameters vector is P =
(p1, p2, . . . , pl) ∈ Rl . Suppose

MMP (φ1, φ2, . . . , φn) =
⎛

⎝ 1

n!
∑

σ∈Sn

n∏

js=1

φ
p js

σ( js)

⎞

⎠

1∑n
js=1 p js

,

(7)

Then, MMP is called MM operator, the σ( js)( js =
1, 2, . . . , n) is any permutation of (1, 2, . . . , n), and Sn is
a set of all permutations of (1, 2, . . . , n).

Furthermore, from Eq. (7), we can know that

(1) If P = (1, 0, . . . , 0), the MM reduces to MM(1,0,...,0)

(α1, α2, . . . , αn) = 1
n

∑n
j=1 α j , which is the arithmetic

averaging operator.
(2) If P = (1/n, 1/n, . . . , 1/n), the MM reduces to

MM(1/n,1/n,...,1/n)(α1, α2, . . . , αn) = ∏n
j=1 α

1/n
j ,which

is the GM operator.
(3) If P = (1, 1, 0, 0, . . . , 0), the MM reduces to MM

(1,1,0,0,...,0)(α1, α2, . . . , αn) = ( 1
n(n−1)

n∑
i, j=1
i 	= j

αiα j )
1
2 ,

which is the BM operator (Liu et al. 2014b).

(4) If P =
k

︷ ︸︸ ︷
(1, 1, . . . , 1,

n−k
︷ ︸︸ ︷
0, 0, . . . , 0), the MM reduces to

MM

k
︷ ︸︸ ︷
(1, 1, . . . , 1,

n−k
︷ ︸︸ ︷
0, 0, . . . , 0)(α1, α2, . . . , αn) =

(

⊕
1≤i1≺···≺ik≤n

k⊗
j=1

αi j

Ck
n

)
1
k which is theMSMoperator (Maclau-

rin 1729).

3 Hesitant fuzzy linguistic MM aggregation
operators

In this part, we propose the MM operator for HFL infor-
mation (HFLMM) and weighted HFLMM (WHFLMSM)
operator, and further we discuss their special cases and prop-
erties.

3.1 HFLMM operator

Definition 6 Let a fi = 〈sθ(a fi ), hA(a fi )〉(i = 1, 2, . . . , n)

be a set of HFLEs, and P = (p1, p2, . . . , pn) ∈ Rn be a
vector of parameters. If

HFLMMP (a f1, a f2, . . . , a fn)

=
⎛

⎝ 1

n!
∑

σ∈Sn

n∏

js=1

a f
p js

σ( js)

⎞

⎠

1∑n
js=1 p js

, (8)
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then we call HFLMMP as HFLMM operator, where σ( js)
( js = 1, 2, . . . , n) is any permutation of (1, 2, . . . , n), and
Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 1 Let a fi = 〈sθ(a fi ), hA(a fi )〉(i = 1, 2, . . . , n) be
a set of HFLEs, then the result produced by Definition 6 can
be expressed as

HFLMMP (a f1, a f2, . . . , a fn) = 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(a fσ( js))

p js

)
1

n∑

js=1
p js

,

⎛

⎝
⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

⎛

⎝
∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
aσ( js)

)p js

⎞

⎠

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠〉.

(9)

Proof According to the operational laws of the HFLEs, we
have

a f
p js

σ( js) =
〈

s
θ
(
a f

σ( js)

)p j ,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))

{
γ
(
a fσ( js)

)p js
}
〉

and

n∏

js=1

a f
p js

σ( js) = 〈s n∏

js=1
θ
(
a f

σ( js)

)p js ,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎨

⎩

n∏

js=1

γ
(
aσ( js)

)p js

⎫
⎬

⎭〉,

then

∑

σ∈Sn

n∏

js=1

a f
p js

σ( js) = 〈s ∑

σ∈Sn

n∏

js=1
θ
(
a f

σ( js)

)p js,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎨

⎩
1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)p js

⎞

⎠

⎫
⎬

⎭〉.
Further, we can obtain

1

n!
∑

σ∈Sn

n∏

js=1

a f
p js

σ( js) = 〈s 1
n!

∑

σ∈Sn

n∏

js=1
θ
(
a f

σ( js)

)p js ,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎨

⎪⎩
1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)p js

⎞

⎠

1
n!
⎫
⎪⎬

⎪⎭〉.
Therefore

⎛

⎝ 1

n!
∑

σ∈Sn

n∏

js=1

a f
p js

σ( js)

⎞

⎠

1
n∑

js=1
p js

= 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ
(
a f

σ( js)

)p js

)
1

n∑

js=1
p js

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)p js

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉.
��

123



Multiple-attribute decision-making method based on hesitant fuzzy linguistic Muirhead mean… 5517

Example 1 Let a f1 = 〈s2, {0.6, 0.8}〉, a f2 = 〈s4, {0.7, 0.8}〉,
and a f3 = 〈s1, {0.6, 0.7}〉 be three HFLEs, then according
to (9), we can use the HFLMM operator to aggregate them
shown as follows (suppose P = (1, 2, 1)).

HFLMM(1,2,1) (a f1, a f2, a f3) = 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ
(
a f

σ( js)

)p j s
)

1
n∑

js=1
p js

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)p js

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉
= 〈s( 1

6 ((2
1×42×11)+(21×12×41)+(41×22×11)+(41×12×21)+(11×22×41)+(11×42×21))

) 1
4
,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎜
⎜
⎝

(
1 − 0.61 × 0.72 × 0.61

)
×
(
1 − 0.61 × 0.82 × 0.61

)
×
(
1 − 0.61 × 0.72 × 0.71

)

×
(
1 − 0.61 × 0.82 × 0.71

) (
1 − 0.81 × 0.72 × 0.61

)
×
(
1 − 0.81 × 0.72 × 0.71

)
×

(
1 − 0.81 × 0.82 × 0.61

)
×
(
1 − 0.81 × 0.82 × 0.71

)

⎞

⎟
⎟
⎟
⎟
⎠

1
6
⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
4 〉

= 〈s2.07, 0.7577〉 .

In the next, we will explain certain worthy qualities of the
HFLMM operator.

Theorem 2 (Idempotency). If a fi = a f = 〈sθ(a f ), hA(a f )〉
(i = 1, 2, . . . , n) for all i = 1, 2, . . . , n, then

HFLMMP (a f1, a f2, . . . , a fn) = a f . (10)

Proof Since a f = 〈sθ(a f ), hA(a f )〉, based on Theorem 1,
we have

HFLMMP (a f1, a f2, . . . , a fn)

= 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(a f )p js

)
1

n∑

js=1
p js

,

⋃

γ (a f )∈h(a f )

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ (a f )p js

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉

= 〈s⎛⎜⎝ 1
n!

∑

σ∈Sn
θ(a f )

n∑

js=1
p j s

⎞

⎟
⎠

1
n∑

js=1
p js

,

⋃

γ (a f )∈h(a f )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝1 −

∏

σ∈Sn

⎛

⎝1 − γ (a f )

n∑

js=1
p js

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭〉
= 〈s⎛⎜⎝θ(a f )

n∑

js=1
p js

⎞

⎟
⎠

1
n∑

js=1
p js

,

⋃

γ (a f )∈h(a f )

⎧
⎪⎨

⎪⎩

⎛

⎝γ (a f )

n∑

js=1
p js

⎞

⎠

1
n∑

js=1
p js

⎫
⎪⎬

⎪⎭〉
= 〈

sθ(a f ), hA (a f )
〉
.

which finishes the Proof of Theorem 2. ��
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Theorem 3 (Monotonicity). Let a f js = 〈sθ(a f js), hA(a f js)〉,
a′
js = 〈sθ(a′

js )
, hA(a′

js)〉 be two sets of HFLEs, if θ(a f js) ≥
θ(a′

js), hA(a f js) ≥ hA(a′
js) for all j = 1, 2, . . . , n,

then HFLMMP (a f1, a f2, . . . , a fn)

≥ HFLMMP (a′
1, a

′
2, . . . , a

′
n). (11)

Proof Since

HFLMMP (a f1, a f2, . . . , a fn)

= 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ
(
a f

σ( js)

)p js

)
1

n∑

js=1
p js

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)p js

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉,
If θ(a f js) ≥ θ(a′

js), hA(a f js) ≥ hA(a′
js),

Since θ(a f js) ≥ θ(a′
js),

then ( 1
n!
∑

σ∈Sn
∏n

js=1 θ(a fσ( js))
p js )

1∑n
js=1 p js

≥ ( 1
n!
∑

σ∈Sn
∏n

js=1 θ(a′
σ( js))

p js )

1∑n
js=1 p js .

Since hA(a f js) ≥ hA(a′
js), then

∏n
js=1 γ (a fσ( js))

p js ≥
∏n

js=1 γ (a′
σ( js))

p js ,
and (1−∏n

js=1 γ (a fσ( js))
p js )≤(1−∏n

js=1 γ (a′
σ( js))

p js ).

further,
∏

σ∈Sn (1 − ∏n
js=1 γ (a fσ( js))

p js )
1
n!

≤ ∏
σ∈Sn (1 − ∏n

js=1 γ (a′
σ( js))

p js )
1
n! ,

so, (1 − ∏
σ∈Sn (1 − ∏n

js=1 γ (a fσ( js))
p js )

1
n! )

1∑n
js=1 p js ≥

(1 − ∏
σ∈Sn (1 − ∏n

js=1 γ (a′
σ( js))

p js )
1
n! )

1∑n
js=1 p js ,

i.e., HFLMMP (a f1, a f2, . . . , a fn) ≥ HFLMMP (a′
1, a

′
2,

. . . , a′
n),

which finishes the Proof of Theorem 4. ��
Theorem 4 (Boundedness). Suppose a f − = min(a f1, a f2,
. . . , a fn), a f + = max(a f1, a f2, . . . , a fn), then

a f − ≤ HFLMMP (a f1, a f2, . . . , a fn) ≤ a f +. (12)

Proof Suppose a f − = min(a f1, a f2, . . . , a fn), a f + =
max(a f1, a f2, . . . , a fn). According to Theorem 3, we have

HFLMMP (a f −, a f − , . . . , a f −)

≤ HFLMMP (a f1, a f2, . . . , a fn)

≤ HFLMMP (a f + , a f + , . . . , a f +),

and according to Theorem 1, we have

HFLMMP (a f − , a f − , . . . , a f −)

= a f − ,HFLMMP (a f + , a f + , . . . , a f +) = a f +.

So, we can get a f − ≤ HFLMMP (a f1, a f2, . . . , a fn) ≤
a f +,

which finishes the proof of Theorem 4. ��

Next, we will investigate some special cases of the
HFLMM operator with the different parameter vector.

(1) When P = (1, 0, . . . , 0), the HFLMM operator will
reduce to the HFLAM operator (Lin et al. 2014).

HFLMM(1,0,...,0)(a f1, a f2, . . . , a fn) = 1

n

n∑

js=1

a f js

= 〈s 1
n

n∑

js=1
θ(a fσ( js))

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎨

⎩
1 −

n∏

js=1

(
1 − γ

(
a fσ( js)

)) 1
n

⎫
⎬

⎭〉. (13)

(2) When P = (λ, 0, . . . , 0), the HFLMM operator will
reduce to the HFL GAM operator (Lin et al. 2014).

HFLMM(λ,0,...,0)(a f1, a f2, . . . , a fn) = 1

n

⎛

⎝
n∑

js=1

a f λ
js

⎞

⎠

1
λ

= 〈s( 1
n

n∑

js=1
θ(a fσ( js))

λ

) 1
λ
,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎨

⎪⎩

⎛

⎝1 −
n∏

js=1

(
1 − γ

(
a fσ( js)

)λ
) 1

n

⎞

⎠

1
λ

⎫
⎪⎬

⎪⎭〉. (14)

(3) When P = (1, 1, 0, 0, . . . , 0), the HFLMM operator
will reduce to the HFL BM operator (Lin et al. 2014).

HFLMM(1,1,0...,0)(a f1, a f2, . . . , a fn)

=

⎛

⎜
⎜
⎜
⎝

1

n(n − 1)

n∑

i, js=1
i 	= js

ai a js

⎞

⎟
⎟
⎟
⎠

1
2

123



Multiple-attribute decision-making method based on hesitant fuzzy linguistic Muirhead mean… 5519

= 〈s⎛⎜⎜⎝ 1
n(n−1)

n∑

i, js=1
i 	= js

θ(a fσ(i))θ(a fσ( js))

⎞

⎟
⎟
⎠

1
2
,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝
1 −

n∏

i, js=1
i 	= js

(
1 − γ

(
a fσ(i)

)
γ
(
a fσ( js)

)) 1
n(n−1)

⎞

⎟
⎟
⎟
⎠

1
2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭〉.
(15)

(4) When P =
k

︷ ︸︸ ︷
(1, 1, . . . , 1.

n−k
︷ ︸︸ ︷
, 0, 0, . . . , 0), the HFLMM

operator will reduce to the HFLMSMoperator (Lin et al.
2014).

HFLMM

k
︷ ︸︸ ︷
(1, 1, . . . , 1

n−k
︷ ︸︸ ︷
, 0, 0, . . . , 0)(a f1, a f2, . . . , a fn)

=

⎛

⎜
⎜
⎝

⊕
1≤i1≺···≺ik≤n

k⊗
js=1

a fi js

Ck
n

⎞

⎟
⎟
⎠

1
k

= 〈s⎛⎜⎜⎝ n∑

js=1

n∏

js=1
θ(a fσ( js))

Ck
n

⎞

⎟
⎟
⎠

1
k
,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

n∏

js=1

⎛

⎝1 −
n∏

js=1

γ
(
a fσ( js)

)
⎞

⎠

1
Ck
n

⎞

⎟
⎠

1
k
⎫
⎪⎪⎬

⎪⎪⎭〉. (16)

(5) When P = (1, 1, . . . , 1), the HFLMM operator will
reduce to the HFL geometric averaging operator (Lin
et al. 2014).

HFLMM(1,1,...,1)(a f1, a f2, . . . , a fn) =
⎛

⎝
n∏

js=1

a f js

⎞

⎠

1/n

= 〈s( n∏

js=1
θ(a fσ( js))

) 1
n
,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎨

⎪⎩

⎛

⎝
n∏

js=1

γ
(
a fσ( js)

)
⎞

⎠

1
n

⎫
⎪⎬

⎪⎭〉. (17)

(6) When P = (1/n, 1/n, . . . , 1/n), the HFLMM operator
will reduce to the HFL geometric averaging operator
(Lin et al. 2014).

HFLMM(1,1,...,1)(a f1, a f2, . . . , a fn) =
n∏

js=1

a f 1/njs

= 〈s( n∏

js=1
θ(a fσ( js))

) 1
n
,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎨

⎪⎩

⎛

⎝
n∏

js=1

γ
(
a fσ( js)

)
⎞

⎠

1
n

⎫
⎪⎬

⎪⎭〉. (18)

3.2 WHFLMSM operator

Definition 7 Let a fi = 〈sθ(a fi ), hA(a fi )〉(i = 1, 2, . . . , n)

be a set of HFLEs and P = (p1, p2, . . . , pn) ∈ Rn, ω =
(ω1, ω2, . . . , ωn)

T be the weighted vector of a js, js =
1, 2, . . . , n,withωi ∈ [0, 1], i = 1, 2, . . . , n and

∑n
i=1 ωi = 1.

If

WHFLMMP (a f1, a f2, . . . , a fn)

=
⎛

⎝ 1

n!
∑

σ∈Sn

n∏

js=1

nωσ( js)a f
p js

σ( js)

⎞

⎠

1∑n
js=1 p js

, (19)

then WHFLMM is the WHFLMSM operator, where σ( js)
( js = 1, 2, . . . , n) is any permutation of (1, 2, . . . , n), and
Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 5 Let ai = 〈sθ(ai ), hA(ai )〉(i = 1, 2, . . . , n) be a
set of HFLEs and P = (p1, p2, . . . , pn) ∈ Rn,

ω = (ω1, ω2, . . . , ωn)
T be the weighted vector of

ajs js = 1, 2, . . . , n with ωi ∈ [0, 1] , i = 1, 2, . . . , n
and

∑n
i=1 ωi = 1. Then,
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WHFLMMP (a f1, a f2, . . . , a fn)

= 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(nωσ( js)a fσ( js))

p js

) 1∑n
js=1 p js

,
⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

⎛

⎝
∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

(
1 − (

1 − γ
(
a fσ( js)

)p js
)nωσ( js)

)
⎞

⎠

⎞

⎠

1
n!
⎞

⎟
⎠

1∑n
js=1 p js

⎫
⎪⎪⎬

⎪⎪⎭〉. (20)

The proof of this theorem is similar to Theorem 1, and it
is omitted here.

Example 2 Let a f1 = 〈s2, {0.6, 0.8}〉, a f2 = 〈s4, {0.7, 0.8}〉,
and a f3 = 〈s1, {0.6, 0.7}〉 be three HFLEs, and ω =
(0.3, 0.4, 0.3)T be the weighted vector of a fi (i = 1, 2, 3),
then we can use the WHFLMM operator to aggregate the
three HFLEs. Suppose P = (1, 2, 1), by Formula (20), we
can get

WHFLMM(1,1,1)(a f1, a f2, a f3) = 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(nωσ( js)a fσ( js))

p js

) 1∑n
js=1 p js

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

⎛

⎝
∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

(
1 − (

1 − γ
(
a fσ( js)

)p js
)nωσ( js)

)
⎞

⎠

⎞

⎠

1
n!
⎞

⎟
⎠

1∑n
js=1 p js

⎫
⎪⎪⎬

⎪⎪⎭〉
= 〈s⎛⎝ 1

6

⎛

⎝

(
(0.3×2×3)1×(0.4×4×3)2×(0.3×1×3)1

)+(
(0.3×2×3)1×(0.3×1×3)2×(0.4×4×3)1

)+(
(0.4×4×3)1×(0.3×2×3)2×(0.3×1×3)1

)+(
(0.4×4×3)1×(0.3×1×3)2×(0.3×2×3)1

)+(
(0.3×1×3)1×(0.3×2×3)2×(0.4×4×3)1

)+(
(0.3×1×3)1×(0.4×4×3)2×(0.3×2×3)1

)

⎞

⎠

⎞

⎠

1
4
,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
1 −

(
1 − (

1 − 0.61
)0.3×3

)
×
(
1 − (

1 − 0.72
)0.4×3

)
×
(
1 − (

1 − 0.61
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.61
)0.3×3

)
×
(
1 − (

1 − 0.82
)0.4×3

)
×
(
1 − (

1 − 0.61
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.61
)0.3×3

)
×
(
1 − (

1 − 0.72
)0.4×3

)
×
(
1 − (

1 − 0.71
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.61
)0.3×3

)
×
(
1 − (

1 − 0.82
)0.4×3

)
×
(
1 − (

1 − 0.71
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.81
)0.3×3

)
×
(
1 − (

1 − 0.72
)0.4×3

)
×
(
1 − (

1 − 0.61
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.81
)0.3×3

)
×
(
1 − (

1 − 0.72
)0.4×3

)
×
(
1 − (

1 − 0.71
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.81
)0.3×3

)
×
(
1 − (

1 − 0.82
)0.4×3

)
×
(
1 − (

1 − 0.61
)0.3×3

))
×

(
1 −

(
1 − (

1 − 0.81
)0.3×3

)
×
(
1 − (

1 − 0.82
)0.4×3

)
×
(
1 − (

1 − 0.71
)0.3×3

))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
6
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
4

= 〈s2.10, 0.76〉 .

In light of the operational laws of the HFLEs, the
WHFLMM operator has also the same desirable properties
expressed as follows.

Theorem 6 (Monotonicity). If θ(a f js) ≥ θ(a′
js), hA(a f js)

≥ hA(a′
js) for all js, then

WHFLMMP (a f1, a f2, . . . , a fn)

≥ WHFLMMP (a′
1, a

′
2, . . . , a

′
n), (21)
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Theorem 7 (Boundedness). Suppose a f − = min(a f1, a f2,
. . . , a fn) a f + = max(a f1, a f2, . . . , a fn), then

〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(nωσ( js)a f −)

p js

) 1∑n
js=1 p js

,

⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

⎛

⎝
∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

(
1 − (

1 − γ
(
a f −)p js

)nωσ( js)
)
⎞

⎠

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉 ≤ WHFLMMP (a f1, a f2, . . . , a fn)

≤ 〈s( 1
n!

∑

σ∈Sn

n∏

js=1
θ(nωσ( js)a f +)

p js

) 1∑n
js=1 p js

,
⋃

γ (a fσ(1))∈h(a fσ(1)),γ (a fσ(2))∈h(a fσ(2)),...,γ (a fσ(n))∈h(a fσ(n))

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝1 −

⎛

⎝
∏

σ∈Sn

⎛

⎝1 −
n∏

js=1

(
1 − (

1 − γ
(
a f +)p js

)nωσ( js)
)
⎞

⎠

⎞

⎠

1
n!
⎞

⎟
⎠

1
n∑

js=1
p js

⎫
⎪⎪⎬

⎪⎪⎭〉 (22)

The proofs of the above theorems are similar to the cor-
responding theorems of HFLMM operator, so it is omitted
here.

4 A group decision-making approach based
on theWHFLMMoperator

In this part, we will make use of the proposed WHFLMM
operator to solve the MADM for ERP system selection
[adapted from Lin et al. (2014)].

A MADM problem for selecting the ERP system with
HFL information is described as follows. The A f =
{A f1, A f2, . . . , A fm} are a set of alternatives, and G f =
{G f1,G f2, . . . ,G fn} are a set of attributes. The decision
maker can use a HFL element 〈sθ(ai j ), h(ai j )〉 to describe the
attribute G f j of the alternative A fi . Suppose the weighted
vector of the attributes is ω = (ω1, ω2, . . . , ωn) satisfying
ω j ≥ 0( j = 1, 2, . . . , n),

∑n
j=1 ω j = 1, and the decision

matrix H = (h̃(ai j ))m×n = (〈sθ(ai j ), h(ai j )〉)m×n is the hes-
itant fuzzy linguistic matrix where 〈sθ(ai j ), h(ai j )〉(i = 1, 2,
. . . ,m)( j = 1, 2, . . . , n) adopts the form of HFLEs.

Then, we utilize the WHFLMM operator to handle the
ERP system selection with HFL information.

Procedure 1: Standardization of the attributes

Among the practical decision-makingproblems, two types
of the attribute values maybe exist, i.e., cost attribute and
benefit attribute. In order to eliminate the difference in types,
we need convert them into the same type.

Suppose the converted decision matrices are expressed by
Ĥ = [ĥ(ai j )]m×n , and for the cost type, it can be converted
into benefit type by

ĥ(ai j ) = 〈
sθ(ai j ), h(ai j )

〉
. (23)

Procedure 2: Calculate the comprehensive evaluation value
as follows:

ĥ(ai j ) = WHFLMMP (ĥi1, ĥi2, . . . , ĥin). (24)

Procedure 3: Rank ĥi (i = 1, 2, . . . ,m) in descending order
in light of Definition 4.
Procedure 4: End.

5 Numerical example

In the following, we use a practical problem to illustrate
application developed method. Assume a company wants
to select an ERP system [adapted from Lin et al. (2014)].
By collecting ERP vendors and systems’ all possible infor-
mation, we pick five ERP systems A fi (i = 1, 2, 3, 4, 5) as
potential systems. The company invites a number of out-
side specialists to give their evaluation values. To make
this problem clear, the company picks four attributes: (1)
function and technology G f1, (2) strategic fitness G f2,
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Table 1 Decision matrix H G f1 G f2 G f3 G f4

A f1 〈s4, {0.4, 0.5, 0.6}〉 〈s2, {0.6, 0.8}〉 〈s1, {0.6, 0.9}〉 〈s3, {0.4, 0.6}〉
A f2 〈s1, {0.3, 0.5}〉 〈s4, {0.7, 0.8}〉 〈s2, {0.5, 0.8}〉 〈s4, {0.5, 0.6}〉
A f3 〈s5, {0.3, 0.4}〉 〈s1, {0.6, 0.7}〉 〈s4, {0.3, 0.5}〉 〈s2, {0.6, 0.8}〉
A f4 〈s4, {0.5, 0.6}〉 〈s3, {0.2, 0.3}〉 〈s6, {0.5, 0.7}〉 〈s1, {0.4, 0.5}〉
A f5 〈s3, {0.7, 0.9}〉 〈s1, {0.5, 0.6}〉 〈s3, {0.7, 0.8}〉 〈s1, {0.6, 0.9}〉

Table 2 Ranking results by using the different P in the WHFLMM operator

Parameter vector P The score function S(ĥ(i)) Ranking results

P = (1, 0, 0, 0)
S(ĥ1) = s1.59, S(ĥ2) = s1.66, S(ĥ3) = s1.77,
S(ĥ4) = s1.68, S(ĥ5) = s1.53

A f3 � A f4 � A f2 � A f1 � A f5

P = (1, 1, 0, 0)
S(ĥ1) = s1.49, S(ĥ2) = s1.48, S(ĥ3) = s1.73,
S(ĥ4) = s1.64, S(ĥ5) = s1.39

A f3 � A f4 � A f2 � A f1 � A f5

P = (1, 1, 1, 0)
S(ĥ1) = s1.31, S(ĥ2) = s1.55, S(ĥ3) = s1.65,
S(ĥ4) = s1.30, S(ĥ5) = s1.44

A f3 � A f2 � A f5 � A f1 � A f4

P = (1, 1, 1, 1)
S(ĥ1) = s1.26, S(ĥ2) = s1.36, S(ĥ3) = s1.40,
S(ĥ4) = s1.21, S(ĥ5) = s1.27

A f3 � A f2 � A f5 � A f1 � A f4

P = (0.25, 0.25, 0.25, 0.25)
S(ĥ1) = s1.26, S(ĥ2) = s1.36, S(ĥ3) = s1.40,
S(ĥ4) = s1.21, S(ĥ5) = s1.27

A f3 � A f2 � A f5 � A f1 � A f4

P = (2, 0, 0, 0)
S(ĥ1) = s1.03, S(ĥ2) = s1.06, S(ĥ3) = s1.04,
S(ĥ4) = s1.02, S(ĥ5) = s1.07

A f5 � A f3 � A f4 � A f2 � A f1

P = (3, 0, 0, 0)
S(ĥ1) = s1.01, S(ĥ2) = s1.02, S(ĥ3) = s1.05,
S(ĥ4) = s1.03, S(ĥ5) = s1.06

A f5 � A f3 � A f4 � A f2 � A f1

(3) vendor’s ability G f3, and (4) vendor’s reputation G f4
for this problem, and the attribute weight vector is ω =
(0.2, 0.1, 0.3, 0.4)T . For keeping the independence of the
evaluation results, the DMs are needed to assess the five pos-
sible ERP systems A fi (i = 1, 2, 3, 4, 5) under the above
four attributes in anonymity and the HFL decision matrix
H = (h̃(ai j ))5×4 = (〈sθ(ai j ), h(ai j )〉)5×4 is presented in
Table 1, where 〈sθ(ai j ), h(ai j )〉(i = 1, 2, 3, 4, 5)( j = 1, 2,
3, 4) takes the form of HFLEs.

Then, we can use the above method to choose the best
ERP system(s).

5.1 Evaluation steps of the proposedmethod

Procedure 1: Because all attributes are benefit type, it is no
necessary to transform the attribute values.

Procedure 2: Calculate the comprehensive evaluation value
by Formula (24) and assume P = (1, 1, . . . , 1) that have

ĥ1 = 〈s2.37, {0.55}〉, ĥ2 = 〈s2.25, {0.60}〉, ĥ3 = 〈s3.42, {0.41}〉,
ĥ4 = 〈s2.16, {0.56}〉, ĥ5 = 〈s1.98, {0.64}〉.

Procedure 3: Calculating scores for each ĥi (i=1, 2, 3, 4, 5)
by Formula (7), we have

S
(
ĥ1
)

= s1.26, S
(
ĥ2
)

= s1.36, S
(
ĥ3
)

= s1.40, S
(
ĥ4
)

= s1.21, S
(
ĥ5
)

= s1.27.

Procedure 4: Rank the alternatives
In light of Definition 4, the result is A f3 � A f2 � A f5 �

A f1 � A f4.
The best is alternative A f3, i.e., the third ERP system is

the best one.

5.2 Discussion

So as to understand the impact of parameter P on MADM
problem in this example, we use diverse values to obtain the
ranking results, which are shown in Table 2.

We can find that, from Table 2, the score functions value
varies with the different parameter vector P and correspond-
ing to that, the results of ranking are different. Generally
speaking, DMs can select some particular values; for exam-
ple, when P = (1, 1, 1, 1), the WHFLMM operator reduced
to HFLWG operator (Lin et al. 2014); Furthermore, for the
WHFLMM operator, we can easily obtain that with the
increase of the interrelationships of attributes we consider,
score functions value decreased. Hence, diverse P can be
regarded as the DMs’ risk preference.
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Table 3 Different methods’ ranking results

Method by Aggregation operator Score function S(ĥ(i)) Ranking

Lin et al. (2014) HFLWA operator
S(ĥ1) = s1.59, S(ĥ2) = s1.66, S(ĥ3) = s1.77,
S(ĥ4) = s1.68, S(ĥ5) = s1.53

A f3 � A f4 � A f2 � A f1 � A f5

Lin et al. (2014) HFLWG operator
S(ĥ1) = s1.26, S(ĥ2) = s1.36, S(ĥ3) = s1.40,
S(ĥ4) = s1.21, S(ĥ5) = s1.27

A f3 � A f2 � A f5 � A f1 � A f4

Table 4 Comparisons of different methods

Methods Whether captures
interrelationship of
two attributes

Whether captures
interrelationship of
multiple attributes

Whether makes the
method flexible by
the parameter vector

Base on HFLWA (Lin et al. 2014) No No No

Based on HFLWG (Lin et al. 2014) No No No

Based on WHFLMM in this paper Yes Yes Yes

In order to prove the validity and the prominent advantage
of the proposed method, we use the existing methods such
as the methods based on the HFLWA operator in Lin et al.
(2014) and the HFLWG operator in Lin et al. (2014) to rank
this example and the ranking results are listed in Table 3.

From Table 3, we can find that these two methods have
the same best alternative A3 although the ranking results
are different. Further, it is clear that the score functions
and ranking result produced by the HFLWA operator are
exactly the same as those produced by our method when
P = (1, 0, 0, 0) while the score functions and ranking result
produced by the HFLWG operator are exactly the same as
those produced by our method when P = (1, 1, 1, 1) or
P = (0.25, 0.25, 0.25, 0.25). Obviously, these results can
easily be explained that the HFLWA operator is the spe-
cial case of our method when P = (1, 0, 0, 0) and the
HFLWG operator is the special case of our method when
P = (1, 1, 1, 1) or P = (0.25, 0.25, 0.25, 0.25). So, these
results can show that our proposed method is effective and
feasible and is also more general than the methods proposed
by Lin et al. (2014).

The following table shows the comparisons of the existing
two methods with our proposed method concerning some
features, which are shown in Table 4.

Compared with the method based on HFLWA operator
proposed by Lin et al. (2014), it is clear that the method
from Lin et al. (2014) can easily integrate vague informa-
tion, and its computation is relatively simple. However, its
disadvantage is that it does not take the correlation between
the inputs into account because it assumes that the inputs
are independent. The method proposed in the article can take
the correlation among all inputs into account, and it provides
a general and flexible aggregation function because it can
generalizemost existing aggregation operators. For example,

HFLWA operator proposed by Lin et al. (2014) is a special
case of WHFLMM operator when the P = (1, 0, . . . , 0, 0),
and the WHFLMM operator reduced to WHFLWG operator
when the P = (1, 1, . . . , 1, 1). So, the method in the article
is more universal and flexible to solveMADMproblems than
the method based on the HFLWA operator (Lin et al. 2014).

6 Conclusion

TheMADMproblemsbasedonHFL informationhave awide
range of applications in a variety of fields. Because hesitant
fuzzy linguistic variable is good at handling the uncertainty
and the MM operator has the remarkable feature that could
take the correlations among any amount of inputs by param-
eter P , in this article, we extended MM operator to handle
the HFLEs and put forward some MM aggregation opera-
tors by combining it with the HFL information, such as the
HFLMM operator and WHFLMM operator, and some wor-
thy characteristics of these operators, at themeanwhile, some
special cases are explained. Lastly, aMADMmethodwith the
HFL information based onWHFLMM operator is proposed.
This method is more universal and effective than some other
methods in processing HFL information of solving practical
MADM problems.

In further study, we will use the proposed method to solve
the practical decision-making problems or extend the pro-
posed operators and methods to other fuzzy information
environment.
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