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Abstract
Reasonable burden distribution matrix is one of important requirements that can realize low consumption, high efficiency,
high quality and long campaign life of the blast furnace. This paper proposes a data-driven prediction model of adjusting the
burden distribution matrix based on the improved multilayer extreme learning machine (ML-ELM) algorithm. The improved
ML-ELM algorithm is based on our previously modified ML-ELM algorithm (named as PLS-ML-ELM) and the ensemble
model. It is named as EPLS-ML-ELM. The PLS-ML-ELMalgorithm uses the partial least square (PLS)method to improve the
algebraic property of the last hidden layer output matrix for the ML-ELM algorithm. However, the PLS-ML-ELM algorithm
may have different results in different trails of simulations. The ensemble model can overcome this problem. Moreover, it
can improve the generalization performance. Hence, the EPLS-ML-ELM algorithm is consisted of several PLS-ML-ELMs.
The real blast furnace data are used to testify the data-driven prediction model. Compared with other prediction models
which are based on the SVM algorithm, the ELM algorithm, the ML-ELM algorithm and the PLS-ML-ELM algorithm,
the simulation results demonstrate that the data-driven prediction model based on the EPLS-ML-ELM algorithm has better
prediction accuracy and generalization performance.

Keywords Extreme learning machine · Multilayer extreme learning machine · Blast furnace · Burden distribution matrix ·
Ensemble model · Data-driven prediction model

1 Introduction

Ironmaking process is a multivariant and nonlinear indus-
trial process, and it has numerous chemical reactions (Peacey
and Davenport 2016). Blast furnace is an essential step for
ironmaking process (Radhakrishnan and Ram 2001; Geerdes
et al. 2009). The smooth operation of the blast furnace is very
important for iron and steel companies. Burden distribution
matrix is a significant operation system of the blast furnace
(Liu 2012). It is consisted of the angels of rotating chute
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and the rotational numbers corresponding to each angel of
rotating chute. The burden distribution matrix is expressed
as

[
α1 α2 · · · αi · · · αn

N1 N2 · · · Ni · · · Nn

]
, (1)

where αi represents the angel of rotating chute, Ni is the rota-
tional numbers corresponding to each angel, i = 1, 2, . . . , n.

Reasonable burden distribution matrix can obtain reason-
able gas flow distribution and make full use of energy of
gas, and reasonable burden distribution matrix is one of
important requirements that can realize low consumption,
high efficiency, high quality and long campaign life of the
blast furnace (Liu 2012; Shi et al. 2016). In practical pro-
duction process, the burden distribution matrix is not fixed.
The angles of rotating chute and the rotational numbers cor-
responding to each angle of rotating chute can be changed.
When the blast furnace has the abnormal conditions or the
blast furnace condition parameters are not good, the burden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3153-6&domain=pdf


3576 X. Su et al.

distribution matrix should be adjusted. Moreover, the bur-
den distribution matrix can be measured by the blast furnace
condition parameters. In real blast furnace operation, oper-
ators use blast furnace condition parameters to determine
whether the burden distribution matrix needs to be adjusted.
There are seven blast furnace condition parameters (the blast
volume, the blast pressure, the blast velocity, the top pres-
sure, the permeability index, the gas utilization rate and the
utilization coefficient). According to these blast furnace con-
dition parameters and operation experience, this paper will
establish a data-driven prediction model based on machine
learning algorithm to determine whether the burden distribu-
tion matrix needs to be adjusted.

Extreme learning machine (ELM) is a fast learning algo-
rithm for single-hidden layer feedforward neural networks
(SLFNs) (Huang et al. 2004; Li et al. 2005; Huang et al.
2006). The input weights and hidden biases of the ELM
algorithm are randomly generated, respectively. They do not
need to be fine-tuned. Moreover, the ELM algorithm has
better generalization performance and faster learning rate
than conventional gradient-based algorithms. Besides, it may
get rid of sinking into the local minima. As a result, the
ELM algorithm has been widely applied in many fields, such
as image processing, face recognition, fault diagnose and
human–computer interaction.

More andmore researchers have pay attention to the ELM
algorithm, and it has obtained huge development. Many vari-
ants of ELM have been improved the specific aspects of
performance of the original algorithm. For example, the dif-
ferential evolutionary (DE) (Storn and Price 1997) is used to
optimize the input weights and hidden biases for ELM (Zhu
et al. 2005); the online sequential extreme learning machine
(OS-ELM) algorithmcan learn data one-by-one or chunk-by-
chunk (Liang et al. 2006); a dynamic ensembleELMbasedon
sample entropy is proposed to overcome the over-fitting prob-
lem (Zhai et al. 2012); votingmethod is introduced into ELM
for classification applications (Cao et al. 2012); a weighted
ELM (W-ELM) is proposed to deal with data with imbal-
anced class distribution (Zong et al. 2013); multi-ELM is
proposed to approximate any target continuous function and
classify disjointed regions (Yang et al. 2015). In addition,
the ELM algorithm and improved ELM algorithm are widely
used. For instance, the upper integral network with the ELM
algorithm (Wang et al. 2011) has better performance than
the single upper integral classifier; an algorithm for architec-
ture selection of SLFNs trained by the ELM algorithm-based
initial localized generalization error (LGEM) can automat-
ically determine the number of hidden nodes (Wang et al.
2013); three ELM-based discriminative clustering methods
are proposed by Huang et al. (Huang et al. 2015); a single
classifier is trained by ELM to obtain optimal and gener-
alized solution for multiclass traffic sign recognition (TSR)
(Huang et al. 2017); based on MapReduce and ensemble of

ELM classifiers, a classification algorithm is proposed for
imbalanced large data datasets (Zhai et al. 2017); OS-ELM
with sparse weighting is proposed to increase the classifi-
cation accuracy of minority class samples and reduce the
accuracy loss of majority class samples (Mao et al. 2017). In
addition, a semi-supervised low-rank kernel learningmethod
based on ELM is proposed (Liu et al. 2017); unsupervised
ELM based on embedded features extreme learning machine
autoencoder (ELM-AE) (Kasun et al. 2013) is proposed to
handle the multicluster clustering (Ding et al. 2017). It is
worth noting that the multilayer extreme learning machine
(ML-ELM) algorithm (Kasun et al. 2013) has been proposed.
It is based on the ELM-AE algorithm. ELM-AE is used to
initialize the whole hidden layer weights of ML-ELM. ML-
ELM does not need to be fine-tuned. Hence, it costs less
training time than deep learning (Bengio 2009). There are
some improvements for ML-ELM. For example, the ML-
ELM with subnetwork nodes is proposed for representation
learning (Yang and Wu 2016); a new architecture based on
multilayer network framework is proposed for dimension
reduction and image reconstruction (Yang et al. 2016).

Like ELM, the output weights of the ML-ELM algo-
rithm is obtained by using β = (HTH)−1HTT , where H
is the output matrix of the last hidden layer for ML-ELM or
the output matrix of the hidden layer for ELM. For ELM,
multicollinearity problem can deteriorate its generalization
performance (Zhang et al. 2016). Due to multicollinearity
problem, HTH may not always be nonsingular or may tend
to be singular in some applications and β = (HTH)−1HTT
maynot performwell (Huanget al. 2006). In order to getmore
stable resultant solutions and better generalization perfor-
mance, β = ( I

λ
+ HTH)−1HTT is used to obtain the output

weights of ELM (Huang et al. 2012), including ML-ELM.
PLS-ML-ELM (Su et al. 2016) uses the partial least square
(PLS) method to overcome the multicollinearity problem.
It has better generalization performance than the ML-ELM
algorithm. However, the PLS-ML-ELM algorithm may have
different results in different trails of simulations. Hence, this
paper further improves the PLS-ML-ELM algorithm. The
ensemble model (Hansen and Salamon 1990) can overcome
this problem. And it is used to improve the PLS-ML-ELM
algorithm in this paper. This algorithm is named as EPLS-
ML-ELM. The EPLS-ML-ELM algorithm is consisted of
several PLS-ML-ELMs.

The blast furnace process belongs to the process industry,
and it has a high demand of timeliness. Hence, in this paper,
ML-ELM is selected as the classification algorithm of the
data-driven predictionmodel of determiningwhether the bur-
den distribution matrix needs to be adjusted. Moreover, the
proposed EPLS-ML-ELM algorithm has better generaliza-
tion performance and prediction accuracy than theML-ELM
algorithm and the PLS-ML-ELM algorithm. Hence, the pro-
posed EPLS-ML-ELM algorithm is applied to establish the
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data-driven predictionmodel of determiningwhether the bur-
den distribution matrix needs to be adjusted. And the real
industrial data are used to verify the data-driven predic-
tion model. Compared with the SVM algorithm, the ELM
algorithm, the ML-ELM algorithm and the PLS-ML-ELM
algorithm, simulation results are shown that the data-driven
prediction model based on the proposed EPLS-ML-ELM
algorithm has better prediction accuracy and generalization
performance.

The rest of this paper is as follows: Sect. 2 briefly intro-
duces the ELM algorithm, the ELM-AE algorithm and the
ML-ELM algorithm, and the PLS-ML-ELM algorithm and
the EPLS-ML-ELM algorithm are introduced in detail. The
data-driven predictionmodel of determiningwhether the bur-
den distribution matrix needs to be adjusted is described in
Sect. 3. The simulation results are shown in Sect. 4. Section 5
represents the summarization of this paper.

2 The improvedmultilayer extreme learning
machine algorithm

Because the last hidden layer of ML-ELM has the multi-
collinearity problem which can affect the prediction accu-
racy, the PLS-ML-ELM algorithm uses the PLS method
to overcome this problem. However, the PLS-ML-ELM
algorithm may have different results in different trails of
simulations. So this paper proposes the EPLS-ML-ELM
algorithm to obtain better generalization performance than
the PLS-ML-ELM algorithm. EPLS-ML-ELM is consisted
of several PLS-ML-ELMs.This section briefly introduces the
ELM algorithm, the ELM-AE algorithm and the ML-ELM
algorithm. The PLS-ML-ELM algorithm and the proposed
EPLS-ML-ELM algorithm are presented in detail, respec-
tively.

2.1 Extreme learningmachine (ELM)

ELM, proposed by Huang et al, is a fast machine learn-
ing algorithm of SLFNs (Huang et al. 2006). It has input
layer, one single-hidden layer and output layer. Figure 1
gives the structure of the ELM algorithm. There are N
arbitrarily distinct samples (xi , ti ) ∈ Rn × Rm , where
xi = [xi1, xi2, . . . , xin]T represents that the i th sample has
n-dimensional features, and ti = [ti1, ti2, . . . , tim]T is the
target vector. ELM with l hidden layer nodes and the activa-
tion function g(x) can be mathematically expressed as

l∑
i=1

βi gi (x j ) =
l∑

i=1

βi g(wi · x j + bi ) = o j ,

j = 1, 2, . . . , N , (2)

Fig. 1 Structure of the ELM algorithm

where x j = [x j1, x j2, . . . , x jn] is the input vector, wi =
[wi1, wi2, . . . , win]T is the weight vector of connecting the
i th hidden layer node and the whole input nodes, bi is the
bias of the i th hidden layer node, βi = [βi1, βi2, . . . , βim]T
is the weight vector which connects the i th hidden node and
the whole output nodes.

Equation (2) can be briefly expressed as

Hβ=T , (3)

where H =
⎡
⎢⎣

g(w1 · x1 + b1) · · · g(wl · x1 + bl)
...

. . .
...

g(w1 · xN + b1) · · · g(wl · xN + bl)

⎤
⎥⎦

N×l

,

β =
⎡
⎢⎣

βT
1
...

βT
l

⎤
⎥⎦
l×m

, T =
⎡
⎢⎣
tT1
...

tTN

⎤
⎥⎦

N×m

.

H is the output matrix of the hidden layer for ELM. The
i th column of H is the i th hidden node output vector with
respect to the inputs x1, x2, . . . , xN .

For ELM, the least square method is used to calculate the
output weight β, and the representation is shown as

β = H†T = (HTH)−1HTT , (4)

where the H† is the Moore–Penrose generalized inverse of
H .

2.2 Extreme learningmachine autoencoder
(ELM-AE)

ELM-AE is an unsupervised learning algorithm (Kasun et al.
2013). The inputs of ELM-AE are also used as the outputs.
It has input layer, one single-hidden layer and output layer.
The input weights and the hidden biases of ELM-AE are ran-
domly selected and orthogonal, respectively. Structure of the
ELM-AE algorithm is shown in Fig. 2. There are N distinc-
tive samples xi ∈ RN × R j , i = 1, 2, . . . , N , where j is
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Fig. 2 Structure of the ELM-AE algorithm

the number of input nodes. The outputs of ELM-AE hidden
layer can be written as

h = g(ax + b), (5)

where aTa = I , bTb = 1.
The mathematical relationship for the outputs of hidden

layer and the outputs of output layer can be represented as

h(xi )β = xTi , i = 1, 2, . . . , N , (6)

where β represents the output weights of output layer. More-
over, there have three cases of calculating the β (Ding et al.
2015).

Case 1 The number of hidden layer nodes is less than the
number of training data.

β =
(
I

C
+ HTH

)−1

HTX . (7)

Case 2 The number of hidden layer nodes is more than the
number of training data.

β = HT
(
I

C
+ HHT

)−1

X . (8)

Case 3 The number of hidden layer nodes is equal to the
number of training data.

β = H−1X . (9)

2.3 Multilayer extreme learningmachine (ML-ELM)

ML-ELM uses the unsupervised learning to train parameters
for every hidden layer, and ELM-AE is used to train parame-
ters of every hidden layers for ML-ELM (Kasun et al. 2013).
The ML-ELM algorithm does not need to be fine-tuned, and

then it can save time in terms of training network (Tang et al.
2016). Figure 3 shows structure of the ML-ELM algorithm.

For ML-ELM, the activation function of every hidden
layer can be either linear or nonlinear piecewise (Kasun et al.
2013). Note: if the number of nodes for the kth hidden layer is
equal to the number of nodes for the k−1th hidden layer, the
activation function is linear; otherwise, it is nonlinear piece-
wise. The output of the kth hidden layer can be represented
as

Hk = g

((
βk

)T
Hk−1

)
, (10)

where Hk and Hk−1 are the outputmatrix and the inputmatrix
of the kth hidden layer, respectively. g(·) represents the acti-
vation function of every hidden layer. Note: k − 1 = 0, we
explain that H0 is the input matrix of the first hidden layer
(it is also the output matrix of the input layer) and H1 is the
output matrix of the first hidden layer.

2.4 The PLS-ML-ELM algorithm

PLS method brings together the characters of the multiple
linear regression and principal component analysis, and it
is an effective method to model between multi-independent
variables and multidependent variables (Wold et al. 2001).
Moreover, PLS can deal with the multicollinearity problem.
Hence, the PLS-ML-ELM algorithm uses PLSmethod to get
rid of the multicollinearity problem and noise. In addition,
the output weights between the last hidden layer and the
output layer also can be calculated directly through partial
least square.

Suppose that the output matrix of the last hidden layer
for ML-ELM is HLast ∈ RN×m , where N is the number of
sample data, m is the number of nodes for the last hidden
layer. And the outputs of output layer are Y ∈ RN×l , where
l represents the number of nodes for the output layer. PLS
method is used to establish the relationship between HLast

and Y (Su et al. 2016). The mathematical representation is
shown as

Y = HLastβPLS + ξ, (11)

where βPLS can be calculated by PLSmethod, and ξ is noise.
The main idea of the PLS-ML-ELM algorithm is as fol-

lows: the first component u1 from HLast (u1 is the linear
combination of h1, h2, . . . , hm , where HLast = [h1, h2,
. . . , hm]N×m), and the first component v1 from Y (v1 is
the linear combination of y1, y2, . . . , yl ) is, respectively,
extracted. In the same time, the correlation degree between
u1 and v1 is maximum; then the regression model between
y1, y2, . . . , yl and u1 is established. If the regression func-
tion reaches the satisfactory accuracy, the algorithm can be
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Fig. 3 Structure of the ML-ELM algorithm

terminated; otherwise, the u2 and v2 from the residual matrix
of HLast and Y are continuously extracted. Hence, the regres-
sion equation is established until it achieves the satisfactory
accuracy (Geladi and Kowalski 1986).

Assume that there have r extracted components u1, u2,
. . . , ur , and the regression equation between y1, y2, . . . , yl
and u1, u2, . . . , ur is established. Furthermore, the regres-
sion equation between y1, y2, . . . , yl and h1, h2, . . . , hm is
established; then the output weights βPLS is obtained. The
detailed steps are as follows.
Step 0 Given a data set (xi , ti ) which has N sample data,
where xi = [xi1, xi2, . . . , xim]T ∈ Rm represents the i th
sample data has m features, ti = [ti1, ti2, . . . , til ]T ∈ Rl

is the target vector. Each of the hidden layer weights is
initialized through applying ELM-AEwhich performs layer-
wise unsupervised training. According to Eq. (10), the output
matrixes of every hidden layer can be calculated, until HLast

, the output matrix of the last hidden layer, is obtained.
Step 1 Extract the first pair components u1 and v1, and
make the correlation degree between y1, y2, . . . , yl and u1
the largest; moreover, u1 and v1 should meet two requests:

1. u1 and v1 extract as much as possible information of
variables from variable group, respectively.

2. Correlation degree between u1 and v1 reaches the largest.

And u1 and v1 can be represented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1=HLast p1=
⎡
⎢⎣

h11 · · · h1m
...

. . .
...

hN1 · · · hNm

⎤
⎥⎦

⎡
⎢⎣

p11
...

p1m

⎤
⎥⎦ =

⎡
⎢⎣

u11
...

uN1

⎤
⎥⎦ ,

v1 = Yq1 =
⎡
⎢⎣

y11 · · · y1l
...

. . .
...

yN1 · · · yNl

⎤
⎥⎦

⎡
⎢⎣
q11
...

q1l

⎤
⎥⎦ =

⎡
⎢⎣

v11
...

vN1

⎤
⎥⎦ ,

(12)

where p1 = [p11, . . . , p1m]T and q1 = [q11, . . . , q1l ]T are
the loading factor of HLast and Y , respectively.

So requests (1) and (2) can be transformed as condition
extremum problem

max (u1, v1) = (HLast p1,,Yq1) = pT1 H
T
LastYq1,

s.t .

{
pT1 p1 = ‖p1‖2 = 1,

qT1 q1 = ‖q1‖2 = 1.

(13)

Applying the Lagrange multiplier method, that is

L = pT1 H
T
LastYq1 − λ1(p

T
1 p1 − 1) − λ2(q

T
1 q1 − 1). (14)
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Obtain the derivation of L about p1, q1, λ1, λ2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L
∂ p1

= HT
LastYq1 − 2λ1 p1 = 0,

∂L
∂q1

= Y THLast p1 − 2λ2q1 = 0,

∂L
∂λ1

= −(pT
1
p1 − 1) = 0,

∂L
∂λ2

= −(qT
1
q1 − 1) = 0.

(15)

According Eq. (15), Eq. (16) can be obtained,

2λ1 = 2λ2 = pT1 H
T
LastYq1 = 〈HLast p1,Yq1〉 . (16)

Note: θ1 = 2λ1 = 2λ2 = pT1 H
T
LastYq1, so θ1 is the objective

function value of the condition extremum problem. Then,
there have

HT
LastYq1 = θ1 p1, (17)

Y THLast p1 = θ1q1. (18)

According to Eq. (17) and Eqs. (18), (19) can be obtained

HT
LastYY

THLast p1 = θ2
1
p1. (19)

Observe Eq. (19), p1 is the eigenvector of matrix
HT
LastYY

THLast, θ21 is the corresponding eigenvalue, and
θ1 is the objective function value. According to Eq. (19),
q1 can be calculated by p1; then the score vectors can be
represented by the loading factors p1 and q1,

{
u1 = HLast p1,
v1 = Yq1.

(20)

Step 2 Establish the regression equation between h1, h2,
. . . , hm and u1, y1, y2, . . . , yl and v1, respectively. Note
E0 = HLast , F0 = Y . So the regression model is

{
E0 = u1αT

1 + E1,

F0 = v1γ
T
1 + F1,

(21)

where α1 = [α11, α12, . . . , α1m]T and γ1 = [γ11, γ12,
. . . , γ1l ]T are vectors of parameter, E1 and F1 are residual
matrixes. The least square estimation of regression parameter
vectors α1 and γ1 is

⎧⎪⎨
⎪⎩

α1 = ET
0 u1

‖u1‖2 ,

γ1 = F0Tv1
‖v1‖2 .

(22)

Step 3 Substitute E1 and F1 for E0 and F0. If elements of F1
are close to zero, the regression equationwhich is established
by using the first pair score vector meets the accuracy, and

cease. Otherwise, repeat Step 1 and Step 2; then the second
score vector can be expressed as

{
u2 = E1 p2,
v2 = F1q2,

(23)

so the regression model is displayed as

{
E0 = u1αT

1
+ u2αT

2 + E2,

F0 = v1γ
T
1

+ v2γ
T
2 + F2.

(24)

where α2 and γ2 are vectors of regression parameter, they
can be represented as

⎧⎪⎨
⎪⎩

α2 = ET
1 u2

‖u2‖2 ,

γ2 = FT
1 v2

‖v2‖2 .
(25)

Step 4Repeat Step 2 and Step 3, until r principal components
are reserved. Meanwhile, the rest, m − r components have
little variation, so they can be seen as the noise or reason
of generating the multicollinearity of the last hidden layer.
Furthermore, the biases of Er and Fr are extremely small.
So there has the regression model

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E0 =
r∑

i=1
u1αT

1 + u2αT
2 + · · · + urαT

r + Er

= UαT + Er ,

F0 =
r∑

i=1
v1γ

T
1 + v2γ

T
2 + · · · + vrγ

T
r + Fr

= V γ T + Fr .

(26)

Moreover, there has inner relationship for uk and vk (Geladi
and Kowalski 1986); then the relationship can be described
as

vk = ukbk, k = 1, 2, . . . , r . (27)

So the equation of F0 can be rewritten as

F0 = V γ T + Fr =
r∑

i=1
u1b1γ T

1 + u2b2γ T
2

+ . . . + urbrγ T
r + Fr = UBγ T + Fr ,

(28)

where
∧
U = E0P , the regression equation can be expressed

as

∧
F0 = E0PBγ T + Fr . (29)

According to the above analysis, the output weight of the
output layer can be represented as

∧
βPLS = PBγ T, (30)
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where P is component matrix, B is diagonal matrix, γ T is
the weight matrix of F0.

2.5 The proposed EPLS-ML-ELM algorithm

For PLS-ML-ELM, it may have different results in differ-
ent trails of simulations. Hence, in order to overcome this
problem, this paper constructs L PLS-ML-ELM networks
to form the EPLS-ML-ELM algorithm. EPLS-ML-ELM has
better generalization performance than PLS-ML-ELM. For
the whole PLS-ML-ELMs of EPLS-ML-ELM, they have
same number of hidden layers, and they have same number
of every hidden layer nodes. In addition, for each PLS-ML-
ELM, every hidden layer weights are initialized through
applyingELM-AE.Thedetailed steps of theEPLS-ML-ELM
algorithm are as follows.

Step 1 Assemble L PLS-ML-ELMs with same number
of hidden layers and same number of every hidden layer
nodes, and same action function for each hidden layer
node.
Step 2 For each PLS-ML-ELM, every hidden layer
weights are initialized by applying ELM-AE. And the
output weights of each PLS-ML-ELM can be obtained
according to Eq. (30).
Step 3 The output matrix of output layer for each PLS-
ML-ELM network is obtained.
Step 4 There are two cases for prediction result of the
EPLS-ML-ELM algorithm.

Case 1 For the regression problem, the average value
of the whole prediction results obtained by L PLS-ML-
ELM networks is used as the final prediction result of the
EPLS-ML-ELM algorithm. It can be represented as

Ofinal = 1

L

L∑
i=1

Oi , i = 1, 2 . . . , L, (31)

where i indicates the i th PLS-ML-ELM network.

Case 2 For the classification problem, the prediction
result of each sample is determined by the highest vote
(Xue et al. 2014). Each sample has a class label which
is a vector v. The dimension of vector v is equal to the
whole number of classes (suppose there has p classes).
For EPLS-ML-ELM, if the prediction result of the i th
PLS-ML-ELM network is the kth class, then the kth
number of the corresponding vector vi is set to one;
otherwise, it is set to zero, where i = 1, 2, . . . , L and
k = 1, 2, . . . , p. When each sample is predicted by the
whole PLS-ML-ELMs, the prediction vector v f inal of
each sample can be calculated as

v f inal =
L∑

i=1

vi , (32)

where L is the number of PLS-ML-ELMs in EPLS-ML-
ELM. The biggest label in v f inal is used as the prediction
label.

3 Data-driven predictionmodel of adjusting
the burden distributionmatrix for blast
furnace

Burden distributionmatrix is extremely important for smooth
operation of the blast furnace. For example, adjusting bur-
den distribution matrix is an effective measure to control
radial distribution of gas flow in blast furnace; adjusting
burden distribution matrix can improve gas utilization rate
and utilization coefficient. Moreover, adjusting burden dis-
tribution matrix can make the relationship between the blast
pressure and the blast volume stable. Reasonable pressure
difference between the blast pressure and the top pressure
can be obtained by adjusting the burden distribution matrix.
Besides, reasonable permeability index can be obtained by
adjusting burden distribution matrix. In practical operation
process, operators determine whether the burden distribution
matrix needs to be adjusted according to the blast furnace
condition parameters and operation experience. At the blast
furnace operation site, these blast furnace condition param-
eters (the blast volume, the blast pressure, the blast velocity,
the top pressure, the permeability index, the gas utilization
rate and the utilization coefficient) are used to determine
whether the burden distribution matrix needs to be adjusted.
Data of these seven parameters can be obtained. Moreover,
for the burden distributionmatrix, there have two class labels:
class 1 represents that the burden distribution matrix needs
to be adjusted, and class 0 represents that the burden dis-
tribution matrix does not need to adjusted. According to the
above explanation, the two class labels of the burden distribu-
tion matrix are the dependent variables, and these seven blast
furnace condition parameters are the independent variables.
Hence, based on the collected data, operation experience and
machine learning algorithm, this paper will establish a data-
driven prediction model to determine whether the burden
distribution matrix needs to be adjusted.

In this paper, the proposed EPLS-ML-ELM algorithm is
used as the prediction algorithm for data-driven prediction
model. The structure of this data-driven prediction model is
shown in Fig. 4. The detailed modeling steps are introduced
as follows.

Step 1 Determine the parameters of data-driven predic-
tion model.
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Fig. 4 Structure of the data-driven prediction model of adjusting burden distribution matrix based on the EPLS-ML-ELM algorithm

According to the above analysis, there are seven blast
furnace condition parameters (the blast volume, the blast
pressure, the blast velocity, the top pressure, the perme-
ability index, the gas utilization rate and the utilization
coefficient) are used as the input parameters of data-
driven prediction model. And class labels (1 represents
that the burden distribution matrix needs to be adjusted,
and 0 represents that the burden distribution matrix does
not need to be adjusted) are used as the output parameters
of data-driven prediction model.
Step 2 Establish the EPLS-ML-ELM structure.
The EPLS-ML-ELM algorithm is consisted of several
PLS-ML-ELMs, and the number of all PLS-ML-ELMs
is represented as L . Moreover, for EPLS-ML-ELM, each
PLS-ML-ELM uses the whole dataset.
Step 2 includes seven small parts.
(2–1) In this paper, the EPLS-ML-ELMalgorithm is used
as the prediction algorithm for data-driven prediction
model. And EPLS-ML-ELM is consisted of L PLS-ML-

ELMs. According to Step 1, for each PLS-ML-ELM,
there are seven input nodes of input layer and two output
nodes of output layer.
(2–2) Determine the number of hidden layers and the
number of every hidden layer nodes. For all PLS-ML-
ELMs, they have same number of hidden layers and same
number of every hidden layer nodes. In this paper, both
the number of hidden layers and the number of each
hidden layer nodes are determined through many times
simulation testing. Moreover, for each PLS-ML-ELM,
every hidden layerweight is initialized by applyingELM-
AE.
(2–3) The activation function of every hidden layer is
sigmoid function.
(2–4) Determine the ensemble number L . The EPLS-
ML-ELM algorithm is consisted of several PLS-ML-
ELMs. The number of the whole PLS-ML-ELMs needs
to be chosen.
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Table 1 Information of sampling data

No. Blast furnace condition parameter (input) Average Min Max SD Dimension

1 Blast volume 4210.50 3159 4591 214.80 m3/min

2 Blast pressure 327.90 216 356 20.01 kPa

3 Blast velocity 256.38 231 284 7.33 m/s

4 Top pressure 180.43 110 210 15.78 kPa

5 Permeability index 0.74 0.6 0.97 0.05 m3/(kPa · min)

6 Gas utilization rate 48.87 43.80 51.93 1.51 %

7 Utilization coefficient 2.14 0.59 2.49 0.29 t/(m3 · day)

(2–5) For each PLS-ML-ELM, the output matrix of every
hidden layer Hi is calculated, where i represents the i th
hidden layer.
(2–6) For each PLS-ML-ELM, the connection weight
HLast between the last hidden layer and the output layer
is calculated by Eq. (30).
(2–7) For EPLS-ML-ELM, the prediction result can be
obtained by Case 2 of Step 4 in Sect. 2.5. Based on these
two steps, the structure of data-driven prediction model
of adjusting the burden distribution matrix is established.
Step 3 Verify the data-driven prediction model.
If evaluation criterions of this data-driven prediction
model meet the required precision, then the data-driven
prediction model has been established. Otherwise, return
(2–2) to adjust the number of hidden layers and the num-
ber of every hidden layer nodes, and return (2–4) to adjust
the number of PLS-ML-ELMs in EPLS-ML-ELM, and
then reestablish the data-driven prediction model.

4 Simulation results

In order to testify the rationality and the prediction accuracy
of the data-driven prediction model, this paper adapts the
production data of the Blast Furnace with 2500 m3 to testify.
There are 1000 data pairs (502 data pairs for class 1, 498
data pairs for class 0). Eight hundred data pairs are used as
the training data, and the rest data pairs are the testing data.
The detailed information of data for these seven blast furnace
condition parameters is shown in Table 1. FromTable 1, there
is huge difference for the dimension of these seven parame-
ters. The difference may provide fluctuations and influence
the accuracy of the data-driven prediction model. Therefore,
data of these seven parameters are normalized in this paper.
Besides, in order to indicate the data-driven predictionmodel
based on the EPLS-ML-ELM algorithm that has better pre-
diction accuracy and generalization performance, this paper
also uses the SVM algorithm, the ELM algorithm, the ML-
ELMalgorithmand the PLS-ML-ELMalgorithm to establish
the data-driven prediction model. And these data-driven pre-

diction models are compared with the data-driven prediction
model based on the EPLS-ML-ELM algorithm. The whole
simulation experiments have been conducted in MATLAB
8.3.0 software.

For the whole data-driven prediction models based on
algorithms, this paper adopts the training time, the testing
time, the accuracy and the F-score as evaluation criterions.
Accuracy is a percentage and can illustrate the good general-
ization performance of data-driven prediction model when it
is close to 100%. F-score ranges from 0 to 1, and it contains
precision and recall. F-score reaches the best value at 1 and
the worst value at 0. The representations of the accuracy and
the F-score are shown as

Accuracy = TP + TN

TP + FP + FN + TN
, (33)

F-score = 2 · precision · recall
precision + recall

= 2TP

2TP + FP + FN
, (34)

where TP is the number of samples that correctly predicted
to “1”, FP is the number of samples that falsely predicted to
“1”, FN is that the number of samples that falsely predicted to
“0”, and TN is the number of samples that correctly predicted
to “0”; precision represents precision ratio (precision =

TP
TP+FP ), and recall represents recall ratio (recall = TP

TP+FN).
In order to ensure the data-driven prediction model to

reach the optimal target, this paper repeats many times exper-
iments to determine the number of hidden layers and the
number of nodes for these algorithms. Moreover, this paper
also repeats many times experiments to determine the num-
bers of nodes in all the hidden layers. For ELM, the number
of hidden layer nodes is 100. For ML-ELM, two hidden lay-
ers, three hidden layers and four hidden layers are adopted
to test in this paper, respectively. The numbers of every hid-
den layer nodes are shown in Table 2. And the prediction
results are given in Table 3. It can be shown that the predic-
tion accuracy of the ML-ELM algorithm with three hidden
layers or four hidden layers is better than the ML-ELM
algorithm with two hidden layers. In addition, evaluation

123



3584 X. Su et al.

Table 2 Numbers of nodes of
ML-ELM which has different
numbers of hidden layers

Number of hidden
layers

1st hidden layer 2nd hidden layer 3rd hidden layer 4th hidden layer

2 200 150 – –

3 200 150 100 –

3 200 200 150 –

3 300 200 150 –

4 200 150 100 70

4 200 200 150 100

4 300 200 150 100

Table 3 Comparison of prediction results using the ML-ELM which has different numbers of hidden layers

Number of hidden layers Number of nodes for every
hidden layer

Time (s) Accuracy (%) F-score

Training Testing Training Testing Training Testing

2 200, 150 0.2028 0.0156 89.50 88.50 0.8955 0.8856

3 200, 150, 100 0.3588 0.0312 90.63 90.00 0.9071 0.9019

3 200, 200, 150 0.4524 0.0312 90.75 90.50 0.9077 0.9064

3 300, 200, 150 0.6552 0.0468 91.13 90.50 0.9116 0.9073

4 200, 150, 100, 70 0.4056 0.0312 91.00 90.50 0.9102 0.9055

4 200, 200, 150, 100 0.5616 0.0312 91.25 91.00 0.9129 0.9091

4 300, 200, 150, 100 0.7332 0.0468 91.38 91.00 0.9134 0.9109

criterions of the ML-ELM algorithm containing three hid-
den layers are approximatewith theML-ELMalgorithmwith
four hidden layers. To further demonstrate the influence of the
number for hidden layers in the ML-ELM algorithm about
prediction accuracy, the five hidden layers, the six hidden
layers, the seven hidden layers and the eight hidden lay-
ers are adopted, respectively. However, as the increase in
the number for hidden layers, the prediction accuracy is not
significantly improved. Hence, it can be clearly known that
the ML-ELM algorithm with three hidden layers can well
establish the data-driven prediction model. Moreover, the
simulation results of ML-ELM with different hidden lay-
ers are displayed in Fig. 5. Based on the above analysis, this
paper adopts the ML-ELM algorithm with three hidden lay-
ers. For PLS-ML-ELM, it also adopts three hidden layers
structure. And the number of every hidden layer nodes is
same with ML-ELM’s.

For EPLS-ML-ELM, each PLS-ML-ELM also adopts
three hidden layers structure.And the number of every hidden
layer nodes is also same with ML-ELM’s. It is worth not-
ing that the ensemble parameter L of the EPLS-ML-ELM
algorithm needs to be determined. In this paper, L is set
as 5, 10, 15, 20 and 25, respectively. Prediction results of
different number for PLS-ML-ELMs are shown in Table 4
and Fig. 6. From Table 4 and Fig. 6, it can be seen that the
best result is obtained when the number of PLS-ML-ELMs
in EPLS-ML-ELM is 15, and the prediction result is better
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Fig. 5 Accuracy of different numbers for hidden layers of ML-ELM

than single PLS-ML-ELM as well. Hence, the EPLS-ML-
ELM algorithm which is consisted of 15 PLS-ML-ELMs is
used as the prediction algorithm of the data-driven prediction
model.

For determination of the burden distribution matrix
whether needs to be adjusted, this paper uses different algo-
rithms to establish the data-driven prediction model. And all
the algorithms are, respectively, run 50 times. The standard
deviation (SD) is used as an evaluation criterion, and it is
written as
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Table 4 Comparison of prediction results using the EPLS-ML-ELM which has different numbers of PLS-ML-ELMs

Algorithm Ensemble number Time (s) Accuracy (%) F-score

Training Testing Training Testing Training Testing

PLS-ML-ELM 200, 150, 100 → 70 – 0.4485 0.0396 92.13 91.50 0.9204 0.9146

EPLS-ML-ELM 200, 150, 100 → 70 5 2.5369 0.1806 90.88 90.50 0.9089 0.9045

10 4.9631 0.3412 91.38 91.00 0.9142 0.9126

15 7.3106 0.5117 93.75 93.50 0.9382 0.9359

20 9.1416 0.6573 92.50 91.50 0.9152 0.9163

25 11.5308 0.8425 91.88 91.00 0.9189 0.9010
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Fig. 6 Accuracy of EPLS-ML-ELM with different numbers of PLS-
ML-ELMs

SD =
√∑N

i=1 (Xi − X̄)
2

n − 1
(35)

where Xi is the accuracy of the i th simulation, X̄ is the aver-
age value of all the accuracies in the whole simulations, and
n is the number of all the simulations.

Prediction results of the whole data-driven prediction
models based on different algorithms (the SVM algorithm,
the ELM algorithm, the ML-ELM algorithm, the PLS-ML-

ELM algorithm and the proposed EPLS-ML-ELM algo-
rithm) are shown in Table 5 and Fig. 7. From Table 5
and Fig. 7, the data-driven prediction model based on the
EPLS-ML-ELM algorithm has better prediction results than
others. In Table 5, the training accuracy and the testing accu-
racy of SVM are 75.88 and 74.00%; the training accuracy
and the testing accuracy of ELM are 88.13 and 86.50%;
the training accuracy and the testing accuracy of ML-ELM
are 90.63 and 90.00%; the training accuracy and the test-
ing accuracy of PLS-ML-ELM are 92.13 and 91.50%; the
training accuracy and the testing accuracy of the proposed
EPLS-ML-ELM algorithm are 93.75 and 93.50%. As the
above results shown, the prediction accuracy of the proposed
EPLS-ML-ELM algorithm is better than other algorithms.
In terms of training time and testing time, the SVM algo-
rithm costs 0.3609 and 0.0342 s; the ELM algorithm costs
0.0936 and 0.0033 s; the ML-ELM algorithm costs 0.3588
and 0.0312 s; the PLS-ML-ELM algorithm costs 0.4485
and 0.0396 s; the proposed EPLS-ML-ELM algorithm costs
7.3106 and 0.5117 s. Although the data-driven prediction
model based on the proposed EPLS-ML-ELM algorithm
costs the most training time and testing time, its prediction
accuracy is more precise than data-driven prediction mod-
els based on other algorithms. In addition, the training time
and the testing time of the proposed EPLS-ML-ELM algo-
rithm are measured by seconds, which meet the requirement
of the blast furnace process. For the training F-score and

Table 5 Comparison of prediction results using different algorithms

Algorithm Number of hidden layers Time (s) Accuracy (%) F-score SD

Training Testing Training Testing Training Testing Training Testing

SVM – 0.3609 0.0342 75.88 74.00 0.7602 0.7474 0.0253 0.0280

ELM 100 0.0936 0.0033 88.13 86.50 0.8708 0.8696 0.0153 0.0176

ML-ELM 200, 150, 100 0.3588 0.0312 90.63 90.00 0.9071 0.9019 0.0110 0.0134

PLS-ML-ELM 200, 150, 100 → 70 0.4485 0.0396 92.13 91.50 0.9204 0.9146 0.0079 0.0094

EPLS-ML-ELM
ensemble number = 15

200, 150, 100 → 70 7.3106 0.5117 93.75 93.50 0.9382 0.9359 0.0053 0.0062
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Fig. 7 Results of data-driven predictionmodels based on different algorithms. aAccuracy for different algorithms.b F-score for different algorithms

the testing F-score, the data-driven prediction model based
on the proposed EPLS-ML-ELM algorithm is 0.9382 and
0.9359. They are greater than data-driven prediction models
based on other algorithms. The data-driven prediction model
based on the proposed EPLS-ML-ELM algorithm is 0.0053
and 0.0062 in the aspects of the training SD and the test-
ing SD. And they are smaller than the data-driven prediction
models based on other algorithms, which indicates that the
proposed EPLS-ML-ELM algorithm is better and more sta-
ble than other algorithms. According to the above analysis,
the proposed EPLS-ML-ELM algorithm has better predic-
tion accuracy and generalization performance than other
algorithms. Compared with data-driven prediction models
based on other algorithms, the data-driven prediction model
based on the proposed EPLS-ML-ELM algorithm can bet-
ter predict the burden distribution matrix whether needs to
be adjusted. In order to further indicate the proposed EPLS-
ML-ELM algorithm has better generalization performance,
the standard data sets are used to testify EPLS-ML-ELM.
Moreover, it is compared with other algorithms. It is shown
in Appendixes.

5 Conclusions

Reasonable burden distribution matrix of the blast furnace
can realize the smooth operation of the blast furnace. It is
extremely important for the blast furnace. Based on the col-
lected data of blast furnace production site, operation experi-
ence and machine learning algorithm, this paper establishes
a data-driven prediction model. This data-driven prediction
model can determine whether the burden distribution matrix
needs to be adjusted. In this paper, the proposed EPLS-ML-
ELMalgorithm is used to establish the data-driven prediction

model. This proposed algorithm is based on the PLS-ML-
ELMalgorithmand the ensemblemodel. For PLS-ML-ELM,
the PLS method is used to overcome the multicollinearity
problem.However, PLS-ML-ELMmayhave different results
in different trails of simulations. Hence, the ensemble model
is introduced to overcome this problem. Then the EPLS-
ML-ELM is consisted of several PLS-ML-ELMs. The blast
furnace production data are used to validate the data-driven
prediction model based on the EPLS-ML-ELM algorithm.
Comparedwith data-driven predictionmodels based on other
algorithms, simulation results illustrate that the data-driven
prediction model based on the EPLS-ML-ELM algorithm
can better determine whether the burden distribution matrix
needs to be adjusted. Furthermore, this data-driven predic-
tion model can offer decision for the subsequent operation of
the blast furnace. In the future, we will continuously improve
the ML-ELM algorithm and make the data-driven prediction
model more precise.
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Appendixes

In Appendixes, the proposed EPLS-ML-ELM algorithm is
verified by using standard data sets. The ELM algorithm,
the ML-ELM algorithm and the PLS-ML-ELM algorithm
are also used to compare with the proposed EPLS-ML-
ELM algorithm. There are two parts. Appendix A is for the
regression problem, and Appendix B is for the classification
problem.

Appendix A

For regression problem, the Abalone data set (UCI 1995)
and the California Housing data set (StatLib 1997) are used
to testify. The benchmark problems are shown in Table 6.
The number of hidden layer nodes for the ELM algorithm
is 100. The numbers of the whole hidden layers nodes for
the ML-ELM algorithm with three hidden layers are 200,
150 and 100, respectively. For PLS-ML-ELM, the num-
ber of hidden layers and the number of every hidden layer
nodes are same with ML-ELM’s, respectively. For EPLS-
ML-ELM, the number of the whole PLS-ML-ELMs is 10.
Each PLS-ML-ELM has same number of hidden layers and
same number of every hidden layer nodes with ML-ELM’s.
In addition, all the experiments are carried out 50 trials. In

Table 6 Information of simulation data for regression problem

Data set Attributes Training data Testing data

Abalone 8 3177 1000

California Housing 9 16,460 4000

this part, the root mean square error (RMSE) is used as the
evaluation criterion, and the representation is shown as

RMSE =

√√√√∑n
i=1 (Xi − ∧

Xi )2

n
, (36)

where n is the total number of testing data; Xi and Xi
∧ are

actual data and prediction data at the i th sample.
The comparison results are shown in Table 7. These com-

parison results illustrate that the proposed EPLS-ML-ELM
algorithm has better generalization performance than other
algorithms.

Appendix B

For classification problem, the image segmentation data set
(UCI 1990), the letter data set (UCI 1991) and the MNIST
data set (LeCun et al. 1998) are used to testify. The bench-
mark problems are shown in Table 8. All the experiments
are carried out 50 trials. The comparison results are shown
in Tables 9, 10 and Fig. 8. These comparison results illus-
trate that the proposed EPLS-ML-ELM algorithm has better
generalization performance than other algorithms.

For the letter data set, the parameter set of the whole algo-
rithms is different from Appendix A. The number of hidden
layer nodes for the ELM algorithm is 200. The numbers of
nodes for thewhole hidden layers for theML-ELMalgorithm
with three hidden layers are 200, 200 and 400, respectively.
ForPLS-ML-ELM, thenumber of hidden layers and the num-
ber of every hidden layer nodes are same with ML-ELM’s in
Appendix B, respectively. For EPLS-ML-ELM, the number
of the whole PLS-ML-ELMs is 10, and each PLS-ML-ELM

Table 7 Comparison of prediction results using different algorithms for regression problem

Data set Algorithm Number of hidden layers Time(s) RMSE

Training Testing Training Testing

Abalone ELM 100 0.4212 0.0312 0.0771 0.0740

ML-ELM 200, 150, 100 1.0296 0.0784 0.0282 0.0270

PLS-ML-ELM 200, 150, 100 → 70 1.2165 0.1072 0.0259 0.0246

EPLS-ML-ELM ensemble number = 10 200, 150, 100 → 70 12.2118 1.1032 0.0225 0.0213

California Housing ELM 100 1.2792 0.0780 0.1395 0.1350

ML-ELM 200, 150, 100 3.0732 0.1872 0.0382 0.0338

PLS-ML-ELM 200, 150, 100 → 70 3.1368 0.2056 0.0353 0.0313

EPLS-ML-ELM ensemble number = 10 200, 150, 100 → 70 31.4326 2.1328 0.0298 0.0267

Table 8 Information of
simulation data for classification
problem

Data set Attributes Class Training data Testing data

Image segmentation 19 7 1810 500

Letter 16 26 18,000 2000

MNIST 784 10 60,000 10,000
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Table 9 Comparison of prediction results using different algorithms for classification problem

Data set Algorithm Number of hidden layer nodes Time (s) Accuracy (%)

Training Testing Training Testing

Image segmentation ELM 100 0.4212 0.0312 94.16 93.13

ML-ELM 200, 150, 100 1.0296 0.0784 95.56 94.70

PLS-ML-ELM 200, 150, 100 → 70 1.2165 0.1072 96.11 95.49

EPLS-ML-ELM ensemble
number = 10

200, 150, 100 → 70 12.2118 1.1032 96.78 96.27

Letter ELM 200 1.1076 0.0624 79.42 78.05

ML-ELM 200, 200, 400 13.3562 0.1716 80.56 79.55

PLS-ML-ELM 200, 200, 400 → 300 15.6953 0.2028 82.21 81.55

EPLS-ML-ELM ensemble
number = 10

200, 200, 400 → 300 168.6483 2.1995 83.79 83.45

Table 10 Comparison of
prediction results using different
algorithms on MNIST data set

Algorithm Number of hidden layer nodes Accuracy (%)

Training Testing

ELM 1000 92.92 92.36

1500 93.57 92.89

2000 94.28 93.51

ML-ELM 700, 700, 1000 95.00 94.62

700, 700, 1500 95.73 95.29

700, 700, 2000 96.51 96.03

PLS-ML-ELM 700, 700, 1000 → 900 95.18 94.81

700, 700, 1500 → 1400 95.92 95.49

700, 700, 2000 → 1900 96.73 96.26

EPLS-ML-ELM
ensemble number = 5

700, 700, 1000 → 900 95.35 95.02

700, 700, 1500 → 1400 96.11 95.71

700, 700, 2000 → 1900 96.94 96.53
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Fig. 8 Results of different data sets based on different algorithms. a Accuracy for image segmentation data set based on different algorithms. b
Accuracy for letter data set based on different algorithms

has same number of hidden layers and same number of every
hidden layer nodes with ML-ELM’s in Appendix B.

For the MNIST data set, the parameter set of the whole
algorithms is also different from Appendix A. The number
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of hidden layer nodes for the ELM algorithm is, respectively,
set as 1000, 1500 and 2000. For ML-ELM with three hidden
layers, the numbers of nodes for the whole hidden layers are,
respectively, set as [700−700−1000], [700−700−1500] and
[700−700−2000]. For PLS-ML-ELM, the number of hidden
layers and the number of every hidden layer nodes are same
withML-ELM’s inAppendixB, respectively. ForEPLS-ML-
ELM, the number of thewhole PLS-ML-ELMs is 5, and each
PLS-ML-ELMhas the same number of hidden layers and the
same number of every hidden layer nodes withML-ELM’s in
Appendix B. In addition, the whole MNIST data set is used
in each PLS-ML-ELM of EPLS-ML-ELM.
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