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Abstract
Protein structure prediction is one of the major challenges in structural biology and has wide potential applications in
biotechnology. However, the problem is faced with a difficult optimization requirement with particularly complex energy
landscapes. The current article aims to present a novel approach namely AHEDA as an evolutionary-based solution to
overcome the problem. AHEDA uses the hydrophobic-polar model to develop a robust and efficient evolutionary-based
algorithm for protein structure prediction. The method utilizes an integrated estimation of distribution algorithm that attempts
to optimize the search process and prevent the destruction of structural blocks. It also uses a stochastic local search to improve
its accuracy. Based on a comprehensive comparison with other existing methods on 24 widely used benchmarks, AHEDA
was shown to generate highly accurate predictions compared to the other similar methods.

Keywords Estimation of distribution algorithm (EDA) · Protein structure prediction (PSP) · HP model · Protein folding ·
Stochastic local search (SLS)

1 Introduction

Proteins are known as the basic macromolecules that regu-
late all biological activities in cellular organisms. Proteins are
synthesized within live cells and then immediately fold into
a three-dimensional structure. Such a structure is uniquely
specified by its constituent sequence of amino acids (Anfin-
sen 1973). In other words, the primary structure of a protein
determines its three-dimensional structure, and in turn, this
structure assists to understand its functional behavior. The
protein structure prediction and structural comparison of
proteins are two vital steps in structural biology. For quite
a long period of time, the 3D protein structures derived
with computational approaches were not trusted very much
by most experimental scientists. Actually, they only trusted
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the 3D protein structure determined by X-ray and NMR
techniques and thought computational structures were unre-
liable. Although X-ray crystallography is a powerful tool in
determining protein 3D structures, it is time-consuming and
expensive, and not all proteins can be successfully crystal-
lized.Membrane proteins are difficult to crystallize, andmost
of them will not dissolve in normal solvents. Therefore, so
far very few membrane protein structures have been deter-
mined. NMR is indeed a very powerful tool in determining
the 3D structures of membrane proteins, but it is also time-
consuming and costly (Guntert 2004).

The complexity of the problem has led researchers to
utilize heuristic algorithms to achieve the best performance
(Razmara et al. 2013). Several highly accurate methods have
been previously proposed using homology model building
methods based on the similarity of a new protein sequence
to other structurally known proteins. Nevertheless, the full
accurate (100%) prediction of protein structure is not theo-
retically attainable yet. Further, accurate de novo prediction
of protein structure is hard to compute where no homologue
protein is known. Consequently, derivation of high accurate
structure prediction methods is still an active research area.
The interest is essentially increased with continuous growth
of the protein sequence databases. The techniques developed
for protein secondary structure prediction involve a diverse
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variety of biotechnological uses including structure-based
drug design (Davis and Baker 2009), biofuels, and getting
structures from data related to incomplete nuclear magnetic
resonance (Shen et al. 2009; Raman et al. 2010). In addition,
function of proteins is attributed to sequences of their struc-
tures benefiting from the large-scale information introduced
in genome projects depending on the ability of predicting the
native structure of proteins.

Majority of the methods involved in protein secondary
structure prediction are basedon the thermodynamics hypoth-
esis. In other words, the conformation that is adopted by
proteins under physiological conditions has the lowest rate
of the free energy (Anfinsen 1973; Bujnicki 2006). In this
regard, the problem could be formulated as a problem of
energy minimization and be divided into two subproblems:
the former problem is related to defining an appropriate
function of energy placing native structures on their global
minimum and being able to distinguish the correct and incor-
rect folds. The later problem is development of an efficient
and strong strategy for searching that is able to handle quite
a large number of variables and a highly degenerated and
complex landscape of energy.

It is a common practice to adopt models with a reduced
complexity in protein structure prediction-related studies,
e.g., lattice models (Storm and Lyngsø 1999). Lattice models
could be implemented in extracting the fundamental princi-
ples of folding, making predictions, and unifying knowledge
related various features of proteins by relinquishing atomic
details, without any need to the related costs of computation.
The straightforward and clear definition of energy function
for lattice models is a facilitating factor for development of
a fast and strong optimization method. When dealing with
complex atomistic models, the success of a methodology is
subject to inaccuracies in the energy models. Therefore, reli-
ability is of a great concern here.

1.1 A hydrophobic-polar model for the prediction of
protein structures

In 1985, Dill was the first person to propose this model based
on the impact of hydrophobic interactions between amino
acids on the manner of protein folding (Dill et al. 1993).
Amino acids within proteins are divided into two classes:
hydrophobic and hydrophilic. Folding proteins by the appli-
cation of hydrophobic–hydrophilic is a very simple model
that attempts to reflect the fundamental and general charac-
teristics of protein and determines the structure of protein is
space (Storm and Lyngsø 1999). In this model, the protein
string is folded on a square two-dimensional network or on
a cubic three-dimensional network. The folding process in
hydrophobic-polar model (HP) has some behavioral similar-
ities with the folding of the real protein systems (Dobson
et al. 1998; De Araújo 1999).

Fig. 1 The optimal structure for the sequence HPHP2H2PHP2HPH2
P2HP in the 2Dmode. Black and white nodes represent hydrophilic and
hydrophobic residues, respectively . (Reproduced with the permission
from Garza-Fabre et al. 2015)

This model is based on the fact that hydrophobic amino
acids are not inclining so much to collide with molecules of
water and mostly gather within then network. On the other
hand, hydrophilic amino acids have a great inclination to
make bonds with water molecules and are moved to the sur-
face of proteins (Lau and Dill 1989). In this model, in order
for the proteins to reach their most stable state and the level
of energy gets its minimum, the hydrogen bonds between
hydrophobic amino acids must be heightened. Hydrophobic
amino acids are shown with letter H and hydrophilic amino
acids are shown with letter P in this model. In order to obtain
the energy level of hydrophobic pairs of amino acids that are
not present in sequential protein strings but are in neighbor-
ing to each other within the network, the pairs are counted.
Such pairs are inclined to establish a core and are shown in the
form of (H–H). If these pairs are multiplied by a negative, the
level of energy could be obtained. Other pairs present in the
structure are shown in the form of H–P or P–P. Such pairs do
not have any impact on the level of energy. For instance, if the
sequence in the formof r = r1r2, . . ., r20 portrays a protein, it
could be shown in this model as HPHP2H2PHP2HPH2P2HP.
In Fig. 1, the manner of folding this sequence within a two-
dimensional network is shown. This folding has the level of
energy equal to − 9 since the number of H–H bonds within
it is equal to 9.

Despite simplicity of the model, obtaining an optimal
structure on a cubic lattice is considered as an NP-hard
problem (Crescenzi et al. 1998; Berger and Leighton 1998).
Therefore, several metaheuristics have been implemented
inspired from nature including differential evolution (San-
tos and Diéguez 2011), immune algorithms (Cutello et al.
2007), evolutionary algorithms (Mansour et al. 2010), par-
ticle swarm optimization (Kanj et al. 2009), and ant colony
optimization (Shmygelska and Hoos 2005). The presented
method in this paper is an evolutionary-based approach par-
ticularly the estimation of distribution algorithm (EDA). In
EDAs, instead of using crossover and mutation operators,
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new generations are created by the probability distribution of
medial populations selected from the previous generations.
Contrary to the genetic algorithms where maintenance of
the building blocks over differing generations is implicit, in
EDAs, it is done explicitly through joint probability distribu-
tion of the selected medial generation.

1.2 Literature review

Unger andMoult (1993) presented a hybrid method based on
genetic algorithms (GA) andMonte Carlo (MC). Themethod
simulates some folding pathway by searching for the global
minimum state where genetic operators are repeated until a
proper confirmation is attained. Another scheme based on
standard GA was presented by Patton et al. (1995). In this
approach, it is probable to create invalid conformations, and
therefore, a penalty on the rate of collision is determined. Fur-
thermore, Khimasia and Coveney (1997) proposed a method
based on a simple genetic algorithm using elitism for the pur-
pose of higher efficiency of the algorithm. In their method,
invalid conformations were accepted through opening a
penalty function. Findings of the tests (Patton et al. 1995;
Yue et al. 1995) showed that this method has a similar per-
formance with GA/MC on proteins having the length of 27,
while it has better performance for proteins having the length
of 64 and requires fewer stages thanGA/MC in order to reach
the final answer. Lima et al. (Custódio et al. 2014) presented
another evolutionary algorithm based on HP lattice model.
Their algorithm consisted of multipoint crossover, segment
mutation, exhaustive search mutation, local move, and loop
move. In that algorithm, the creation of invalid conformations
was denied. Findings of this algorithm (based on comparing
them to other similar works (Garza-Fabre et al. 2015; Pat-
ton et al. 1995; Yue et al. 1995) showed an improvement
over GA/MC and SGA methods. Some other evolutionary
algorithms could be used for structure prediction problem,
e.g., multiobjective fitness function (Garza-Fabre et al. 2015)
where each one of the constraints is considered as a single
objective and it is attempted to enhance the results. Further,
several non-evolutionary approaches have been applied to
protein structure prediction. Thesemethods follow heuristics
for predicting structures. Heuristics may consist of coop-
erativity effects, existence of a hydrophobic core, etc. The
HZ is based on the hypothesis that hydrophobic contacts are
considered as constraints bringing other contacts into spa-
tial proximity. Then, this constrains and zips up the next
contacts more, and the process goes on. This algorithm
is an attempt to collect hydrophobic contacts and create a
structure having a hydrophobic core (Dill et al. 1993). CI
(Toma and Toma 1996) applies the hypothesis implemented
inHZ. The algorithmuses theMonteCarlomethod for search
procedure. Based on the results (Garza-Fabre et al. 2015),
this algorithm is better and more efficient than GA or HZ

algorithms. Spencer et al. (2015) proposed the first deep
learning based PSP method, called DNSS. The method uses
a deep belief network (DBN) based on restricted Boltzmann
machine (RBM) and trained using contrastive divergence46
in an unsupervised manner. It also uses PSSM generated
by PSI-BLAST to train deep learning network. Due to the
existing difficulties in training of the deep learning network,
large amount of training samples, and heavy calculations,
they applied graphical processing units (GPU) and CUDA
software to optimize the model. Kanj et al. (2009) presented
another method based on the PSO algorithm. They turned
invalid conformations to valid ones through a repairing pro-
cess. Regarding the wide application of the methods, several
approaches have been proposed including MA (Bazzoli and
Tettamanzi 2004), ACO (Shmygelska and Hoos 2005; Do
2017), and DCSaDE-LS (Sudha et al. 2015) methods. Such
methods make use of a local search for the enhancement of
results. In addition, Tabu search (Liu et al. 2013), neural net-
works (Babaei et al. 2010), harmony search (Jana et al. 2017),
and other forms ofmachine learning such asHMM(Lee et al.
2009), imperialist competitive (Khaji et al. 2016), fuzzy clus-
tering (Shen et al. 2005), fuzzy support vector machine (Xie
et al. 2018), and deep neural network (Wang et al. 2017) have
been put forward.

In the current study, a method is presented based on
estimation of distribution algorithms (AHEDA) by the appli-
cation of HP model in order to predict the structure from the
three-dimensional lattice. AHEDAmakes use of local search
for improving its efficiency and exploitation and efficiently
searching for structures having minimal energy and higher
HH contacts. The rest of this article has been made up of the
following sections: Sect. 2 explains the manner of operation
for the proposed algorithm. In Sect. 3, the algorithm is evalu-
ated and compared with other methods, and Sect. 4 presents
the conclusion of study.

2 Materials andmethods

AHEDA is presented in detail in this section. A summary of
the proposed method is represented in Fig. 2. In each itera-
tion, the algorithm selects N chromosomes from M existing
chromosomes using tournament selection and creates the
intermediate population. Then, AHEDA applies a stochas-
tic local search (SLS) on each selected chromosome with a
calculated probability and, finally, updates probability vector
of the intermediate population and reinitializes the popula-
tion with new probability.

2.1 Structure representation

In the HP model, sites are located on a 3D space on a lat-
tice. Representation of chromosomes in the form of x, y
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Fig. 2 The proposed method
steps in a brief diagram

Fig. 3 Encoding scheme used in the genetic algorithm applied to the
HP model in a cubic lattice. The sequence [HPPHPPHPPHPPH] con-
sisting of ten monomers is encoded into a chromosome containing the
absolute directions [FRBRULBLF]. Such chromosome translates in a
3D structure with four hydrophobic contacts. The H (P) monomers are
the blue (white) beads. (Reproduced with the permission fromCustódio
et al. 2014)

and z coordinates is quite cumbersome for each site and
needs a high level of statistical sophistication. Therefore, in
order to represent chromosomes for an input sequence with
n residues, a sequence of n-1 directions is created. In this
sequence, the first amino acid is considered as the fundamen-
tal element of the structure without direction and located on
(0, 0, 0) coordinates. Moreover, each residue in the sequence
is encoded into one of the six directions {L–R–U–D–B–F}
as shown in Fig. 3. Also, Table 1 shows the encoding scheme
for each direction. In other words, for each one of {L–R–U–
D–B–F} directions in time of appearance, changes happen in
the coordinates of new sites according to Table 1 and coor-
dinates of (x, y, z) are obtained. This encoding scheme has
access to the whole structure on the lattice; however, look-
ing for the best conformation among this lattice is difficult
and needs a heuristic algorithm. Regarding the nature of
the estimation of distribution algorithms that use a binary
encoding scheme, three binary bits are considered for each
one of n-1 conformations to cover six different directions.

Table 1 Bond directions
describing lattice conformations

Direction �r

(U)P rz = rz + 1

(L)EFT rx = rx − 1

(F)RONT ry = ry + 1

(B)ACK ry = ry − 1

(R)IGHT rx = rx + 1

(D)OWN rz = rz − 1

A bond direction corresponds to
a change,�r, in one of the Carte-
sian coordinates of the succes-
sive monomer, keeping all other
coordinates the same as the pre-
vious monomer (Khimasia and
Coveney 1997)

Therefore, with increasing population, a binary number is
produced and the corresponding direction is included within
the sequence.

2.2 Initial population and invalid conformations

Random key encoding is a solution that is used EDA in order
to produce the initial population. The proposed method cre-
ates a sequence of sixfold direction in a random way for the
first-generation chromosomes. It is important to mention that
the algorithm has a random nature and there is a possibility
for the production of invalid conformations in each stage.
Invalid conformations are those structures with two or more
amino acids located on a common site on the lattice. In other
words, a conformation is valid only when each site is occu-
pied by at most one residue. For each invalid conformation,
the method defines a penalty corresponding to the rate of
interference that is added to their fitness function. Naturally,
suchmanipulation in the value of fitness function reduces the
chance for selection of that structure.
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2.3 Fitness function

As mentioned in the introduction section, a lower level of
energy shows a closer structure of a protein to its natural form.
The proposed method in this study uses the hydrophobic-
polar (HP) model whereas multiplying the number of H
bonds in− 1 gives the energy level of the protein. This multi-
plication in theHPmodel is considered as the fitness function
in the proposed method.

2.4 Selection strategy

In the first step, the algorithm selects a number of individu-
als based on the principles of fitness and variety in order to
produce an intermediate population. These individuals will
be used to update the probabilistic vector in each genera-
tion of evolutionary section. Then, a repetitive process of
producing offspring is performed based on the produced
population. Selection of this medial population, which is
the processing population of the algorithm and increases
its efficiency, is conducted by the selection operator called
tournament. The tournament operator randomly selects k
chromosomes from the current population and enters the
best chromosome into the intermediate population. This
operation is repeated n times, i.e., the size of medial pop-
ulation.

2.5 Probability distribution

Theproposedmethoduses a univariate probabilitymodel that
could be shown by a vector of possibilities with 3(n−1) ele-
ments (corresponding to the primary structure of a protein).
What is meant by a univariate model is one in which no rela-
tionship exists between the variables (here, the directions).
The vector of possibilities is initialized with 0.5 based on
the Bernoulli distribution principles. For each iteration, the
vector is updated according to the selected medial popula-
tion. The model is factorized as a product of independent
univariate marginal distributions. Below formula (Larranaga
2002) shows the update formula for the vector of possibili-
ties.

pl (x) = p
(
x |DSe

l−1

)
=

n∏
i=1

pl (xi )

Each univariate marginal distribution is estimated from
marginal frequencies:

n∏
i=1

pl (xi ) =
n∏

i=1

∑N
j=1 δ j

(
Xi = xi |D

Se
l−1

)

N

Table 2 The selected individuals, DSe
0 , from the initial population and

their joint probability

X1 X2 X3

0 1 0

1 1 1

0 0 1

p
(
X1 = 1|DSe

0

)
= 1

3 p
(
X2 = 1|DSe

0

)
= 2

3 p
(
X3 = 1|DSe

0

)
= 2

3

For example, assume that a number of individuals are selected
from D0 (initial population) using a selection method. DSe

0
denotes the data file containing the selected individuals. The
selected individuals have been characterized by means of the
joint probability distribution (see Table 2). Thus, only three
parameters are required to specify the model. Each parame-

ter, p
(
xi |D

Se
0

)
i = 1, 2, 3, will be estimated from the data

file DSe
0 by means of its corresponding relative frequency,

p
(
xi = 1|DSe

0

)
.

2.6 The stochastic local search

Population-based algorithms are programmed to direct the
population toward overcoming limitations with two fea-
tures: exploration and exploitation. Regarding the selection
of new values for the vector of possibilities, exploration is
in the nature of EDA. However, these algorithms are weak
due to their exploitation property and are not efficient in
the local search for chromosomes. To overcome this prob-
lem, the algorithms benefit from a local search in order to
create exploitation for finding efficient solutions. In local
search, after selection of n chromosomes and creation of
an intermediate population, it searches for the neighboring
chromosomes with the probability of wp. The wp parameter
provides randomness in the algorithm and reduces the pro-
cessing time. Without this parameter, the algorithm needs
to analyze and investigate each chromosome in the periph-
eral regions that is a time-consuming procedure regarding
the nature of EDA. For the case of this study, the wp
parameter was set to 0.01. For a better neighboring chro-
mosome, it is replaced in the medial population and the
vector of possibilities is updated. Algorithm 1 shows the
pseudo-code implemented for local search where maxiter
is the size of intermediate population with a size less than
M and PSP instance is protein structure in form of direc-
tion.
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2.7 Replacement strategy

After updating the vector of possibilities, a new popula-
tion is created using a new vector and new chromosomes
are copied over the chromosomes of the previous genera-
tion. In each iteration, the best chromosomes of the previous
generation are selected based on the fitness function. The
new chromosomes are copied over the old ones if their
fitness function value is lower than the previous genera-
tion. Otherwise, the best chromosomes from the previous
generation are transferred to a new population. In other
words, the algorithm makes use of elitism and it is expected
that elitism in the algorithm be shown in the Fitness dia-
gram.

2.8 Pseudo-code of the AHEDA

Concerning the proposed EDA in Algorithm 2, it could be
observed that the algorithm attempts to explore the various
parts in the search space using a stochastic local search (SLS).
The employed selection strategy is a potential factor in the
enhancement of the algorithm in the areas such as search-
ing the whole search space and moving away from the local
optimal.

As it can be observed in the pseudo-code of the algo-
rithm, the probability value is initially set to 0.5. In the
iterative phase, the first set of M individuals is produced
based on the values in the probability vector according to
random encoding. Then, a subset of N individuals is selected
from the previous set and created an intermediate population
and random local search is performed on each selected indi-
viduals in the intermediate population. In each stage of the
local search, V individual (V ≤ N ) selected if the neigh-
boring individual leads to an enhancement of the fitness
function, it is replaced in the individual from the interme-
diate population. Finally, the algorithm attempts to update

the probability curve in the last repetition. The estimation
of distribution procedure is run until the termination condi-
tion is satisfied. A summary of the algorithm is shown in
Algorithm 2.

3 Results

The proposed EDA has been implemented within Visual
Studio 2008 and C# programming language in a personal
computer having a 2.5 GHz dual-core processor and a 3
GB RAM. To examine the direction and correctness of the
proposed method and present its efficiency and strength, we
arranged a set of assessments that are represented in this sec-
tion. Generally, performance of the evolutionary solutions
developed for optimization problems is verified using cer-
tain types of assessment methods. Accordingly, a number of
these standard assessment tools have been applied to ana-
lyze and examine the proposed solution. Furthermore, the
performance of the proposed algorithm was assessed using
different sets of benchmarks.

3.1 Convergence analysis

Convergence analysis involves analyzing convergence cir-
cumstance of AHEDA to an optimal solution. Figures 4
and 5 illustrate how AHEDA converges to an optimal solu-
tion of six selected test cases that have been selected from
(Garza-Fabre et al. 2015; Patton et al. 1995; Yue et al.
1995). In this figures two criterions are considered: Best-
Fitness which means best fitness value in generation and
Fitness which means average of fitness value in the gener-
ation. Blue curve showed average fitness of generation, and
black steps curve is related to best fitness value in the gen-
eration. Also d48.2 means second version of some peptide
of length 48 amino acids. (All of these peptides with differ-
ent lengths are presented in “Appendix” section.) As shown
in the figures, fitness curve of the AHEDA is descending
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Fig. 4 AHEDA convergence circumstance to an optimal solution for
a d64.9, b d48.2, c d48.4. The blue curve shows the average fitness of
generation, and the black steps curve represents the best fitness value
in the generation (color figure online)

and this is consistent with the protein structure prediction
problems which are a minimization task. It is expected that
elite curve be stairs and descending in this kind of prob-
lems where AHEDA also produces such curves for selected
benchmarks.

Fig. 5 AHEDA convergence circumstance to an optimal solution for
a d64.4, b d24, c d124. The blue curve shows the average fitness of
generation, and the black steps curve represents the best fitness value
in the generation (color figure online)

3.2 Stability analysis

Usually, statistical procedures such as t test or the Wilcoxon
test are applied for the purpose of analyzing the stability
of evolutionary algorithms. The one-sample t test is applied
when one intends to make a comparison between the mean

123



4784 A. Morshedian et al.

Table 3 Normality test for 6 different instances in 50 independent exe-
cutions using SPSS

Kolmogorov–Smirnov Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

d48.2 0.245 50 0.000 0.854 50 0.000

d48.4 0.210 50 0.000 0.846 50 0.000

d64.4 0.197 50 0.000 0.895 50 0.000

d64.9 0.183 50 0.000 0.902 50 0.001

d24 0.233 50 0.000 0.802 50 0.000

d124 0.159 50 0.003 0.930 50 0.006

score of a sample to the known value (usually the population
means or the average for the outcome of some population
of interest). The test is primarily means that a comparison is
made between the average of the sample (the observed aver-
age) and the population (the expected average). In addition,
an adjustment is made for the number of cases in the sample
and the standard deviation of the average. In this test, the
null hypothesis is that the difference between the observed
mean of AHEDA results and the expected mean of optimum
value equals zero. On the other hand, the alternative hypoth-
esis states that the difference between the observed mean of
AHEDA and the expected mean of optimum does not equal
zero. The p value was set at p < 0.05, indicating that the
conditions for the rejection of the null hypothesis are met.

In case that the findings of multiple operations related to
an evolutionary algorithm on a certain measure do are in the
normal distribution, the examination of its stability should
make use of the t test. If that was not the case, the Wilcoxon
test should be applied for the purpose of investigating the
stability of the evolutionary solution.

The results of Kolmogorov–Smirnov and Shapiro–Wilk
tests for the AHEDA are presented in Table 3. The p value
(Sig.) represents the dissimilarity of the sample of results
regarding the normal shape. Thus, lower p values (p < 0.05)
indicate the existence of non-normal distributions.According
to Table 3, it can be concluded that the findings are not in a
normal distribution and the Wilcoxon signed-rank test must
be applied.

Both Wilcoxon signed-rank and the rank-sum tests for
the comparison of two independent samples were proposed
by Frank Wilcoxon. In his famous book on nonparametric
statistics, Siegel popularized these tests. As a nonparametric
statistical hypothesis test, the Wilcoxon signed-rank test is

Table 5 Benchmark sets with different length used for comparative
study

The set number Number of proteins Length

1 (Yue et al. 1995) 10 48

2 (Patton et al. 1995) 9 64

3 (Garza-Fabre et al. 2015) 5 Different length

used for the comparison pf two related samples, matched
samples, or repeated measurements on a simple sample. The
test is used to assess if their population mean ranks differ or
not. In other words, it is a paired-difference test (Ramezani
and Lotfi 2013).

The null hypothesis tests if the difference (z = x − y)
between the members of each pair (x, y) has the median
value equal to zero (H0 : θ = 0). To be more precise, x and
y have similar distributions and the alternative hypothesis
tests whether H1 : θ is not equal to 0. Table 4 provides the
results of theWilcoxon signed-rank test used for the purpose
of stability investigation. For each benchmark, if the level of
significance is lower than 0.05 (p < 0.05), then the proposed
method is not stable. Nevertheless, the results provided in
Table 4 indicate that the AHEDA is stable.

3.3 Comparative study of the structure prediction
methods

To analyze performance of the proposed algorithm for pro-
tein structure prediction, various benchmark sets were used.
Each set contains proteins with almost the same length; how-
ever, different sets include proteins with different peptide
length. Table 5 shows a summary of the benchmark sets in
our tests. The common feature between all these benchmarks
is difficulty in the prediction of their 3D structure because
of the existence of hydrophobic amino acids in a way to
form a dense hydrophobic core and high probability of being
stuck in a local optimal. The algorithm was executed 50
times independently to choose the best and average results.
We compared the results of our proposed algorithm with
other evolutionary-based methods including GAHP (Custó-
dio et al. 2014), HZ (Dill et al. 1993), SGA (Khimasia and
Coveney 1997), and CI (Toma and Toma 1996).

Table 6 shows the results obtained by AHEDA and five
other methods applied on the set number 1 from Table 4 hav-
ing length of 48 residues. Based on the results in Table 6,

Table 4 Wilcoxon signed-rank test statistics in 50 independent executions using SPSS

d48.2_2 – d48.2 d48.4_2 – d48.4 d64.4_2 – d64.4 d64.9_2 – d64.9 d24_2 – d24 d124_2 – d124

Z − 0.654 − 0.1018 − 0.133 − .1160 − 0.1292 − 0.1323

Asymp. Sig. (2 tailed) 0.519 0.309 0.894 0.246 0.196 0.186
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Table 6 Results obtained by
different methods on benchmark
set number 1

Benchmark #HH Contacts

AHEDA AHEDAa CI SGA HZ GAHP GAHPa

48.1 31 29.48 32 24 31 32 30.72

48.2 34 32.28 33 24 32 34 31.26

48.3 34 32.38 32 23 31 34 32.08

48.4 33 31.44 32 24 30 33 31.16

48.5 31 29.76 30 28 30 32 30.52

48.6 32 30.1 30 25 29 32 29.86

48.7 32 30.28 30 27 29 32 29.82

48.8 30 28.48 30 26 29 31 29.32

48.9 34 32.3 34 27 31 34 31.92

48.10 31 29.46 33 26 33 33 31.08

The results were taken from Custódio et al. (2014) except for AHEDA, and Xa show the average of method
X from 50 independent executions

Table 7 Results obtained by
different methods on benchmark
set number 2

Benchmark #HH Contacts

AHEDA AHEDAa GA/MC SGA1 SGA2 PSO GA GAHP GAHPa

64.1 32 30.44 21 27 27 28 28 31 28.5

64.2 37 34.84 26 30 29 31 32 36 33.18

64.3 40 37.88 30 34 34 36 35 39 36.02

64.4 40 38 28 36 32 38 36 40 37.96

64.5 35 32.92 22 31 29 31 31 33 31.52

64.6 26 24.04 17 25 20 27 25 28 26.7

64.7 35 32.96 28 34 29 35 35 36 33.72

64.8 38 36.32 29 33 32 35 34 38 36.32

64.9 32 29.98 20 26 24 27 27 31 28.9

The results were taken from Custódio et al. (2014) except for AHEDA, and Xa show the average of method
X from 50 independent executions

AHEDA produced better energies (a large number of HH
contacts or the same number of HHwith better average) than
SGAmethod for all ten sequences and also better thanGAHP
for six sequences. Among other construction-based meth-
ods, AHEDA found better energies than those reported by
CI method for six sequences and those generated by the HZ
method for eight sequences. Furthermore, the average ener-
gies from 50 independent executions were near to the global
minimum energy showing a difference less than three HH
contacts.

Furthermore, Table 7 represents the results obtained by
different methods on benchmark set number 2 with length of
64. As it is evident from the table, the proposed algorithm
is able to produce better energy levels in comparison with
the other evolutionary-based methods. AHEDA found better
energy levels than GA/MC, SGA1 and SGA2 methods. In
addition, its results are better for 7 sequences compared to
PSO and GAHP methods and also are better for 8 sequences
compared to the GA method.

Additionally, the benchmark set number 3 including
sequences with varying length has been used for better eval-

Table 8 Results obtained by different methods on benchmark set num-
ber 3

Benchmark #HH Contacts

AHEDA AHEDAa CI (Toma
and Toma
1996)

GAHP
(Custódio
et al. 2014)

GAHPa

20 11 10.2 9 – –

24 13 12.12 9 – –

25 9 8 8 – –

103 49 46.04 49 50 46.58

124 65 62.78 58 63 58.12

The results were taken from Custódio et al. (2014) except for AHEDA,
and Xa show the average of method X from 50 independent executions

uation of the methods. According to the results in Table 8,
the global optimal is known for the first three sequences and
AHEDA is able to reach the global optimal through the best
average than the other methods. For two last sequences with
a longer length, AHEDA produces an average of one unit
enhancement.
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4 Discussion and conclusion

The main objective in this work was to develop a novel
method for protein structure prediction based on the esti-
mation of distribution algorithm. The proposed method uses
an integrated EDA to optimize the search process and prevent
the destruction of structural blocks. The scheme is relevant
to discovery of new sites; however, it obtains a lower per-
formance in local search and looking for neighboring sites.
Accordingly, the method uses an additional stochastic local
search (SLS) algorithm to increase the accuracy of the pre-
diction. Most of the methods presented in Tables 6, 7 and
8 use the HP model for prediction of a protein structure,
and therefore, comparing the proposed algorithm with these
methods can be a reasonable criterion. The results obtained
from experimental studies indicate the capability of the pro-
posed scheme in precisely prediction of protein structure.

As it is mentioned above, the more the number of HH
bonds in the predicted structure, the lower would be the value
of fitness function. Furthermore, the lower the value of fitness
function, the lower would be the energy level of the struc-
ture, and as a result, it will resemble the actual and natural
structure of the target protein. The major characteristic of the
proposed method in comparison with other structure predic-
tion techniques is its ability to predict a structure very close
to the optimal ones through a repetitive search procedure.
Therefore, the average accuracy of the predicted structure is
higher thanother proposed techniques.Compared to the other
methods, AHEDA is capable of producing structures with a
higher number of HH bonds with a high degree of reliability.
Though AHEDA and GA are relatively from the same fam-
ily, AHEDA obtains a better accuracy than GA. This is due
to the fact that AHEDA uses the SLS technique, whereas the
faulty features of GA have been eliminated. As mentioned
before, the major shortcoming of GA is lack of maintaining
building blocks. Not only the AHEDA method overcomes
this shortcoming, but also it accommodates a local search
technique in its inside. These changes enable the method to

produce better results in the exploitation stage and avoid the
shortcoming present in the EDA method.

Additionally, brief look at the results presented inTables 6,
7 and 8 shows that the method provides totally a better
average of the energy level for the benchmark sets with dif-
ferent length compared to the other methods. Based on a
comprehensive comparison with other existing methods on
24 widely used benchmarks, the proposed method produces
highly accurate predictions. We showed that AHEDA finds
the optimal solution for proteins with length less than 48 and
produces highly accurate structure with higher HH contacts
than other approaches for benchmark sets with length 48, 64
and bigger than 100 residues.

The main goal in protein structure prediction is to find
an inherent 3D structure for a given amino acid sequence.
In this paper, we described a memetic estimation of distri-
bution algorithm, AHEDA, based on the 3D HP model. As
shown in a series of recent publications in demonstrating
new approaches (Chen et al. 2016), user-friendly and pub-
licly accessible web servers will significantly enhance their
impacts, and we shall make efforts in our future work to
provide a web server for the new approach presented in this
paper. In future studies, we plan to use machine learning
and evolutionary approaches such as fuzzy evolutionary and
social-based algorithms and merge them to improve the pre-
diction results.
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Appendix: TEST DATA

See Tables 9, 10, and 11.

Table 9 48 Peptide length test
cases. (Reproduced with the
permission from Yue et al. 1995)

Case# Sequence

d48.1 HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH

d48.2 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH

d48.3 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP

d48.4 PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP

d48.5 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH

d48.6 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH

d48.7 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH

d48.8 PHHPHHHPHHHHPPHHHPPPPPHPHHPPHHPHPPPPHHPHPHPHHPPP

d48.9 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH

d48.10 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH
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Table 10 64 peptide length test
cases. (Reproduced with the
permission from Patton et al.
1995)

Case# Sequence

d64.1 P2H5P3H2P5H2P3HP6HPHP3HP2HP2HP5HP4H2PH2P2HP2HP

d64.2 P2HPHP2HP2H3PH4P2H3P4HPHP3HPHP3HPHP5HPHP2HPHP3HP2HP2
d64.3 HP2H2P2HP2HPHP2HP4HP6HPHPH3P2HPHP3HPHP2H2P2HP2HP2HPH3PH

d64.4 HP3H2P2HPHP3HP3HPH2P3H2PHPH3PHP2HP3HP2HPH3P2HP2HP2H3PH4

d64.5 HP2H2PH4P6H2P2HP4H2P3HP2HPH2PHP4H2P4HP5HP4HPH2

d64.6 P4HP3HP3H4PH2P5HP2HPH2PHPHP5HP10H4P4H2P2H

d64.7 P3H3P2HPHP2HP2H2P3HP2HP2H2PHP3HP7HPH3PH5P2H2P3HP2H

d64.8 HP2HP2H3P4HPHP3HPH2PH5P4HPHPHP4HPHP3H2PHP4HP2H2PHP

d64.9 P2HP2HP2H3P3HPHP2HP2HP6HP2H3P2HP2HP2HPHP6H3P5HPHP

Table 11 Different length test cases. (Reproduced with the permission from Garza-Fabre et al. 2015)

Case# Sequence

d20 HPHP2H2PHP2HPH2P2HPH

d24 H2P2HP2HP2HP2HP2HP2HP2H2

d25 P2HP2H2P4H2P4H2P4H2

d103 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HP HP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2
d124 P3H3PHP4HP5H2P4H2P2H2(P4H)2P2HP2H2P3H2PHPH3P4H3P6H2P2HP2HPHP2HP7HP2H3P4HP3H5P4H2(PH)4
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