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Abstract
This study proposes a concept of representation learning by implementing multi-strategy deep learning harmony memory
improvisation for selecting the best harmony of self-organizing neurons. Representation learning is a set ofmethods that allows
a machine to be fed with raw data and to automatically discover the representations needed for detection or classification.
In our study, the deep multi-strategy learning involves the convolution of the self-organizing neurons with deep harmony
memories improvisation in self-organizing and representation of map learning. The convolution of self-organizing neurons
and harmony memory optimize the representation neurons’ weights by generating the optimal best matching unit which is
represented as fitness function of f1 (x) and f2 (x). While f1

[
g

(
f ′′
1 (x)

)]
and f2

[
g

(
f ′
2 (x)

)]
represent the New Harmony

fitness function. The best fitness function, fbest (x) is selected based on the f1 (x) and f2 (x) performance which will be later
stored in the harmony memory vector. The position vector of a particle is subjected to the Newtonian mechanics constant
acceleration during the interval �t . The search space of self-organizing map with Newton-based particle swarm algorithm
particles depends on the width area, σα(t) of organizing neurons lattice structure. Our proposed methods are experimented on
various biomedical datasets. The findings indicate that the proposed methods provide better quantization error for clustering
and good classification accuracy with statistical measurement validations.

Keywords Representation learning · Machine learning · Deep learning · Meta-heuristic algorithms · Harmony search
algorithm · Classification and clustering problems

1 Introduction

Learning is an improvement process of human behavior
through experience. The key factor of a learning system
involves the ability to reason, store and retrieve information
from memory. In computational or machine learning (ML)
approaches, a learning system is defined as a goal-guided
process of the learner’s knowledge by exploring the learner’s
experience and prior knowledge, so-called inferential theory
of learning (ITL) (Michalski 1994). ITL is the basis of multi-
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strategy learning systems where multiple types of inference
mechanisms are integrated into one system. The objective of
multi-strategy learning systems or deep learning strategy in
our context is to achieve the ability to learn different types of
knowledge from different types of inputs. In this context, a
multi-strategy learning system can benefit from adapting dif-
ferent types of knowledge and input usingmultiple algorithm
architecture. Transforming the initial learner’s knowledge to
satisfy the learning goals is the main process of learning
and is mostly applied in clustering, classification, prediction
and optimization. The typical problems commonly arise in
classification include learning classification rules (training a
classifier) from a set of examples (the training set) and testing
the performance of the learned classifier from new input or
environment (testing a test dataset).

ML techniques are used by many researchers as alter-
native solutions to solve the aforementioned problems.
Among ML methods, artificial neural networks (ANNs),
fuzzy sets, genetic algorithms (GAs), swarm intelligence (SI)
and rough set methods are commonly used. ANNs are also
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known as neurocomputers, connectionist networks or par-
allel distributed processors and widely used ML methods
(Negnevitsky 2005; Haykin 1999). It mimics the biological
characteristics of the human brain which involves artificial
neurons that can portray complex behavior. Simple neurons
are connected together to form a connected network. Though
it does not have to be adaptive, its advantages arise with
proper algorithms to update the weights of the connections
to produce a desired output. Therefore, ANN and meta-
heuristics methodologies have each been proven effective
in solving certain classes of learning problems. For exam-
ple, neural networks are excellent at mapping input vectors
to outputs, and meta-heuristics algorithms are very good at
optimization (Kennedy and Eberhart 1995).

Meta-heuristics algorithms are based on optimization
techniques such as evolutionary algorithms (EAs) and swarm
intelligence (SI). Genetic algorithms (GA) are one of the
techniques used in EA and are inspired by biological evolu-
tion phenomena such as inheritance, mutation, selection and
crossover,while SImethods such as particle swarmoptimiza-
tion (PSO) and ant colony optimization (ACO) are inspired
by the behavior of bird flocks, bee swarms, ant colonies and
fish schools. Harmony search algorithm (HSA) was intro-
duced by Geem et al. (2001) inspired from the improvisation
process of Jazz musicians. The aim of the HSA is to find the
perfect state of harmony, and the search process in optimiza-
tion can be compared to a musician’s improvisation process.
The success of modernmeta-heuristics algorithms relies on a
good balance between the intensification and diversification
(Yang 2010).

In this paper, deep improvisation of meta-heuristic algo-
rithms based on HSA, PSO and Newton-based PSO with
particles exploration/exploitation are proposed for multiple
representation of self-organizing mapping (SOM) structure.
The aim of this multiple representation learning is to inves-
tigate the efficiency of the multi-strategy and deep learning
of SOM architecture for solving clustering and classifica-
tion problems. Multiple representations learning of these
algorithms will assist the organizing neurons in finding the
optimal best matching unit (BMU)with a good set of weights
for learning and generalization.

The remainder of this paper is organized as follows: Sect. 2
gives the scenario ofmulti-strategy learning representation in
ANN follows by the preliminary theory on PSO and HSA in
Sect. 3. Section 4 discusses our proposed algorithm onMulti-
Strategy SOM Deep Learning Process with Meta-heuristic
algorithms. Section 5 describes the experimental protocols
for the proposedmethods, while Sect. 6 gives the Results and
Post-Analytics of the proposedmethods. The conclusions are
summarized in Sect. 7. Figure 1 provides the structure of this
paper.

2 Multi-strategy learning representation in
artificial neural network

Artificial Neural Networks (ANN) have emerged as an
important tool for classification. There are many types
of ANNs that have been used as classifiers because of
their similarity with a simple brain model. These include
backpropagation (BP), multilayer perceptron (MLP), self-
organizing map (SOM), learning vector quantization (LVQ),
radial basis function (RBF), and adaptive resonance theory
(ART) networks. ANN have been developed as an alterna-
tive to statistical methods, which require assumptions that
cannot be always satisfied. BP algorithm is one of the most
popular classifiers used for training (Kennedy et al. 2001).
However, BP learning suffers from a number of weaknesses
such as slow convergence and local minima. Thus, many sig-
nificant research efforts have been applying meta-heuristic
algorithms or nature-inspired (NI) algorithms, such as evo-
lutionary computation (EC) andSI techniques, for addressing
ANN training issues.

Meta-heuristic algorithms or Nature-inspired Computing
(NIC) is an emerging computing paradigm that draws on the
principles of self-organization and complex systems (Jiming
and Tsui 2006). NIC algorithms are autonomous, distributed,
emergent, adaptive, and self-organized (Kennedy and Eber-
hart 1995).NICmethodologies have been applied to optimize
ANN architectures. There are three main attributes of ANN
architectures: network connection weights, network archi-
tecture (network topology, transfer function), and network
learning algorithms. Most of the previous researches related
to ANNs have focused on the network weights and topolog-
ical structure. For example, the weights and/or topological
structure are encoded as a GA chromosome. The selection
of a fitness function is problem dependent. For a classi-
fication problem, the rate of misclassified patterns can be
viewed as the fitness value. Meta-heuristic algorithms can
be used in cases with non-differentiable processing element
(PE) transfer functions and when no gradient information is
available. The disadvantages of GA-based learning include
performance being heavily dependent on the selection of the
parameters together with difficult to represent weights and
genetic operators. Therefore, several papers have reported
using meta-heuristic algorithms such as PSO to replace GA
(Bahesti et al. 2013; Beheshti and Shamsuddin 2013, 2014).
Early studies on the hybridization of meta-heuristic algo-
rithms with ANNs, especially PSO-MLP was proposed by
Kennedy and Eberhart (1995). Recently, the enhancement
of standard PSO with MLP was proposed by Beheshti et al.
(2014).

The hybridization of the SOMPSO approach was first
introduced by Xiao et al. (2003) and Xiao et al. (2004) for
better clustering of gene datasets. These authors used SOM
learning and PSO to optimize the SOM weights. However,
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Fig. 1 Paper structure

the effectiveness of the combination of SOMPSO without a
conscience factor was poorer than using SOM alone. This
outcome is due to the use of conscience factor, which is a
valuable as a competitive learning technique that reduces
the number of epochs necessary to produce a robust solu-
tion. PSO was proposed for unsupervised learning in SOM,
namely the self-organizing swarm (Soswarm) (Brabazon and
O’Neill 2006). The author explores the PSO parameters to
adapt in aSOMwhere afixedneighborhood andPSOvelocity
update are used in updating the weights. The study highlights
some interesting features in SOM that can explored, includ-
ing the combination of SOMPSO,which can be further tested
in various distance measurements and neighborhood struc-
tures, specifically in reducing the lattice size. On the other
hand, Ozcift et al. (2009) used PSO for SOMoptimization by
reducing the neighborhood size and speeding up the training
process. The author stated that the lattice size is related to
the SOM clustering quality.

According to Hasan and Shamsuddin (2011) and Hasan
(2010), this optimization technique has successfully reduced
the number of nodes that find the BMU for a particular input.

With a larger lattice size,more nodes are considered forBMU
calculation, which causes higher operating costs for the algo-
rithm (Ozcift et al. 2009). However, a reduced lattice sizewill
suffer loss of clustering information,which leads to themulti-
strategy SOM with PSO for classification problems (Hasan
and Shamsuddin 2011; Hasan 2010). The enhanced hexag-
onal lattice structure gives a wider exploration area in the
training process, especially in BMU searching, which pre-
serves the clustering quality and provides better accuracy for
most standard UCI datasets.

Harmony search algorithm (HSA) (Yang2010) has become
an active research area because of its simplicity and higher
efficiency. These characteristics make it easier to hybridize
HSAs with ANN (Lee et al. 2016) and other meta-heuristic
algorithms such as PSO (Omran and Mahdavi 2008). The
enhancement of HSA, Improved Harmony Search (IHS)
(Mahdavi et al. 2007), is used in solving engineering opti-
mization problems. Further developments such as global
harmony search (GHS) (Omran and Mahdavi 2008) algo-
rithms perform better than IHS. Although GHS performed
better than IHS, GHS is sometimes worse than basic HS
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if the number of decision variables is big (Geem 2009a).
Finally, the self-adaptive global best harmony search (SGHS)
algorithm has been proposed for continuous optimization
problems (Pan et al. 2010).

A Modified IHS (MIHS) (Kattan et al. 2010) has been
applied to train a neural network. The algorithm is similar
to IHS, except for the best to worth (BtW) ratio that is set
for termination criterion. Subsequently, Kulluk et al. (2012)
applied a SGHS algorithm for training neural networks in
classification problems. In this study, the authors used MLP
and BP with different variants of HSA including IHS, MIHS
and GHS, for comparative study. The proposed algorithm
performed better than the others in terms of accuracies with
reasonable training time. The authors suggested implement-
ing the algorithm in training neural network models such as
SOM, LVQ and ART networks.

Harmony Search has also been used in clustering prob-
lems (Mahdavi et al. 2008). The author introduced harmony
clustering method, HClust, and integrated the method with
k-means clustering for web documents. The hybrid cluster-
ingmethod outperformed bothHClust and k-means, whereas
Amiri et al. (2010) applied HSA with k-means algorithm
and Alia and Mandava (2011) implemented HSA with fuzzy
and hard c-means for clustering problems. According to the
authors, k-means and c-means algorithms are simple and
easy to implement. However, the number of clusters must be
defined in advance, and the algorithms are always trapped at
local optima. Thus, these studies used HSA to assist k-means
and c-means in finding the initial cluster center. Unlike SOM,
the initial cluster center can be defined randomly. However,
the structure of SOM network depends on the neighbor-
hood lattice representation. A larger lattice area means more
chances for a neuron to be updated but with high computa-
tional cost.

Meta-heuristic algorithms have been accredited as pow-
erful and efficient to solve optimization problems than
deterministic optimization algorithms. Meta-heuristic algo-
rithms can be an alternative method to produce acceptable
solutions by trial and error to a complex problem in a
reasonably practical time (Yang 2010). The key factors
of meta-heuristic algorithms performances are: intensifica-
tion and diversification, or exploitation and exploration. The
diversification via randomization avoids the solutions being
trapped at local optima, while increases the diversity of the
solutions. The good combination of these two major com-
ponents will usually ensure that the global optimality is
achieved. The next section provides brief introduction on
the PSO and HSA prior to detail explanation on the pro-
posed methods of multi-strategy and deep learning of SOM
architecture with meta-heuristic algorithms.

3 Preliminary theory on particle swarm
optimization (PSO) and harmony search
algorithm (HSA)

In this section, we provide preliminary theory on PSO and
HSA for better understanding of our proposed methods in
the next subsections.

3.1 Particle swarm optimization (PSO)

ParticleSwarmOptimization (PSO) is introducedbyKennedy
and Eberhart (1995). It is inspired by birds flocking behavior
in searching for food. Each bird updates its personal posi-
tion based on its velocities to the food source. The nearest
position of a bird to the food source will be the landmark for
other birds to find the food. The standard PSO algorithm is
given as below.

To explain how PSO works in solving an optimization
problem, we assume to choose D as continuous variables
x1, . . . , xD to maximize a function

f (x1, . . . , xD). (1)

Suppose that we also create a swarm of i = 1, . . . , N parti-
cles. At all points in time, each particle i has

1. A current position Xi or Xn = (xi1, . . . , xi D),
2. A record of the direction it followed to get to that position

Vi or Vn = (vi1, . . . , vi D),
3. A record of its own best previous position Pi =

(Pi1, . . . , Pi N ),
4. A record of the best previous position of any members in

its group pg = (pg1, . . . , pgN ).

Given the current position of each particle, aswell as the other
information, the problem is to determine the change direction
of the particles. Asmentioned above, this is done by referring
to each particle’s own experience and its companions. Its
own experience includes the direction it came from Vi and
its own best from previous position. The experience of others
is represented by the best previous position for any members
in its group. This suggests that each particle might move in:

a. the same direction that it comes from Vi ,
b. the direction of its best previous position Pi − Xi ,
c. the direction of the best previous position of anymembers

in its group pg − Xi .

The algorithm supposes that the actual direction of change
for particle i will be a weighted combination of:

Vn = w × Vn + C1∗r1∗(pi − Xn)+ C2∗r2∗(Pg − Xn), (2)
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where

r1 and r2 are uniform [0,1] random numbers,
C1 > 0 and C2 > 0 are constant called the cognitive and
social parameters, and
w > 0 is a constant called the inertia parameter.

n and n + 1 are successive index periods (generations), and
given the direction of change, the new position of the particle
will simply be:

Xn = Xn + Vn . (3)

Given the initial values of Xi , Vi , Pi and Pg , Eqs. (2) and
(3) will determine the subsequent path that each particle in
the swarm will follow. To avoid particles from flying beyond
the boundary, the velocities on each dimension are clamped
to a maximum velocity, Vmax. If the sum of accelerations
causes the velocity on that dimension to exceed Vmax, pre-
defined parameter, then the velocity is limited to Vmax. For
clear representation, the standardPSOalgorithm is illustrated
in Fig. 2.

3.2 Harmony search algorithm (HSA)

HSA is introduced by Geem et al. (2001) which inspired
by the analogy of jazz improvisation. Each musician plays
a different type of musical instrument. The musicians keep
updating the harmony until the perfect state of harmony is
obtained. InHSA,HarmonyMemory (HM) is amatrixwhich
stores solution vectors that ensures good harmonies are con-
sidered as elements of new solution vectors. The number of
solution vectors in harmony memory is called the Harmony
Memory Size (HMS). Figure 3 depicts the flowchart of the
basic HSA model.

As seen in the figure, there are four main steps involved.
For Step 1, the HM is initialized. The initial HM consists of a
certain number of randomly generated solutions for the opti-
mization problem under consideration. For an n dimension
problem, an HM with the size of HMS can be represented as
follows:

HM =

⎡

⎢⎢
⎢
⎣

x11 , x12 , . . . , x1n
x21 , x22 , x2n
...

x H M S
1 , x H M S

2 , x H M S
n

⎤

⎥⎥
⎥
⎦

(4)

where (xi
1, xi

2 . . . , xi
n), (i = 1, 2 . . . , H M S), is a candi-

date solution.
HMS is typically set to be between 10 and 100. In Step 2,

a new solution, (x ′
1, x ′

2 . . . , x ′
n), is improvised from the HM.

Each component of this solution x ′
j is obtained based on the

yes

no

Randomly initialize 
velocities and positions of 

Evaluate fitness of particles 
for i=1,2,…,N

Update pi if fitness i<fitness pi

for i=1,2,…,N

Update pg if fitness i<fitness pg

for i=1,2,…,N

Update the next particles 
velocities as Eq. (2)

Satisfied termination 
criteria?

start

Return the best solution

Update the next particles 
positions as Eq. (3)

Fig. 2 PSO algorithm

harmony memory consideration rate (HMCR). The HMCR,
raccept is defined as the probability of selecting a component
from the HMmembers, and 1-HMCR is, therefore, the prob-
ability of generating it randomly. Based on previous studies,
typically, raccept = 0.7−0.95 (Yang 2009). Once the rate
is too low, it may converge extremely slowly. Otherwise, the
pitches in the harmonymemory are over exploited and lead to
inaccurate solutions. If x ′

j comes from the HM, it can be fur-
ther changed according to the pitching adjusting rate (PAR).
The PAR, rpa determines the possibility of changing a candi-
date from the HM. A low pitch adjusting rate with a narrow
bandwidth can slow the convergence of HSA because of the
limitation in the exploration phases, as it covers only a small
subspace of the search space. In contrast, a very high pitch
adjusting rate with a wide bandwidth may cause the solu-
tion to scatter around some potential optima as in a random
search. Thus, rpa is normally set to values between [0.1, 0.5]
(Yang 2009). After a new solution from Step 2 is evaluated,
the HM is compared and sorted in Step 3 to find the new
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Fig. 3 HSA method. .
(Reproduced with permission
from Geem 2009b)

yes

no

Step 1

Step 2

Step 3

yes

no

Harmony 
Memory

(HM)

Worst 
Member

Selection

Evaluation

Comparison

Replacement

Elimination

Random 
Solution

Better 
Fitness?

Step 4
Termination 

criterion 
satisfied?

stop

solution vector. It will replace the worst member in the HM
if it yields a better fitness. Otherwise, it will be eliminated.
Finally, in Step 4, the process keeps repeating and stopping
until a termination criterion is satisfied.

4 The proposedmulti-strategy SOM deep
learning withmeta-heuristic algorithms

In this section, the proposed multi-strategy SOM deep
learning with meta-heuristic algorithms is presented. The
proposed multi-strategy involves the deep improvising and
map learning of SOM architecture with HSA (SOMHSA)
and wider exploration/exploitation of Newton-based PSO
(SOMPSO). We call our proposed methods as “Deep learn-
ing” since it involves deep learning of neurons organization
in multi-strategy SOM architectures for obtaining optimal
solutions. The process involves both global and local search-
ing in finding optimal bestmatching unit (BMU) that can give
a good set of weights for better mapping and labeling. For
SOM architecture, an improved octagonal lattice structure is
formulated to provide wider neurons explorations for better
visualization. Figure 4 provides a journey to understand how
our proposed multi-strategy SOM deep learning with meta-
heuristic algorithms being developed. Detail explanation of
each box is given in the following section.

4.1 SOM architecture with an improved octagonal
lattice structure (β-SOM)

Self-organizing map (SOM) was first introduced by Von der
Malsburg (1973) and presented byKohonen (2001). The goal
of SOMnetwork is to map high dimensional input signal into

a simpler low dimensional discrete map. SOM is based on
competitive learning,where the output nodes compete among
themselves to be the winning node and the only node to be
activated by a particular input observation (Haykin 1999).
Generally, SOMlearning algorithm is synonymwith the clus-
tering concept due to the adaptation process which produces
a group of output patterns. In the SOMarchitecture, the adap-
tation process is crucial for updating the neurons weights in
the neighborhood lattice area. As in Fig. 5, the best neu-
rons are chosen as a winner which so-called BMU and the
nearest neighbors will be updated until the best solution is
met. Thus, the adaptation process is important in boosting
the SOM performance in terms of the quality of network
mapping, convergence and generalization.

The SOM learning generally uses rectangular, triangu-
lar and hexagonal neighborhood area. In this study, an
octagonal-based lattice structure is developed to enhance the
SOM learning capabilities with wider nodes exploration for
clustering and classification problems. The SOM learning
with standard octagonal SOM lattice is denoted as α-SOM
and SOM learning with the improved octagonal SOM lattice
is represented as β-SOM. Unlike α-SOM, the β-SOM gen-
erates neighborhood width,

(
σβ(t)

)
, four times wider than

α-SOM (σα(t)), as in Eqs. (5) and (6), respectively.

σβ(t) = 32 × σ0(t)
2 × (

√
2 − 1) , (5)

σα(t) = 8 × σ0(t)
2 × (

√
2 − 1), (6)

Meanwhile, the improved octagonal neighborhood lattice
area, σα(t) and σβ(t) consists of eight (8) important points,
Pi (x, y):
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Fig. 4 Schematic representation of the proposed methods

no

Initialise Parameter

Calculate Distance

Find BMU

Find Neighbourhood Area

Update weights

Satisfied termination 
criteria?

start

random weights

yes

stop

Fig. 5 SOM learning algorithm

Ptop (x, y) , Pbottom (x, y) ,

Pdiagonal_right_corner (x, y) , Pdiagonal_le f t_corner (x, y) ,

Pright_corner (x, y) , Ple f t_corner (x, y) ,

Pdiagonal_bottom_right_corner (x, y) ,

Pdiagonal_bottom_le f t_corner (x, y) ,

Figure 6 illustrates the improved octagonal lattice area,
σβ(t) which Pi (x, y) correspond to the Pcenter (x, y).

The above lattice structures (standard and improved lat-
tice structures) are used for optimizing the architectures
of SOMHSA and SOMPSO. This is can be achieved by
searching the ideal winning nodes through deep learning
optimizations with meta-heuristic algorithms, and this will
be further discussed in the following subsection.

4.2 SOM deep improvisation and learning with
harmony search algorithm (SOMHSA)

In this study, deep harmony improvisation of HSA for SOM
mapping learning is implemented by finding the B MU of
the best harmony solution, so-called best harmony fitness
solution, H M Sbest , and it is denoted as f (x). f (x) is evalu-
ated based on harmony fitness solution, H M S1 and H M S2,
or f1 (x) and f2 (x). In order to produce deep improvisa-
tion scheme, f (x), B MU is selected based on the improved
octagonal SOM (β-SOM) in f1 (x), while B MU are cho-
sen according to the HSA improvisation in f2 (x). Table 1
provides the description of HSA abbreviation used in this
study.

HSA parameters include harmony memory solution
(H M S), harmony memory consideration rate (H MC R),
pitch adjusting rate (P AR), termination criterion, learning
rate and radius. The H M S corresponds to the number of
neurons in a 2-D mapping structure, while harmony memory
(H M) consists of H M S (H M S ∈ H M) and decision vari-
ables which are set randomly between lower bound (LB) and
upper bound (UB). In this context, decision variables contain
input vector and weights vectors.

For H M of H M S = 2× the mapping dimension, a New
Harmony solution and B MU are chosen according to the
HSA improvisation which is based on three rules: memory
considering, pitch adjusting and random choosing. These
rules are used for searching a new harmony fitness solu-
tion, H M S2, and it is denoted as f2 (x). The first rule on
memory consideration is implemented with two conditions:
(1) the decision variables are less than the harmony memory
accepting rate (raccept ) and (2) the condition of P AR (rpa) is
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Fig. 6 The improved octagonal lattice area, σβ(t)

Table 1 HSA notations

Abbreviation Description

HM Harmony memory

H M S Harmony memory solution

H M Sbest Best harmony fitness solutions → f (x)

H M S 1 A harmony fitness solution → f1 (x)

H M S2 A harmony fitness solution → f2 (x)

HMCR Harmony memory consideration rate

PAR Pitch adjusting rate

employed within the pitch limits (bw). Otherwise, New Har-
mony will be generated randomly. Later, the best harmony
fitness solution, H M Sbest , f (x), is evaluated based on the
f1 (x), and f2 (x). From the best harmony fitness solution,
f (x), the BMU and the weights (wk) of the best solution
are chosen to update the weights. The updating procedure
involves the implementation of an improved octagonal lat-
tice width area (σβ(t)), denoted as H M Sσβ(t) as given in
Eq. (9). The procedure stops whenever the termination cri-
terion (epoch) is met. The illustration of the Deep Harmony
memory improvising for SOMmapping architecture is given
Fig. 7 together with their generated matrices.

HM =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

H M S1=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

x1w
0,0
1 , x2w

0,0
2 , . . . , xnw

0,0
n

x1w
0,1
1 , x2w

0,1
2 , . . . , xnw

0,1
n

...

x1w
n,n
1 , x2w

n,n
2 , . . . , xnw

n,n
n

⎤

⎥⎥⎥⎥⎥
⎥
⎦

H M S2=

⎡

⎢⎢⎢⎢⎢⎢
⎣

x1w
0,0
1 , x2w

0,0
2 , . . . , xnw

0,0
n

x1w
0,1
1 , x2w

0,1
2 , . . . , xnw

0,1
n

...

x1w
n,n
1 , x2w

n,n
2 , . . . , xnw

n,n
n

⎤

⎥⎥⎥⎥⎥⎥
⎦

...

H M Sn=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

x1w
0,0
1 , x2w

0,0
2 , . . . , xnw

0,0
n

x1w
0,1
1 , x2w

0,1
2 , . . . , xnw

0,1
n

...

x1w
n,n
1 , x2w

n,n
2 , . . . , xnw

n,n
n

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(a) Matrices for Deep Harmony Memory Improvisation
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Fig. 7 Deep harmony memory improvisation (HM) representation of SOMHSA for a H M S1 and H M S2, b H M Sbest and c H M S′
best
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(b) Matrices for the best centroid for each of the Deep HMS
Improvisation

HM′′ =

⎡

⎢⎢⎢
⎣

c′0,0
c′0,1
...

c′n,n

⎤

⎥⎥⎥
⎦

(c) Matrices for the best of the best centroid in Deep HMS
Improvisation

For each fitness solution, the Euclidean distance is computed
to obtain the minimum distance. The distance is calculated
between the input vector and the weights vector as below.

f1 (x) =
√

∑i=n

i=0
(Vi − Wi j )2,

f2 (x) =
√

∑i=n

i=0
(Vi − Wi j )2, (7)

where

x = (x1, . . . , x j )
i

V = Input vector,
Wj = Weights vector

and f1(x) = f2(x) = arg j min D(V − W j ) overall output
nodes.

The procedure to find the best fitness solutions of
H M S′

best , f (x), x = (x1, . . . , x j )
i ,is illustrated below:

i f ( f1(x) 〈 f2(x)) then

f (x) = f1(x),

else

i f ( f2 (x〈 f1 (x))) ,

then f (x) = f 2 (x) .
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The best fitness solutions keep the B MU weights (wk) for
each input vector (v), and the radius of the neighborhood area
H M Sσβ(t) is reducing using the exponential decay function,

σ(t) = σ0 exp

(
−1

λ

)
, t = 1, 2, 3, . . . (8)

where

σ0 is the initial radius,
λ is maximum iteration, and
t is current iteration.

The neighborhood area
(
H M Sσβ(t)

)
is defined as,

H M Sσβ(t) = 32 (σ0(t))
2(

√
2 − 1), (9)

where H M Sσβ(t) is the octagonal lattice area and σ0(t) is the
initial neighborhood radius at iteration t . The learning rate
L (t) updates the weight as in Eq. (10).

L(t) = L0 exp

(
− t

λ

)
, t = 1, 2, 3, . . . (10)

where

L0 = initial learning rate, and

�(t) = exp

(

− dist(t)2

H M Sσβ(t)

)

, t = 1, 2, 3, . . . (11)

and
�(t) takes into account the neighborhood area H M Sσβ(t),
and the average distance (dist(t)) of nodes in the neighbor-
hood to obtain the winning node.

For updating the H M :

x (t + 1) = x (t) + �(t) L (t) (V (t) − x (t)) , (12)

where

L (t) is learning rate, and
�(t) is the influence of a node’s distance from winning

node.

Figure 8 illustrates the pseudo-code of the SOMHSA, respec-
tively.

4.3 Particles exploration and exploitation with PSO
and Newton-based PSO

To see the significance of the multi-strategy learning of SOM
with other meta-heuristic algorithms, deep particles explo-
ration and exploitation of PSO and Newton-based PSO with
SOM learning (SOMPSO and Newton-based SOMPSO) are
proposed to obtain better output mapping and labeling. Fig-
ure 9 illustrates the pseudo-code of PSO and Newton-based-
PSO for exploration and exploitation of SOM architecture.
The PSO velocity and position of each particle are repre-
sented as 2-D mapping dimension; and the computations are
as follows:

vid (t + 1) = w vid (t) + C1 rand (pid (t) − xid (t))

+ C2 rand
(

pgd (t) − xid (t)
)
, (13)

w = ((wmax − wmin)/i ter max) i ter , (14)

xid (t + 1) = xid + vid (t + 1) , (15)

where

C1 and C2 are acceleration coefficients and both param-
eters are set to 1.0,
rand is uniformly random number in the interval of [0,
1].
N is the number of particles,
�Xi = (xi1, xi2, . . . , xid) and �Vi = (vi1, vi2, . . . , vid)

represents the position and velocity of i th particle respec-
tively,
�Pi = (pi1, pi2, . . . , pid) is the personal best position
found by the i th particle, and �Pg = (

pg1, pg2, . . . , pgd
)

is the local best position achieved by the entire swarm.

In PSO, the cognition and social terms move a particle
toward good solutions based on the particle experience and
the best solution found by the swarm in the search space.
However, in Newtonian’s mechanics, the position vector of
a particle is subjected to the acceleration as in Eq. (16):

x2 = x1
(
−∇ f −1

)
x1 f (x1) ,

d f

dx
≈ f (x + ε) − f (x)

ε
(16)

where x1 and x2 are initial and final position, α and v1 rep-
resent the particle’s acceleration and velocity, respectively.
These terms are applied for updating the next particle position
in the Newton-based-SOMPSO. In other words, the cogni-
tion and social terms in PSO is used as a particle acceleration
to update the next particle position, xid(t + 1) as shown in
Eq. (17):
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Fig. 8 SOMHSA pseudo-code

Initiali ze the SOMHSA parameters and fitness function i
jn xxxxfxf ),(,)(),( ,11

While  ( )e3 pocht

Begin 

 Generate initial harmony (random weights) for ,1HMS
),LBUB(LB1

jjjj randx ),2,1( Nj , 

 While )( 11 (x)ft
For each ),,2,1( Nj do

Calculate harmony fitness solution,
i

jxxxxf ),(),( ,11

 Update HM, ))()(()()()()1( t- xtVtLttxtx
  End 
  Store initial BMU in HM 

End

While )( 2 (x)ft n
Begin 
Generate new harmony by accepting new harmony (solutions) 

For each ),,2,1( Nj do 

If ( acceptrrand ), 

 Choose an existing harmony randomly 
' i

jj xx
 where, ),,2,1( HMSi ),2,1( Nj , 
 UB = Upper bound and LB = Lower bound

Else If ( parrand ), 

 Adjust the pitch randomly within a bandwidth         

Bw,' randxx current
jj

 where, i

jx = new solution (pitch),  

current

jx = current solution (pitch),  

 Bw= bandwidth,  
 rand = random numbers between [0,1]. 
Else  

 Generate new harmony via randomisation         

),LBUB(LB'
jjjj randx

    End

  Calculate new harmony (NH) fitness solution, ,),(),( ,1
i

jn xxxxf
  Store BMU NH in HM, 

  Find the bestHMS , f(x)  in HM,

If ( )()( 1 xfxfn ),

 Set the bestHMS  as the NH fitness solution, (x)fxf n)(
Else 

Set the bestHMS as the initial harmony fitness solution, (x)fxf 1)(
      End 

Set the BMU, kw and neighborhood area, )(tHMS

 Update HM for bestSHM , ))()(()()()()1( t- xtVtLttxtx
End 
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Fig. 9 SOMPSO and
Newton-based SOMPSO
pseudo-code

Step 1: Start.
Step 2: Initialize the population array of particle representing random solutions for 
d dimensional problem space in SOM network.
Step 3: Evaluate fitness values of particles.
Step 4: Update Pi if particle fitness value i < particle best fitness value Pi, 
for i = 1, 2, . . ., N.
SStep 5: Set Pi as best matching unit, BMU.
Step 6: Set Pg as local neighbourhood area.
Step 7:Update Pg if distance from BMU Pi < distance from local neighbourhood 
area Pg, for i = 1, 2, . . ., N.
Step 8: Update the next velocities of particles as Eq. (13)
Step 9: Update the next positions of particles as Eq. (15) for SOMPSO or

Update the next positions of particles as Eq. (17) for Newton-based 
SOMPSO

Step 10: Repeat steps 3 to 9 until the stop criterion is reached.

xid(t + 1) = xid + vid (t) + C1 × rand

×
(
−∇ f −1 (xid (t)) f (xid (t))

)
(17)

5 Experimental protocols for the proposed
multi-strategy SOM deep learning with
meta-heuristic algorithms

The clarification of the experimental setup, performance
measurements and parameter setting will be given in
Sects. 5.1 and 5.2, respectively.

5.1 Experimental setup and performance
measurement

In this study, biomedical datasets from the KEEL database
(Alcalá-Fdez et al. 2011) have been implemented in the clus-
tering and classification problems (see Table 2). For each
of the datasets, min–max normalization is employed during
training and testing with tenfold cross-validation. Conse-
quently, the clustering and classification performance are
evaluated.

Subsequent to the training and testing procedure, the
results are evaluated using clustering and classification per-
formance measurements. For clustering performance, quan-
tization error (QE) is used to describe how accurately the
neurons respond to the given dataset. For example, if the ref-
erence vector of the best matching unit (BMU) calculated for
a given testing vector xi is exactly the same xi , the error in
precision is 0. The equation is as follows:

Eq = 1

N

N∑

k−1

‖xk(t) − wmk(t)‖, (18)

wherewmk is the weight for the input vector xk and the BMU
m, at time t .

Table 2 Biomedical dataset information

Dataset No. of
instances

No. of
attributes

Class name

Appendicitis 107 7 Negative

Positive

Heart 270 13 Absence

Presence

Hepatitis 155 19 Die

Survive

Pima Indian
Diabetes

768 8 Negative

Positive

Mammographic 961 5 Benign

Malignant

Wisconsin Breast
Cancer

699 9 Benign

Malignant

New Thyroid 215 5 Hyperthyroidism

Hypothyroidism

Normal

cluster cohesion (CC) is defined as the average sum of dis-
tances from cluster members to the cluster center.

CCi = 1

|Ci |
∑

x ∈ Ci

dist (x, ci ), (19)

where Ci denotes the i th cluster, ci is the center and |Ci | is
the magnitude of cluster Ci .

Upon completion, clusters and similarity between objects
can be justified. However, the objects (data) that belong to the
cluster (prototype vectors) are unknown. Thus, we proceed
with testing data at the classification phase.
As seen on Table 3, the accuracy (ACC) and F measure is
used as performance measurements for classification tasks.
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Table 3 Classification
performance measurements

Performance measurements Abbreviation Formula

Accuracy ACC (T P+T N )
(T P+T N+F P+F N )

F measure F1 2T P
(2T P+F P+F N )

Table 4 Parameter setting for the proposed SOM deep learning models

Parameters SOMHSA SOMPSO Newton-based SOMPSO

Learning strategy Multi-strategy and deep
harmony improvisation

Multi-strategy and wider
particles exploration and
exploitation

Multi-strategy and wider
particles exploration and
exploitation

Lattice structure/local neighborhood Improved Octagonal Square Octagonal

Learning rate 0.5 N/A N/A

HMCR 0.85 N/A N/A

PAR 0.45 N/A N/A

Bandwidth 0.5 N/A N/A

HMS Number of nodes N/A N/A

Particles N/A Number of nodes Number of nodes

Decision variable /value range [0,1]/[−1,1] [0,1]/[−1,1] [0,1]/ [−1,1]

Wmin N/A 0.4 0.4

Wmax N/A 0.9 0.9

C1 N/A 1.0 1.0

C2 N/A 2.0 2.0

Input/problem dimension Number of features

Output dimension 2D-mapping dimension (X , Y )

Mapping dimension (X , Y ) (10,10) / (5,5)

Epoch 1000/3000/5000

The F measure takes into account the probability of true
positive (TP), false positive (FP) and false negative (FN)
predictive values. In other words, the harmonic average of
the precision and recall. While ACC measurement applies
all predictive values including the true negative (TN). The
best score is 1 and worst scores is 0, for both ACC and F
measure.

5.2 Parameter setting

In this study, three SOM deep learning strategies are imple-
mented using different types of lattice or local neighbor-
hood structures for the proposed hybridization models of
the multi-strategy learning. These include deep harmony
improvising for SOM mapping learning (SOMHSA), SOM
with PSO (SOMPSO) and SOM with Newton-based PSO
(Newton-based SOMPSO) for particles wider exploration
and exploitation (refer to Table 4). The number of H M S and
particles are determined according to the number of nodes
in tandem with the 2-D output dimension. Meanwhile, the
decision variable or value range is set up according to the
min–max normalization for each dataset. For instance, the

appendicitis, mammographic andWisconsin dataset are nor-
malized in the range [0,1], while other datasets are bounded
to [−1,1]. The number of epoch is set according to the num-
ber of sample and features dataset: appendicitis datasets are
set for 1000 epoch, new thyroid, heart and hepatitis for 3000
epoch and Pima Indian, Wisconsin for 5000 epoch. The pre-
defined number of epoch is given to avoid the overtraining
of the network that can lead to the instability of the network
generalization. The experimental results and analysis of the
proposed SOM deep learning algorithms are described in
Sect. 6.

6 Experimental results and analysis

The experimental results and analysis on clustering and
classification of the proposed SOM deep learning models
in multi-strategy learning environment are given together
with the statistical analysis. Section 6.1 provides the clus-
tering analysis of SOMPSO, SOMHSA and Newton-based
SOMPSO, while Sect. 6.2 gives the classification analysis
of SOMPSO, SOMHSA, Newton-based SOMPSO, standard

123



298 S. Hasan, S. M. Shamsuddin

Fig. 10 A schematic view of clustering performance measurement

Fig. 11 A schematic view of classification performance measurement

SOM and self-organizing Swarm (SoSwarm) (O’Neill and
Brabazon 2008). Finally, Sect. 6.3 provides the statistical
analysis of the proposed SOMdeep learningmodels inmulti-
strategy learning. Figures 10 and 11 provide the schematic
diagram for better presentation in understanding how the per-
formance evaluations are being conducted in this paper.

6.1 Clustering analysis of the proposed
multi-strategy SOM deep learningmodels with
meta-heuristic algorithms

Table 5 shows the clustering analysis of the proposed SOM
deep learning models of SOMPSO, SOMHSA and Newton-
based SOMPSO in the multi-strategy learning environment.
The results are evaluated based on the average of quanti-
zation error (QE) and average cluster cohesion (CC). The
best result of the performance evaluations (P E) is shown
in bold. The performance of the SOMHSA is better than

SOMPSO and Newton-based SOMPSO for Pima Indian,
mammographic and new thyroid datasets in terms of clus-
ter cohesion (CC) and quantization error (QE). While for
the appendicitis and hepatitis datasets, the results are similar
in terms of CC : CC = 0.033 and CC = 0.059, respectively.
SOMHSA is capable of preserving better mapping structure
and correlation than SOMPSOandNewton-based SOMPSO.
Meanwhile, SOMPSO and Newton-based SOMPSO gener-
ate quite poor QE andCC , as shown in hepatitis dataset with
CC = 1.184 and CC = 3.146. This is due to the poor topo-
logical mapping of SOMPSO and Newton-based SOMPSO.
However, square local neighborhood structure of SOMPSO
performs better than the octagonal structure ofNewton-based
SOMPSO in terms of QE and CC . This is due to the broader
particles exploration and exploitation in SOMPSO on fix
local neighborhood structure. In Newton-based SOMPSO,
the octagonal-based local neighborhood structure decreases
gradually at time, t .
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Table 5 Clustering analysis of
the proposed SOM deep
learning

Dataset Performance evaluations SOMPSO SOMHSA Newton-based SOMPSO

Appendicitis QE 0.161 0.135 0.172

CC 0.153 0.033 0.344

Heart QE 0.836 0.078 0.144

CC 0.119 0.013 1.881

Hepatitis QE 0.083 0.187 0.105

CC 1.184 0.059 3.146

Pima QE 0.177 0.125 0.22

CC 0.62 0.02 1.352

Mammographic QE 0.243 0.138 0.294

CC 0.343 0.0001 0.862

New Thyroid QE 0.302 0.163 0.3823

CC 0.709 0.0068 1.400

Wisconsin QE 0.135 0.1099 0.146

CC 0.329 0.01 0.545

To further verify the efficiency of the proposed methods,
themeasurements on the classification performancewith ten-
fold cross validations are also investigated and this is given
in the next section.

6.2 Classification analysis of the proposed SOM
deep learningmodels in multi-strategy with
meta-heuristic algorithms

The accuracy (ACC) performance is evaluated based on
the average performance of T P , T N , F P and F N pre-
dictive value. T P equals to numbers of positive cases are
correctly classified, T N measures the proportion of nega-
tives that are correctly identified, F P is defined as numbers
of negative cases are wrongly classified as positive cases
and F N is numbers of positive cases are wrongly classi-
fied as negative cases. As in Table 6, the high ACC are
generated by SOMHSA for appendicitis dataset with an
accuracy of ACC = 88.0%, followed by the hepatitis with
ACC = 89.0%, and Wisconsin with ACC = 97.0% simi-
lar to standard SOM. Newton-based SOMPSO generates an
accuracy of 68% for Pima Indian dataset and similar accu-
racy as SOMPSO and standard SOM for mammographic
dataset which is ACC = 70.0%. Standard SOM produces
better results than the proposed SOM deep learning models
in heart dataset with ACC = 73.0%, and new thyroid with
ACC = 81.0%. In conclusion, the SOMHSA produces high
accuracy (ACC) performance compared to SOMPSO and
Newton-based SOMPSO based on the tested datasets.

However, the ACC performance is appropriate for bal-
ance dataset since the frequency of the imbalance dataset is
not comparable between positive and negative class. Thus,
the performance is also validated with F measure. The F
measure is assessed based on the positive cases which cor-

responds to the T P (numbers of positive cases are correctly
classified), F P predicted value (numbers of negative cases
are wrongly classified as positive cases) and F N (numbers
of positive cases are wrongly classified as negative cases).
Furthermore, the F measure takes into consideration the
influence of positive and negative cases which wrongly clas-
sified toward the positive cases.

As in Table 7, SOMHSA achieves high F1 for all datasets
compared to SOMHSA Newton-based SOMPSO and stan-
dard SOM. The appendicitis datasets achieve high F1 with
F1 = 0.92, hepatitis with F1 = 0.69, Pima Indian with
F1 = 0.55, heart with F1 = 0.70 and Wisconsin with
F1 = 0.96, new thyroid with F1 = 0.75 and mammo-
graphic with F1 = 0.68, respectively.

From these performance measurements, the proposed
SOMdeep learningmodels of SOMHSA produce high ACC
and F1 compared toNewton-basedSOMPSO,SOMPSOand
standard SOM for almost all testing datasets. The SOMPSO,
Newton-based SOMPSO and standard SOM outperformed
SOMHSA on Pima and mammographic datasets in terms of
ACC . Meanwhile, SOMHSA produces promising result for
all datasets in F measures. The F measures performance is
quantified based on the probabilities of FP, FN and TP pre-
dictive values. The classifiers performance toward positive
cases can be evaluated using the F measures. In this context,
F measures is beneficial for validating the proposed models
and robust for categorizing the minority class. Unlike ACC ,
the F measures do not taking account the majority class, TN
(number of negative cases which correctly classified).

For further evaluation, the proposed models are com-
pared to the previous work by O’Neill and Brabazon (2008),
namely Self-Organizing Swarm (SOSwarm) as shown in
Table 8. The comparison is based on the average, best and
SD of ACC with three datasets (Pima, new thyroid and
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Table 6 Accuracy (ACC) of
the proposed SOM deep
learning models

Dataset Deep learning models ACC

Average Worst Best SD

Appendicitis SOMPSO 0.82 0.70 0.91 0.08

SOMHSA 0.88 0.73 1.00 0.10

Newton-based SOMPSO 0.80 0.70 0.91 0.06

Standard SOM 0.87 0.71 1.00 0.10

Heart SOMPSO 0.66 0.59 0.70 0.04

SOMHSA 0.73 0.59 0.85 0.09

Newton-based SOMPSO 0.68 0.63 0.85 0.07

Standard SOM 0.78 0.67 0.89 0.07

Hepatitis SOMPSO 0.85 0.67 1.00 0.10

SOMHSA 0.89 0.63 1.00 0.12

Newton-based SOMPSO 0.86 0.67 1.00 0.10

Standard SOM 0.87 0.71 1.00 0.11

Pima SOMPSO 0.67 0.64 0.70 0.03

SOMHSA 0.67 0.62 0.77 0.05

Newton-based SOMPSO 0.68 0.62 0.71 0.03

Standard SOM 0.68 0.56 0.75 0.05

New Thyroid SOMPSO 0.75 0.68 0.81 0.04

SOMHSA 0.81 0.62 0.95 0.11

Newton-based SOMPSO 0.76 0.68 0.90 0.07

Standard SOM 0.87 0.71 1.00 0.10

Mammographic SOMPSO 0.70 0.59 0.86 0.08

SOMHSA 0.69 0.67 0.73 0.03

Newton-based SOMPSO 0.70 0.60 0.90 0.10

Standard SOM 0.70 0.52 0.81 0.08

Wisconsin SOMPSO 0.79 0.67 0.94 0.08

SOMHSA 0.97 0.93 1.00 0.03

Newton-based SOMPSO 0.80 0.70 0.91 0.06

Standard SOM 0.97 0.94 0.99 0.02

Wisconsin). As seen on Table 8, the SOMHSA outperforms
SOMPSO, Newton-based SOMPSO and SOSwarm on Wis-
consin dataset. Meanwhile, SOswarm produces better result
in termsof ACC onPima andnew thyroid datasets. The ACC
result illustrates the concept of no free lunch theorem (David
and William 1997) since no such algorithm works better for
the whole datasets. Thus, ACC is suitable for measuring the
balance dataset.

In the next section,we further validated the proposedmod-
els using statistical analysis to examine the significance of
our findings for robust evaluation and verification.

6.3 Statistical analysis of the proposed SOM deep
learningmodels in multi-strategy learning

Friedman Test is conducted to test whether k random sam-
ples drawn from K population have the same mean. In this
context, N samples are obtained from k random samples

of sensitivity (Sn), positive predictive value (P PV ), nega-
tive predictive value (N PV ), accuracy (ACC), performance
coefficient (PC)and average site performance (AS P)perfor-
mance measurements with n datasets of appendicitis, heart,
hepatitis, Pima Indian, mammographic, new thyroid and
Wisconsin. Each dataset (ni ) , (i = 1, 2, . . . , k) is drawn
dependently with K populations from SOMHSA, SOMPSO
and Newton-based SOMPSO models. As in Table 9, Fried-
man test illustrates the mean, standard deviation (SD),
minimum (min), maximum (max) and median percentiles
statistics based on N samples.

Based on the statistics, the Friedman test results are sig-
nificantly different among the SOMHSA, SOMPSO and
Newton-based SOMPSO with chi-square, χ2(2) = 25.078,
and significance level of p = 0. For better illustration
in observing the performance between 2-related samples
from dependent populations, a Wilcoxon Signed-Rank test
is implemented as post-hoc test.
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Table 7 F measures of the
proposed SOM deep learning
models

Dataset Deep learning models F1 measures

Average Worst Best SD

Appendicitis SOMPSO 0.89 0.82 0.95 0.05

SOMHSA 0.92 0.77 1.00 0.07

Newton-based SOMPSO 0.88 0.80 0.95 0.04

Standard SOM 0.42 0.29 0.50 0.09

Heart SOMPSO 0.53 0.42 0.69 0.08

SOMHSA 0.70 0.52 0.82 0.09

Newton-based SOMPSO 0.59 0.29 0.82 0.13

Standard SOM 0.37 0.29 0.44 0.04

Hepatitis SOMPSO 0.10 0.00 0.67 0.25

SOMHSA 0.69 0.00 1.00 0.41

Newton-based SOMPSO 0.17 0.00 0.67 0.31

Standard SOM 0.35 0 0.50 0.19

Pima SOMPSO 0.38 0.22 0.60 0.14

SOMHSA 0.55 0.51 0.61 0.03

Newton-based SOMPSO 0.34 0.00 0.57 0.18

Standard SOM 0.26 0.18 0.35 0.05

New Thyroid SOMPSO 0.39 0.00 0.60 0.17

SOMHSA 0.75 0.56 0.92 0.12

Newton-based SOMPSO 0.34 0.00 0.80 0.26

Standard SOM 0.42 0.29 0.50 0.09

Mammographic SOMPSO 0.66 0.48 0.86 0.12

SOMHSO 0.68 0.65 0.75 0.03

Newton-based SOMPSO 0.64 0.38 0.90 0.16

Standard SOM 0.36 0.02 0.49 0.08

Wisconsin SOMPSO 0.57 0.15 0.91 0.23

SOMHSA 0.96 0.90 1.00 0.04

Newton-based SOMPSO 0.65 0.37 0.88 0.17

Standard SOM 0.48 0.45 0.50 0.02

Table 8 Accuracy (ACC) of
the proposed SOM deep
learning models

Dataset Deep learning models ACC

Average Best SD

Pima SOMPSO 0.67 0.70 0.03

SOMHSA 0.67 0.77 0.05

Newton-based SOMPSO 0.68 0.71 0.03

SOSwarm 0.69 0.80 0.03

New Thyroid SOMPSO 0.75 0.81 0.04

SOMHSA 0.81 0.95 0.11

Newton-based SOMPSO 0.76 0.90 0.07

SOSwarm 0.91 1.00 0.038

Wisconsin SOMPSO 0.79 0.94 0.08

SOMHSA 0.97 1.00 0.03

Newton-based SOMPSO 0.80 0.91 0.06

SOSwarm 0.96 1.00 0.014
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Table 9 Friedman test statistics of the proposed SOM deep learning models

Proposed SOM deep learning models N Mean SD Min Max Percentiles

25th 50th (median) 75th

SOMHSA 49 0.7565 0.15623 0.37 0.99 0.66 0.73 0.93

SOMPSO 49 0.6153 0.25303 0.07 1 0.445 0.68 0.815

Newton-based SOMPSO 49 0.6220 0.24755 0.13 1 0.4600 0.70 0.80

Table 10 Wilcoxon signed ranks test of the proposed SOM deep learning models

Proposed SOM deep
learning models

Ranks Mean rank Sum of ranks Z -score Significance level, p (2-tailed)

SOMPSO (C) −
SOMHSA (B)

Negative 34a a. C < B 25.72 874.5 −4.430a 0

Positive 10b b. C > B 11.55 115.5

Ties 5c c. C = B

Newton-based
SOMPSO (D) −
SOMHSA (B)

Negative 37a a. D < B 27.58 1020.5 −4.438a 0

Positive 11b b. D > B 14.14 155.5

Ties 1c c. D = B

For better illustration, each of the SOMHSA, SOMPSO
and Newton-based SOMPSO models are labeled as B, C,
D as in Table 10. The statistical test presents the result in
terms of ranks (positive, negative and ties), mean ranks, sum
ranks, Z − score and two-tailed significance level (p). Posi-
tive and negative ranks indicate that there exists a significant
difference between the N samples, while ties rank shows no
significant difference between the N samples.

Therefore, in this statistical test, the Wilcoxon Signed-
Rank test shows that SOMHSA is statistically significant to
SOMPSO with Z − score of Z = −4.430 and two-tailed
significance level of p = 0, respectively, while Newton-
based SOMPSO is statistically significant to SOMHSA
with Z = −4.438 and p = 0, while SOMHSA is sig-
nificantly different with higher rank than SOMPSO and
Newton-based SOMPSO, derived from the negative ranks
of (C < B) and (D < B).

7 Conclusions

We have proposed the multi-strategy approaches and deep
SOM learning and improvisation with SOMHSA, SOMPSO
andNewton-based SOMPSO for bettermapping and labeling
in clustering and classification problems. The overall perfor-
mance of the deep harmony improvisation of SOMHSA indi-
cates the competitiveness of theNewton-basedSOMPSOand
SOMPSO in terms of clustering and classifier performances,

respectively. HSA improvisation scheme provides better
harmony diversification and intensification with improved
octagonal neighborhood lattice structure than Newtonian-
based PSO with standard octagonal local neighborhood
(Newton-based SOMPSO), and standard PSO based on
fixed square local neighborhood (SOMPSO). This shows
that the wider with deep exploration and exploitations of
the search space with improved lattice structure gives bet-
ter performances in terms of clustering and classification.
Furthermore, the proposed models with deep learning mech-
anism on classification performance have reduced the bias
toward the majority class compare to the standard SOM.
However, SOMPSO and Newton-based SOMPSO still need
some improvement in hepatitis and new thyroid dataset.

Thus, the multi-level learning schemes with deep learning
neural network architecture will be considered in the future
to deal with the imbalance datasets of real world problems.
Our proposed multi-strategy SOM deep mapping learning
can be applied on multi-dimensional unstructured big data
problems. However, the major challenge is dealing with the
big data pre-processing and multi-decision solutions espe-
cially in real-time business analytics.
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