
Soft Computing (2019) 23:4503–4520
https://doi.org/10.1007/s00500-018-3114-0

METHODOLOGIES AND APPL ICAT ION

Bipolar fuzzy concept learning using next neighbor and Euclidean
distance

Prem Kumar Singh1

Published online: 8 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
To handle the bipolarity in data with fuzzy attributes the properties of bipolar fuzzy set are introduced in the concept lattice
theory for precise representation of formal fuzzy concepts and their hierarchical order visualization. In this process, adequate
understanding of meaningful pattern existing in bipolar fuzzy concept lattice becomes complex when its size becomes
exponential. To resolve this problem, the current paper proposes two methods based on the properties of next neighbors
and Euclidean distance with an illustrative example. It is also shown that the proposed method provides similar knowledge
extraction when compared to available subset-based method drawing for bipolar fuzzy concept lattice.

Keywords Bipolar fuzzy concept · Bipolar information · Formal concept analysis · Formal fuzzy concept · Fuzzy concept
lattice · Granular computing

1 Introduction

In the last decade, the arithmetic of formal concept analysis
(FCA) is considered as one of the prominent tools for data
analysis and processing tasks (Wille 1982). The mathemati-
cal background of FCA is based on applied abstract algebra
and its properties (Ganter and Wille 1999). To mimic with
uncertainty and vagueness in the fuzzy attributes its math-
ematics augmented with unipolar single-valued (Burusco
and Fuentes-Gonzalez 1994; Antoni et al. 2014; Bělohlávek
1998) and interval-valued fuzzy space (Burusco and Fuentes-
Gonzales 2001; Djouadi and Prade 2010; Singh et al. 2016).
In case the data sets contain bipolar fuzzy attributes (or infor-
mation) (Djouadi and Prade 2009)1 the properties of bipolar
fuzzy graphs (Alcalde et al. 2015; Singh andKumar 2014a, b)
and vague graphs (Singh 2017b,d) are introduced (Singh
2017e). To handle the indeterminacy in fuzzy attributes based
on their acceptation, rejection and uncertain parts (Hu 2014;
Li et al. 2017), this information can be graphically ana-

1 https://en.wikipedia.org/wiki/Bipolarity.
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lyzed using the three-way decision space (Singh 2017a) for
approximating the possibility of uncertain regions (Dubois
and Prade 2015; Yao 2004, 2017) based on their truth,
indeterminacy and falsity membership function. Beyond the
connection among these available approaches one of the
common objectives is that all of these methods are pro-
posed to extract some of the meaningful information from
the given data sets. The problem arises while investigating
the pattern (i.e., formal concepts) in the given contexts of
bipolar fuzzy attributes. Recently, one of the approaches
is introduced (Singh and Kumar 2014a, b) for generating
the bipolar fuzzy concepts based on user-required subset of
attributes which takes exponential time. It means the avail-
able approaches become irrelevant when the given bipolar
fuzzy context is larger from a given threshold. The reason
is subset based attributes method provides huge number of
concepts makes the harder to understand or read the concept
lattice for knowledge-processing tasks (Kumar and Singh
2014). This scalability issue decelerates the practical appli-
cations of FCA in various fields (Bělohlávek 1998; Singh and
Gani 2015). To resolve this issue one of the suitable ways
is to try to select some of the similar or closed important
bipolar concepts based on user-required information granu-
lation (Li et al. 2015, 2017). In this direction some of the
researchers have paid the attention toward utilizing the alge-
bra of granular computing (Pedrycz 2013; Pedrycz and Chen
2015) for knowledge reduction tasks (Wu et al. 2009; Zhang
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Table 1 The categorization of
uncertainty and vagueness in
data with fuzzy attributes

Conditions Objects Attributes Relationship

(i) Binary Binary Vague (or) bipolar

(ii) Binary Fuzzy (or) bipolar Vague (or) bipolar

(iii) Fuzzy (or) bipolar Binary Vague (or) bipolar

(iv) Fuzzy (or) bipolar Fuzzy (or) bipolar Vague (or) bipolar

et al. 2007) in FCA with binary (Bělohlávek 1998; Dias
and Viera 2013; Formica 2008), fuzzy (Klawonn and Castro
1995; Singh and Kumar 2012; Singh and Gani 2015; Zadeh
1971), interval-valued (Singh et al. 2016; Singh 2017c; Yao
2017) and bipolar fuzzy space (Singh and Kumar 2014b;
Singh 2017e).Motivated from these recent studies the current
paper focuses on reducing the time complexity for drawing
the bipolar fuzzy concepts and its concepts using the prop-
erties of next neighbor and Euclidean distance at different
information granules.

The bipolar information is used to exist in each day of our
daily life (Singh 2017d, e) for quantifying the information
(Zhang 2017). The reason is basic unit of human thought
does not mimic with binary values, i.e., 0 and 1. In most of
the cases human thought depends on the defined boundary
for the given information for characterizing its acceptation
and rejection part (Pandey et al. 2016; Singh 2017d). Itmeans
the bipolarity is an unavoidable condition dealingwith uncer-
tainty and vagueness in fuzzy attributes (Alcalde et al. 2015;
Singh and Kumar 2014a) which changes at each given phase
of time (Singh 2017b). In general the bipolar information can
be classified into pass or fail (i.e., true or false) basis as shown
in Table 1. The major factor is these two regions co-exist
simultaneously in the given bipolar fuzzy regions [−1, 0) ×
(0, 1] (Dubois and Prade 2012; Lee 2000). In this case dis-
tinguishing the positive or negative regions simultaneously
is difficult tasks while processing the bipolar queries (Del-
gado et al. 2016). The reason is bipolarity, and its meaning
may change from one phase of time to another as discussed
in Singh (2017b). It is better to represent them using prop-
erties of bipolar fuzzy set J defined in a non-empty set
Z having the form J = {

(z, μP (z), μN (z))|z ∈ Z
}
where

μP : Z → [0, 1] and μN : Z → [− 1, 0] are mappings
(Zhang 1994; Zhang andZhang 2004). The positivemember-
ship degree μP (z) represents somewhat satisfaction degree
of attributes, whereas negative membership degree μN (z)
represents implicit counter property (Akram 2011, 2013).
The obtained bipolar fuzzy set can be visualized using the
vertices and edges of a defined bipolar fuzzy graphG = (I, J)
where I = (μP

I , μN
I ) is a bipolar fuzzy set on vertices (V )

and J = (μP
J , μN

J ) is a bipolar fuzzy set on edges (E), such
that (Yang et al. 2013)

μP
J ({v1, v2}) ≤ min

(
μP
I (v1), μ

P
I (v2)) (∀(v1, v2) ∈ V × V

)
,

μN
J ({v1, v2}) ≥ max

(
μN
I (v1), μ

N
I (v2))(∀(v1, v2) ∈ V × V

)
,

μP
J ({v1, v2}) = μN

J ({v1, v2}) = 0∀(v1, v2) ∈ (V × V − E).

Recently, the calculus of bipolar fuzzy graph is utilized
in applied lattice theory for data analysis and processing
tasks (Singh and Kumar 2014a) with its potential applica-
tions (Singh and Kumar 2014b). Subsequently, it is applied
in mathematical morphology (Bloch 2011), preference mod-
eling (Franco et al. 2013), query processing (Tamani et al.
2011), information retrieval (Zadrozny et al. 2012) and social
network analysis (Akram 2013). One of the method s is pro-
posed to deal with bipolar fuzzy context in Singh and Kumar
(2014b) which takes exponential time. It generates huge
number of concepts in small variance of positive and neg-
ative membership value. To deal with this problem recently,
Singh (2017e) tried to reduce the vague concept lattice (Singh
2017d) using the properties of granular computing. Similarly,
other methods are proposed in FCAwith binary (Bělohlávek
and Macko 2011; Dias and Viera 2013), fuzzy (Klawonn
and Castro 1995; Zadeh 1971; Singh and Gani 2015), com-
posed contexts (Singh 2016) for processing the (Mao 2017;
Zhang et al. 2007) bipolar queries (Delgado et al. 2016).
It can be observe that all of the available approaches for
handling the bipolar (Singh and Kumar 2014a, b) or vague
(Singh 2017d, e) context take exponential time complexity.
Due to that these approaches become opaque in extracting
some of the interesting pattern in bipolar fuzzy context to
solve the particular problems. To achieve this goal current
paper focuses on navigating the bipolar fuzzy concept lattice
using the properties of next neighbor and Euclidean distance
as it is considered as one of the best possible measurements
(Li et al. 2007; Singh 2017e). The motivation is to read the
bipolar cognitive concept inmore comprehensivemanner and
visualize them in the concept lattice for adequate knowledge-
processing tasks. The objective is to select some of the user-
interested bipolar fuzzy concept at the given threshold. In
addition, the proposed method is illustrated with an example
and the obtained results are compared with recently pub-
lished subset-based bipolar concepts lattice method (Singh
and Kumar 2014a, b). In this way, function of the proposed
method is distinct from any of the available approaches in
FCA with bipolar fuzzy settings by the following points:

(i) The proposed method provides a way to reduce the time
complexity for drawing the bipolar fuzzy concept lattice
within O(|C |·n·m2) computational costs.
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(ii) The proposedmethod provides multiple ways to find the
closest bipolar fuzzy concepts based on their computed
Euclidean distance at user-required granulation within
O(2·m2) time complexity.

The above-mentioned outputs can be considered as one of
the significant outputs of the proposedmethod toward bipolar
fuzzy concept learning and its effective visualization.

Rest of the paper is organized as follows: Sect. 2 provides
a brief background about FCA with bipolar fuzzy setting.
Section 3 includes the proposed methods to draw the bipo-
lar fuzzy concept lattice and its reduction at user-defined
information granules. Section 4 contains illustration of the
proposedmethod, whereas Sect. 5 provides discussions. Sec-
tion 6 includes conclusions followed by acknowledgements
and references.

2 Formal concept analysis with bipolar fuzzy
setting

In this section some of the basic definitions related to FCA
with bipolar fuzzy setting is given for knowledge-processing
tasks as given below:

Definition 1 (Formal fuzzy context) (Burusco and Fuentes-
Gonzalez 1994): A formal fuzzy context is a triplet F =
(X,Y, R̃), where X is a set of objects, Y is a set of attributes
and R̃ is an L-relation between X and Y , R̃: X × Y → L.
Each relation R̃(x, y) ∈ L represents the membership value
at which the object x ∈ X has the attribute y ∈ Y in [0, 1]
whereL is a support set of somecomplete residuated latticeL.

Definition 2 (Residuated lattice) (Liu et al. 2012; Pol-
landt 1997): It is a basic structure of truth degrees L =
(L,∧,∨,⊗,→, 0, 1) where 0 and 1 represent least and
greatest elements, respectively. L is a complete residuated
lattice iff:

1. (L,∧,∨, 0, 1) is a complete lattice.
2. (L,⊗, 1) is a commutative monoid.
3. ⊗ and → are adjoint operators (called as multiplication

and residuum, respectively), that is a ⊗ b ≤ c iff a ≤
b → c,∀a, b, c ∈ L. The operators⊗ and→ are defined
distinctly by Lukasiewicz, Gödel and Goguen t-norms
and their residua. In this paper Gödel t-norm and their
residua are used as given below:

Gödel:

• a ⊗ b = min (a, b),
• a → b = 1 if a ≤ b, otherwise b.

Definition 3 (Bipolar fuzzy context) (Singh andKumar2014b):
A bipolar fuzzy context is represented as F = (X,Y, R̃)
where X is a set of objects, Y is a set of bipolar attributes
and R̃ represents bipolar relationship among them defined in
bipolar [−1, 0) × (0, 1]. Each bipolar relation represents a
positive and negative membership value at which the object
x ∈ X has the attribute y ∈ Y in [−1, 0] × [0, 1]. A bipo-
lar fuzzy relation defined as a mapping R̃ = (μP

R̃
, μN

R̃
) :

X × Y → [− 1, 0] × [0, 1] where μP
R̃
(x1, y1) ∈ [0, 1] and

μN
R̃
(x1, y1) ∈ [− 1, 0].

Definition 4 (Formal fuzzy concepts) (Bělohlávek 1998): For
any L-set A ∈ LX of objects, and B ∈ LY of attributes we
can define L-set A↑ ∈ LY of attributes and L-set B↓ ∈ LX of
objects as follows (Dubois and Prade 2012, 2015):

1. A↑(y) = ∧x∈X(A(x) → R̃(x, y)),
2. B↓(x) = ∧y∈Y(B(y) → R̃(x, y)).

The A↑(x) is interpreted as the L-set of attribute y ∈ Y
shared by all objects from A. Similarly, B↓(x) is interpreted
as the L-set of all objects x ∈ X having the attributes from B
in common. The formal fuzzy concepts are a pair of (A,B) ∈
LX × LY satisfying A↑ = B and B↓ = A, where fuzzy set
of objects A called as extent and fuzzy set of attributes B is
called as intent.

Definition 5 (Bipolar fuzzy concepts) (Singh and Kumar
2014b): a bipolar fuzzy concepts can be discovered using the
↓ on bipolar fuzzy set of attributes (B, (μP (B), μN (B)))↓ to
find its covering bipolar fuzzy set of objects set (A, (μP (A),

μN (A))). Now, apply the ↑ on obtained bipolar fuzzy set
of objects (A, (μP (A), μN (A)))↑ to find their common
attribute set (B, (μP (B), μN (B))). The obtained pair of
objects and attributes set (A, B) is called as bipolar fuzzy
concepts iff:

(
B, (μP (B), μN (B))

)↓ =
(
A,min(μP (A), μN (A))

)
and,

(
A, (μP (A), μN (A))

)↑ =
(
B,min(μP (B), μN (B))

)
.

The (↓) operator can be applied on the set of bipolar fuzzy
attributes to find themaximal covering objectswhile integrat-
ing the information from positive and negative membership
value. Consequently, the operator (↑) can be applied on the
bipolar fuzzy set constituted by these covered objects set
resulting from integrating the positive and negative mem-
bership value among objects and attributes set. It means (↓,
↑) provides a pair of maximal bipolar fuzzy set of objects
and attributes with respect to integrating the information
from them. After that, any bipolar fuzzy set of attributes (or
objects) cannot be found which can make the membership
value of the obtained pair bigger, if the pair of the set of
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objects and the set constituted by its covered attributes forms
a bipolar formal fuzzy concept.

Definition 6 (Partial orderingof fuzzy concepts) (Bělohlávek
1998): a formal fuzzy concept is a maximal rectangle of a
given fuzzy context F filled with membership value between
[0, 1], which is an ordered pair of two sets (A, B), where A ⊆
X is called as fuzzy extent, andB ⊆Y is called as fuzzy intent.
The set of formal fuzzy concepts(C), generated from a given
fuzzy formal context F, defines the partial ordering principle,
i.e., (A1,B1) ≤ (A2,B2) ⇐⇒ A1 ⊆ A2(⇐⇒ B2 ⊆ B1) for
every fuzzy formal concept.

Definition 7 (Partial ordering of bipolar fuzzy concepts)
(Bloch 2011; Hu 2014): The partial ordering among bipolar
fuzzy concepts can be defined using Pareto ordering. Let us
suppose two bipolar fuzzy concepts (A1, B1) and (A2, B2);
then they define partial ordering as follows:(A1,B1) ≤
(A2,B2) ⇐⇒ (μP

A1
(x) ≤ μP

A2
(x)) and (μN

A1
(x) ≥ μN

A2
(x))

∀ x ∈ X (⇐⇒(μP
B2

(y) ≤ μP
B1

(y)) and (μN
B2

(y) ≥ μN
B1

(y))
∀ y ∈ Y ).

I = (μP
I , μN

I ) and J = (μP
J , μN

J ) then (μP
I , μN

I ) ≤
(μP

J , μN
J ) iff ∀ z ∈ Z (μP

I (z) ≤ μP
J (z)) and (μN

I (z) ≥
μN
J (z)).

Definition 8 (Complete lattice) (Ganter and Wille 1999): In
the complete lattice there exist an infimum and a supremum
for any given two formal concepts as given below:

• ∧ j∈J (A j , Bj ) = (
⋂

j∈J A j , (
⋃

j∈J B j )
↓↑),

• ∨ j∈J (A j , Bj ) = ((
⋃

j∈J A j )
↑↓,

⋂
j∈J B j ).

Definition 9 (Bipolar fuzzy complete lattice) (Akram 2011;
Lee 2000): In a bipolar fuzzy complete lattice together
with partial ordering there exist an infimum and supre-
mum for each bipolar fuzzy set I = (μP

I (z), μN
I (z)) and

J = (μP
J (z), μN

J (z)) as given below:

• (μP
I (z), μN

I (z)) ∧ (μP
J (z), μN

J (z)) = (min(μP
I (z)),

μP
J (z)), max(μN

I (z)), μN
J (z)),

• (μP
I (z), μN

I (z)) ∨ (μP
J (z), μN

J (z)) = (max(μP
I (z)),

μP
J (z)), min(μN

I (z)), μN
J (z)).

Definition 10 (Bipolar fuzzy complete graph) (Akram 2013;
Yang et al. 2013): a bipolar fuzzy graph G = (I, J) is com-
plete iff:

μP
J ({v1, v2}) = min

(
μP
I (v1), μ

P
I (v2)

)
and,

μN
J ({v1, v2}) = max

(
μN
I (v1), μ

N
I (v2)

)

for all v1, v2 ∈ V and (v1, v2) ∈ V × V .

Table 2 A bipolar fuzzy subset
of V for Example 1

v1 v2 v3

μP
I 0.5 0.7 0.6

μN
I − 0.3 − 0.4 − 0.5

Table 3 A bipolar fuzzy subset
of E for Example 1

v1v2 v2v3 v3v1

μP
J 0.5 0.6 0.5

μN
J − 0.3 − 0.4 − 0.3

Fig. 1 Abipolar fuzzy complete graph representation for Tables 2 and 3

Example 1 Let us suppose, a graph G having set of vertices
V = (v1, v2, v3) and set of edgesE = (v1v2, v2v3, v3v1). The
bipolar fuzzy set based on given vertices I and their edges E
can be written through the properties of bipolar fuzzy set as
shown in Tables 2 and 3. These sets can be visualized through
a fuzzy complete graph shown in Fig. 1. Now, the problem is
that how to extract some meaningful information from these
types of data set is a main concern. To solve this problem, a
method is proposed in the next section using the properties
of concept lattice and Euclidean distance.

It can be observed that the bipolar fuzzy concept lattice
and its graphical structure visualization give a precise way
for handling bipolar information, due to which, recently,
some of the researchers tried to introduce a method for
discovery of bipolar fuzzy concepts using the user-defined
subset of attributes (Singh and Kumar 2014a). In this pro-
cess, a problem is addressed that navigating the bipolar fuzzy
concept lattice becomes complex when its size becomes
larger even for small variance in positive and negative
membership value. This creates an issue while analyz-
ing the bipolar fuzzy concept lattice for adequate analysis
of knowledge-processing tasks. To conquer this problem,
the current paper aimed at choosing some of the similar
bipolar fuzzy concepts based on their next neighbor and
Euclidean distance at user-interested level of granulation. In
this regard two methods are proposed in the next section of
this paper.
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3 Proposedmethods

It iswell known that humandoes notmimic likemachines in a
binary format.Many times the decision or opinion of humans
thought is based on bipolar information which contains pos-
itive and negative information, simultaneously. In this case,
dealing with bipolar fuzzy attribute is computationally and
mathematically expensive tasks. The problem arises when
an expert wants to visualize the bipolar fuzzy attributes data
sets in a graph for better understanding and navigating the
bipolar fuzzy concept lattice to find the closest pattern. The
reason is some times the size of bipolar concept lattice used
to be huge even for small context which become very hard
and complicate for traversing the bipolar fuzzy concepts. To
solve this problem, two methods are proposed in this section
based on properties of next neighbor and Euclidean distance.

3.1 A proposedmethod for generating the bipolar
fuzzy concepts using next neighbor

In general, the data set can be written in the form of bipolar
fuzzy contextF = (X,Y, R̃) for knowledge-processing tasks.
The calculus of FCA provides bipolar fuzzy concepts and its
lattice structure to achieve this goal. The pair (A, B) is called
as bipolar fuzzy concept iff: (A, (μP (A), μN (A))) = B↓ and
(B, (μP (B), μN (B))) = A↑. In general, the concepts hav-
ing maximal acceptance of bipolar fuzzy attributes are used
to consider as more important. The current paper considers
(0, 1) positive regions for generating the bipolar fuzzy con-
cepts using the properties of next neighbor algorithm as given
below:

Step (1) The first concept can be generated using all the
objects set (X , (μP (X), μN (X)) and finding its covering
attributes using the ↑ as given below:

(
X , (μP (X), μN (X))

)↑ =
(
y j , (μ

P (y j ), μ
N (y j ))

)
.

The bipolar fuzzy membership value for the obtained
attributes can be computed using the properties of bipolar
fuzzy set as follows

min
(
y j , μ

P (y j )
)

and,

max
(
y j , μ

N (y j )
)

.

Similarly, ↓ can be applied to find its covering objects to
find the maximal pair of object and attributes closed with
Galois connection.
Step (2)The lower neighbor of this concept canbediscov-
ered using the uncovered attributes from the given set of
attributes : Sk = ym − y j where j ≤ m and k ≤ |m − j |.

Step (3) In general a set (sk) can be considered as lower
neighbors of attributes set y j iff it contains exactly one
extra uncovered attribute from the given attributes set,
i.e., sk for k = 1 to k = |m− j |, i.e., y j ∪sk . The covering
objects set can be found using the Galois connection (↓),
i.e.,

(
yk, (μP (yk), μN (yk))

)↓ = (
xi , (μP (xi ), μN (xi )

)
.

The membership value for the obtained objects set can
be computed as follows:
min

(
xi , μP (xi )

)
and max

(
xi , μN (xi )

)

Step (4) Now, apply the operator (↑) on the obtained

objects set, i.e.,
(
xi , (μP (xi ), μN (xi ))

)↑
to find its cov-

ering attributes set. If the obtained membership values of
obtained attributes is equal to initially considered bipolar
fuzzy subset of attributes, i.e.,

(
yk, (μP (yk), μN (yk))

)
.

In this case obtained pair of objects and attributes set rep-
resents a lower neighbor of given node. Similarly, other
lower neighbors can be computed.
Step (5) The next neighbor is the distinct concepts from
all the generated lower neighbor with maximal bipolar
fuzzy membership value.
Step (6) Draw the edges among the current concepts and
its next neighbor.
Step (7) Similarly, compute the next neighbor for each of
the concepts.
Step (8) Stop the algorithm when all the unmarked
attributes are covered.
Step (9)Draw the edges among each of the generated next
neighbor which gives the hierarchically ordered visu-
alization of bipolar fuzzy concepts in a concept lattice
structure.

The pseudocode for the proposed algorithm is shown in
Table 4. The proposed algorithm generates the bipolar fuzzy
concept based on its lower neighbor as shown in Step 1.
The lower neighbor can be discovered via joining one of the
uncovered attributes in the previous concepts as shown in
Steps 2–4. The lower neighbors having distinct and maximal
bipolar fuzzy membership value can be considered as next
neighbor concepts as shown in Step 5. The generated next
neighbor can be connected with its parent concepts via edges
of defined bipolar fuzzy graph as shown in Table 6. Similarly,
all the next neighbor can be generated and added to the graph-
based concept lattice as shown in Steps 6–9. This is one of
the major advantages of the proposed method while building
the bipolar concept lattice and extracting its lower neighbor
concepts for the practical applications.

3.1.1 Complexity

Let the number of objects (|X |) = n and the number of
attributes (|Y |) = m in the given bipolar fuzzy context. To
generate the bipolar concepts the proposed algorithm finds
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Table 4 Proposed algorithm for generating bipolar fuzzy concepts
using next neighbor

Input: A bipolar fuzzy context F = (X,Y, R̃)

where (|X |) = n, (|Y |) = m

Output: The bipolar fuzzy concepts (C) and its lattice structure

1. Apply operator (↑) on given object set(X)

(i)
(
X , (μP (X), μN (X))

)↑ = (
y j , (μP (y j ), μN (y j ))

)

(iii) Compute the bipolar membership for the obtained attributes

min
(
y j , μP (y j )

)
and max

(
y j , μN (y j )

)

(iii) Apply the operator (↓) on obtained attribute set
((
y j , μP (y j ), μN (y j )

))↓ = (
xi ,

(
μP (xi ), μN (xi )

))

(iv) If its provides the initially considered objects set (X ) then it
is concept

2. Find its lower neighbor

3. for (k = 0 to m)

Sk = Y − y j where 0 ≤ j ≤ m

(i). New attribute set: yk = y j ∪ sk

(ii). Set (0,1) positive membership for each attributes

(iii). Apply the operator (↓) on attributes
(
yk , (μP (yk), μN (yk))

)↓ = (
xi , (μP (xi ), μN (xi )

)

(iv). Compute the bipolar fuzzy membership value for the extent

min
(
xi , μP (xi )

)
and max

(
xi , μN (xi )

)

(v). Apply the operator (↑) on extent
(
xi , (μP (xi ), μN (xi ))

)↑ = (
yk , (μP (yk), μN (yk))

)
.

End for

4. List out all the generated lower neighbor concepts C

5. Mark the distinct and maximal intent in C as next neighbor

6. Draw the edges with its parent concept

7. Similarly compute the next neighbor of other concepts

8. Stop when all the unmarked attributes are covered

9. Draw the final bipolar fuzzy concept lattice

lower neighborwhich takesO(n·m) time. From the generated
lower neighbor removal of non-maximal lower neighbor con-
cepts takes at most O(n·m2) complexity. Hence, the overall
complexity for the proposed method to generate the bipolar
fuzzy concepts is O(|C |·n·m2) where C is lower neighbor
concepts. It can be observed that the proposed method takes
less computation when compared to subset-based bipolar
concept generation (Singh and Kumar 2014b). However, the
proposed method provides an easier way to draw the bipolar
fuzzy concept lattice using their next neighbor but unable to
extract some of the bipolar fuzzy concepts at user-defined
granulation. To deal with this problem, another method is
proposed in the next section by utilizing the properties of
Euclidean distance and granular computing.

3.2 A proposedmethod for finding similar bipolar
concepts using Euclidean distance

It can be observed that the proposed method in previous
section generates several bipolar fuzzy concepts via small
changes in positive and negative membership value. In this
case the multi-decision-making and knowledge-processing
tasks become decelerated in context of time complexity.
To deal with this problem, a method is to refine the bipo-
lar fuzzy concepts based on their distance metric defined
by user or expert to solve the particular problem. Toward
this direction recently, mathematics of granular computing
is used for decomposition of bipolar fuzzy context (Singh
and Kumar 2012, 2014b) for its application in various fields
for decision-making process (Singh 2017c, e; Khan et al.
2017). This paper aimed at finding someof the similar bipolar
fuzzy concepts at user-definedgranulation for their computed
similarity. To achieve this goal, the properties of Euclidean
distance are utilized in this paper, as it is considered as one of
the best possible measurements of similarity among various
methods in interval-valued space (Li et al. 2007). The bipo-
lar fuzzy concepts contain positive and negative membership
values for each intent and extent, simultaneously. Hence,
the proposed method computes the Euclidean distance for
both positive and negativemembership value, independently.
This is one of the significant improvements of the proposed
method in precise measurements of the similarity in bipolar
concepts. The steps of the proposed method are as follows:

Step (1) Let us suppose two bipolar fuzzy concepts:
(A1, B1) and (A2, B2).
Step (2) The formal concept is a pair of extent (set
of objects, i.e., A) or intent (set of attributes, i.e., B).
In this case either extent or intent can be considered
for computing the similarity. Let us suppose the intent(
B1, (μ

P (B1), μ
N (B1))

)
and

(
B2, (μ

P (B2), μ
N (B2))

)
.

Step (3). The Euclidean distance between the given bipo-
lar fuzzy concept can be computed using their intent as
follows:

(i). μP (Ed(B1, B2))=
√

(μP (B1) − μP (B2))2.
(ii). μN (Ed(B1, B2))=

√
(μN (B1) − μN (B2))2.

The bipolar Euclidean distance can be written as follows:

Ed(B1, B2) =
(
μP (Ed(B1, B2)

)
, μN (Ed(B1, B2)))

Step (4) The average bipolar Euclidean distance can be
computed as follows:

(i). μP
EAD(B1,B2)

=
∑

μP (Ed (B1,B2))
max(|B1|,|B2|)

(ii). μN
EAD(B1,B2)

=
∑

μN (Ed (B1,B2))
max(|B1|,|B2|)
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where |B1| and |B2| represent the number of attributes in
the set B1 and B2, respectively. Now, the average bipolar
Euclidean distance can be represented as follows:

EAD(B1, B2) =
(
μP
EAD(B1,B2), μ

N
EAD(B1,B2)

)

Step (5) Similarly, the bipolar distance among each of the
attributes available in the intent can be computed, i.e., for
each j ∈ m.
Step (6) Now, the similar bipolar fuzzy concepts can be
selected based on user-defined (α, β)-cut for the com-
puted average bipolar Euclidean distance. In general two
concepts can be considered as similar when its bipolar
distance means positive and negative membership value
is close to (0, 0).
Step (7) The (α, β)-cut for the bipolar average distance
can be computed as follows:

EAD(B1, B2)(α, β) =
{(

μP
EAD(B1,B2), μ

N
EAD(B1,B2)

)

|μP
EAD(B1,B2) ≥ α,μN

EAD(B1,B2)
≤ β

}

where j = 1, 2, 3, . . . ,m,
Step (8) The concept having lowest distance is consid-
ered as more similar. In this case the chosen (α, β)-cut
may vary for different users. Let us suppose a user want
to select 90% similar concept. In this case user can set
(α, β) = (0.1, 0.1).
Step (9) Subsequently, other bipolar fuzzy concepts
can be selected at different granulation of their com-
puted distance. Interpret the obtained concepts for the
knowledge-processing task.
Step (10) Similarly, the average bipolar distance can be
computed using the extent also. The proposed method
constituted in form of an algorithm steps as shown in
Table 5.

Definition 10 (Euclidean distance) (Li et al. 2007; Singh
2017e): the proposed method computes the similar bipolar
fuzzy concepts which follows the following properties:

(i) Reflexive properties:

Ed(B1, B2) = 1 ⇔ B1 = B2

(ii) Symmetry properties:

Ed(B1, B2) = Ed(B2, B1)

(iii) If B1 ⊆ B2 ⊆ B3, then

Ed(B1, B3) ≤ Ed(B1, B2) and

Ed(B1, B3) ≤ Ed(B2, B3) and

Table 5 Proposed algorithm for computing similar bipolar fuzzy con-
cepts at different granulations

Input: The set C of bipolar fuzzy concepts
(
(A, (μP (A), μN (A))), (B, (μP (B), μN (B)))

)

Output: Set of similar bipolar fuzzy concepts at chosen (α, β)-cut

1. Let us suppose two bipolar fuzzy concepts as given below

(i).
(
(A1, (μ

P (A1), μ
N (A1))), (B1, (μ

P (B1), μ
N (B1)))

)

(ii).
(
(A2, (μ

P (A2), μ
N (A2))), (B, (μP (B2), μ

N (B2)))
)

2. Consider their intent to compute the Euclidean distance

(i). (B1, (μ
P (B1), μ

N (B1)))

(ii). (B2, (μ
P (B2), μ

N (B2)))

3. Compute the bipolar Euclidean distance for their intent

(i). μP (Ed (B1, B2)) = √
(μP (B1) − μP (B2))2

(ii). μN (Ed (B1, B2)) = √
(μN (B1) − μN (B2))2

4. The bipolar average distance can be computed as follows

(i). μP
EAD(B1,B2)

=
∑

μP (Ed (B1,B2))
max(|B1|,|B2|)

(ii). μN
EAD(B1,B2)

=
∑

μN (Ed (B1,B2))
max(|B1|,|B2|)

5. Similarly average bipolar distance can be computed for j = 1 to m

EAD(B1 j , B2 j ) =
(

μP
EAD(B1 j ,B2 j )

, μN
EAD(B1 j ,B2 j )

)

6. Set the granulation level (α, β) as follows

(0 ≤ α ≤ 1) and (− 1 ≤ β ≤ 0)

7. The concept can be selected using (α, β)-cut as follows

(i). μP
EAD(B1,B2)

≥ α and

(ii). μN
EAD(B1,B2)

≤ β

8. Similarly the concepts can be selected

9. Extract the knowledge from the obtained concepts

10. Subsequently, it can be computed using the extent also

(iv) Contrariety properties, i.e., Ed(B1, B2) = 0 iff B1 =
B2 or vice versa.

3.2.1 Complexity

Let us suppose the number of attributes in the given bipolar
fuzzy context is m (or number of objects is n). The proposed
algorithm computes Euclidean distance using their attributes
(or objects) set which takes O(m ∗ m) (or O(n ∗ n)). The
(α, β)-cut can be computed in O(m·n+m·n) time complex-
ity. Let us suppose max(m, n) = m. In this case the total
computational cost of the proposed method is O (2·m2).
In this way the proposed method is computationally less
expensive when dealing with bipolar fuzzy concept lattice
reduction when compared to other available approaches in
bipolar fuzzy space (Singh and Kumar 2014a, b).
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4 Illustrations

In this section step-by-step demonstration of the proposed
method shown in Tables 4 and 5 is discussed with an illus-
trative example.

4.1 Bipolar fuzzy concept generation using next
neighbor

In recent time, dealing with bipolar fuzzy attributes is con-
sidered as one of the major issues for the researchers of
data analytics in several research fields (Singh 2018; Zhang
2017). Due to that, the algebra of bipolar fuzzy set (Lee
2000; Zhang 1994; Zhang and Zhang 2004) and its graphs
(Akram 2011, 2013; Yang et al. 2013) are recently incorpo-
rated with concept lattice theory (Singh and Kumar 2014b)
for precise analysis of bipolar fuzzy attributes in various
fields (Franco et al. 2013; Tamani et al. 2011; Zadrozny
et al. 2012). The bipolar fuzzy graph representation of con-
cept lattice provided the most suitable mathematical tool
for empirically analyzing the bipolar fuzzy contexts. One
of the major advantages of this mathematical tool is that
it provides some interesting bipolar fuzzy patterns which
are closed with Galois connection. This output helps more
in knowledge extraction in refining the meaningful pattern
for multi-decision-making process. However, generating the
bipolar fuzzy concepts and drawing the bipolar concept lat-
tice structure is a major issue. To overcome this issue, a
method is proposed in Sect. 3.1 to discover the bipolar
fuzzy concepts based on their next neighbors. In this way
the proposed is also helpful in drawing the bipolar fuzzy
concept lattice when compared to subset-based approach
(Singh and Kumar 2014b). The most interesting part is that
it takes less computational time also for completing these
tasks, i.e., O(|C |·n·m2)where C is lower neighbor concepts.
To illustrate the proposed method an example is adapted
from Singh and Kumar (2014b) for comparing the obtained
results.

Example 2 Let us suppose, a company manufactures some
set of cars (i.e., objects) = (x1, x2, x3, x4) based on the fol-
lowing parameters, i.e., y1 = Cost, y2 = Beautiful, y3 =
Fuel efficient, y4 = Modern technology and y5 = Luxurious.
The company want to analyze the suitability of cars for more
production to improve its profit. To achieve this goal, the
company can take helps from the feedback given by users
who came to purchase the given cars. It is well known that
the human provides their opinion beyond the binary values.
The users used to provide their opinion based on bipolar
space which contains acceptance and rejection part to pur-
chase the car based on the given parameters: (y1 = Costly,
y2 = Beautiful, y5 = Luxurious). The bipolar opinion given
by user for the given set of cars can be written using the

Table 6 A bipolar fuzzy context representation of users opinion to
purchase the given cars

y1 y2 y5

x1 (0.4, −0.5) (0.5, −0.5) (0.7, 0.0)

x2 (0.6, −0.3) (0.3, −0.1) (0.5, −0.3)

x3 (0.8, −0.2) (0.4, −0.4) (0.6, −0.3)

x4 (0.5, −0.2) (0.7, −0.3) (0.4, −0.4)

properties of bipolar fuzzy set for further analysis of these
preferences as given below:

(i) x1 = {(0.4,− 0.5)/y1 + (0.5,− 0.5)/y2 + (0.7, 0.0)//
y3}.

(ii) x2 = {(0.6,− 0.3)/y1 + (0.3,− 0.1)/y2 + (0.5,− 0.3)
/y3}.

(iii) x3 = {(0.8,− 0.2)/y1 + (0.4,− 0.4)/y2 + (0.6,− 0.3)
/y3}.

(iv) x4 = {(0.5,− 0.2)/y1 + (0.7,− 0.3)/y2 + (0.4,− 0.4)
/y3}.

The companyneed a rigorous analysis or somemeaningful
information from the above given bipolar data set to analyze
the pattern of customers. To solve this problem a method is
proposed in Sect. 3.1 of this paper for graphical analytics of
this data set. To achieve this goal above-mentioned data set
can be written in form of a bipolar fuzzy context as shown
in Table 6 where row represents (X ) set of cars (x1, x2, x3,
x4) and column (Y ) represents the attributes (y1 = Costly,
y2 = Beautiful, y5 = Luxurious), and R̃ represents the
bipolar fuzzy relation among them. The objective is to find
some of the closed patterns among cars and user-interested
bipolar fuzzy attributes for analyzing the preference of
users.

Step 1. To generate the first bipolar fuzzy concepts select all
the objects {(1.0,− 1.0)/x1+ (1.0,− 1.0)/x2+ (1.0,− 1.0)
/x3 + (1.0,− 1.0)/x4} and investigate its covering attributes
using the Galois operator (↑) as follows:
{(1.0,− 1.0)/x1 + (1.0,− 1.0)/x2 + (1.0,− 1.0)/x3
+ (1.0,− 1.0)/x4}↑ = {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 +
(0.4,− 0.0)/y5}.

Subsequently, investigate the maximal covering bipolar
fuzzy set of objects for the obtained attributes set using the
operator ↓ as given below:

{(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5}↓
= {(1.0,− 1.0)/x1 + (1.0,− 1.0)/x2

+ (1.0,− 1.0)/x3 + (1.0,− 1.0)/x4}.

In this way the Galois operator provides the following
bipolar fuzzy concepts:
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Extent: {(1.0,− 1.0)/x1 + (1.0,− 1.0)/x2

+(1.0,− 1.0)/x3 + (1.0,− 1.0)/x4}
Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2

+(0.4,− 0.0)/y5}.

Step 2. The concept generated at the first step shows that
intent (0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5
covers each of the objects set. Now the goal is to find its next
neighbor concepts to draw the line diagram. For this purpose
following lower neighbor can be generated as per Steps 2 and
3 of the proposed algorithm shown in Table 4:
(i) {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5} ∪
{(0, 1)/y1}.

This provides the following set: {(0.0, 1.0)/y1 + (0.3,
− 0.1)/y2 + (0.4,− 0.0)/y5}.

Now apply the operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5}↓
= {(0.4,− 0.5)/x1 + (0.6,− 0.3)/x2

+ (0.8,− 0.2)/x3 + (0.5,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4,− 0.5)/x1 + (0.6,− 0.3)/x2 + (0.8,− 0.2)/x3

+ (0.5,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5} .

It provides the following bipolar fuzzy concepts:
Extent: {(0.4,− 0.5)/x1 + (0.6,− 0.3)/x2 + (0.8,− 0.2)

/x3 + (0.5,− 0.2)/x4}.
Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)

/y5}.
(ii) {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)

/y5} ∪ {(0, 1)/y2}.
This provides the following set: {(0.4,− 0.2)/y1 + (0.0,

1.0)/y2 + (0.4,− 0.0)/y5}.
Now apply the operator ↓ on the obtained attributes set:

{(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5}↓
= {(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.4)/x3 + (0.7,− 0.3)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.4)/x3

+ (0.7,− 0.3)/x4}↑
= {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

Fig. 2 Bipolar fuzzy concept
lattice generated at Step 2

Fig. 3 Bipolar fuzzy concept
lattice generated at Step 3

Fig. 4 Bipolar fuzzy concept
lattice generated at Step 4

It provides the following bipolar fuzzy concepts:

Extent: {(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.4)/x3 + (0.7,− 0.3)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

(iii) {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)
/y5} ∪ {(0, 1)/y5}.

This provides the following set: {(0.4,− 0.2)/y1 + (0.3,
− 0.1)/y2 + (0.0, 1.0)/y5}.

Now, apply the operator ↓ on the obtained attributes set:

{(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5}↓
= {(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.4)/x3 + (0.7,− 0.3)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.4)/x3

+(0.7,− 0.3)/x4}↑ = {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2

+ (0.0, 1.0)/y5} .

It provides the following bipolar formal fuzzy concepts:

Extent: {(0.7, 0.0)/x1 + (0.5,− 0.3)/x2

+(0.6,− 0.3)/x3 + (0.4,− 0.4)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

All of the generated lower neighbors in this step pro-
vide distinct formal concepts with maximal bipolar fuzzy
membership value which are shown in Figs. 2, 3 and 4,
respectively, as next neighbor.

Step 3. Now, suppose the concept generated at Step 2(i) as
current level, i.e.,

Extent: {(0.4,− 0.5)/x1 + (0.6,− 0.3)/x2
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+ (0.8,− 0.2)/x3 + (0.5,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5} .

Find its lower neighbor using the Intent {(0.0, 1.0)/y1
+ (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5} as follows:

(i) {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5} ∪
{(0, 1)/y2}

This provides the following set: {(0.0, 1.0)/y1+(0.0, 1.0)
/y2 + (0.4,− 0.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5}↓
= {(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.5,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.2)/x3

+ (0.5,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.5,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

(ii) {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)/y5}∪
{(0, 1)/y5}.

This provides the following set: {(0.0, 1.0)/y1 + (0.3,
− 0.1)/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5}↓
= {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2

+ (0.6,− 0.2)/x3 + (0.4,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4, 0.0)/x1 + (0.5,− 0.3)/x2 + (0.6,− 0.2)/x3

+ (0.4,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2

+ (0.6,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

It can be observed that both of the generated lower neigh-
bors are distinct with maximal bipolar fuzzy membership
value. In this case they can be considered as next neighbor
of the concepts 2(i) as shown in Fig. 3.

Step 4. Now suppose concept generated at Step 2(ii) as cur-
rent level, i.e.,

Extent: {(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.4)/x3 + (0.7,− 0.3)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

Find its lower neighbor using the Intent {(0.4,− 0.2)
/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} as follows:

(i) {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5}
∪ {(0, 1)/y1}.

This provides the following set: {(0.0, 1.0)/y1+(0.0, 1.0)
/y2 + (0.4,− 0.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5}↓
= {(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.5,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.5,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.5,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

(ii) {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5}
∪ {(0, 1)/y5}.

This provides the following set: {(0.4,− 0.2)/y1 + (0.0,
1.0)/y2 + (0.0, 1.0)/y5}.

Now apply the operator ↓ on the obtained attributes set:

{(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}↓
= {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.3)/x3 + (0.4,− 0.3)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.5, 0.0)/x1 + (0.3,− 0.1)/x2
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+ (0.4,− 0.3)/x3 + (0.4,− 0.3)/x4}↑
= {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.3)/x3 + (0.4,− 0.3)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It can be observed that both of the generated lower neigh-
bors are distinct with maximal bipolar fuzzy membership
value. In this case they can be considered as next neighbor
of the concepts 2(ii) as shown in Fig. 4.

Step 5. Now, suppose concept generated at Step 2(iii) as
current level, i.e.,

Extent: {(0.7, 0.0)/x1 + (0.5,− 0.3)/x2

+(0.6,− 0.3)/x3 + (0.4,− 0.4)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

Find its lower neighbor using the Intent {(0.4,− 0.2)
/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} as follows:

(i) {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} ∪
{(0, 1)/y1}.

This provides the following set: {(0.0, 1.0)/y1 + (0.3,
− 0.1)/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5}↓
= {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2

+ (0.6,− 0.2)/x3 + (0.4,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4, 0.0)/x1 + (0.5,− 0.3)/x2 + (0.6,− 0.2)/x3

+ (0.4,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2 + (0.6,− 0.2)/x3

+(0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

(ii) {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5}∪
{(0, 1)/y2}.

This provides the following set: {(0.4,− 0.2)/y1 + (0.0,
1.0)/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

Fig. 5 Bipolar fuzzy concept
lattice generated till Step 5

{(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}↓
= {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.3)/x3 + (0.4,− 0.3)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.5, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.3)/x3

+(0.4,− 0.3)/x4}↑
= {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.3)/x3 + (0.4,− 0.3)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It can be observed that both of the generated lower neigh-
bors are distinct with maximal bipolar fuzzy membership
value. In this case they can be considered as next neighbor
of the concepts 2(ii) as shown in Fig. 5.

Step 6. Now, suppose concept generated at Step 3(i) as cur-
rent level, i.e.,

Extent: {(0.4,− 0.5)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.5,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} .

Find its lower neighbor using the Intent {(0.0, 1.0)/y1
+ (0.0, 1.0)/y2 + (0.4,− 0.0)/y5} as follows:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2

+(0.4,− 0.0)/y5} ∪ {(0, 1)/y5} .

This provides the following set: {(0.0, 1.0)/y1+(0.0, 1.0)
/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}↓
= {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.4,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:
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Fig. 6 Bipolar fuzzy concept
lattice generated at Step 6

{(0.4, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.2)/x3

+(0.4,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

Its concept lattice is shown in Fig. 6.

Step 7. Now, suppose concept generated at Step 3(ii) as cur-
rent level, i.e.,

Extent: {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2

+(0.6,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} .

Find its lower neighbor using the Intent {(0.0, 1.0)/y1
+ (0.3,− 0.1)/y2 + (0.0, 1.0)/y5} as follows:

{(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)/y5}
∪ {(0, 1)/y2} .

This provides the following set: {(0.0, 1.0)/y1+(0.0, 1.0)
/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}↓
= {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.4,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+ (0.4,− 0.2)/x3 + (0.4,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Fig. 7 Bipolar fuzzy concept
lattice generated at Step 7

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

The edges between this concept are added on the bipolar
fuzzy concept lattice as shown in Fig. 7.

Step8.Now, suppose concept generated at Step 4(i) is current
level. It can be observed that this concept is repetition of
concept generated at Step 3(i). Hence it provides similar next
neighbor concepts as explored in Step 6 and Fig. 6.

Step 9. Now, suppose concept generated at Step 4(ii) as cur-
rent level, i.e.,

Extent: {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.3)/x3 + (0.4,− 0.3)/x4} .

Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

Find its lower neighbor using the Intent {(0.4,− 0.2)/y1
+ (0.0, 1.0)/y2 + (0.0, 1.0)/y5} as follows:

{(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}
∪ {(0, 1)/y1} .

This provides the following set: {(0.0, 1.0)/y1+(0.0, 1.0)
/y2 + (0.0, 1.0)/y5}.

Now apply operator ↓ on the obtained attributes set:

{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}↓
= {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.2)/x3

+(0.4,− 0.2)/x4}.

Subsequently, apply the operator↑ on the obtained bipolar
fuzzy set of objects as follows:

{(0.4, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.2)/x3

+(0.4,− 0.2)/x4}↑
= {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It provides the following bipolar fuzzy concepts:

Extent: {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .
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Fig. 8 Final bipolar fuzzy
concept lattice generated at Step
9

The edges between this concept are added on the bipolar
fuzzy concept lattice as shown in Fig. 8.

Step 10. Now suppose the concept generated at Step 5(i) is
current level. It can be observed that it is repetitions of the
concept generated at Step 3(ii). Hence, it provides similar
next neighbor concepts as explored in Step 7 and Fig. 7.

Step 11.Now suppose concept generated at Step 5(ii) is cur-
rent level. It can be observed that it is repetitions of the
concept generated at Step 4(ii). Hence, it provides similar
next neighbor concepts as explored in Step 9 and Fig. 8.

It can be observed that the proposed method generates
repeated concepts among them following are distinct bipolar
concepts:

1. Extent: {(1.0,− 1.0)/x1+(1.0,− 1.0)/x2+(1.0,− 1.0)
/x3 + (1.0,− 1.0)/x4}
Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)
/y5}.

2. Extent: {(0.4,− 0.5)/x1+(0.6,− 0.3)/x2+(0.8,− 0.2)
/x3 + (0.5,− 0.2)/x4}.
Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.4,− 0.0)
/y5}.

3. Extent:{(0.5,− 0.5)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.4)
/x3 + (0.7,− 0.3)/x4}.
Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)
/y5}.

4. Extent: {(0.7, 0.0)/x1 + (0.5,− 0.3)/x2 + (0.6,− 0.3)
/x3 + (0.4,− 0.4)/x4}.
Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)
/y5}.

5. Extent: {(0.4,− 0.5)/x1+(0.3,− 0.1)/x2+(0.4,− 0.2)
/x3 + (0.5,− 0.2)/x4}.
Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.4,− 0.0)
/y5}.

6. Extent: {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2 + (0.6,− 0.2)
/x3 + (0.4,− 0.2)/x4}.
Intent: {(0.0, 1.0)/y1 + (0.3,− 0.1)/y2 + (0.0, 1.0)
/y5}.

7. Extent: {(0.5, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.3)
/x3 + (0.4,− 0.3)/x4}.
Intent: {(0.4,− 0.2)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/
y5}.

8. Extent: {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2 + (0.4,− 0.2)
/x3 + (0.4,− 0.2)/x4}.

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)
/y5}.

The bipolar fuzzy concept lattice for above-generated
concepts is shown in Fig. 8 which reflect the following infor-
mation:

• Let us suppose company want to analyze the first pref-
erence of the customers based on acceptation of all the
attributes, i.e.,
{(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5}. In this
case concept number 8 is helpful having following
extent–intent:

Extent: {(0.4, 0.0)/x1 + (0.3,− 0.1)/x2

+(0.4,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1 + (0.0, 1.0)/y2 + (0.0, 1.0)/y5} .

It can be observed that for each of the attributes car x3
and x4 have maximum positive membership value, i.e.,
0.4 and minimum falsity membership value, i.e., −0.2.
In this case customer will take both the care as first pref-
erence.

• To find the first preference among car x3 and x4 company
will check the most preferred attribute by user while pur-
chasing any of the car. In this case concept number 1 is
useful having following extent–intent:

Extent: {(1.0,− 1.0)/x1 + (1.0,− 1.0)/x2

+(1.0,− 1.0)/x3 + (1.0,− 1.0)/x4}
Intent: {(0.4,− 0.2)/y1 + (0.3,− 0.1)/y2

+(0.4,− 0.0)/y5} .

It can be observed that any user prefers to purchase the car
having attribute y1 and y5 as per their maximum positive
membership value of acceptance.

• Nowcompanywill checkwhich car hasmaximumaccep-
tation membership value for the attributes y1 and y5, i.e.,
(0,1). In this case concept number 6 is useful having fol-
lowing extent and intent:

Extent: {(0.4, 0.0)/x1 + (0.5,− 0.3)/x2

+(0.6,− 0.2)/x3 + (0.4,− 0.2)/x4} .

Intent: {(0.0, 1.0)/y1+(0.3,− 0.1)/y2+(0.0, 1.0)/y5} .

This concept shows that the car x3 is having maximum
positive, i.e., 0.6, and minimal negative membership value,
i.e., −0.2, when compared to the car x4, i.e., (0.4, −0.2).
Hence, the user will prefer the car x3 as the first preference,
while car x4 as second preference.
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The above analysis provides a useful information that the
car-x3 is considered as first preference by user, whereas the
car (x4) as second preference. This extracted information
from the proposed method is helpful in taking a precise deci-
sion to the company toward manufacturing the car (x3) more
when compared to other cars for better sell and optimizing the
profit. This result from the proposedmethod also echoes with
other methods available (Singh and Kumar 2014a).2 How-
ever, to achieve this goal the proposed method takes less
computational time, i.e., O(|C |·n·m2), whereas the subset-
basedmethod takes exponential time, i.e.,O(n·2m) to achieve
this goal. In the same time, it provides an easier way to
draw the bipolar fuzzy concept lattice line diagram based
on their lower neighbor. This can be considered as one of
significant advantages of theproposedmethod tofind the con-
sequent neighbors of the chosen bipolar conceptswhich helps
more in navigating the lattice. In this process a major draw-
back of the proposed method is it provides several repeated
concepts. This creates a major problem in classifying the
distinct or meaningful concepts for knowledge-processing
tasks. In this case, measuring the important concept at user-
required information granules is computationally rigorous
tasks. To deal with this problem, another method is pro-
posed in Sect. 3.2 using the calculus of Euclidean distance
and granular computing. In the next section the proposed
method is demonstrated using the same example to validate
the obtained results.

4.2 Bipolar fuzzy concepts selection using
user-defined Euclidean distance

In recent time finding some of the interesting bipolar fuzzy
concepts from the given context are major concern for the
researchers. To achieve this goal the algebra of granular
computing is utilized in unipolar (Singh and Kumar 2012)
as well as bipolar fuzzy context (Singh and Kumar 2014b)
for reducing the size of fuzzy concept lattice (Mao 2017;
Singh and Gani 2015). The reason is that the mathematics
of granular computing provides multi-way data analysis for
any given context based on user requirement to solve the
particular problem. This variability of granular computing
helps more in refining the meaningful information for multi-
criteria decision-making process. This flexibility of granular
computing motivated to utilize its mathematical algebra for
reducing the bipolar fuzzy concepts. The proposed method
tries to accomplish these tasks by computed Euclidean dis-
tance as shown in Sect. 3.2. The proposed method considers
two bipolar concepts as similar when their bipolar Euclidean
distance is as per user-defined granulation. The motivation
is to find more adequate or similar bipolar concepts having
closest bipolar values from the positive region (0.0, 1.0). In

2 http://arxiv.org/abs/1303.6932v1.

Table 7 Intent of vague concepts generated from Table 6

Car Corresponding bipolar fuzzy attributes

x1 {(0.4,− 0.5)/y1 + (0.5,− 0.5)/y2 + (0.7, 0.0)/y3}
x2 {(0.6,− 0.3)/y1 + (0.3,− 0.1)/y2 + (0.5,− 0.3)/y3}
x3 {(0.8,− 0.2)/y1 + (0.4,− 0.4)/y2 + (0.6,− 0.3)/y3}
x4 {(0.5,− 0.2)/y1 + (0.7,− 0.3)/y2 + (0.4,− 0.4)/y3}

general the Euclidean distance considers two sets as equal
distance when they are closed to the acceptance region. In
this case, the obtained results may contain some uncertainty
and vagueness in the precise measurement when the data
set is beyond the unipolar space. As for example the bipolar
values (0.8, −0.2) and (0.2, −0.8) have the same distance
from positive region. However, the bipolar fuzzy set (0.8,
−0.2) is more close to the acceptance regions due to its
maximal positive and minimal negative membership value.
Similarly, many vague points can be found in bipolar con-
text which may play a significant role in precise analysis of
decision-making process. To conquer this problem, current
paper proposed a method to compute the bipolar Euclidean
distance based on positive and negative membership value as
shown in Sect. 3.2.

To illustrate the proposed method shown in Sect. 3.2 a
bipolar fuzzy context shown in Table 6 is considered. Now
the goal is to find some of the closest patterns of car based on
user-required parameters, i.e., (1,− 1)/y1 + (1,− 1)/y2 +
(1,− 1)/y5. To solve this problem the corresponding bipolar
fuzzy set representation of each car based on their attributes
set is shown in Table 7. Table 8 represents the computed bipo-
lar Euclidean distance from the user-required information
granules. The car having minimal distance from the positive
membership and maximal distance from negative member-
ship value from user-defined granulation can be considered
as closest to the given query as shown in Table 9. This table
shows that the preference of car can be changed based on
user-required positive and negative information. It is one of
themost noted advantages of the proposedmethod in refining
the knowledge.

Table 9 represents that the car x3 contains maximal pos-
itive and minimal negative membership value based on the
user-required information granules. In this case, the user will
try to purchase the car x3 as the first preference, whereas
car x4 as second preference. The obtained results from the
proposed method echo with next neighbor method shown
in Sect. 4.1 of this paper, subset-based method (Singh and
Kumar 2014b) and other methods (Singh and Kumar 2014a).
To achieve this goal the proposed method takes less com-
putation cost when compared to any of them O(|C |·n·m2).
Moreover, it provides an alternative way to refine the pattern
based on their Euclidean distance at user-required informa-
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Table 8 Bipolar distance of cars
from (1,− 1)/y1 +
(1,− 1)/y2 + (1,− 1)/y5

Car Attributes
∑

μP (Ed (B1, B2))
∑

μN (Ed (B1, B2)) (μP EAD, μN EAD)

x1 (0.4,− 0.5)/y1 0.6 0.5 (0.14/3, 2.0/3)

+ (0.5,− 0.5)/y2 + 0.5 + 0.5 = (0.46, 0.66)

+ (0.7, 0.0)/y3 + 0.3 + 1.0

x2 (0.6,− 0.3)/y1 0.4 0.7 (0.16/3, 2.3/3)

+ (0.3,− 0.1)/y2 + 0.7 + 0.9 (0.53, 0.76)

+ (0.5,− 0.3)/y3 + 0.5 + 0.7

x3 (0.8,− 0.2)/y1 0.2 0.8 (0.12/3, 2.1/3)

+ (0.4,− 0.4)/y2 + 0.6 + 0.6 (0.4, 0.7)

+ (0.6,− 0.3)/y3 + 0.4 + 0.7

x4 (0.5,− 0.2)/y1 0.5 0.8 (0.14/3, 2.1/3)

+ (0.7,− 0.3)/y2 + 0.3 + 0.7 (0.46, 0.7)

+ (0.4,− 0.4)/y3 + 0.6 + 0.6

Table 9 Cars having closest distance from bipolar set (1,− 1) at dif-
ferent (α, β)-cut

Granulation level (θ ) Car

α ≤ 0.4 and β ≥ 0.7 x3

α ≤ 0.46 and β ≥ 0.7 x3, x4
α ≤ 0.46 and β ≥ 0.66 x1, x3, x4
α ≤ 0.53 and β ≥ 0.66 x1, x2, x3, x4

tion granules. It is one of the notable advantages among any
other approaches available in FCA with bipolar fuzzy set-
ting. Future work will be focused on more depth analysis of
bipolarity in different orientations.

5 Discussion

Extracting some of the meaningful information from the
given unipolar or bipolar fuzzy context is central notion of
researchers. To accomplish these tasks precisely, algebra of
concept lattice stretched with fuzzy (Burusco and Fuentes-
Gonzalez 1994), interval (Burusco and Fuentes-Gonzales
2001; Djouadi and Prade 2009, 2010; Singh et al. 2016)

and bipolar (Singh and Kumar 2014b; Singh 2017b) or
vague (Singh 2016, 2017e) setting for characterizing the
uncertainty based on three-way (Singh 2017a; Yao 2017)
or multi-polar space (Singh 2018). The bipolar fuzzy graph
representation of concept lattice given a well-established
mathematical model for dealing with bipolar information
when compared to other extensions of fuzzy sets as shown
in Table 10. Due to that, the current paper focused on bipo-
lar fuzzy concept learning and its selection at user-defined
granulation for knowledge-processing tasks. Table 11 com-
pares some of the important research papers based on their
findings related to FCA. It can be observed that less atten-
tion has been toward bipolar fuzzy concept lattice and its
issues. Tobridge this gap current paper proposed amethod for
investigating the bipolar fuzzy concepts based on their next
neighbor within O(|C |·n·m2) and O(2·m2) time complexity.
Furthermore, another method is proposed to extract some
of the closest bipolar fuzzy concepts based on their com-
puted Euclidean distance at user-required granulation within
O(2·m2) time complexity. In this way the proposed method
helps more in traversing the bipolar fuzzy concept lattice and
its learning in less computational time. It can be considered
as one of the significant outputs of the proposed method.

Table 10 Classification of binary, fuzzy, interval and bipolar fuzzy set based on their properties

Binary Fuzzy Interval Bipolar

Domain Universe of discourse Universe of discourse Universe of discourse Universe of discourse

Co-domain Either 0 or 1 Single membership in [0, 1] Unipolar interval—[0, 1] Bipolar interval [−1, 1]

Uncertainty No Yes Yes Yes

True value Yes represents by 1 Yes by in [0, 1] Yes in (0, 1] Yes

Negative No No No Yes in [−1, 0)

Irrelevant element Yes by representing 0 Yes by representing 0 Yes by representing 0 Yes by representing 0
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Table 12 Comparison of the proposed method with subset-based
method (Singh and Kumar 2014b)

Proposed method Subset-based method
(Singh and Kumar
2014b)

Bipolar
information

Yes Yes

Methodology Next neighbor Subset of attributes

Graph Bipolar fuzzy graph Bipolar fuzzy graph

Lattice Yes Yes

Granulation Yes Yes

Similarity
measurement

Yes No

Time complexity O
(|C |·n·m2

)
O (n·2m)

The proposed method and its analysis are demonstrated
on the data set adapted (Singh and Kumar 2014b)3 In this
way the comparison of obtained results from the proposed
method becomes easier. It is shown that both of the proposed
methods provide concordant results with (Singh and Kumar
2014a, b). For better understanding a comparative analysis
of proposed method with subset-based method is shown in
Table 12.

It can be observed that the proposed method introduces a
way to draw the bipolar fuzzy concept lattice line diagram
based on their next neighbor. The most notable point about
the proposedmethod is that it provides away to select someof
the bipolar concepts at user-required information granules.
This gives a way to refine the pattern for solving the par-
ticular problem using their Euclidean distance. In this way,
the proposed method is different from any of the available
approaches in FCA with bipolar fuzzy setting. However, the
proposed method is unable to analyze the context having
shared bipolar fuzzy attributes (Singh 2016) or their periodic
measurement (Singh 2017b) at given m-polar fuzzy space
(Singh 2018). To resolve this issue author will focus on these
directions in near future.

6 Conclusions

This paper introduces a method to mimic with human
thoughts exists in bipolar fuzzy space using the calculus of
next neighbor within O(|C |·n·m2) time complexity. It is one
of the major advantages of the proposed method when com-
pared to subset-based method shown in (Singh and Kumar
2014a, b). In addition, another method is proposed to select
some of the bipolar fuzzy concepts based on their Euclidean

3 http://arxiv.org/abs/1303.6932v1.
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distance and user-defined granulation within O(2·m2). This
is another advantages of the proposed method toward refin-
ing the knowledge based on their closed distance. However,
the derived results from both of the proposed methods are
concordant with each other as well as recently introduced
methods (Singh and Kumar 2014b). In future, the author
will focus on handling the bipolar information in multi-polar
space and its periodic changes at given phase of time.
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