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Abstract
Inexpedient vibration between cutting tool and work piece promotes regenerative chatter in turning process. Generally,
acquired chatter signals are contaminated with ambient noise. In this study, experimentally recorded raw chatter signals have
been denoised using wavelet transform. Further, in order to quantify the chatter severity a new parameter called chatter index
has been evaluated considering aforesaid denoised signals at different levels of cutting parameters as inputs. Moreover, these
input and output parameters have been considered to train the chatter phenomenon using adaptive neuro-fuzzy inference
system. Developed technique has been validated by performing more experiments. Hence, a new idea for identification and
quantification of chatter has been proposed which will be very efficient in suppression of chatter.

Keywords Chatter · Wavelet denoising · ANFIS · Chatter index

1 Introduction

In turning process, tool chatter results in excessive noise,
poor surface finish, breakage of machine tool components
and tool wear. Tool chatter is defined as the self-excited
unavoidable relative motion between the cutting tool and
work piece (Quintana and Ciurana 2011; Siddhpura and
Paurobally 2012; Taylor 1907). Researchers have developed
various methods in order to overcome the problem of chatter.
Previous researchers have presented tool chatter mathemat-
ically in the form of delay differential equation (Berger
et al. 1998). In some works, the delay differential equa-
tion is associated with structural nonlinearities (Hanna and
Tobias 1974). Recently, some researchers have adopted spin-
dle speed variation technique (Otto and Radons 2013) and
use of multiple tunedmass damper (Yang et al. 2010) to miti-
gate the chatter effect. Moreover, researchers have developed
various methods to control chatter by increasing the stiffness
and damping coefficient of mechanical components (Duncan
et al. 2005). Furthermore, researchers found that the depth
of cut, feed rate, cutting speed and chip thickness influences
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chatter phenomenon. Clancy and Shin (2002) proposed that
by reducing the depth of cut and feed rate, chatter can bemin-
imised to a great extent. They also established that the cutting
stability is greatly increased at low cutting speeds. Khorasani
et al. (2011) have performed turning experiments with cut-
ting speed, feed rate and depth of cut as cutting parameters.
They observed that the influence of depth of cut on surface
roughness is not regular and has a variable character. Tobias
and Fishwick (1958) in their research work ascertained that
the chip thickness affects the cutting forces dynamically. This
instability in cutting forces results in regenerative tool chatter.
Altintas and Weck (2004) observed that the dynamic cutting
force depends not only on chip thickness but also on the shear
angle oscillation and tool flank wavy surface contact mecha-
nism. In the present work, depth of cut, feed rate and spindle
speed have been considered as input parameters in order to
predict the chatter stability in turning process.

In the last few decades some researchers have tried to
explore the mechanism of chatter phenomenon through pro-
cessing of acquired raw chatter signals. Recently, chatter
mechanism has been investigated based on Fourier trans-
form (FT) analysis of process signals such as force (Tobias
1961), displacement (Wu andDu 1996) and torque (Choi and
Shin 2003). FT technique analyses the signal globally but not
locally and thus is not suitable to extract inherent informa-
tion of nonstationary chatter signals. To extract the signal
features locally a new short-time Fourier transform (STFT)
was developed.However, in STFT technique it is not possible
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to obtain high resolution in both time and frequency domains
(Mallat 2008) simultaneously. In recent years wavelet trans-
form (WT) has been developed as a new tool to study the
dynamic characteristics of cutting process (Taylor et al. 2010;
Yao et al. 2010). In comparison with FT and STFT, WT has
some advantages such as performing local analysis, handling
both stationary and nonstationary signals and also providing
efficient time-frequency analysis (Wang and Liang 2009).
Moreover, raw chatter signals are contaminated with ambi-
ent noises and WT technique proves to be an efficient tool
to denoise these noisy signals. In the present work, this tech-
nique has been adopted to pre-process the raw chatter signal
by denoising it.

Some researchers have tried to investigate the effects of
cutting parameters on tool chatter considering the artifi-
cial intelligence approach such as artificial neural network
(ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy
inference system (ANFIS). Lange and Abu-Zahra (2002)
used a multi-layer preceptor ANN to correlate the response
of the ultrasound sensor to the accelerometer measurement
of tool chatter. Multi-layer preceptor ANN with three inputs
and one hidden layer was found to be the optimum network
architecture based on the least error squares and minimum
network complexity. Chae et al. (2006) used neural network
technique inmicromachining of steel and aluminium in order
to estimate the tool condition. Du et al. (1992) presented
a study on tool condition monitoring in turning using the
fuzzy set theory and found that results from the proposed
fuzzy method indicated an overall 90% reliability for detect-
ing tool conditions. Tansel et al. (2006) used fuzzy logic
controllers for automatic chatter detection in their research
work.Moreover, chatter phenomenon is very close to surface
roughness because it results in poor surface finish and various
researchers have utilised ANN and FIS to create a prediction
model for surface roughness. Pal andChakraborty (2005) and
Kohli and Dixit (2005) have developed a back-propagation
neural networkmodel for surface roughness considering feed
rate, cutting forces and depth of cut in turning process. They
also observed that the proposedmethodologywas quite effec-
tive and utilises fewer training and testing data. Xavior and
Vinayagamoorthy (2014) adopted FIS technique for model
prediction considering depth of cut, feed, cutting speed and
nose radius in turning process. They observed that results
predicted by FIS were highly accurate and precise.

Moreover, ANN system is appropriate if adequate num-
bers of measurable data are present in a given process and
thismay be one of the limitations of ANN. Saeed et al. (2012)
worked on identification of cracks in curvilinear beams by
using both ANN and ANFIS. He found that ANFIS can
improve the precision and provide better results. On the
other hand, FIS depends on the expert knowledge for fuzzy
rule generation and design of the nonadaptive fuzzy sets. In
fuzzy logic, the shape of the membership functions depends

on the input parameters and variation in these parameters
will change the shape of the membership function. However,
dependence on the expertise of fuzzy rule generation and
design of nonadaptive fuzzy sets are the limitations of FIS.
Recently, a merged technique (ANFIS) has been developed
by the researchers to overcome the limitations of the afore-
said techniques.

ANFIS technique is the ensemble of FIS and ANN, thus
utilising the advantage of both the techniques. Researchers
have observed that ensemble technique is better because of
its remarkably improved prediction accuracy and stability.
In this technique, multiple base models are used to predict
the results and so the overall prediction error of the system
is reduced considerably. Hino and Yoshimura (2000) used
fuzzy neural network model to develop a new method in
order to predict chatter vibration in high-speed end milling
operation. After comparing the experimental and predicted
results, they observed that the numerical simulation can pre-
dict the chatter vibration very well. They also proposed
that this technique can be reasonable and practical for other
machining processes such as turning. Lin et al. (2002) pro-
posed a complex ANN fuzzy inference model to explore the
chatter phenomenon in cutting operation. Further, they also
suggested that ANN fuzzy system can also be utilised for
chatter problem identification in other machining processes.
Lo (2003) utilised an adaptive network-based fuzzy inference
system to create a prediction model for surface roughness
considering spindle speed, feed rate and depth of cut. Fur-
thermore, some researchers have done a comparative study of
ANFISwith statistical methods such as regressionmodelling
as well as response surface methodology (RSM). Jiao et al.
(2004) utilised an adaptive network-based fuzzy inference
system to create a prediction model for surface roughness
and observed that ANFIS is better as compared to regression
modelling of complex systems such as turning. Porhemmat
et al. (2017) observed that ANFIS model provided much
more accurate results as compared to RSM. There is no
learning process in fitting the regression and RSM model
for improving their performance. ANFIS is able to extract
the complex nonlinear relationships between inputs and the
output. Moreover, the model developed by RSM shows the
greater deviation than the ANFIS. As compared to RSM,
an artificial intelligent technique does not require a standard
experimental design to build the model and different exper-
imental designs can be used. In addition, ANFIS model is
flexible and permits the addition of new experimental data to
build a better ANFIS model. Various researchers have also
used neuro-fuzzy network in order to predict an earthquake
phenomenon (Zheng et al. 2015) and state the early warning
of industrial accidents (Zheng et al. 2017).Moreover, limited
research work has been reported till date regarding the use
of ANFIS for investigation of chatter mechanism in turning
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Fig. 1 a Mechanism of
regeneration, b SDoF model for
turning

(a)

(b)

process. This is the motivation of considering ANFIS over
other prediction techniques.

In the present work, ANFIS approach has been adopted
to explore the relation between cutting parameters and chat-
ter severity and is outlined as follows: firstly, the raw chatter
signals have been acquired experimentally during turning
process considering different process parameters. Secondly,
the wavelet denoising technique has been used to elimi-
nate the ambient noise present in raw signal. Further, a new
parameter denoted as chatter index (CI) has been evaluated
to quantify the chatter severity. Thereafter, the input process
parameters and corresponding chatter indexes have been con-
sidered to train the chatter phenomenon using ANFIS. This
ANFIS model has been used to predict the influence of con-
trol parameters on chatter severity. Finally, the developed
ANFIS model has been validated by comparing the trained
data with the experimental ones.

2 Theoretical analysis

In the present work, a single degree of freedom (SDoF) turn-
ing operation with a flexible tool and rigid work piece has

been considered as shown in Fig. 1. Mathematical model for
turning operation has been represented by a SDoF equation
as given by (Siddhpura and Paurobally 2012; Zhang et al.
2012)

mq̈(t) + cq̇(t) + kq(t) = Ff(t) (1)

where

Ff(t) is the dynamic cutting force in feed direction, m is the
mass of tool, c represents the damping coefficient, and k is
the stiffness.
q(t) = Displacement with respect to time (t),
Ff(t) = dynamic cutting force in feed direction with respect
to time (t),
q̇(t) = first-time differentiation with respect to time (t)
known as velocity,
q̈(t) = second-time differentiation with respect to time (t)
known as acceleration.

Equation (1) has been further written as

q̈(t) + c

m
q̇(t) + k

m
q(t) = 1

m
Ff(t); (2)

123



4442 S. Kumar, B. Singh

Fig. 2 Flow chart of proposed
methodology
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Ff(t) is given by

Ff(t) = kf × b × d(t)3/4

= kfb
[
d0 + q(t − τ) − q(t)3/4

]
(3)

where b is the chip width, kf is the cutting force coefficient,
d0 is nominal chip thickness, and τ is the time delay between
current time andprevious time.Here, τ = 60

N ; N is the spindle
speed in rpm.

In above equation d(t) is the dynamic chip thickness due
to tool vibration and is equal to [d0 + q(t − τ) − q(t)]

For apparent understanding, a framework of the proposed
chatter detection is shown in Fig. 2.

3 Experimentation

Turning test has been performed onASTMA36mild steel by
using high-speed precision lathe NH22 (Hindustan Machine
Tool Ltd.) with different sets of cutting parameters. Chemical
composition of work piece is listed in Table 1. Schematic
diagram of the experimental set-up is presented in Fig. 3. A

Table 1 Chemical composition of work material (A36 mild steel bar)

C (%) Cu (%) Fe (%) Mn (%) P (%) Si (%) S (%)

0.25–0.290 0.20 98.0 1.03 0.040 0.280 0.050

single-point cutting carbide tool has been for turning of mild
steel bars. An accelerometer [Make: PCB Piezotronics and
Model: 356A16] and data acquisition system [Make: OROS
group and Model: OR35-multi analyser] have been used to
acquire the chatter vibration signals.

For each set of turning, a new bar of ASTMA36 has been
used. Work piece of 200 mm length and 40 mm diameter
has been used. Here, 140 mm length of work piece has been
used for turning, while remaining 60mm length was used for
holding purpose in chuck. In total, 80 runs of turning have
been performed considering the cutting parameters: depth
of cut (d), feed rate ( f ) and spindle speed (N ). The various
levels of cutting parameters considered are shown in Table 2.

The experiments have been performed in order to acquire
the raw chatter signals, and some of the recorded signals are
shown in Figs. 4, 5 and 6. Here, the raw signals have been
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Fig. 3 Schematic diagram of
experimental set-up
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Table 2 Control factors and
their level used in
experimentation

S. no. Symbol Factor Unit Level 1 Level 2 Level 3 Level 4 Level 5

1 (d) Depth of cut mm 0.5 1 1.5 2 2.5

2 ( f ) Feed rate mm/rev 0.05 0.1 0.15 0.2 0.25

3 (N ) Spindle speed rpm 700 850 1000 1150 1300
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Fig. 4 Recorded noisy signal at d = 1.5mm, f = 0.05mm/rev and N = 700 rpm

recorded at “d = 1.5mm, f = 0.05mm/rev and N = 700 rpm”,
“d = 2.5 mm, f = 0.1 mm/rev and N = 700 rpm” and “d =
2 mm, f = 0.05 mm/rev and N = 1000 rpm”, respectively.
These recorded raw signals have severe noise inclusions. In
the present study, wavelet denoising has been done using
MATLAB software and hybrid thresholding rule has been
adopted to acquire much smoother results.

4 Wavelet-based denoising

The inclusion of noise in the signal interrupts the identifi-
cation of exact chatter. Several approaches such as kernel

estimators, spline estimators and Fourier-based signal pro-
cessing have been considered by different researchers. But
these techniques have certain limitations and imperfections.
Therefore, more appropriate novel approach is required for
denoising, which motivated this research. In this study,
wavelet denoising technique has been done. In wavelet
denoising technique the noisy signal is first decomposed
using wavelet transform, where the level of decomposition
depends upon the length of the signal. After decomposition,
the thresholding of the coefficients has been done. If the
wavelet coefficient is smaller than the threshold level, it is
then set as zero and if the coefficient is larger than threshold
level, it is either adapted or kept as it is.
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Fig. 5 Recorded noisy signal at d = 2.5mm, f = 0.1mm/rev and N = 700 rpm
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Fig. 6 Recorded noisy signal at d = 2mm, f = 0.05mm/rev and N = 1000 rpm

4.1 Wavelet decomposition

The aforesaid denoising technique has been implemented
two steps, i.e. wavelet decomposition and wavelet thresh-
olding. In wavelet decomposition technique, the acquired
signal of finite energy is passed through low-pass filter and
high-pass filter. Low-pass filter will result in approximate
coefficient, while high-pass filter will yield detailed coeffi-
cient. The methodology of signal decomposition is shown in
Fig. 7. The level of decomposition depends on the length of
the signal. In Figs. 8, 9 and 10, d1, d2, d3 and d4 are stationary
detailed coefficients acquired at decomposition levels 1, 2, 3
and 4, respectively. A detailed coefficient has been obtained
when raw signal is passed through high-pass filter, while
approximated coefficient “a4” has been obtained at lower
frequency.

In this study,Daubechies 5 (db5)wavelet with decomposi-
tion level of 4 has been selected. Selection of decomposition
level depends on the length of the signal (Ns). For example,
Ns = 256 = 28 indicates that the decomposition level should
be 8. In the present work, decomposition level “4” has been
considered to reduce computing time and enhance chatter

responsiveness. The wavelet which supremely matches the
signal has been detected by several trials, and it has been
found that Daubechies 5 (db5) is the best option.

4.2 Wavelet thresholding rule

Generally, hard or soft thresholding rules have been adopted
for denoising purpose. If the wavelet coefficient values are
greater than the given threshold level, then hard thresholding
function will retain all wavelet coefficients above threshold
level and rest are set as zero (Debnath 2012). The hard thresh-
olding is defined as

WT_H =
{
W |W | ≥ T
0 |W | < T

(4)

where W is noisy wavelet coefficient and T is the threshold.
In soft thresholding, if the wavelet coefficient values are

greater than given threshold, then soft thresholding function
shrinks the wavelet coefficient and the rest are set as zero
(Debnath 2012). The soft thresholding is defined as
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Fig. 7 Wavelet decomposition
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WT_S =
⎧⎨
⎩
W − T W ≥ T
0 |W | < T
W + T W ≤ −T

(5)

However, hard thresholding is based on keep or remove
approach; hence, it classifies a true signal as noise and
vice versa. On the other hand, soft thresholding shrinks the
wavelet coefficients. Due to these difficulties, both the rules
are unable to denoise the signal accurately and may leave
the chatter undetected. In order to overcome the limitations
of the aforesaid thresholding methods, an adaptive hybrid
thresholding approach has been developed recently (Wang
and Liang 2009) and is given by

WT_c =
{
W − sgn (W ) (1 − ζ ) × T |W | ≥ T
0 |W | < T

(6)

Here, sgn (W ) is the signum function of W and W is noisy
wavelet coefficient, ζ is a parameter in the range of (0, 1),
and T is the customised thresholding level (Donoho 1995)
given by

T = σ
√
2 log (n) (7)

where n is length of signal, and σ is standard deviation of
noise.

In the present study, hybrid thresholding rule has been
adopted to acquire much smoother results. The detailed coef-
ficients and denoised signals are shown in Figs. 8, 9 and 10.
Further, a new parameter denoted as chatter index (CI) has
been evaluated to quantify the chatter severity.

5 Chatter quantification

Cutting parameters plays prominent role in producing chatter
in turning process. Several researchers have investigated the
effect of cutting parameters in turning operation, but their
investigation was based on raw signals. These raw signals
are contaminated with noisy signals. Hence, their results on
chatter identification were not so much accurate. Till date no
work has been reported yet, on investigation of chatter infor-
mation considering the denoised signals. In the present work,
chatter severity has been explored by evaluating a newparam-
eter called chatter index (CI) considering aforesaid denoised
signals.

In turning operation chatter index indicates the promi-
nence of particular set of parameters in generating chatter.
Higher the value of chatter index more will be the resultant
chatter. Thus, chatter index helps in identifying the severity
of chatter. Chatter index is evaluated using the given relation

CI =
√√√√1

n

n∑
i=1

(xi − μ)2 (8)

where CI is the chatter index, n is the length of signal, and μ

is the mean.
The values of chatter indexes obtained at different set of

cutting parameters are shown in Table 3. In this study, 80
experiments have been performed and some of the experi-
mental results are shown in Table 3.

6 Predictionmethodology

A lot of research works have been carried out by researchers
to develop techniques for chatter identification. Some resear-
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Fig. 8 Denoising of signal at d = 1.5 mm, f = 0.05 mm/rev and N = 700 rpm

chers have tried to investigate the effects of cutting param-
eters on tool chatter considering the artificial intelligence
approach (ANN and FIS). Individual and combined effect
of input parameters d, f and N on chatter index can be
easily predicted with help of these intelligent systems. In
the present work, a hybrid approach (ANFIS) has been used
as chatter prediction methodology as discussed in the next
article.

6.1 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is the combination of fuzzy logic and neural net-
works. ANN system is appropriate if adequate measurable
data are present in a given process and this may be one of
the limitations of ANN. On the other hand, FIS depends on
the expert knowledge for fuzzy rule generation and design
of the nonadaptive fuzzy sets. Further, in fuzzy logic the
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Fig. 9 Denoising of signal at d = 2.5 mm, f = 0.1mm/rev and N = 700 rpm

shape of the membership functions depends on parameters
and variation in these parameters will change the shape
of the membership function. The application of a neuro-
fuzzy inference system is used for the purpose of prediction
and eliminates the limitations of the aforesaid techniques.
Furthermore, ANFIS controller can evolve automatically
to acquire desired membership functions of the fuzzy if-
then rules to achieve goals. It can be trained to develop
if-then fuzzy rules and determine membership functions for
input and output variables of the system. In ANFIS, the
membership function parameters can be tuned using back-

propagation algorithm or combination of back-propagation
with a least squares method.

ANFIS model includes the following steps:

1 Based on linguistic statement define the input and output
variables.

2 Fuzzy partition of variables.
3 Selection of membership functions (MF’s).
4 Fuzzy if-then rules.
5 Design fuzzy reasoning (inference mechanism).
6 Defuzzification.
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Fig. 10 Denoising of signal at d = 2 mm, f = 0.05mm/rev and N = 1000 rpm

6.2 ANFIS modelling for chatter

In this study, theANFIS technique has been adopted for train-
ing and prediction of chatter index (CI) in turning process.
Here,MATLAB has been used for training, analysis and test-
ing purpose. The architecture of ANFIS model, MF’s and
fuzzy rule viewer is shown in Figs. 11, 12 and 13, respec-
tively. ANFIS architecture comprises of three-node input
layer, 80 nodes in hidden layers and one node in output layer.
However, ANFIS architecture consists of five layer discussed
as;

Layer 1: It is also known as fuzzification. This layer con-
sists of input variable which converts input data into fuzzy set
by means of membership functions given by (Asilturk 2011;
Daoming and Jie 2006)

(OP)1,i =
{

μai (X) , i = 1, 2
μbi (Y ) , i = 3, 4

(9)

where i is node of layer, (OP)1,i is output of 1st layer,μai and
μbi are membership function. This layer supplies the input
values to next layer.
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Table 3 Chatter indexes at different cutting conditions

S. no. Depth of
cut (d) mm

Feed rate
( f ) mm/rev

Spindle speed
(N ) rpm

Chatter
index (CI)

1 1 0.15 1150 1.40

2 2.5 0.25 850 0.52

3 1 0.25 850 1.15

4 2.5 0.25 1150 1.77

5 2.5 0.1 700 3.28

6 1 0.1 850 3.28

7 2.5 0.2 1300 1.95

8 1 0.15 1000 0.40

9 1.5 0.2 1150 1.55

10 2 0.25 850 1.43

11 1.5 0.05 850 2.11

12 2 0.1 850 2.05

13 1.5 0.2 700 1.69

14 2 0.2 1000 1.99

15 1 0.2 850 1.31

16 2.5 0.1 850 0.77

17 0.5 0.2 850 0.96

18 1 0.25 1150 1.12

19 2.5 0.15 1300 2.21

20 1 0.2 1000 0.44

21 0.5 0.2 1000 0.62

22 0.5 0.05 1000 0.87

23 0.5 0.1 1300 1.54

24 1.5 0.1 1150 2.24

25 2.5 0.15 700 2.58

26 1.5 0.25 700 1.52

27 0.5 0.25 1000 0.62

28 2 0.2 1150 1.17

29 1 0.05 1300 2.03

30 0.5 0.1 1150 1.55

Layer 2: It is also known as multiplication or membership
layer. It receives the input values from 1st layer and acts
as a membership function. The output of this layer is the
product of all incoming signals from layer 1 and is expressed
as (Asilturk 2011; Daoming and Jie 2006)

(OP)2,i = ωi = μai (X) μbi (Y ) , i = 1, 2 (10)

where ωi is output signal of 1st output layer (OP)2,i and
denotes the firing strength of rule. Firing strength means the
degree to which the antecedent part of fuzzy rule is satisfied
and it shapes the output function for rule.

Layer 3: It is also known as rule layer or normalisation.
In layer 3 the i th node calculates the ratio of an each i th rule
firing strength to the sumof all rules firing strength, expressed
as,

(OP)3,i = ω̄i = ωi

ω1 + ω2
, i = 1, 2 (11)

where (OP)3,i is the output of 3rd layer and ω̄i is normalised
firing strength.

Layer 4: It is also known as defuzzification layer which
performs defuzzification by means of fuzzy rule operation.
Every node i in this layer is an adaptive node. Input and
output relation of this layer has been defined as (Asilturk
2011; Daoming and Jie 2006);

(OP)4,i = ω̄i Zi = ω̄i (Pi X + QiY + Ri ) , i = 1, 2

(12)
where (OP)4,i is output of 4th layer and Zi is constant param-
eter used to minimise the error between ANFIS output and
computed result. Pi , Qi and Ri are constant parameters of
model.

Layer 5: It is also known as output layer or summation
layer, which adds up all input coming from layer 4 and trans-
forms each fuzzy result in to crisp output (Asilturk 2011;
Daoming and Jie 2006) given by;

(OP)5,i =
∑

ω̄i Zi =
∑

ωi Zi∑
ωi

, i = 1, 2 (13)

The ANFIS structure has been tuned by least-square esti-
mation and back-propagation algorithm. In this study, based
on back-propagation neural network (BPNN) a first-order
Sugeno ANFIS has been used. Here, BPNN algorithm per-
forms two phases of data flow for a given input–output data
pairs. Firstly, the input parameter pattern has been propagated
from input to output layer and thereafter that the network out-
put (CI) has been back-propagated from output layer to the
previous layer in order to update the weight. Weights are
internal parameters associated with each node.

Furthermore, the fuzzy set is completely characterised by
its membership functions (MF’s). In this study Gaussian-
shaped five MFs have been used for each input parameters
as shown in Fig. 12. Due to its smoothness and versatility,
Gaussian MFs are employed to identify fuzzy variables and
specify the degree of membership. Moreover, if the com-
ponent “depth of cut” is considered as fuzzy variable, then
its membership function might be very low (VL), low (L),
medium (M), high (H) and very high (VH). Similarly, the
MFs for feed rate and spindle speed have been considered as
very low, low, medium, high and very high.

After selection of MF’s for input parameters, the fuzzy
if-then rules have been written. Some of the fuzzy if-then
rules are shown in Table 4. Fuzzy if-then rules are backbone
of fuzzy inference system and mathematically represent the
linguistic relationship between input and output variables.

To describe ANFIS architecture in brief, consider two
fuzzy if-then rules considering first-order Sugeno model
expressed as;
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Fig. 11 Architecture of ANFIS
model for CI
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Rule 1: if (X is a1) and (Y is b1), then (F1 = P1X +
Q1Y + R1);
Rule 2: if (X is a2) and (Y is b2), then (F2 = P2X +
Q2Y + R2); . . .
Rule n: if (X is an) and (Y is bn), then (Fn = PnX +
QnY + Rn);

where X and Y are inputs, an and bn are appropriate fuzzy
sets, Pn, Qn and Rn are correlation parameters, and Fn con-
tributes to the output of the system.

Figures 19, 20 and 21 show the three-dimensional surface
model developed to study the interaction between process
parameters and chatter index. On the other hand, Fig. 22
shows the two-dimensional surface model for better under-
standing the effect of each parameter on chatter index.

7 Results and discussion

7.1 Model validation (training and checking)

In the present study, ANFIS model is used to predict the
CI in turning process. Hence, it is essential to have proper
training and checking of data set which is used to generate
the ANFIS model. Improper selection of data sets will not
validate the model. For training and checking purpose dif-
ferent sets of data have been taken. Here the training data
set included 80 observations and checking data set involved
30 observations. These training and checking data sets were
uniformly sampled from input range and used. In this study
for FIS training, hybrid optimisationmethod is used, which is
combination of least-square and back-propagation gradient
descent methods. This hybrid method involves forward and

backward learning algorithm. Figures 14, 15 and 16 show the
training and checking result of different data sets.

Figure 14 shows the data set training purpose. Training
the ANFIS system with training data set and FIS output is
shown in Fig. 15. Here, the average testing error is found to
be 0.000000197 and is quite acceptable, while training error
found to be 0.0642 is also acceptable.

Figure 16 shows the ANFIS validation diagram with
checkingdata sets andFISoutput. It clearly shows that check-
ing data look fine enough against the trained FIS. The average
testing error for checking data set is found to be 0.1479 and
is satisfactory.

7.2 Model accuracy and error

To assess the accuracy and error in prediction of chatter,
twelve new experiments have been performed as shown in
Table 5. This includes the experimental CI values, predicted
CI values, percentage of individual error (eai ) and accuracy
of model (Ai ). The percentage of individual error has been
obtainedbyusingEq. (14),while average individual accuracy
of model has been calculated by using equation (15).

eai =
(
VE − VP

VE

)
× 100% (14)

Ac = 1

n

n∑
i=1

(100 − eai )% (15)

where eai represents average individual error, Ac represents
average individual accuracy, VE and VP show the experimen-
tal and predicted values, respectively, n is the total number
of data set test, and i represents the number of experimental
runs (i = 1, 2, 3 . . . n).
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Membership function plots
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Fig. 12 Membership function plots for input variables

The average percentage of error of ANFISmodel has been
found to be 6.5%, while accuracy of ANFIS model is 93.5%.
This indicates that the proposed model could be successfully
used to predict the CI in turning process. A good agreement
between experimental and predicted data validates the devel-
oped ANFIS training model and is shown in Fig. 17.

7.3 Comparative study of ANFIS, ANN and RSM

Comparative studies of ANFIS have been done with artificial
neural network (ANN) and response surface methodology

(RSM) for the prediction of chatter severity. More num-
ber of experiments has been performed considering cutting
parameters as mentioned in Table 2. Further, experimental
results were analysed using ANN and RSM. Here, RSM
and ANN modelling has been done by taking the range of
cutting parameters in coded form (−1to + 1) by the given
relation:

dcoded = d − 1.5

1
, fcoded = f − 0.15

0.1
, Ncoded = N − 1000

300
(16)
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Fig. 13 Rule viewer of fuzzy toolbox-based ANFIS modelling for CI prediction

Table 4 Some of the rules used in ANFIS model

S. no. Fuzzy if-then rule for “CI” in turning process

1. If (f is VL) and (d is M) and (N is VL), then (CI
is out1mf11) (1)

2. If (f is VL) and (d is M) and (N is L), then (CI is
out1mf12) (1)

3. If (f is VL) and (d is M) and (N is M), then (CI is
out1mf13) (1)

4. If (f is VL) and (d is M) and (N is H), then (CI is
out1mf14) (1)

5. If (f is L) and (d is VL) and (N is VH), then (CI is
out1mf30) (1)

7.3.1 ANNmodelling

ANN training has been done using MATLAB software. 3-
5-1 ANN architecture comprised of 3-neurons in input layer
(d, f and N ), 5-neurons in hidden layer (A toE) and1-neuron
in output layer (CI) as shown in Fig. 18. The training function
“TRAINLM” and learning function “LEARNGDM” have
been used. Further, activation function “TANSIG” has been
invoked to obtain the desired output. Final optimal weights
between the input and hidden layers; hidden and output layers
are listed in Table 6.

Fig. 14 Training data sets
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Fig. 15 Trained output data for
ANFIS

Fig. 16 ANFIS validation
diagram

Table 5 Error and accuracy of
ANFIS model prediction

S. no. Depth of
cut (d)

Feed rate
( f )

Spindle
speed (N )

Experimental
CI

Predicted
CI

Error % Accuracy %

1 1 0.25 1000 0.373 0.352 5.6 94.4

2 1.5 0.15 850 1.429 1.337 6.4 93.6

3 1 0.2 700 1.057 0.998 5.6 94.4

4 0.5 0.1 1000 0.712 0.675 5.2 94.8

5 1.5 0.2 1000 0.743 0.700 5.8 94.2

6 1.5 0.25 1150 1.465 1.372 6.3 93.7

7 1 0.05 700 2.145 1.963 8.5 91.5

8 1.5 0.15 1000 0.848 0.804 5.2 94.8

9 0.5 0.15 1300 1.589 1.477 7.0 93.0

10 0.5 0.25 700 0.387 0.367 5.2 94.8

11 2.5 0.05 1000 2.412 2.220 8.0 92.0

12 1.5 0.05 1150 3.499 3.193 8.7 91.3

Average percentage error = 6.5% accuracy of model = 93.5%
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Fig. 17 Comparison of predicted and experimental results with respect to: a depth of cut, b feed rate and c spindle speed

Fig. 18 Proposed 3-5-1 ANN
architecture A

C

E

B

D

CI

d

N

f

Wd1

Wd2

Wd3

Wd4

Wd5

Wf1

Wf2

Wf3

Wf4

Wf5

WN1

WN2

WN3

WN4

WN5

W1

W2

W3

W4

W5

Bias

Bias

WB1

WB2

WB3

WB4

WB5

123



Chatter prediction using merged wavelet denoising and ANFIS 4455

Table 6 The weight values for
ANN architecture

No. of neurons Input and hidden layer Hidden and output layer

Wdk Wfk WNk WBk Wk WBk

1 1.4864 −1.022 2.1529 1.1894 −3.7059 1.1522

2 −0.57265 1.0208 −2.6908 −0.95882 1.2667

3 1.9283 2.1465 0.097748 −0.44908 0.26398

4 1.3546 −1.938 −2.3305 1.3054 0.68501

5 0.60493 −1.7457 −2.3878 −1.1341 1.9936

Table 7 Comparison of three approaches (ANFIS, ANN and RSM)

S. no. (d) ( f ) (N ) Experimental
CI

ANFIS
predicted CI

% error ANN
predicted CI

% error RSM
predicted CI

% error

1 1.5 0.05 1000 2.81 2.91 − 3.7 2.97 − 5.6 2.72 3.2

2 0.5 0.05 1300 1.77 1.65 6.8 1.76 0.5 1.96 − 10.7

3 0.5 0.2 1150 0.92 0.85 7.5 0.83 9.6 0.74 19.7

4 0.5 0.1 850 1.52 1.51 0.9 1.66 − 9.2 1.68 − 10.6

5 1 0.25 1300 1.71 1.86 − 8.6 1.55 9.1 1.89 − 10.6

6 0.5 0.05 1150 2.43 2.51 − 3.2 2.66 − 9.3 2.19 9.8

7 0.5 0.15 1000 0.68 0.71 − 4.5 0.63 6.3 0.88 − 30.1

8 1.5 0.1 700 1.53 1.44 5.7 1.46 4.6 1.44 5.8

9 2.5 0.15 850 1.00 0.91 9.3 0.91 9.4 0.99 0.9

10 1.5 0.25 850 1.01 1.07 − 5.5 1.07 − 5.6 1.07 − 5.9

11 2.5 0.25 1300 3.93 3.91 0.5 3.74 4.9 3.88 1.2

12 2.5 0.2 850 0.90 0.86 4.1 0.89 0.9 0.88 2.4

13 2 0.1 700 1.16 1.26 − 8.9 1.04 9.9 1.21 − 5.0

14 0.5 0.2 700 0.99 0.90 8.5 0.89 9.3 0.89 10.2

15 1.5 0.2 850 0.79 0.74 6.8 0.86 − 8.8 0.79 − 0.7

16 1.5 0.15 1300 1.91 2.09 − 9.4 1.97 − 3.1 1.89 1.4

17 2.5 0.05 1150 3.51 3.21 8.5 3.42 2.6 3.58 − 2.0

18 1 0.1 1300 1.73 1.72 0.6 1.72 0.8 1.66 4.0

19 0.5 0.25 1300 1.34 1.28 4.5 1.24 7.4 1.27 5.5

20 1 0.1 700 1.67 1.58 5.3 1.74 − 4.1 1.68 − 0.8

Percentage error 5.6% 6.1% 7.0%

7.3.2 RSMmodelling

RSM has been adopted to develop the quadratic model for
chatter severity. As per estimated regression coefficient, the
model equation for chatter index (CI) is as follows;

CI = 1.23006 + 0.39298 × d − 0.59992 × f

+ 0.57527 × N + 0.04124 × d × d

+ 0.88926 × f × f + 0.08056 × N × N

+ 0.10347 × d × f + 0.81140 × d × N

+ 0.36000 × f × N (17)

To assess the accuracy in prediction of chatter using the three
techniques, percentage deviation of experimental results and
individual predicted results have been calculated using equa-

tion (14) and are presented in Table 7. From Table 7, it is
evident that ANFIS (5.6%) has less average error in predic-
tion of chatter as compared to ANN (6.1%) and RSM (7.0%).
Thus, it is inferred that ANFIS is better as compared to ANN
and RSM for predicting chatter severity in turning process.

7.4 Chatter severity plots

In order to understand the relative dependency of chatter
severity on cutting parameters, 2D and 3D graphs have been
plotted with respect to the chatter index and cutting parame-
ters. FromTable 3 it has been noted that the chatter indexCI is
maximum when depth of cut is 2mm, feed rate 0.05mm/rev.
and spindle speed 100 rpm, while at depth of cut 1mm, feed
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Fig. 19 3D-surface model of feed rate and depth of cut for CI

Fig. 20 3D-surface model of depth of cut and spindle speed for CI

rate 0.15mm/rev and spindle speed 1000 rpm chatter index
is minimum.

From the 3D plots, it is inferred that the dependency of
chatter index on the cutting parameters is notmonotonous. To
represent the nonmonotonous behaviour of CI, surface plots
have been drawn as shown in Figs. 19, 20 and 21. These
plots represent the variation of chatter index considering two
cutting parameters at a time. Figure 19 shows the interaction
effect of feed rate and depth of cut on CI, at holding spindle
speed of 1000 rpm. Here, minimum CI is obtained at a depth
of cut 1 mm and feed rate between 0.2 and 0.25 mm/rev.
Moreover, at the depth of cut of 2 mm CI is 3.8. Figure 20
shows the interaction effect of depth of cut and spindle speed
on CI at fixed feed rate of 0.15 mm/rev. Here, CI is minimum
at depth of cut of 2 and 0.5 mm and spindle speed of 700 and
1000 rpm. From the above discussion it has been inferred that
at samedepthof cut (d=2mm) the chatter canbemaximumor
minimum. This reflects the nonmonotonous behaviour of CI
with respect to the cutting parameters. Furthermore, Fig. 21
shows the interaction effect of spindle speed and feed rate

Fig. 21 3D-surface plot of spindle speed and feed rate for CI

on CI while keeping the depth of cut fixed at 1.5 mm. Here,
minimum CI has been found at 1000 rpm and 0.25 mm/rev.

The relative influence of various cutting parameters on CI
can be established with the help of 2D graph as shown in
Fig. 22.

Experiments have been performed by varying each param-
eter at a time and keeping the other two parameters constant.
These results have been plotted in a 2D graph as shown in
Fig. 22. From Fig. 22a it is evident that depth of cut is the
most influencing parameter. In the considered range of depth
of cut, CI (= 2.4) is maximum at d = 2mm. Spindle speed is
the nextmost influencing cutting parameter. CI (= 2) is max-
imum at N = 700 rpm as shown in Fig. 22b. Furthermore,
maximum value of CI is 1.45 at feed rate of 0.05mm/rev. as
shown in Fig. 22c.

From the above analysis, it is quite clear that depth
of cut is the most influencing parameter in chatter phe-
nomenon. The reason is with the increase in depth of cut
keeping other parameters constant, the associated radial
force increases prominently as compared to the other cut-
ting forces. This increase in radial force results in increased
waviness and unevenness along the surface of thework piece.
This waviness leads to further time delay between the two
corresponding turning passes along the job surface. So, ulti-
mately increase in depth of cut results in pronounced tool
chatter as compared to the rest of the cutting parameters.

Furthermore, the experimental results indicate that, even
for identical depth of cut, the turning process can be either
stable or unstable depending on spindle speed and feed rate.
From Table 3, in experiment run 2, the value of CI is 0.52
when depth of cut, speed and feed rate are 2.5 mm, 850 rpm
and 0.25 mm/rev., respectively. However, for the same depth
of cut, in experimental run 66, CI is 3.04 at spindle speed of
1300 rpm and feed rate 0.05 mm/rev.
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Fig. 22 2D-surface model of CI with respect to a depth of cut, b spindle speed and c feed rate

In the presentwork, it is concluded that variation of chatter
with respect to the cutting parameters is not monotonic. In
this study, chatter phenomenon has been categorised into two
phases. Firstly, stable chatter, i.e. if the value of CI is in the
range of 0–1. Secondly, unstable chatter, when CI is greater
than 1.

8 Conclusions

In the present work, experiments have been conducted
at different cutting parameters and the corresponding raw
chatter signals have been acquired. These raw signals are
pre-processed using wavelet denoising technique. These
denoised signals are trained using an ANFIS model. Further,
more experiments have been conducted to validate the devel-
oped training model. From the analysis of chatter severity it
has been inferred that depth of cut is the most influencing

cutting parameter. The key findings of the present research
are enumerated as follows:

• Chatter index reflects the random nature of turning pro-
cess.

• Chatter index of denoised signal reveals that the chatter
dependence on cutting parameters is not monotonic in
nature.

• Wavelet transformation is a powerful tool used for pre-
processing the raw chatter signal.

• ANFIS training is quite apt in predicting the nature of
chatter phenomenon.
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