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Abstract
This study proposes an elitist-based self-adaptive multi-population (SAMPE) Jaya algorithm to solve the constrained and
unconstrained problems related to numerical and engineering optimization. The Jaya algorithm is a newly developed
metaheuristic-based optimization algorithm, and it does not require any algorithmic-specific parameters to be set other than
the common control parameters of number of iterations and population size. The search mechanism of the Jaya algorithm
is improved in this work by using the subpopulation search scheme with elitism. It uses an adaptive scheme for dividing
the population into subpopulations. The effectiveness of the proposed SAMPE-Jaya algorithm is verified on CEC 2015
benchmark problems in addition to fifteen unconstrained, six constrained standard benchmark problems and four constrained
mechanical design optimization problems considered from the literature. The Friedman rank test is also done for comparing
the performance of the SAMPE-Jaya algorithm with other algorithms. It is also tested on three large-scale problems with
the dimensions of 100, 500 and 1000. Furthermore, the proposed SAMPE-Jaya algorithm is used for solving a case study
of design optimization of a micro-channel heat sink. The computational experiments have proved the effectiveness of the
proposed SAMPE-Jaya algorithm.

Keywords Multi-population Jaya algorithm · CEC 2015 · Heat sink

1 Introduction

Solving the complex optimization problems within the
restricted time is a crucial subject in the field of engineer-
ing optimization. The conventional methods become tedious
and time-consuming for solving the complex optimization
problems, and these techniques are not having any guar-
antee to achieve the global optimal solution. Therefore, in
order to overcome this issue, metaheuristic-based optimiza-
tion methods are developed. These methods are having the
capability to achieve the global or near global optimum
solution within the limited time. Some of the well-known
metaheuristic optimization algorithms are: genetic algorithm
(GA) and its variants (parallel GA, real coded GA, hybrid
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interval GA, etc.), tabu search (TS), ant colony optimiza-
tion (ACO), particle swarm optimization (PSO) and its
variants (e.g., culture-based PSO, niching PSO, aging the-
ory inspired PSO, etc.), differential evolution (DE) and its
variants (e.g., DE with self-adapting control parameter, DE
with multi-population ensemble, DE with optimal external
archive), artificial bee colony (ABC) algorithm, imperialist
competitive algorithm (ICA), biogeography-based optimiza-
tion (BBO), gravitational search algorithm (GSA), firefly
algorithm (FFA), cuckoo search (CS), bat algorithm (BA),
etc. (Lau et al. 2016; Rao and Patel 2012; Irawan et al. 2016).

Several metaheuristic algorithms have been proposed in
the last decade. Some prominent algorithms are: spiral opti-
mization, differential search algorithm, teaching-learning-
basedoptimization (TLBO), cuckoo search algorithm (CSA),
colliding bodies optimization algorithm, whale optimization
algorithm (WOA), centripetal accelerated particle swarm
optimization algorithm, crisscross optimization algorithm,
ant lion optimization (ALO), cat swarm optimization (CSO),
bacteria forging optimization (BFO), thermal exchange opti-
mization algorithm (TEOA), gray wolf optimizer (GWO)
algorithm, chemotherapy science-based optimization algo-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3095-z&domain=pdf


4384 R. V. Rao, A. Saroj

rithm (CSOA) and hybrid algorithms (Mirjalili and Lewis
2016; Salmani and Eshghi 2017; Kohli and Arora 2017; Rao
and Saroj 2017; Kaveh and Dadras 2017).

The advanced optimization algorithms are having their
individual merits, but they require tuning of their own
algorithmic-specific parameters. For example, GA requires
proper tuning of crossover probability, selection operator,
mutation probability. SA algorithm requires the tuning of
cooling schedule and initial temperature of annealing. PSO
requires the setting of social and cognitive parameters and
inertia weight. BBO algorithm needs the setting of emigra-
tion rate, immigration rate, etc. Similarly, ICA, DE and other
algorithms mentioned in the above paragraph are having
their own algorithmic-specific parameters to be tuned for the
effective execution of the algorithm. These parameters are
known as algorithm-specific parameters and required to be
set in addition to the common control parameters (i.e., num-
ber of iterations and population size and elite size). All the
existing population-based advanced optimization algorithms
are required to set values of the common control parame-
ters, but the algorithm-specific parameters are specific to the
specific algorithm and these are also to be set as explained
above.

The performance of the metaheuristic-based algorithms
is strongly influenced by the algorithmic-specific param-
eters. The appropriate setting of these parameters is very
much necessary. The improper tuning of these parameters
may lead to an increase in the computational cost or tending
toward the local optimal solution. Therefore, to resolve the
issue of setting of algorithm-specific parameters, teaching-
learning-based-optimization (TLBO) algorithm was devel-
opedwhich is an algorithm-specific parameter-less algorithm
(Rao 2016a, b). Keeping in view of the good performance of
the TLBO algorithm, another algorithm-specific parameter-
less algorithm has been recently proposed and it is named as
Jaya algorithm (Rao 2016c).

It is to be mentioned here that the subpopulation-based
advanced optimization methods have been developed by the
researchers in order to improve the diversity of search pro-
cess by dividing the whole population into sub-groups and
assigning these throughout the search space. This maintains
the diversity of the search mechanism by assigning subpop-
ulations to various search areas rather than concentrating on
single area. In this method, each subpopulation is associated
with either exploring or exploiting the search processes of
the algorithm (Nguyen et al. 2012; Cruz et al. 2011). The
interface between the subpopulations is done by a combine
and split process when there is an effective improvement in
the current global solution is observed. The subpopulation-
based algorithms are found more effective as compared to
the single population-based algorithms.

Branke et al. (2000) developed the self-organizing scout’s
multi-population evolutionary algorithm. Li andYang (2008)

developed the multi-swarm PSO algorithm. Yang and Li
(2010) developed the clustering-based PSO. Rao and Patel
(2012) developed the multiple teachers TLBO. A multi-
population ABC algorithm was developed by Nseef et al.
(2016). These subpopulation-based methods are helpful to
maintain the population diversity. The subpopulation-based
optimization algorithms are advantageous (Li et al. 2015)
mainly because of the reason that the overall diversity of the
search mechanism can be maintained with distribution of the
whole population into groups and various subpopulations can
be located in different regions of search space.

The algorithm’s performance is affected by the selection
of number of subpopulations which is associated with the
complexity of the problems. This point cannot be recognized
in advance for the given problems, and it regularly changes
during the search process. The solutions in the subpopula-
tions may also not be enough for enough diversity. In order
to address these issues, the present work proposes a self-
adaptive multi-population elitist (SAMPE) Jaya algorithm.
In order to effectively monitor the problem landscape, the
SAMPE-Jaya algorithm adaptively changes the number of
subpopulations based on change strength of the solution. The
objectives of the present study are:

(a) To propose a SAMPE-Jaya algorithm that adapts the
number of subpopulations based on the change strength
of the problem.

(b) To investigate the performance of the proposed method
on standard benchmark problems.

(c) To investigate the performance of the proposed method
for an engineering application of a micro-channel heat
sink design.

The basic difference between island-model GA and pro-
posed SAMPE-Jaya algorithm is that the island-model GA
uses only two groups (i.e., Master Island and Slave Islands).
However, the proposed SAMPE-Jaya algorithm uses the
subpopulations adoptively.Multiple-population (ormultiple-
deme, or parallel) GAs aremore sophisticated, as they consist
of several subpopulations which exchange individuals occa-
sionally. This exchange of individuals is called migration,
and it is controlled by several parameters. However, the num-
ber of demes in this method is to be tuned for the better
performance of the algorithms. The tuning of number of
subpopulations (number of demes) is a critical issue in the
parallel evolutionary algorithm (Cantu-Paz 1998; Mambrini
and Sudholt 2014). Therefore, this issue is resolved by the
proposed SAMPE-Jaya algorithm which decides the number
of subpopulation adaptively.

The following sectiondescribes theproposed self-adaptive
multi-population elitist-Jaya algorithm.
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2 Self-adaptive multi-population elitist-Jaya
algorithm

RaoandSaroj (2017) developed self-adaptivemulti-population
(SAMP) Jaya algorithm, and the proposed self-adaptive
multi-population elitist (SAMPE) Jaya algorithm is an exten-
sionof theSAMP-Jaya algorithm to improve its performance.
Let Z(x) is an objective which is being optimized. Assume
that at any iteration i, number of design variables is ‘d’ (i.e.,
q = 1, 2, . . . , d), population size ‘P’ (i.e., r = 1, 2, . . . , P).
If Xq,r,i is the value of the qth variable for the r th candidate
during the i th iteration, then this value ismodified based upon
the following Eq. (2.1).

X’q,r,i = Xq,r,i + r1(Xq,best,i − |Xq,r,i|)
−r2(Xq,worst,i − |Xq,r,i|) (2.1)

where Xq,best,i is the value of the qth variable for the best
solution and Xq,worst,i is the value of the qth variable for
the worst solution in the population. X ′

q,ri is the new value
of Xq,r ,i and r1, r2 are random numbers in the range of [0,
1]. The term “r1(Xq,best,i − |Xq,r ,i |)” indicates that the
solution tries to approach the best solution, and the term
“−r2(Xq,worst,i − |Xq,r ,i |)” shows that the solution tries to
avoid the worst solution. X ′

q,r ,i is accepted if function value
produced by it is better.

In SAMPE-Jaya algorithm, the following modifications
are added to the basic Jaya algorithm:

(a) The proposed algorithm uses number of subpopulations
by dividing it into number of groups based on the quality
of the solutions (value of fitness function). Furthermore,
the worst solutions of the inferior group (populations
having poor fitness values) are replaced by the solutions
of the superior group such as populations having higher
fitness values (elite solutions). Use of the number of sub-
populations distributes the solution over the search space
rather than concentrating in a particular area. Therefore,
the proposed algorithm should produce optimumsolution
and monitor the problem landscape changes.

(b) During the search process, SAMPE-Jaya algorithmmod-
ifies the number of subpopulations based on change
strength of the problem for monitoring the landscape
changes. It means that the number of subpopulations
will be increased or decreased. In the SAMPE-Jaya
algorithm, the number of subpopulations is modified
adaptively based on the strength of the solution change
(e.g., improvement in the fitness value). This feature
supports the search process for tracing the optimum solu-
tion and improving the exploration and diversification
of the search process. Furthermore, the duplicate solu-
tions are replaced by the newly generated solutions for

maintaining the diversity and enhancing the exploration
procedure.

The basic steps of the SAMPE-Jaya algorithm are as follows:
Step 1 It starts with the setting of the number of design

variables (d), number of populations (P), elite size (ES) and
termination criterion. (Termination criterion for the present
work is maximum number of function evaluations (FEmax).)

Step 2 Next step is to calculate the initial solutions based
on the defined fitness function for the defined problem.

Step 3 The entire population is grouped into m number of
groups based on the quality of the solutions (initially m=2 is
considered) and replace the worst solutions (equals to ES) of
the inferior group with solutions of the superior group (elite
solutions).

Step 4 Each subpopulation uses Jaya algorithm for mod-
ifying the solutions in each group independently. Modified
solutions are kept if and only if these are better than the old
solutions.

Step 5 Combine the entire subpopulation. Check whether
Z(best_before) is better than Z(best_after).

Here, Z(best_before) is the previous best solution of the
entire population and Z (best_after) is the current best solu-
tion in the entire population. If the value of Z(best_after) is
better than the value of Z(best_before), m is increased by 1
(m = m + 1) with the aim of increasing the exploration fea-
ture of the search process. Otherwise, m is decreased by 1
(m = m − 1) as the algorithm needs to be more exploitive
than explorative.

Step 6 Check the stopping condition(s). If the search
process is reached to the maximum number of function eval-
uations, then terminate the loop and report the best optimum
solution. Otherwise, follow the steps of:

(a) Replace the duplicate solutions with randomly gen-
erated new solutions
(b) For re-dividing the populations go to Step 3.

The flowchart of the proposed SAMPE-Jaya algorithm is
presented in Fig. 1.

All the metaheuristic algorithms (except TLBO algo-
rithm) require tuning of algorithmic-specific parameters. The
tuning of these parameters is in addition to the common con-
trol parameters (e.g., population size, elite size and number of
iterations). The performance of the metaheuristic algorithms
is much affected by the tuning of these algorithmic-specific
parameters. The improper tuning of the algorithmic-specific
parameters may lead to local optimal solution.

The Jaya algorithm is an algorithmic-specific parameter-
less algorithm similar to teaching-learning-based optimiza-
tion (TLBO) algorithm. However, it is much simpler and
powerful than TLBO algorithm and it is having a single
phase rather than two phases of TLBO (i.e., teacher phase
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Fig. 1 Flowchart of SAMPE-Jaya algorithm

and learner phase). Equation (2.1) is used for upgrading the
solution quality during the search process. For ensuring bet-
ter exploration of the search space, two random numbers r1
and r2 are used. The absolute value of the candidate solution
(|Xq, r , i |) in Eq. (2.1) helps the algorithm to further increase
the exploration ability. These features make the algorithm to
converge toward global optimal solution rather than toward
a local optimal solution.

The following equation is used for generating the initial
solutions:

X_intial = X_min + rand(0, 1)∗(X_max

−X_min) (2.2)

where rand(0, 1) is random number between 0 and 1 with
normal distribution whose mean is zero and standard devia-
tion is 1. X_min and X_max are theminimum andmaximum
values of design variables, respectively.

The random numbers between 0 and 1 in Eq. (2.2) are
used to distribute the populations into entire search space.
Furthermore, r1 and r2 between 0 and 1 are used to explore
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the entire search space for getting global optimal solution
within the specified limit.

Now, if the ranges of the random numbers used in pro-
ducing the next solutions are changed and if the ranges of
random numbers are increased beyond 1, it means we are
allowing the algorithm to search beyond the specified limits
of the design variables. This may lead to infeasible solutions,
and complexity of the search process may be increased. Fur-
thermore, if the ranges of random numbers are reduced (0 to
less than l), it means the algorithm is not allowed to explore
the entire search space. This may lead to trap the algorithm
in local optima.

Furthermore, random numbers with normal distribution
are used in metaheuristics for the search process. Normaliz-
ing the values of the random numbers in each iteration may
not serve the purpose of metaheuristics. It may increase the
exploration rate but may have poor exploitation rate. This
may lead the algorithm toward local optima with higher
computational cost. Furthermore, the elitist version of multi-
population Jaya algorithm is purposed in this work.

Now, for investigating the performance of the proposed
SAMPE-Jaya algorithm, it is used for solving 30 uncon-
strained benchmark problems (including 15 problems of
CEC 2015), three large-scale problems, 6 constrained bench-
mark problems and 4 well-known constrained mechanical
design optimization problems taken from the literature (Ngo
et al. 2016). The next section presents the analysis of the
results obtained by the SAMPE-Jaya algorithm and its com-
parison to the other approaches.

3 Optimization results and discussion

The SAMPE-Jaya algorithm is coded in MATLAB R2009b
with a laptop of HP Pavilion g6 Notebook PC of 4GB RAM
memory, 1.9-GHz AMD A8 4500M APU CPU. The per-
formance of the SAMPE-Jaya algorithm is compared with
various optimization algorithms: GA and its variants, PSO
and its variants, DE, TLBO, etc. The performance of the
SAMPE-Jaya algorithm is evaluated on thirty unconstrained
problems (including CEC 2015 function), three large-scale
problems, six constrained problems and four well-known
constrained mechanical design problems considered from
the work of Ngo et al. (2016). Furthermore, the proposed
SAMPE-Jaya algorithm is used for the design optimization
of amicro-channel heat sink (MCHS).Theperformance anal-
ysis of SAMPE-Jaya algorithm on unconstrained benchmark
problems is presented in the following section.

3.1 Unconstrained benchmark problems

The performance analysis of the SAMPE-Jaya algorithm is
presented in this section on fifteen unconstrained benchmark

problems and fifteen computationally expensive uncon-
strained benchmark problems taken from CEC 2015 (Ngo
et al. 2016).Theoptimumvalueof functionO8 is−418.9829*
dimension, and the values of the global optimum values of
rest of the problems are zero.

3.1.1 Analysis of results related to unimodal and
multimodal problems

The results obtained by SAMPE-Jaya algorithm for the
unimodal and multimodal problems are compared with
GA and its variants, PSO, its variants, SAMP-Jaya and
Jaya algorithms. Tables 1 and 2 present the comparison of
results. The results achieved by SAMPE-Jaya algorithm for
functions (O1 to O15) with 50,000 and 200,000 function
evaluations over 30 independent runs for the 30 dimen-
sion problems are presented in Tables 1 and 2, respectively.
The results are compared with the Jaya algorithm (Rao and
Saroj 2017), self-adaptive multi-population (SAMP) Jaya
algorithm (Rao and Saroj 2017), extraordinariness particle
swarm optimizer (EPSO) (Ngo et al. 2016), adaptive inertia
weight PSO (AIWPSO) (Nickabadi et al. 2011), gravitational
search algorithm (GSA) (Rashedi et al. 2009), Frankenstein’s
PSO (F-PSO) (Oca and Stutzle 2009), real coded genetic
algorithm (RGA)(Haupt and Haupt 2004), comprehensive
learning PSO (LPSO) (Liang and Qin 2006), cooperative
PSO (CPSO) (Bergh and Engelbrecht 2004), PSO (Eber-
hart and Kennedy 1995) and fully informed particle swarm
(FIPS)(Mendes et al. 2004).

It can be observed from Table 1 that the mean function
value recorded by using the SAMPE-Jaya algorithm is better
or equal in 10 cases out of 15 cases as compared to the other
algorithms. The SAMPE-Jaya algorithm is able to get the
global optimum values of the function O6and O14. Similarly,
the values of standard deviation (SD) recorded by using the
SAMPE-Jaya algorithm for the same case are better or equal
in 10 cases out of 15. For the rest of cases (O4,O8,O12and
O13), performance of the proposed SAMPE-Jaya algorithm
is competitive except for the objective O.

9 It can be concluded
based on these results that the performance of the SAMPE-
Jaya algorithm is better as compared to the other algorithms.

Table 2 presents the performance comparison of the
SAMPE-Jaya algorithm with the other optimization algo-
rithms for maximum function evaluations of 200,000. It
can be observed from Table 2 that the mean function value
recorded by using the SAMPE-Jaya algorithm is better or
equal in 12 cases out of 15 in comparison with the other
approaches. The proposed SAMPE-Jaya algorithm is able
to get the global optimum value of the function O3,O6 and
O14. Similarly, the values of SD obtained by the proposed
SAMPE-Jaya algorithm for these problems are better or equal
in 11 cases out of 15. For the rest the cases, performance of the
proposed SAMPE-Jaya algorithm is competitive except for
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the objective O9. It can be concluded based on these results
that the performance of the SAMPE-Jaya algorithm is better
as compared to the other algorithms.

3.1.2 Analysis of the results related to CEC computationally
expensive benchmark problems

The benchmark problems considered in this section are from
CEC 2015. The objective of all functions is minimization.
Problems 1–9 are shifted and rotated problems; problems 10–
12 are hybrid functions; and problems 13–15 are composite
functions. The detailed information about CEC 2015 prob-
lems can be retrieved from the literature (Ngo et al. 2016).

The computational experiments are carried out by fol-
lowing the guidelines of CEC 2015. The maximum function
evaluations (MFEs) of 500 and 1500 are considered as one
of the termination criteria with ten dimension and thirty
dimension problems, respectively. Second stopping crite-
rion is, while the error value (current optimum value–global
optimum value) is less than 1.00E−03. Average of the min-
imum error value is recorded over 20 independent runs. The
averagedminimumvalues are used for the performance com-
parison of the proposed SAMPE-Jaya algorithm with the
other algorithms.

The computational results obtained by proposed SAMPE-
Jaya algorithm are compared with EPSO, DE, (μ + λ)-
evolutionary strategy (ES), specialized and generalized
parameters experiments of covariance matrix adaption evo-
lution strategy (CMAES-S andCMAES-G) (Andersson et al.
2015). Table 3 presents the comparison of the computational
results. It can be observed from Table 3 that the results
obtained by using the SAMPE-Jaya algorithm are better in 12
cases for 10-Dand9 cases for 30-Dproblems.Anobservation
can be made from this table that the results achieved by the
proposed SAMPE-Jaya algorithm are better or competitive
in comparison with other algorithms used for this problem.
The bold values in Table 3 show the minimum mean error
values obtained by different algorithms for each function.

The computational complexity of the SAMPE-Jaya algo-
rithm is evaluated for 30-D and 10-D problems as per the
guidelines of the CEC 2015. The computational complex-
ity of the algorithms is defined as the complexity in the
computational time when the dimensions of the problem are
increased. The test function provided by CEC 2015 is run on
the same computer which is used for optimization of prob-
lems of CEC 2015. The time (T0) required for the complete
execution of this function was found to be 0.3447s. Next step
is to record the average processing time (T1) for each prob-
lem. The computational complexity of the of the algorithm
(T1/To) is calculated and is shown in Table 4. In Table 4, the
values TB/TA disclose the complexity of the algorithm when
the dimension of the problems changes. The value of TB/TA

equals to 1 means that it is not any having complexity when
problem changes from 10-D to 30-D.

The values TB/TA more than one disclose complexity of
computational time of the algorithms. Functions FCEC3 and
FCEC5 are having the higher complexity in terms of com-
putational time because of multi-modality of the functions.
Similarly, hybrid functions FCEC11 and FCEC12 and com-
posite functions FCEC13–FCEC15 have shown the higher
complexity in terms of computational time. For the remain-
ing problems, the value of TB/TA is almost equal to 3.5
which reveal that the computational complexity of the present
algorithm is increased 3.5 times when the dimensions of
the problems are changed from 10 to 30. The computa-
tional complexity of the SAMPE-Jaya algorithm is about 3
for the problems FCEC1, FCEC2, FCEC4, FCEC6, FCEC7,
FCEC8, FCEC9, FCEC10 FCEC13 and FCEC14. It shows
that computational complexity of the SAMPE-Jaya algo-
rithm is increased about three times when the dimension of
the problems changes from 10 to 30.

The computational complexity of SAMPE-Jaya algorithm
is more than 4 for the problems FCEC3, FCEC5, FCEC11,
FCEC12 and FCEC15. This increment in the computational
complexity is due to the complexity and multi-modality
of these problems. However, the computational complex-
ity of the SAMPE-Jaya algorithm is less as compared to
SAMP-Jaya and EPSO algorithms. As the computational
complexity of the other algorithms for CEC 2015 problems
is not available (except EPSO) in the literature, the compu-
tational complexity of the proposed SAMPE-Jaya algorithm
cannot be compared with others. It can also be observed from
Table 4 that the computational complexity (TB/TA) of the
present approach is less in comparison with EPSO for all the
problems of CEC 2015.

It can be observed from Tables 1, 2 and 3 that the perfor-
mance of the SAMPE-Jaya algorithm is better or competitive
as compared to the other algorithms. However, it becomes
necessary to prove the significance of the proposed SAMPE-
Jaya algorithmover the other algorithmswith some statistical
test. Therefore, a well-known statistical method known as
‘Friedman test’ (Joaquin et al. 2016) is used to compare the
performance of the proposed SAMPE-Jaya algorithm with
the other algorithms. Mean values of the fitness functions
obtained by different methods are considered for this test.
This method first finds the rank of algorithms for the individ-
ual problems and then calculates the average rank to get the
final rank of the each algorithm for the considered problems.
This test was performed with assuming χ2 distribution and
with k − 1 degree of freedom.

The mean ranks of the algorithms for the unimodal and
multimodal problems with maximum function evaluations
of 50,000 are presented in Table 5. It can be observed from
this table that the performance of the proposed SAMPE-Jaya
algorithm is better than the other methods. It has obtained
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Table 4 Computational complexity of the SAMP-Jaya algorithm

Function d = 10 d = 30 Computational complexity

T1 (s) TA = T1/T0 T1 (s) TB = T1/T0 SAMPE-Jaya
(TB/TA)

SAMP-Jaya (Rao
and Saroj 2017)

EPSO (Ngo et al.
2016)

1. 0.039641 0.115003771 0.11094 0.321844116 2.798553 3.588393 3.605

2. 0.030814 0.089393772 0.102472 0.297278503 3.325495 3.413454 3.432

3. 0.152056 0.441127647 1.053516 3.056328595 6.928445 7.429281 7.968

4. 0.058882 0.170823325 0.14269 0.413952713 2.42328 3.547105 3.591

5. 0.248303 0.720346872 1.373376 3.984265835 5.531038 7.271586 7.511

6. 0.038857 0.112728653 0.120896 0.350727686 3.111256 3.351844 3.385

7. 0.031087 0.090187603 0.112622 0.326725172 3.622728 3.400896 3.444

8. 0.033716 0.097813654 0.129546 0.375821971 3.842224 3.443678 3.592

9. 0.029994 0.087015182 0.108133 0.313702253 3.605144 3.52979 3.692

10. 0.034821 0.101020404 0.128561 0.37296509 3.691978 3.500343 3.679

11. 0.060534 0.175613577 0.250034 0.725366212 4.130468 4.04166 6.158

12. 0.055663 0.161483706 0.254652 0.738763659 4.57485 4.676693 4.785

13. 0.071664 0.207903684 0.208266 0.604194179 2.906125 3.327989 5.702

14. 0.072664 0.210806112 0.263034 0.763081714 3.619827 3.406342 5.270

15. 0.188662 0.547323276 1.225011 3.55384663 6.49314 6.325926 8.036

higher rank as compared to the other algorithms used for this
problem. Comparison of the same on the bar chart is pre-
sented in Fig. 2. The mean rank of the algorithms for the
unimodal and multimodal problems with maximum func-
tion evaluations of 200,000 is presented in Table 6. It can be
observed from this table that performance of the proposed
SAMPE-Jaya algorithm is better than the other algorithms
used for the optimization of the same problem. The proposed
SAMPE-Jaya algorithm is havinghigher rank in this case also
as compared to the other algorithms. Figure 3 presents the
comparison of the ranks on the bar chart.

The comparison of performance of the proposed SAMPE-
Jaya algorithm for CEC 2015 problems is shown in Tables 7
and 8 for 10-D and 30-D problems, respectively. The aver-
age rankobtainedby theSAMPE-Jaya algorithm for the 10-D
problems is 1.6667, which is better than the other algorithms.
Similarly, average rank obtained by the SAMPE-Jaya algo-
rithm for the 30-D problems is 2.2, which is better than the
rest of algorithms. Figures 4 and 5 present the comparison
of the average ranks of algorithm on bar charts for the 10-D
and 30-D problems, respectively.

Thus, the Friedman rank test confirms that the perfor-
mance of the proposed SAMPE-Jaya algorithm is better for
the considered unconstrained benchmark problems and it has
obtained the highest rank as compared to the other algorithms
used for the optimization all these cases considered for the
comparison.

3.2 Analysis of results related to constrained
benchmark problems

This section presents comparison of performance of the pro-
posed SAMPE-Jaya algorithm on six constrained benchmark
optimization problems considered from literature (Ngo et al.
2016). In this study, the proposed SAMPE-Jaya algorithm is
run 30 times for each case and performance comparison of
the proposed SAMPE-Jaya algorithm with other algorithm
is carried out based on the best function value in the entire
run (Best), worst function value (Worst), mean of the best
function value in entire run (mean), deviation of the best
solution from the mean best solution (SD) and mean function
evaluations (MFEs) required for the computation. In order to
deal with the constraints imposed on these objectives, a static
penalty function is used for penalizing the fitness value of the
objective function.

The results obtained by the SAMPE-Jaya algorithm are
compared with the other optimization algorithms, and these
are: EPSO (Ngo et al. 2016), hybrid real-binary PSO (HPSO)
(Jin and Rahmat-Samii 2010), α constraint simplex method
(α simplex) (Takahama and Sakai 2005), improved stochas-
tic ranking (ISR) (Runarsson and Xin 2005), GA hybrid
Nelder–Mead simplex search and PSO (NM-PSO) (Zahara
and Kao 2009), hybrid evolutionary algorithm and adap-
tive constraint handling technique (HEAA) (Wang et al.
2009), artificial bee colony (ABC) (Karaboga and Basturk
2007), cultural algorithms with evolutionary programming
(CAEP) (Coello and Becerra 2004), differential evolution
with dynamic stochastic selection (DEDS) (Zhang et al.
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Table 5 Friedman rank test for
unimodal and multimodal
problems with 50,000 function
evaluations

Problem 50,000 function evaluations

Algorithm RGA GSA EPSO Jaya SAMP-Jaya SAMPE-Jaya

Friedman ranks 4.8333 4.9 3.0333 3.7 2.6667 1.8667

p value 4.16E−06

χ2 32.7822

Fig. 2 Friedman rank test for
unimodal and multimodal
problems with 50,000 function
evaluations

Table 6 Friedman rank test for unimodal and multimodal problems with 200,000 function evaluations

Problem 200,000 function evaluations

Algorithm PSO CPSO CLPSO FFIPS F-PSO AIWOP EPSO Jaya SAMP-Jaya SAMPE-Jaya

Friedman ranks 7.3 7.6333 5.8 7.3 8.1 5.2 4.4667 3.866 2.9 2.4333

p value 3.13E−12

χ2 73.4921

Fig. 3 Friedman rank test for
unimodal and multimodal
problems with 200,000 function
evaluations

Table 7 Friedman rank test for CEC 2015 problems with 10 dimensions

Algorithm DE (μ + λ)-ES CMAES-S CAMES-G EPSO Jaya SAMP-Jaya SAMPE-Jaya

Friedman ranks 5.9333 4.6 6.2667 7.4667 4.1333 3.8 2.1333 1.6667

p value 9.06E−13

χ2 71.0511
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Table 8 Friedman rank test for CEC 2015 problems with 30 dimensions

Algorithm DE (μ + λ)-ES CMAES-S CAMES-G EPSO Jaya SAMP-Jaya SAMPE-Jaya

Friedman ranks 5.3333 6.0667 6 6.9333 3.9333 2.9333 2.6 2.2

p value 3.87E−10

χ2 57.9488

Fig. 4 Friedman rank test for
CEC 2015 problems with 10
dimensions

Fig. 5 Friedman rank test for
CEC 2015 problems with 30
dimensions

2008), stochastic ranking (SR) (Runarsson and Xin 2000),
differential evolution (DE) (Lampinen 2002), particle swarm
optimization with differential evolution (PSO-DE) (Liu et al.
2010), simple multi-membered evolution strategy (SMES)
(Mezura-Montes and Coello 2006), cultured differential evo-
lution (CULDE) (Becerra and Coello 2006), changing range
genetic algorithm (CRGA) (Amirjanov 2006), self-adaptive
penalty function (SAPF) (Tessema and Yen 2006), adap-
tive segregational constraint handling evolutionary algorithm
(ASCHEA) (Hamida andSchoenauer 2002), homomorphous
mappings (HM) (Koziel and Michalewicz 1999), chaotic
gray wolf optimization (CGWO) algorithm (Kohli and Arora
2017), gravitational search algorithm (GSA), particle swarm
optimization (PSO), whale optimization algorithm (WOA)
(Mirjalili and Lewis 2016), thermal exchange optimization
algorithm (TEOA) (Kaveh and Dadras 2017), SAMP-Jaya
and Jaya algorithms.

The comparison of results for the problem 1 is shown
in Table 9. It can be observed from this table that the best
value found by the SAMPE-Jaya algorithm is better or com-
petitive in comparison with the other algorithms. Similarly,
the value of mean and worst function value obtained by the
SAMPE-Jaya algorithm are better as compared to the other
algorithms. The proposed SAMPE-Jaya algorithm requires
96.52, 83.77, 91.13, 97.56, 94.92, 82.64, 86.84, 82.64, 59.43,
99.13, 94.59, 93.91, 87.84, 96.08, 99.18, 75.66, 7.64 and
20.26% fewer function evaluation in comparison with SR,
SMES, ISR, SAPF, ABC, CRGA, PSO, DE, HM, DEDS,
HEAA, CULDE, α-simplex, ASCHEA, EPSO, SAME-Jaya
and Jaya algorithms, respectively.

Table 10 presents the comparison of the results obtained
by SAMPE-Jaya algorithm for problem 2with different algo-
rithms. It canbeobserved from this table that the best function
value achieved by the SAMPE-Jaya algorithm and other
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Table 9 Comparison of the statistical results for constrained problem
1

Method Best Worst Average SD MFEs

SR 0.7500 0.7500 0.7500 8.00E−05 350,000

SMES 0.7500 0.7500 0.7500 1.52E−04 75,000

ISR 0.7500 0.7500 0.7500 1.10E−16 137,200

SAPF 0.7490 0.7570 0.7510 2.00E−03 500,000

ABC 0.7500 0.7500 0.7500 0.00E+00 240,000

PSO-DE 0.7500 0.7500 0.7500 2.50E−07 70,100

CRGA 0.7500 0.7570 0.7520 2.50E−03 3000

PSO 0.7500 0.9988 0.8605 8.40E−02 70,100

DE 0.7490 0.7490 0.7490 N/A 30,000

HM 0.7500 0.7500 0.7500 N/A 1400,000

DEDS 0.7499 0.7499 0.7499 0.00E+00 225,000

HEAA 0.7500 0.7500 0.7500 3.40E−16 200,000

CULDE 0.7499 0.7964 0.7580 1.71E−02 100,100

α-simplex 0.7499 0.7499 0.7499 4.90E−16 308,125

ASCHEA 0.7500 N/A 0.7500 N/A 1500,000

EPSO 0.7500 0.7508 0.7501 1.62E−04 50,000

Jaya
algorithm

0.74750 0.747515 0.747502 0.000005 15261.333

SAMP-Jaya 0.74750 0.747513 0.747501 0.000003 13176.333

SAMPE-Jaya
(for P = 15
and
ES = 2)

0.74750 0.747501 0.747500 0.0000002 12168.200

Source: The results of this table except the results of Jay, SAMP-Jaya
and SAMPE-Jaya algorithm are taken from Ngo et al. (2016)
P population size, ES elite size

algorithms are same. The values of worst, average andSD
achieved by using the proposed SAMPE-Jaya algorithm are
better or competitive in comparison with the rest of the algo-
rithms. The value of MFEs required by the SAMPE-Jaya
algorithm is 98.48, 98.92, 99.83, 98.26, 97.57, 83.81, 34.37,
97.94, 98.26, 98.98, 98.98, 98.56, 98.88, 87.96, 99.17, 28.12
and 33.16% less as compared to ISR, DEDS, ASCHEA, GA,
PSO-DE, NM-PSO, CAEP, HPSO, DE, CRGA, SR, SAPF,
SMES, CULDE, PSO, HEAA, α-simplex, ABC, EPSO,
SAMP-Jaya and Jaya algorithms, respectively.

Comparison of the statistical result for problem 3 is shown
in Table 11. It can be observed from this table that the best
function value achieved by the SAMPE-Jaya algorithm is
same or better as compared to the rest of the algorithms.
The values of worst mean and SD obtained by the SAMPE-
Jaya algorithm are better or competitive in comparison with
the rest of the algorithms. The value MFEs required by the
SAMPE-Jaya algorithm is 99.78, 99.77, 98.57, 97.71, 96.80,
78.67, 13.54, 97.28, 97.71, 98.66, 98.66, 98.66, 98.10, 99.36,
98.90, 5.32 and 12.63% less as compared to ASCHEA,
HM, DEDS, PSO-DE, CULDE, DE, CRGA, SR, PSO,

Table 10 Comparison of the statistical result for constrained problem
2

Method Best Worst Average SD MFEs

ISR −0.0958 −0.0958 −0.0958 2.70E−17 160,000

DEDS −0.0958 −0.0958 −0.0958 4.00E−17 225,000

ASCHEA −0.0958 N/A −0.0958 N/A 1500,000

GA −0.0958 −0.0958 −0.0958 2.70E−09 4486

PSO-DE −0.0958 −0.0958 −0.0958 1.30E−12 10,600

NM-PSO −0.0958 −0.0958 −0.0958 3.50E−08 2103

CAEP −0.0958 −0.0958 −0.0958 0.00E+00 50,020

HPSO −0.0958 −0.0958 −0.0958 1.20E−10 81,000

DE −0.0958 −0.0958 −0.0958 N/A 10,000

CRGA −0.0958 −0.0958 −0.0958 4.40E−06 64,900

SR −0.0958 −0.0958 −0.0958 2.60E−17 76,200

SAPF −0.0958 −0.0927 −0.0956 1.06E−03 500,000

SMES −0.0958 −0.0958 −0.0958 0.00E+00 240,000

CULDE −0.0958 −0.0958 −0.0958 1.00E−07 100,100

PSO −0.0958 −0.0291 −0.0945 9.40E−03 10,600

HEAA −0.0958 −0.0958 −0.0958 2.80E−17 200,000

HM −0.0958 −0.0291 −0.0892 N/A 1400,000

α-simplex −0.0958 −0.0958 −0.0958 3.80E−13 306,248

ABC −0.0958 −0.0958 −0.0958 0.00E+00 240,000

EPSO −0.0958 −0.0958 −0.0958 1.26E−17 5000

Jaya
algorithm

−0.0958 −0.0958 −0.0958 1.288e−17 3,510.0

SAMP-Jaya −0.0958 −0.0958 −0.0958 1.062e−17 2888.0

SAMPE-Jaya
(for P = 10
and
ES = 2)

−0.0958 −0.0958 −0.0958 1.062e−20 2428.0

Source: The results of this table except the results of Jaya and SAMP-
Jaya algorithm are taken from Ngo et al. (2016)
P population size, ES elite size

ABC, SMES, ISR, SAPF, HEAA, EPSO, α-simplex, EPSO,
SAMP-Jaya and Jaya algorithms, respectively.

Comparison of the statistical result for problem 4 is
presented in Table 12. It can be observed from this table
that the best function value obtained by the SAMPE-Jaya
algorithm is same or better in comparison with the other
algorithms. The values of worst, mean andSD obtained by
the proposed SAMPE-Jaya algorithm are also better or com-
petitive in comparison with the other algorithms. The value
of MFEs required by the SAMPE-Jaya algorithm is 98.05,
97.91, 91.66, 91.66, 99.08, 81.73, 87.84, 41.64, 94.14, 91.66,
85.41, 87.84, 70.85, 87.03, 89.24, 90.97, 91.66, 88.23, 87.84,
76.65, 3.95 and 4.83% less as compared to ASCHEA, HM,
GA2, GA1, GA, HS, SMES, CRGA, SAPF, SR, HEAA, DE,
CULDE, PSO, DEDS, ISR, α-simplex, PESO, CoDE, ABC,
EPSO, SAMP-Jaya and Jaya algorithms, respectively.

The comparison of the statistical result for problem 5 is
presented in Table 13. It can be observed from this table that
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Table 11 Comparison of the statistical result for constrained problem
3

Method Best Worst Average SD MFEs

ASCHEA −6961.810 N/A −6961.810 N/A 1500,000

HM −6952.100 −5473.900 −6342.600 N/A 1400,000

DEDS −6961.814 −6961.814 −6961.814 0.00E+00 225,000

PSO-DE −6961.814 −6961.814 −6961.814 2.30E−09 140,100

CULDE −6961.814 −6961.814 −6961.814 1.00E−07 100,100

DE −6961.814 −6961.814 −6961.814 N/A 15,000

CRGA −6956.251 −6077.123 −6740.288 2.70E+02 3700

SR −6961.814 −6350.262 −6875.940 160E+00 118,000

PSO −6961.814 −6961.814 −6961.814 6.50E−06 140,100

2ABC −6961.814 −6961.805 −6961.813 2.00E−03 240,000

SMES −6961.814 −6962.482 −6961.284 1.85E+00 240,000

ISR −6961.814 −6961.814 −6961.814 1.90E−12 168,800

SAPF −6961.046 −6943.304 −6953.061 5.87E+00 500,000

HEAA −6961.814 −6961.814 −6961.814 4.60E−12 200,000

EPSO −6961.814 −6961.811 −6961.813 6.20E−04 20,000

α-simplex −6961.814 −6961.814 −6961.814 1.30E−10 293,367

CGWO – – −6493.18 – –

Jaya algo-
rithm

−6961.811 −6961.811 −6961.811 1.469e−11 3661.166

SAMP-
Jaya

−6961.814 −6961.814 −6961.814 1.068e−11 3378.666

SAMPE-
Jaya (for
P = 10
and
ES = 2)

−6961.814 −6961.814 −6961.814 1.068e−14 3198.666

Source: The results of this table except the results of Jaya and SAMP-
Jaya algorithm are taken from Ngo et al. (2016)
P population size, ES elite size

the best function value recorded by using the SAMPE-Jaya
algorithm is better as compared to the other algorithms. The
values of worst mean andSD obtained by the SAMPE-Jaya
algorithm are also better or competitive in comparison with
the rest of the algorithms. The value of MFEs required by
the proposed SAMPE-Jaya algorithm is 99.19, 99.25, 87.24,
77.51, 83.95, 86.11, 83.95, 88.86, 95.31, 82.69, 79.32, 97.75,
95.31, 95.31,77.50, 95.00, 94.37, 94.14, 96.31, 77.50, 4.25
and 68.80% less as compared to HM, ASCHEA, SR, CAEP,
PSO, HPSO, PSO-DE, CULDE, DE, HS, CRGA, SAPF,
SMES,ABC,DELC,DEDS,HEAA, ISR,α-simplex, EPSO,
SAMP-Jaya and Jaya algorithms, respectively.

The comparison of the statistical results for problem 6 is
shown in Table 14. It can be observed from this table that
the best function value achieved by using the SAMPE-Jaya
algorithm is better competitive in comparison with the other
algorithms. The values of worst and mean obtained by the
proposed SAMPE-Jaya algorithm are also better or compet-
itive as compared to the rest of the algorithms. The value of

Table 12 Comparison of the statistical result for constrained problem
4

Method Best Worst Average SD MFEs

IGA 680.630 680.630 680.630 1.00E−05 N/A

ASCHEA 680.630 – 680.641 – 1,500,000

HM 680.910 683.180 681.160 4.11E−02 1,400,000

GA2 680.642 – – – 350,070

GA1 680.634 680.651 680.642 N/A 350,070

GA 680.630 680.654 680.638 6.61E−03 320,000

HS 680.641 – – – 160,000

SMES 680.632 680.719 680.643 1.55E−02 240,000

CRGA 680.726 682.965 681.347 5.70E−01 50,000

SAPF 680.773 682.081 681.246 3.22E−01 500,000

SR 680.630 680.763 680.656 3.40E−02 350,000

HEAA 680.630 680.630 680.630 5.80E−13 200,000

DE 680.771 680.144 680.503 6.70E−01 240,000

CULDE 680.630 680.630 680.630 1.00E−07 100,100

PSO 680.635 684.529 680.971 5.10E−01 140,100

CPSO-
GD

680.678 681.371 680.781 1.48E−02 N/A

DEDS 680.630 680.630 680.630 2.90E−13 225,000

ISR 680.630 680.630 680.630 3.20E−13 271,200

α-simplex 680.630 680.630 680.630 2.90E−10 323,426

PESO 680.631 680.630 680.630 – 350,000

CoDE 680.771 685.144 681.503 – 248,000

ABC 680.634 680.638 680.64 4.00E−03 240,000

EPSO 680.637 680.673 680.649 8.14E−03 125,000

CGWO – – 7046.13 – –

Jaya algo-
rithm

680.673 680.673 680.673 1.4692e−11 30,661

SAMP-
Jaya

680.673 680.673 680.673 1.0689e−11 30,378

SAMPE-
Jaya (for
P = 15
and
ES = 2)

680.673 680.673 680.673 1.0689e−14 29,178

Source: The results of this table except the results of Jaya and SAMP-
Jaya algorithm are taken from Ngo et al. (2016)
P population size, ES elite size

SD obtained by the proposed SAMPE-Jaya algorithm ismin-
imum as compared to the other algorithms. The value MFEs
required by the proposed SAMPE-Jaya algorithm is 98.52,
77.57, 90.80, 90.80, 84.25, 90.80, 95.58, 93.10, 93.68, 90.36,
88.96, 88.96, 90.19, 99.72, 92.90, 93.69, 84.25, 77.93, 98.42,
4.74 and 19.11% less as compared to ASCHEA, CULDE,
ABC, PSO-DE, SMES, SAPF, GA, ISR, SR, HEAA, DELC,
DEDS,DE,α-simplex, PESO,ABC, EPSO, SAMP-Jaya and
Jaya algorithms, respectively.

It can be observed from results of Tables 9, 10, 11, 12, 13
and 14 that the proposed SAMPE-Jaya algorithm has per-
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Table 13 Comparison of the
statistical result for constrained
problem 5

Method Best Worst Mean SD MFEs

HM −30664.500 −30,645.900 −30,665.300 N/A 1,400,000

ASCHEA −30,665.500 – −30,665.500 – 1,500,000

SR −30,665.539 −30,665.539 −30,665.539 2.00E−05 88,200

CAEP −30,665.500 −30,662.200 −30,662.500 9.30E+00 50,020

PSO −30,663.856 −30,252.325 −30,570.9286 8.10E+01 70,100

HPSO −30,665.539 −30,665.539 −30,665.539 1.70E−06 81,000

PSO-DE −30,665.538 −30,665.538 −30,665.538 8.30E−10 70,100

CULDE −30,665.538 −30,665.538 −30,665.538 1.00E−07 100,100

DE −30,665.539 −30,665.509 −30,665.536 5.07E−03 240,000

HS −30,665.500 – – – 65,000

CRGA −30,665.520 −30,660.313 −30,664.398 1.60E+00 54,400

SAPF −30,665.401 −30,656.471 −30,655.922 2.04E+00 500,000

SMES −30,665.539 −30,665.539 −30,665.539 0.00E+00 240,000

ABC −30,665.539 −30,665.539 −30,665.539 0.00E+00 240,000

DELC −30,665.539 −30,665.539 −30,665.539 1.00E−11 50,000

DEDS −30,665.539 −30,665.539 −30,665.539 2.70E−11 225,000

HEAA −30,665.539 −30,665.539 −30,665.539 7.40E−12 200,000

ISR −30,665.539 −30,665.539 −30,665.539 1.10E−11 192,000

α-simplex −30,665.539 −30,665.539 −30,665.539 4.20E−11 305,343

EPSO −30,665.538 −30,665.538 −30,665.538 1.07E−11 50,000

Jaya
algorithm

−30,665.5403 −30,665.5403 −30,665.5403 1.3861e−11 35,200.3

SAMP-Jaya −30,665.5403 −30,665.5403 −30,665.5403 4.5922e−11 11,747.6

SAMPE-Jaya
(for P = 10
and
ES = 2)

−30,665.5403 −30,665.5403 −30,665.5403 4.5251e−11 11,247.6

Source: The results of this table except the results of Jaya and SAMP-Jaya algorithm are taken from Ngo et al.
(2016)
P population size, ES elite size

formed better or competitive in comparison with the rest
of the algorithms. The SAMPE-Jaya algorithm requires less
number of mean function evaluations in comparison with the
other algorithms. It can be concluded from above results that
the proposed SAMPE-Jaya algorithm is performing well on
constrained benchmark problems as compared to the rest of
the algorithms.

3.3 Analysis of results related to constrained
engineering design problems

Furthermore, the capability of proposed the SAMPE-Jaya
algorithm is tested in this section by applying it on four
constrained mechanical designs benchmark problems taken
from the literature. Description of the problems can be found
from the literature (Ngo et al. 2016). Problem 1 is the min-
imization of the welded beam design cost. Problem 2 is the
minimization of the total cost of a pressure vessel. Problem
3 is the problem of tension/compression spring design. Min-

imization of the weight of the spring is the objective of this
problem. Problem 4 is a minimization problem of design of
speed reducer.

Table 15 presents the statistical results over 30 runs of
22 algorithms for the test problem 1. It can be observed
from this table that for the welded beam design problem pro-
posed SAMPE-Jaya algorithm has obtained same best and
mean values as compared to elitist-TLBO (Rao and Wagh-
mare 2014) EPSO, SAMP-Jaya, Jaya algorithm andDE-PSO
but the same is better in comparison with the rest of the
algorithms. NM-PSO had obtained better value of the objec-
tive function. However, mean function value obtained by this
approach is inferior to the proposed SAMPE-Jaya algorithm.
Standard deviation (SD) and the worst solution obtained
by the SAMPE-Jaya algorithm are superior to the rest of
the algorithms considered for comparison. It requires lesser
numbers of function evaluations for obtaining the best value
as comparison to the remaining algorithms considered for
the comparison. The SAMPE-Jaya algorithm is superior in
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Table 14 Comparison of the statistical result for constrained problem
6

Method Best Worst Average SD MFEs

ASCHEA −1 N/A −0.9999 N/A 1,500,000

CULDE −0.9954 −0.6399 −0.7886 1.15E−01 100,100

ABC −1.0000 −1.0000 −1.0000 0.00E+00 240,000

PSO-DE −1.0050 −1.0050 −1.0050 3.80E−12 140,100

SMES −1.0000 −1.0000 −1.0000 2.09E−04 240,000

SAPF −1.0000 −0.8870 −0.9640 3.01E−01 500,000

GA 0.9999 −0.9998 0.9999 5.99E−05 320,000

ISR −1.0010 −1.0010 −1.0010 8.20E−09 349,200

SR −1.0000 −1.0000 −1.0000 1.90E−04 229,000

HEAA −1.0000 −1.0000 −1.0000 5.20E−15 200,000

DELC −1.0000 −1.000 −1.0000 2.10E−06 200,000

DEDS −1.0005 −1.0005 −1.0005 1.90E−08 225,000

DE −1.0252 −1.0252 −1.0252 0.00E+00 8000,000

α-simplex −1.0005 −1.0005 −1.0005 8.50E−14 310,968

PESO −0.9939 −0.4640 −0.7648 N/A 350,000

PSO −1.0050 −1.0043 −1.0049 1.00E+00 140,100

EPSO −1.0000 −0.9998 −1.0000 4.35E−05 100,000

HM −0.9997 −0.9978 −0.9989 N/A 1,400,000

CGWO N/A N/A −0.9681 N/A N/A

Jaya algo-
rithm

−1.000000 −1.000000 −1.000000 6.41429e−16 27,278.3

SAMP-
Jaya

−1.000000 −1.000000 −1.000000 6.41429e−20 23,165.0

SAMPE-
Jaya (for
P = 25
and
ES = 2)

−1.000000 −1.000000 −1.000000 6.41429e−19 22,065.0

Source: The results of this table except the results of Jaya and SAMP-Jaya
algorithm are taken from Ngo et al. (2016)
P population size, ES elite size

terms of robustness as compared to the remaining algorithms
for the welded beam design problem. It requires approxi-
mately 98.06, 95.35, 97.73, 85.97, 94.19, 93.03, 94.27, 98.06,
90.72, 94.19, 99.48, 90.71, 95.35 and 20.06% lesser func-
tion evaluations in comparison with the GA3, GA4, CAEP,
CPSO,HPSO, PSO-DE,MGA, SC,DE,UPSO,EDE, EPSO,
ETLBO, WOA, PSO, GSA (Mirjalili and Lewis 2016) and
Jaya algorithm, respectively. It can be concluded based on
this results that for the welded beam design problem the
SAMPE-Jaya algorithm performs better as compared to the
rest of the algorithms.

Table 16 presents the comparison of statistical results of
25 algorithms for the test problem 2. Performance of the
SAMPE-Jaya algorithm is superior to the rest of the algo-
rithm for pressure vessel design problem in terms of mean
solution, best solution andworst solution. The value reported
by using CGWO (Kohli and Arora 2017) has obtained bet-

Table 15 Comparison of the statistical result for welded beam design
problem

Method Best Worst Mean SD MFEs

CDE 1.733460 – 1.768150 – 240,000

UPSO 1.921990 – 2.837210 6.83E−01 100,000

DE 1.733461 1.824105 1.768158 2.21E−02 204,800

SC 2.385435 6.399679 3.002588 9.60E−01 33,095

MGA 1.824500 1.995000 1.919000 5.37E−02 –

NM-PSO 1.724717 1.733393 1.726373 3.50E−03 80,000

PSO-DE 1.724852 1.724852 1.724852 6.70E−16 66,600

HPSO 1.724852 1.814295 1.749040 4.01E−02 81,000

CPSO 1.728024 1.782143 1.748831 1.29E−02 240,000

CAEP 1.724852 3.179709 1.971809 4.43E−01 50,020

GA4 1.728226 1.993408 1.792654 7.47E−02 80,000

GA3 1.748309 1.785835 1.771973 1.12E−02 900,000

EPSO 1.724853 1.747220 1.728219 5.62E−03 50,000

WOA – – 1 .7320 0 .0226 9,900

PSO – – 1 .7422 0 .01275 13,770

GSA – – 3 .5761 1 .2874 10,750

TEOA 1.725284 1.931161 1.768040 0.0581661 –

CGWO 1.725450 2.435700 2.428900 1.35780 –

ETLBO 1.724852 1.724852 1.724852 0.033000 99,999

Jaya
algorithm

1.724852 1.724852 1.724852 2.2e−08 4739.00

SAMP-Jaya 1.724852 1.724852 1.724852 6.70e−16 3618.25

SAMPE-Jaya
(for P = 20
and
ES = 2)

1.724807 1.724807 1.724807 2.75E−17 4641.00

Bold value shows better solution
P population size, ES elite size
Source: The results of this table except the results of Jaya and SAMP-
Jaya algorithm are taken from Ngo et al. (2016)

ter values of best function value and mean function value.
It is due to the consideration of value of decision variables
x1(thickness of shell), and x2(thickness of head) as contin-
uous variables instead of discrete variables. Therefore, the
results reported by the CGWO are not feasible. The SD value
produced by Jaya algorithm is better in comparison with the
rest of the algorithms. The number of function evaluations
required for this problem is lesser for the present methods
in comparison with the remaining algorithms expect elitist-
TLBO. It can be concluded based on these results that the
SAMPE-Jaya algorithmperforms better for this problem also
as compared to the rest of the algorithms in term of quality
of solution.

The comparison of the statistical results over 30 indepen-
dent runs of 27 algorithms for the test problem 3 is shown
in Table 17. For tension/compression problem, SAMPE-Jaya
algorithm is better in comparisonwith the other algorithms in
terms of best value except NM-PSO. In terms of mean value
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Table 16 Comparison of the
statistical result for pressure
vessel design problem

Method Best Worst Mean SD MFEs

GA3 6288.7445 6308.4970 6293.8432 7.41E+00 900,000

GA4 6059.9463 6469.3220 6177.2533 1.30E+02 80,000

CPSO 6061.0777 6363.8041 6147.1332 8.64E+01 240,000

HPSO 6059.7143 6288.6770 6099.9323 8.62E+01 81,000

NM-PSO 5930.3137 5960.0557 5946.7901 9.16E+00 80,000

G-QPSO 6059.7208 7544.4925 6440.3786 4.48E+02 8000

QPSO 6059.7209 8017.2816 6440.3786 4.79E+02 8000

PSO 6693.7212 14076.324 8756.6803 1.49E+03 8000

CDE 6059.7340 6371.0455 6085.2303 4.30E+01 204,800

UPSO 6544.2700 N/A 9032.5500 9.95E+02 100,000

PSO-DE 6059.7140 N/A 6059.7140 N/A 42,100

ABC 6059.7140 N/A 6245.3080 2.05E+02 30,000

(μ + λ)-ES 6059.7016 N/A 6379.9380 2.10E+02 30,000

TLBO 6059.7143 N/A 6059.7143 N/A 10,000

MBA 5889.3216 6392.5062 6200.6477 1.60E+02 70,650

EPSO 5885.3383 7315.6752 6254.1804 4.24E+02 10,000

5885.3328 6076.6205 5920.8442 5.21E+01 100,000

WOA N/A N/A 6068 .05 65 .6519 6300

GSA N/A N/A 8932 .95 683 .5475 7110

PSO N/A N/A 6531 .10 154 .3716 14790

TEOA 5887.511073 6134.187981 5942.565917 62.2212 N/A

WOAa 5034.180 6188.110 5783.582 254.505 N/A

ETLBO 5885.3336 5887.3338 5956.6921 11.0000 4992

Jaya
algorithm

5872.21287 5872.21287 5872.2127 4.1369e−13 7004.33

SAMP-Jaya 5872.21287 5872.21287 5872.2127 5.0424e−12 6513.33

SAMPE-Jaya
(for P = 10
and
ES = 2)

5872.21287 5872.21287 5872.2127 2.3286E−12 6003.00

Bold value shows better solution
P population size, ES elite size
Source: The results of this table except the results of Jaya and SAMP-Jaya algorithm are taken from Ngo et al.
(2016)
aInfeasible solution

and worst value of function, NM-PSO is superior. Function
evaluations required by SAMPE-Jaya algorithm are lesser
in comparison with the remaining algorithms expect EPSO.
It is reported that the CGWO (Kohli and Arora 2017) has
obtained the better values of the best, worst and mean for
this problem. However, second constrained (g2) imposed on
this is violated. It seems that lower value of penalty was used.
Hence, results reported by using CGWO are infeasible.

The comparison of the statistical results over 30 indepen-
dent runs of fourteen algorithms for the test problem 4 is
shown in Table 18. For speed reducer problem, the perfor-
mance of the SAMPE-Jaya algorithm is better as compared
to the rest of the algorithms in term of all parameters consid-
ered for the comparison except SD. The Jaya algorithm has
achieved better value of SD for this problem. However, the

MFEs required for this problem using SAMPE-Jaya algo-
rithm is reduced by 13.61 and 51.86% in comparison with
SAMP-Jaya and Jaya algorithms, respectively. The present
approach has produced improved results for this problem.
The best value of the objective function is improved by 8%.

It can be concluded from Tables 15, 16, 17 and 18 that
the performance of the proposed SAMPE-Jaya algorithm is
better or competitive to the other algorithms for the standard
mechanical design problems. It requires comparatively less
function evaluations for achieving the optimal solutions.

Furthermore, the performance of the proposed SAMPE-
Jaya algorithm is tested on three large-scale problems taken
from the literature (Cheng and Jin 2015). The dimensions
of the considered problems are: 100, 500 and 1000. Table 19
presents comparison of the proposedSAMPE-Jaya algorithm
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Table 17 Comparison of the
statistical result for
tension/compression spring
problem

Method Best Worst Average SD MFEs

HPSO 0.012665 0.012719 0.012707 1.58E−05 81,000

GA4 0.012681 0.012973 0.012742 5.90E−05 80,000

NM-PSO 0.012630 0.012633 0.012631 8.47E−07 80,000

CPSO 0.012675 0.012924 0.012730 5.20E−04 240,000

CAEP 0.012721 0.015116 0.013568 8.42E−04 50,020

PSO 0.012857 0.071802 0.019555 1.16E−02 2000

DELC 0.012665 0.012666 0.012665 1.30E−07 20,000

G-QPSO 0.012665 0.017759 0.013524 1.27E−03 2000

QPSO 0.012669 0.018127 0.013854 1.34E−03 2000

HEAA 0.012665 0.012665 0.012665 1.40E−09 24,000

DE 0.012670 0.012790 0.012703 2.70E−05 204,800

UPSO 0.013120 N/A 0.022940 7.20E−03 100,000

DEDS 0.012665 0.012738 0.012669 1.30E−05 24,000

(μ + λ)-ES 0.012689 N/A 0.013165 3.90E−04 30,000

SC 0.012669 0.016717 0.012923 5.90E−04 25,167

PSO-DE 0.012665 0.012665 0.012665 1.20E−08 24,950

CDE 0.012670 N/A 0.012703 N/A 240,000

ABC 0.012665 N/A 0.012709 1.28E−02 30,000

GA3 0.012705 0.012822 0.012769 3.94E−05 900,000

EPSO 0.012670 0.016911 0.014056 1.27E−03 2000

0.012669 0.014218 0.013030 3.64E−04 10,000

WOA N/A N/A 0 .0127 0.0003 4410

GSA N/A N/A 0.136 0.0026 4980

PSO N/A N/A 0 .0139 0.0033 5460

TEOA 0.012665 0.012715 0.012685 4.4079e−06 –

CGWOa 0.0119598 0.0121791 0.0121749 1.039E−05 –

ETLBO 0.012665 0.012678 0.012758 0.0004900 7022

Jaya
algorithm

0.012665 0.012697 0.012732 1.89511e−05 7744.66

SAMP-Jaya 0.012664 0.013193 0.012714 9.25221e−05 6861.00

SAMPE-Jaya
(for P = 15
and
ES = 2)

0.012650 0.012654 0.012651 6.2558E−07 6095.20

Bold value shows better solution;
P population size, ES elite size
aInfeasible solution

with other algorithms. It can be observed from Table 19
that the performance of SAMPE-Jaya algorithm is better for
Rosenbrock and Griewank function and competitive for Ras-
trigin function as compared to the other algorithms for the
considered large-scale problems. Hence, it can be concluded
based on these results that the proposed SAMPE-Jaya algo-
rithm is performing satisfactorily for the large-scale problems
also.

After evaluating the performance of the SAMPE-Jaya
algorithm on standard benchmark problems, a practical case
study of micro-channel heat sink (MCHS) design optimiza-
tion is considered. The motivation of the present work is to

make an attempt to see whether any improvement is possible
in the design of MCHS by using a SAMPE-Jaya algorithm.

The next section presents the application of the SAMPE-
Jaya algorithm for the design optimization of MCHS.

4 Application of SAMPE-Jaya algorithm for
the case study of a heat sink design

This case study was introduced by Husain and Kim (2010).
A 10 mm × 10 mm × 0.42 mm silicon-based micro-channel
heat sink (MCHS) considered by Husain and Kim (2010) is
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Table 18 Comparison of the statistical result for speed reducer design problem

Best Worst Mean SD MFEs Best

SC 2994.744241 3009.964736 3001.758264 4.00E+00 54,456

(μ + λ)-ES 2996.348000 N/A 2996.348000 0.00E+00 30,000

DEDS 2994.471066 2994.471066 2994.471066 3.60E−12 30,000

MDE 2996.356689 N/A 2996.367220 8.20E−03 24,000

DELC 2994.471066 2994.471066 2994.471066 1.90E−12 30,000

HEAA 2994.499107 2994.752311 2994.613368 7.00E−02 40,000

PSO-DE 2996.348167 2996.348204 2996.348174 6.40E−06 54,350

ABC 2997.058000 N/A 2997.058000 0.00E+00 30,000

TLBO 2996.348170 N/A 2996.348170 0.00E+00 10,000

MBA 2994.482453 2999.652444 2996.769019 1.56E+00 6300

EPSO 2994.471072 2994.471227 2994.471119 4.71E−05 5000

ETBO 2996.348 2996.348 2996.348 0.000045 9.988

Jaya
algorithm

2760.673988 2760.673988 2760.673988 1.3875e−12 6720

SAMP-Jaya 2760.673988 2760.673988 2760.673988 2.5412e−11 3744.66

SAMPE-Jaya
(for P = 15
and
ES = 2)

2760.673988 2760.673988 2760.673988 4.7934E−13 3235

Bold value shows better solution
P population size, ES elite size
Source: The results of this table except the results of Jaya and SAMP-Jaya algorithm are taken from Ngo et al. (2016)

Table 19 Performance of
SAME-Jaya with large-scale
problems

Function Dimension

100 500 1000

Rosenrock SAMPE-Jaya 4.68E−27
(P = 15
and
ES = 2)

2.73E−15
(P = 20
and
ES = 2)

1.60E−19 (P
= 15 and ES
= 2)

CCPSO 7.73E−14 7.73E−14 5.18E−13

MLCC 9.02E−15 4.30E−13 8.46E−13

Sep-CMA-ES 9.02E−15 2.25E−14 7.81E−13

Rastrigin SAMPE-Jaya 3.25E+01(P
= 15 and ES
= 2)

7.80E+01(P
= 20 and ES
= 2)

1.01E+02 (P
= 25 and ES
= 4)

CCPSO 6.08E+00 5.79E+01 7.82E+01

MLCC 2.31E+01 6.67E+01 1.09E+02

Sep-CMA-ES 2.31E+01 2.12E+02 3.65E+02

Griewank SAMPE-Jaya 9.15E−04 (P
= 15 and ES
= 2)

1.85E+02 (P
= 15 and ES
= 2)

8.01E+02 (P
= 20 and ES
= 2)

CCPSO 4.23E+02 7.24E+02 1.33E+03

MLCC 1.50E+02 9.25E+02 1.80E+03

Sep-CMA-ES 4.31E+00 2.93E+02 9.10E+02

CCPSO: cooperatively coevolving particle swarm optimization; MLCC: multilevel cooperative coevolution;
Sep-CMA-ES: separable covariance matrix adaptation evolution strategy
P population size, ES elite size
Source: results of this table except the results of SAMPE-Jaya algorithm are taken from Cheng and Jin (2015)
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Fig. 6 Conventional diagram of trapezoidal MCHS (Husain and Kim
2010)

Table 20 Design variables and their ranges for case study

Limits Variables

α(wc/hc) β(ww/hc) γ (wb/wc)

Upper 0.10 0.02 0.50

Lower 2.50 1.0 1.00

shown in Fig. 6. Water was used as coolant liquid, and it
flowed into the micro-channel and left at the outlet. The sili-
con substrate occupied the remaining portion of heat sink. No
slip condition was assumed at the inner walls of the channel,
i.e., u = 0.

The thermal condition in the z-direction was given as:

− ks((∂Ts)/(∂xi)) = q at z = 0 and ks((∂Ts)/(∂xi))

= 0 at z = lz (4.1)

The design variables considered by Husain and Kim (2010)
were α = wc/hc, β = ww/hc, and γ = wb/wc, where wc is
the micro-channel width at bottom; wb is the micro-channel
width at top; ww is the fin width and hc is the micro-channel
depth. hc is kept 400μm during the whole optimization pro-
cedure.

In this case study, two objective functionswere considered
and those were (i) thermal resistance associated with heat
transfer performance and (ii) the pumping power to drive
the coolant or to pass the coolant through the micro-channel.
Table 20 shows design variables α, β and γ , and their limits
for both rectangular (wb/wc = 1) and trapezoidal (0.5 <

wb/wc < 1) cross sections of MCHS.
The two objective functions considered are, thermal resis-

tance and pumping power. The thermal resistance is given by:

RTH = �Tmax/(As ∗ q) (4.2)

where As is area of the substrate subjected to heat flux and
�Tmax is the maximum temperature in MCHS, which is
given as:

�Tmax = Ts,o − Tf,i (4.3)

The pumping power to move the coolant (water) through
MCHS is calculated as:

P̄ = n∗uavg∗Ac
∗�p (4.4)

where �p was the pressure drop and uavg was the mean
velocity.

Pumping power and thermal resistance compete with each
other because a decrease in pumping power contributes to
an increase in thermal resistance. Husain and Kim (2010)
calculated the objectives by using Navier–Stokes and heat
conduction equations at specific design points. The response
surface approximation (RSA) was then used to obtain the
functional forms of the two objective functions. The polyno-
mial responses are expressed as:

RTH = 0.096 + 0.31∗α − 0.019∗β − 0.003∗γ
−0.007∗θ∗β + 0.031∗α∗γ − 0.039∗β∗γ
+0.008∗α2 + 0.027∗β2 + 0.029∗γ 2 (4.5)

P̄ = 0.94 − 1.695∗α − 0.387∗β − 0.649∗γ
−0.35∗α∗β + 0.557∗α∗γ − 0.132∗β∗γ
+0.903∗α2 + 0.016∗β2 + 0.135∗γ 2 (4.6)

The design variables α, β and γ are in terms of the
ratios of the micro-channel width at bottom to depth (i.e.,
wc/hc), fin width to the micro-channel depth (i.e., ww/hc)
and micro-channel width at top to width at bottom (wb/wc),
respectively. Solving Eqs. (4.5) and (4.6) for α, β and γ will
give the optimum values of the dimensions of the micro-
channel, i.e., wc, ww, wb and hc. The three design variables
α, β and γ have significant effect on the thermal performance
of micro-channel heat sink. Design and manufacturing con-
straints can be handled in a better way, and Pareto optimal
solutions can be spread over thewhole range of variables. The
Pareto optimal analysis provides information about the active
design space and relative sensitivity of the design variables
to each objective function which is helpful in comprehen-
sive design optimization. Thus, Eqs. (4.5) and (4.6) have the
physical meaning. The design variables and rages are shown
in Table 20.

The solution obtained by a priori approach depends on the
weights assigned to various objective functions by designer
or decision maker. By changing the weights of importance
of different objective functions, a dense spread of the Pareto
points can be obtained. Following a priori approach in the
present work, the two objective functions are combined into
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Table 21 Design variables of objective functions by using TLBO, Jaya, SAMPE-Jaya and hybrid MOEA for case study 3

S. no. Design variables

α B γ

TLBO Jaya SAMPE-
Jaya

Hybrid
MOEA

TLBO Jaya SAMPE-Jaya Hybrid
MOEA

TLBO Jaya SAMPE-
Jaya

Hybrid
MOEA

1 – – 0.63399 – – – 0.02 – – – 1 –

2 0.7952 0.448167 0.7541864 0.994 0.040 0.879132 0.8945767 0.140 0.534 0.9999 1 0.528

3 0.595 0.068346 0.5704825 0.459 0.735 0.526466 0.6177118 0.693 0.5912 0.55973 0.5903021 0.991

4 0.325 0.324 0.2725593 0.096 0.745 0.721 0.706121 0.638 0.601 0.59701 0.7248777 0.982

5 0.132 0.0324 0.1 0.000 0.7601 0.857001 0.7258657 0.886 0.6299 0.9692 0.68915 0.971

6 0.1067 0.124 0.1 0.000 0.69 0.67 0.7480976 0.609 0.528 0.5692 0.6818574 0.456

7 – – 0.0324 – – – 0.857001 – – – 0.9692 –

Table 22 Comparison of results of hybrid MOEA, numerical analysis, TLBO, Jaya and SAMPE-Jaya for case study 3

S. no. Hybrid MOEA
(Husain and Kim
2010)

Numerical Anal-
ysis (Husain and
Kim 2010)

TLBO(Rao et al. 2016) Jaya (Rao et al. 2016) SAMPE-Jaya

RTH P̄ RTH P̄ RTH P̄ RTH P̄ RTH P̄ P ES

1 – – – – – – – – 0.163280 0.068143 15 & 20 2 & 4

2 0.145 0.097 0.143 0.094 0.143 0.0931 0.138308 0.086174 0.13830 0.086144 15 & 20 2 & 4

3 0.118 0.195 0.119 0.175 0.1172 0.1933 0.116959 0.192433 0.11694 0.19211 15 & 20 2 & 4

4 0.100 0.455 0.100 0.410 0.1033 0.4054 0.103345 0.402558 0.10297 0.40195 15 & 20 2 & 4

5 0.094 0.633 0.094 0.634 0.094 0.6282 0.093279 0.6282 0.09225 0.63266 15 & 20 2 & 4

6 0.093 0.828 0.094 0.821 0.0927 0.6966 0.093779 0.6444 0.09321 0.6427 15 & 20 2 & 4

7 – – – – – – – – 0.09327 0.6253 15 & 20 2 & 4

P population size, ES elite size

Fig. 7 Convergence of Jaya and SAMPE-Jaya algorithms for MCHS
problem with equal weights of the objective functions

a single objective function. The combined objective function
Z is formed as:

Minimize; Z = w1

(
Z1

Z1min.

)
+ w2

(
Z2

Z2min.

)
Z1

= Rth and Z2 = P̄ (4.7)

Fig. 8 Pareto optimal curve for MCHS problem

where w1 and w2 are the weighs assigned to the objective
functions Z1 and Z2, respectively, between 0 and 1. These
weights can be assigned to the objective functions accord-
ing to the designer’s/decision maker’s priorities. Z1min and
Z2min are the optimum values of the Z1 and Z2, respec-
tively, obtained by solving the optimization problem when
only one objective is considered at a time and ignoring the
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Table 23 Hypervolume for case study of heat sink

Hybrid MOEA Numerical method TLBO Jaya SAMPE-Jaya

Hypervolume 0.072884 0.074248 0.07389326 0.074665546463 0.0750687665

Table 24 Standard deviation of
the solutions in each iteration
using Jaya and SAMPE-Jaya
algorithms

Iteration no. Jaya algorithm SAMPE-Jaya Iteration No. Jaya algorithm SAMPE-Jaya

1 2.068073 2.92929 21 0.000676 0.001095

2 0.694924 1.687512 22 0.00068 0.00082

3 0.624445 0.998083 23 0.00068 0.000553

4 0.379873 0.598621 24 0.000669 0.000377

5 0.204628 0.392295 25 0.000598 0.000314

6 0.121914 0.243063 26 0.00051 0.000314

7 0.102022 0.1718 27 0.000442 0.000314

8 0.080869 0.108057 28 0.000369 0.000314

9 0.06223 0.056515 29 0.000313 0.000314

10 0.038211 0.047308 30 0.000232 0.000314

11 0.020686 0.011159 31 0.000182 0.000314

12 0.010589 0.008848 32 0.000139 0.000314

13 0.007294 0.007002 33 0.000136 0.000314

14 0.004371 0.005212 34 7.29E−05 0.000319

15 0.003819 0.00377 35 5.58E−05 0.000319

16 0.003189 0.002354 36 4.48E−05 0.000319

17 0.003203 0.002365 37 3.82E−05 0.000319

18 0.002541 0.002365 38 3.81E−05 0.000319

19 0.000869 0.002259 39 3.81E−05 0.000319

20 0.000738 0.001232 40 3.81E−05 0.000319

other. Now, Eq. (4.7) can be used to optimize both the objec-
tives simultaneously.

Husain and Kim (2010) used these surrogate models and a
hybrid MOEA involving NSGA-II and sequential quadratic
programming (SQP) method to find out the Pareto optimal
solutions. Husain and Kim (2010) used NSGA-II algorithm
to obtain Pareto optimal solutions, and the solutions were
refined by selecting local optimal solutions for each objective
function using a sequential quadratic programming (SQP)
method with NSGA-II solutions as initial solutions. Then K-
means clustering method was then used to group the global
Pareto optimal solutions in to five clusters. The whole pro-
cedure was termed as a hybrid multi-objective optimization
evolutionary algorithm (MOEA).

Now, the model considered by Husain and Kim (2010) is
attempted using SAMPE-Jaya algorithm. Husain and Kim
(2010) used a hybrid MOEA coupled with surrogate mod-
els to obtain the Pareto optimal solutions. Rao et al. (2016)
used TLBO and Jaya algorithms to obtain the Pareto optimal
solutions.

The values of the design variables given by the SAMPE-
Jaya algorithm, Jaya algorithm, TLBO algorithm, hybrid

MOEA and numerical analysis are shown in Table 21.
Table 22 shows the results comparison of SAMPE-Jaya algo-
rithm, Jaya algorithm, TLBO algorithm, hybrid MOEA and
numerical analysis. It can be observed from Table 22 that the
SAMPE-Jaya algorithm has performed better as compared
with hybrid MOEA, Numerical analysis, TLBO and Jaya
algorithms for different weights of the objective functions for
the bi-objective optimization problem considered. The per-
formance of TLBO algorithm comes next to Jaya algorithm.
Figure 7 presents the convergence of Jaya and SAMPE-Jaya
algorithms for MCHS problem with equal weights.

Figure 8 shows Pareto fronts obtained by using SAMPE-
Jaya algorithm, Jaya algorithm, TLBO algorithm and hybrid
MOE algorithm representing five clusters. Also, it can be
observed that the SAMPE-Jaya algorithmhas provided better
results than the hybrid MOEA proposed by Husain and Kim
(2010). Every peak end of the Pareto curve represents the
higher value of one objective and lower value of another.

In order to make a fair comparison between the perfor-
mances of the algorithms for themulti-objective optimization
problems a quantity measure index known as hypervolume
is calculated. Hypervolume is defined as the n-dimensional
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space that is enclosed by a set of points. It encapsulates in a
single unary value a measure of the spread of the solutions
along the Pareto front, as well as the closeness to the Pareto
optimal front.

Table 23 presents the value of hypervolume obtained by
the various algorithms for this case study. An observation
can be made from Table 23 that value of the hypervolume
obtained by the SAMPE-Jaya for the heat sink design opti-
mization is better than theMOGA, numerical method, TLBO
and Jaya algorithm. Hence, it can be concluded that the per-
formance of the SAMPE-Jaya algorithm is better than the
hybrid MOEA, TLBO and Jaya algorithms.

Furthermore, for checking the diversity of the search pro-
cess, standard deviation of the objective function values is
calculated and recorded after each iteration and shown in
Table 24. It can be observed from this table that the value of
standard deviation is not zero after any iteration, and it is dif-
ferent also for each iteration. This shows that the algorithm
is continuously exploring the search process, and it does not
fall in the trap of local minima. The early convergence of
Fig. 7 shows that the algorithm has reached to global opti-
mum value or near global optimum value of the objective
function in a few iterations.

The next section presents the conclusions of this work.

5 Conclusions

This study proposes an elitist-based self-adaptive multi-
population Jaya algorithm. The performance of the proposed
algorithm is examined on the small as well as large-scale
unconstrained and constrained benchmark problems in addi-
tion to the computationally expensive problems of the CEC
2015. The Friedman rank test is used to find the average rank
of the algorithm, and it is observed that the proposed algo-
rithm is better than the other algorithms. Furthermore, the
proposed method is used for the design optimization prob-
lem of a micro-channel heat sink (MCHS). In the proposed
method, multi-population search scheme is used for enhanc-
ing the searchmechanismof the Jaya algorithmwhichdivides
the population into a number of subpopulations adaptively.
This subpopulation-based scheme can be easily integrated
with single population-based advanced optimization algo-
rithms. The results of the SAMPE-Jaya for the benchmark
problems are found better or competitive to the latest reported
methods used for optimization of the same problems. In the
case of MCHS, the proposed SAMPE-Jaya algorithm has
obtained better Pareto optimal solutions as compared to those
of hybrid MOEA, numerical analysis, TLBO and Jaya algo-
rithms.

The concept of SAMPE-Jaya algorithm is simple, and it is
not having any algorithmic-specific parameters to be tuned.
Therefore, it may be easily implemented on the engineering

problems where the problems are usually complicated with
a number of design parameters and having the discontinuity
in the objective function.
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