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Abstract
Big data are data too big to be handled and analyzed by traditional software tools, big data can be characterized by five V’s
features: volume, velocity, variety, value and veracity. However, in the real world, some big data have another feature, i.e.,
class imbalanced, such as e-health big data, credit card fraud detection big data and extreme weather forecast big data are
all class imbalanced. In order to deal with the problem of classifying binary imbalanced big data, based on MapReduce,
non-iterative learning, ensemble learning and oversampling, this paper proposed an promising algorithm which includes three
stages. Firstly, for each positive instance, its enemy nearest neighbor is found with MapReduce, and p positive instances
are randomly generated with uniform distribution in its enemy nearest neighbor hypersphere, i.e., oversampling p positive
instances within the hypersphere. Secondly, l balanced data subsets are constructed and l classifiers are trained on the
constructed data subsets with an non-iterative learning approach. Finally, the trained classifiers are integrated by fuzzy integral
to classify unseen instances. We experimentally compared the proposed algorithm with three related algorithms: SMOTE,
SMOTE+RF-BigData and MR-V-ELM, and conducted a statistical analysis on the experimental results. The experimental
results and the statistical analysis demonstrate that the proposed algorithm outperforms the other three methods.

Keywords Imbalanced big data · MapReduce · Non-iterative learning · Oversampling · Fuzzy integral

1 Introduction

Binary imbalanced data refer to a type of data, where one
class (positive class) is highly under-represented compared to
another class (negative class). In the scenario of binary imbal-
anced classification (He and Garcia 2009; Krawczyk 2016),
to which both traditional classification approaches (such as
support vectormachines, decision trees, neural networks) and
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assessment metrics (such as classification accuracy) can’t be
directly applied. Because there are large requirements for
dealing with binary imbalanced data in practice, and many
methods have been proposed in the last two decades. These
methods can be roughly classified into three categories: data-
level methods, algorithm-level methods and hybrid methods
(He and Garcia 2009; Krawczyk 2016). For convenience of
description, we introduce some notations. Let S be original
set with n instances, i.e., |S| = n, S+ and S− denote the
set of minority class (positive class) instances and majority
class (negative class) instances in S, respectively. Obviously,
S = S+ ∪ S− and |S+| << |S−|.

In the data-level methods, an imbalanced data distribu-
tion is modified to a balanced data distribution by random
sampling, the random sampling can be categorized into two
classes: random undersampling and random oversampling.
The random undersampling randomly selects a subset S′
from S− and removes S′ fromoriginal data set S. The random
undersampling is straightforward, it is usually combinedwith
other approaches for binary imbalanced classification. For
example, Liu et al. (2009) combined random undersampling
and ensemble method and proposed two ensemble algo-
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rithms for class imbalanced learning, themethods in Liu et al.
(2009) achieved good classification results. Ofek et al. (2017)
combined random undersampling and clustering method and
proposed a clustering-based undersampling technique for
addressing binary-class imbalance problems, the method
in Ofek et al. (2017) demonstrates high predictive perfor-
mance, while its time complexity is bound by the size of the
minority class instances. Bao et al. (2016) combined random
undersampling and ensemble of support vector machine and
proposed a learning approach for concept detection in large-
scale imbalanced data sets. The training data set for each base
support vector machine is constructed by a boosted near-
miss undersampling technique. The random oversampling
increases the size of S+ by generating new positive instances.
The most striking generation-based random oversampling
method is the so-called Synthetic Minority Oversampling
TEchnique (SMOTE) (Chawla et al. 2002), which generates
artificial instances based on k-nearest neighbors of positive
instances. Inspired by the idea of SMOTE, many promis-
ing synthetic sampling approaches have been proposed in
recent years. For instance, Das et al. (2015) proposed two
probabilistic oversampling methods named RACOG and
wRACOG, which considered the probability distribution of
the minority class in the process of synthetically generat-
ing new samples. Rivera (2017) proposed a noise reduction
synthetic oversampling algorithm which results in improve-
ment for prediction of minority class. Based onMahalanobis
distance, in the framework of multi-class imbalanced data
classification, Abdi and Hashemi (2016) proposed a new
oversampling technique which generates synthetic instances
which have the same Mahalanobis distance from the consid-
ered class mean as other minority class instances. In order
to increase classification sensitivity in imbalanced data sets,
Rivera and Xanthopoulos (2016) proposed a priori synthetic
oversampling methods.

In the algorithm-level methods, which directly modify
existing classification algorithms to adapt to imbalanced clas-
sification scenarios. This kind of method mainly includes
cost-sensitive methods and instance weight methods. Cost-
sensitive methods take into account the variable costs of
misclassifications of instances belonging to different classes,
in the scenario of binary imbalanced classification, the costs
can be modeled by a cost matrix whose element c(i, j) is the
cost of predicting an instance belonging to class i when in fact
it belongs to class j . The pioneering works of cost-sensitive
methods are presented by Sun and her co-researchers (2007).
They proposed three cost-sensitive boosting algorithms in
Sun et al. (2007), i.e., the well-known AdaC1, AdaC2 and
AdaC3, which are developed by introducing cost items into
the learning framework of AdaBoost. Based on cost matrix,
Krawczyka et al. (2014) proposed an approach of ensemble
of cost-sensitive decision tree for imbalanced classification,
the cost-sensitive decision trees are constructed according to

a given cost matrix, and are trained on random feature sub-
spaces to ensure sufficient diversity of the base classifiers.
In order to overcome the difficulty of determining the pre-
cise misclassification costs in cost-sensitive methods, Cao
et al. (2013) proposed an optimized cost-sensitive support
vector machine (SVM) for imbalanced classification. The
proposed method in Cao et al. (2013) incorporates the evalu-
ationmeasure (AUC andG-mean) into the objective function
of cost-sensitive SVM to improve the performance of binary
imbalanced classification. In order to deal with problem of
imbalanced big data classification, based on theMapReduce,
López et al. (2015) proposed a cost-sensitive fuzzy classifi-
cation method, which uses the MapReduce framework to
distribute the computational operations of the cost-sensitive
learning fuzzy model into different cloud computing nodes.
Castro and Braga (2013) proposed a novel cost-sensitive
approach to improve the performance of MLPs by optimiz-
ing a joint cost function which corresponds to the sum of
squared errors for positive class and negative class. In the
instance weight methods, based on fuzzy rough set theory
(Zhao et al. 2015, 2013; Zhai et al. 2017; El-Monsef et al.
2017; Tsang et al. 2017), Ramentol et al. (2015) proposed
a classification algorithm for imbalanced data, the proposed
algorithm uses fuzzy rough set and aggregation approach to
build a weight vector for weighting samples. Inspired by a
simple notion that a trained support vector machine provides
information regarding bounded and unbounded support vec-
tors, Lee et al. (2017) proposed amethod for imbalanced data
classification,which introduces a newweight adjustment fac-
tor to the proposed algorithm. Zong et al. (2013) proposed
an instance weight approach named weighted extreme learn-
ing machine (W-ELM). The W-ELM has two merits: (1) the
weightedELM is able to dealwith datawith imbalanced class
distribution while maintain the good performance on well
balanced data as unweighted ELM; (2) by assigning differ-
ent weights for each example according to users’ needs, the
weighted ELM can be generalized to cost-sensitive learning.

In the hybrid methods, which generally combine the
advantages of the two kinds of methods mentioned above
by ensemble learning, including cost-sensitive ensemble
methods and data preprocessing ensemble methods. The
cost-sensitive ensembles keep the general learning frame-
work of AdaBoost, but at the same time introduce cost
items into the weight update formula, the predominant cost-
sensitive ensembles include AdaCost (Fan et al. 1999),
RareBoost (Joshi et al. 2001), and AdaCx (x = 1, 2, 3)
(Sun et al. 2007). In the data preprocessing ensemble meth-
ods, each base classifier is trained with a pre-processed data
set, and the data preprocessing techniques are embedded
into boosting algorithms. The representative works include
SMOTEBoost (Chawla et al. 2003), RUSBoost (Seiffert et al.
2010), and EUSBoost (Galar et al. 2013) etc. Galar et al.
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(2012) present an excellent review on the ensembles for the
class imbalance problem.

Although many works have addressed the problem of
imbalanced data classification, limited studies have been
devoted to classifying imbalanced big data, the pioneering
works investigated the problem of imbalanced big data clas-
sification are reported in literatureGhanavati et al. (2014) and
Río et al. (2014). By combining metric learning and balanc-
ing techniques, Ghanavati et al. (2014) proposed a integrated
method to learn from imbalanced big data. Río et al. (2014)
discussed the extensions of oversampling, undersampling
and cost-sensitive learning in imbalanced big data scenario,
and gave their implementation frameworks with MapRe-
duce. Aiming at classifying extremely imbalanced big data,
Triguero et al. (2016) proposed an approach of evolution-
ary undersampling and implement the proposed algorithm
with Apache Spark. Under the sparsity assumption, Maurya
et al. (2016) discussed the problem of online sparse class
imbalance learning on big data, and presented an effective
solution for the problem. Recently, Fernández et al. (2017)
provided an insight into the problem of imbalanced big data
classification with researchers including some outcomes and
challenges.

Regarding the training approaches for basic classifiers of
neural networks in ensemble learning, compared with itera-
tive approaches, such as gradient-based learning approaches,
non-iterative approaches are much more efficient and effec-
tive, because that non-iterative approaches have fast learning
speed and good generalization performance. In the past
decade, non-iterative approaches have attracted wide atten-
tion of the researchers. Non-iterative approaches can be
classified into two categories: deterministic non-iterative
approaches and random non-iterative approaches. In the first
category, thefirst deterministic non-iterativemethodwas pro-
posed by Schmidt et al. (1991) for training feed-forward
networks, which was motivated by the computation of con-
cave piecewise linear discriminant functions. Based on the
memory desaturation technique, Reznik (1999) proposed a
non-iterative method for training Hopfield neural networks.
Recently, Oscar et al. (2017) proposed an incremental non-
iterative method for training one-layer feed-forward neural
networkswithout hidden layers.Aspointedout byOscar et al.
(2017), the deterministic non-iterative approaches are quite
scarce, actually only a few salient methods mentioned above
are proposed. On the contrary, the random non-iterative
approaches are very plentiful, many researchers (Schmidt
et al. 1992; Pao et al. 1992, 1994; Igelnik and Pao 1995) have
contributed their efforts to this field. Recently, Wang et al.
(2017) introduced non-iterative approach into deep learning,
and proposed a new training algorithm for training deep neu-
ral networks, Cao et al. (2018) presented a comprehensive
survey on neural networks with random weights. Extreme
learning machines (ELMs) (Huang et al. 2006, 2011, 2015)

were initially proposed by Huang and his co-researchers for
training SLFNs. Huang (2015) presented the relationships
and the differences between the ELMs and some earlier sim-
ilar works by clarifying the essential elements of ELMs. The
key superiority of ELM is that it has fast learning speed
and good generalization capacity (Huang et al. 2006). With
respect to generalization capacity of classifiers, Wang et al.
(2017, 2015) and Wang and Dong (2009) studied the rela-
tionship between generalization capacity and uncertainties of
classifiers, and proposed corresponding technique to enhance
the generalization capacity of classifiers. Recently, on the
study of the relationship between generalization and com-
plexity of classification problem,Wang et al. (2018) obtained
an important conclusion that the generalization ability of a
classifier is statistically becoming better with the increase
in uncertainty when the complexity of the classification
problem is relatively high, and the generalization ability is
statistically becoming worse with the increase in uncertainty
when the complexity is relatively low. Furthermore, they
applied this conclusion to multiple-instance active learning
to enhance the generalization ability of the learning system
(Wang et al. 2017). ELM not only can be used to solve many
classical problems, such as function approximation (Huang
et al. 2012), decision making (Ren and Wei 2017; Ye 2017;
Mao et al. 2017), data reduction (Meng et al. 2017; Cai et al.
2017; Li et al. 2017; Ding et al. 2017) and so on, but also can
be used to solve some new problems, for example, Zhang
and Zhang (2016); Zhang et al. (2016) and Zhang and Zhang
(2015) addressed theproblemof visual knowledge adaptation
by ELM, and proposed ELM-based cross-domain network
learning framework called ELM-based domain adaptation
(EDA), extensive experiments on benchmark visual data sets
demonstrate that the EDA outperforms the existing cross-
domain learning methods. The latest advances in extreme
learning machine can be found in Huang et al. (2011).

In general framework of classifier ensemble or classifier
fusion, there is an acquiescent assumption that the basic
classifiers used for fusion are independent or noninteractive
(Ralescu and Adams 1980; Abdallah et al. 2012; Kuncheva
2001; Zhan et al. 2012). However, this assumption is not real-
istic in many applications. Actually, there are some inherent
interactions among different basic classifiers, the interactions
may be positive synergy, and in this case the basic classi-
fiers cooperate and enhance each other. The ensemble system
can take advantages of the strengths of the individual clas-
sifiers, and can overcome their weaknesses, finally achieve
a higher accuracy than any individuals. The interaction also
may be negative synergy, i.e., the corresponding basic classi-
fiers restrain each other. Fuzzy integral (Ralescu and Adams
1980) is distinguished from other ensemble methods by this
desirable property. Furthermore, fuzzy integral can also char-
acterize the significance of basic classifiers by fuzzymeasure.
Motivated by these merits of fuzzy integral, in this paper we
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proposed an algorithm for imbalanced big data classification,
which combines sampling technique, non-iterative learning
and fuzzy integral-based ensemble learning, and we imple-
ment the proposed algorithm with MapReduce. The paper
is structured as follows: the preliminaries used in this paper
are briefly reviewed in Sect. 2. The proposed algorithm is
given in Sect. 3. The experimental results and analysis are
presented in Sect. 4 and Sect. 5 concludes this paper.

2 Preliminaries

In the proposed approach, the base classifiers used in ensem-
ble for imbalanced big data classification are SLFNs which
are trained with an efficient non-iterative learning approach
ELM.The reasonwhywe select ELM is that it is effective and
efficient, in other words, it has fast learning speed with very
good generalization capacity. The selected ensemble method
is fuzzy integral, we employ fuzzy integral as ensemble tool
because that it can well model the interactions among the
base classifiers. In the following, we will briefly review the
ELM and fuzzy integral.

2.1 Extreme learningmachine (ELM)

ELM is an efficient random non-iterative algorithm for train-
ing SLFNs, it randomly assigns the weights between input
layer and hidden layer, and analytically determined the
weights between hidden layer and output layer. Given a train-
ing set, D = {(xi , yi )|xi ∈ Rd , yi ∈ Rk, i = 1, 2, . . . , n},
where xi is a d×1 input vector and yi is a k×1 target vector,
the SLFNs with m hidden nodes can be modeled by

f (xi ) =
m∑

j=1

β j g(w j · xi + b j ), i = 1, 2, . . . , n (1)

wherew j = (w j1, w j2, . . . , w jd)
T is the weight vector con-

necting the j th hidden node with the input nodes, b j is the
bias of the j th hidden node. The w j and b j are randomly
assigned. β j = (β j1, β j2, . . . , β jm)T is the weight vector
connecting the j th hidden node with the output nodes. The
parameters β j ( j = 1, 2, . . . ,m) may be estimated by least
square fitting with the given training set D, i.e., we have

f (xi ) =
m∑

j=1

β j g(w j · xi + b j ) = yi (2)

Equation (2) can be written in a more compact format as

Hβ = Y (3)

where

H =
⎡

⎢⎣
g(w1 · x1 + b1) . . . g(wm · x1 + bm)

... . . .
...

g(w1 · xn + b1) . . . g(wm · xn + bm)

⎤

⎥⎦ (4)

β = (βT
1 , . . . , βT

m)T (5)

and

Y = (yT1 , . . . , yTn )T (6)

H is the hidden layer output matrix of SLFN, where the
j th column of H is the j th hidden nodes output vector with
respect to inputs x1, x2, . . . , xn , and the i th row of H is the
output vector of the hidden layer with respect to input xi . If
the number of hidden nodes is equal to the number of dis-
tinct training samples, the matrix H is square and invertible,
and SLFN can approximate these training samples with zero
error. But generally, the number of hidden nodes is much less
than the number of training samples. Therefore, H is a non-
square matrix and one can’t expect to find an exact solution
of the system (3). Fortunately, we can find its smallest norm
least square solution by solving the following optimization
problem (Cao et al. 2018; Huang et al. 2012).

min
β

‖Hβ − Y‖ (7)

The smallest norm least-squares solution of (7) can be easily
obtained by

β̂ = H†Y (8)

where H† = (
HHT

)−1
H is the Moore–Penrose general-

ized inverse of matrix H. The ELM can be described by the
Algorithm 1 (Cao et al. 2018).

Algorithm 1: ELM Algorithm
Input: Training data set

D = {(xi , yi )|xi ∈ Rd , yi ∈ Rk , i = 1, 2, · · · , n}, an
activation function g, and the number of hidden nodes m

Output: weights matrix β.
1 for ( j = 1; j ≤ m; j = j + 1) do
2 Randomly assign input weights w j and b j ;
3 end
4 Calculate the hidden layer output matrix H;
5 Calculate output weights matrix β = H†Y .

In order to make the outputs of the trained SLFN by ELM
to be a approximated posterior probability distribution, we
can transform the outputs of SLFN by the following softmax
function.
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p(w j |x) = ey j
∑k

i=1 e
yi

(9)

where x is a testing instance, p(w j |x) is the approximation
of the posterior probability that instance x belongs to class j .

2.2 Fuzzy integral

In this section, we present the notations related to fuzzy inte-
gral (Ralescu and Adams 1980). Let D = {(xi , yi )|xi ∈
Rd , yi ∈ Rk, i = 1, 2, . . . , n} be a training set, Y =
{ω1, ω2, . . . , ωk} be a set of class labels, L = {L1, L2,

. . . , Ll} be a set of classifiers trained on D or on subsets
of D. In the context of ensemble learning, Li (1 ≤ i ≤ l) are
called base classifiers or component classifiers. For∀x ∈ Rd ,
Li assigns a class label to x from Y . As given by Kuncheva
Kuncheva (2001), we may define the output of classifier Li

to be a k-dimensional vector:

Li (x) = (pi1(x), pi2(x), . . . , pik(x)) (10)

where pi j (x) ∈ [0, 1](1 ≤ i ≤ l; 1 ≤ j ≤ k) denotes the
support degree given by classifier Li to the hypothesis that
x comes from class ω j ,

∑k
j=1 pi j (x) = 1. In this paper,

pi j (x) is an estimation of the posterior probability p(ω j |x)
by classifier Li .

Given L = {L1, L2, . . . , Ll}, Y = {ω1, ω2, . . . , ωk}, and
arbitrary testing sample x . The following matrix is called
decision matrix with respect to x .

DM(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

p11(x) . . . p1 j (x) . . . p1k(x)
...

...
...

pi1(x) . . . pi j (x) . . . pik(x)
...

...
...

pl1(x) . . . pl j (x) . . . plk(x)

⎤

⎥⎥⎥⎥⎥⎥⎦
(11)

where the i th row of the matrix is the output of classifier
Li , the j th column of the matrix is the support degree from
classifiers L1, L2, . . . , Ll for class ω j .

Let P(L) be the power set of L , the fuzzy measure on
L is a set function: g : P(L) → [0, 1], which satisfies the
following two conditions:

(1) g(∅) = 1, g(L) = 1;
(2) For ∀A, B ⊆ L , if A ⊂ B, then g(A) ≤ g(B).

For ∀A, B ⊆ L and A ∩ B = ∅, g is called λ-fuzzy
measure, if it satisfies the following condition:

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) (12)

where λ > −1 and λ �= 0.

The value of λ can be determined by solving the following
Eq. (12).

λ + 1 =
l∏

i=1

(1 + λgi ) (13)

where gi = g({Li }), which is called fuzzy density of classi-
fier Li . It is noted that Eq. (13) has only one solution which
meets the conditions λ > −1 and λ �= 0. Usually, gi can be
determined by the following formula (Zhan et al. 2012):

gi = pi∑l
j=1 p j

δ. (14)

where δ ∈ [0, 1] and pi is testing accuracy or verification
accuracy of classifier Li (1 ≤ i ≤ l).

Let h : L → [0, 1] be a function defined on L . The Cho-
quet fuzzy integral and the Sugeno fuzzy integral of function
h with respect to g are defined by (15a) and (15b), respec-
tively.

(C)

∫
hdμ =

l+1∑

i=2

(h(Li−1) − h(Li )) g(Ai−1), (15a)

(S)

∫
hdμ =

l∨

i=1

(
h(Li )

∧
g(Ai )

)
. (15b)

where h(L1) ≥ h(L2) ≥ · · · ≥ h(Ll), h(Ll+1) = 0, Ai−1 =
{L1, L2, · · · , Li−1}.

Given a testing instance x , when we use fuzzy integral
to integrate the l trained base classifiers L1, L2, . . . , Ll for
classifying x , we first compute decision matrix DM(x), and
then sort jth (1 ≤ j ≤ k) column of DM(x) in descending
order and obtain (pi1 j , pi2 j , · · · , pil j ).

If the trained base classifiers L1, L2, . . . , Ll are integrated
by the Choquet fuzzy integral with formula (15a) for classi-
fying x , then the support degree p j (x) is calculated by the
following formula (16).

p j (x) =
l+1∑

t=2

(
pit−1 j (x) − pit j (x)

)
g(At−1) (16)

If the trained base classifiers L1, L2, . . . , Ll are integrated
by the Sugeno fuzzy integral with formula (15b) for classi-
fying x , then the support degree p j (x) is calculated by the
following formula (17).

p j (x) = max
1≤t≤l

{min{pit j , g(At )}} (17)

In this paper,weuse theChoquet fuzzy integral to integrate
the trained base classifiers.
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Fig. 1 The idea of randomly
oversampling approach with
p = 9

Fig. 2 Data manipulation processes of MapReduce

3 The proposed algorithm

In this section, we introduce the proposed algorithm which
includes three stages: (1) randomly oversampling referred
to enemy nearest neighbor which is found by a parallel
framework with MarReduce. (2) Construction of balanced
training sets and training base classifiers SLFNs with ELM.
(3) Ensemble the trained SLFNs with fuzzy integral.

Let S = S+ ∪ S− be imbalanced big data, |S+| = n+,
|S−| = n−, n+ << n−. The S+ and S− denote the set
of positive class instances and negative class instances in
S, respectively. The idea of our proposed randomly over-
sampling approach can be depicted by Fig. 1, where the
symbol “�” denotes a negative instance, “�” denotes a posi-
tive instance, while “�” denotes a positive instance randomly
generated with uniform distribution within the nearest circle
of x+ which is a positive instance, x− is its enemy near-
est neighbor. For each x+ ∈ S+, we randomly generate p
instances in its corresponding nearest neighbor circle (or

hypersphere in high dimensional space) with uniform dis-
tribution, p is a parameter defined by user.

Because that n+ << n−, S is a big data set indicates that
S− is a big data set. For ∀x+ ∈ S+, in order to efficiently find
its enemy nearest neighbor from big data set S−, MapReduce
(Dean and Ghemawat 2008; Zhai et al. 2016, 2017; Ludwig
2015) is employed in the proposed algorithm. MapReduce
is a parallel programming framework which uses the strat-
egy of divide and conquer to deal with big data (Emani et al.
2015; Wang 2015). It automatically partitions big data into
some small pieces and deploys them into different parallel
computing nodes (see Fig. 2). Based on the idea of functional
programming language LISP (Berkeley and Bobrow 1964),
MapReduce provides a simple and feasible method of paral-
lel programming, two functions Map and Reduce are used to
fulfill the basic parallel computing tasks.Map andReduce are
two abstract interfaces of parallel programming. For a given
specific big data problem, one only needs to implement the
two functions, many programming details in system bottom
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level have been abstracted away for users. In the proposed
algorithm, the designed Map and Reduce functions are pre-
sented in Algorithms 2 and 3, respectively.

Algorithm 2: Map function
Input: < k1, v1 >

Output: < k2, v2 >

1 // Finding the enemy nearest neighbor of xi;
2 for (i = 1; i < PositiveSet .si ze(); i = i + 1) do
3 for ( j = 1; j < NegativeSet .si ze(); j = j + 1) do
4 distance-EuclideanDistance(PositiveSet .si ze(i),

NegativeSet .si ze( j));
5 if (distance ≤ minDistance) then
6 minDistance=distance;
7 end
8 end
9 end

10 // Oversampling within nearest neighbor
hypersphere of xi;

11 OverSampleSet.add(newSample);
12 // Output oversampled positive instances;
13 for (i = 1; i < Over SampleSet .si ze(); i = i + 1) do
14 context.write(OverSampleSet.get(i),NullWritable.get());
15 end
16 Output < k2, v2 >

Algorithm 3: Reduce function
Input: < k2, v2 >

Output: < k3, v3 >

1 for (NullWritable v2 : v2s) do
2 context.write(OverSample,NullWritable.get());
3 end
4 Output < k3, v3 >

After randomly oversampling, we obtain a new positive
instance subset S+

up whose size is q = (1 + p)n+. Next we
construct l balanced training sets and train l base classifiers
SLFNs on the l balanced training sets with ELM, this process
can be depicted by Fig. 3 (the part in the dashed rectangle),
where S− = S−

1 ∪ S−
2 ∪ · · · ∪ S−

l and l is determined by the
following formula (18).

l = n−

q
= n−

(1 + p)n+ (18)

The l is the number of balanced training sets, it is also the
number of base classifiers of an ensemble. Given an imbal-
anced big data set, because that n− is a constant, we can find
from formula (18) that l is actually determined by q, while q
is determined by p which is the number of randomly gener-
ated positive instances with uniform distribution in a nearest
neighbor hypersphere.

The final stage of the proposed algorithm is to integrate
the trained base classifiers SLFNs with fuzzy integral. In the
proposed algorithm, we use the Choquet fuzzy integral to
integrate the trained SLFNs whose results are transformed
into the interval [0, 1] by softmax function (9). The pseudo
code of the proposed algorithm is given in Algorithm 4.

4 Experimental results and analysis

For convenience, the proposed algorithm is denoted by MR-
FI-ELM. If the ELMalgorithm is replacedwith BP algorithm
to train the basic classifiers in the proposed algorithm MR-
FI-ELM, then the corresponding algorithm is denoted by
MR-FI-BP. In order to verify the effectiveness of MR-FI-
ELM, we conduct two experiments on 6 data sets and
present a statistical analysis on the experimental results. The
first experiment is to compare the MR-FI-ELM with three
related algorithms: SMOTE (Chawla et al. 2002), SMOTE-
RF-BigData (Río et al. 2014) and MR-V-ELM (Zhai et al.
2017) on two measures: F-measure and G-mean. The sec-
ond experiment is to compare MR-FI-ELM with MR-FI-BP
on running time. All experiments are carried out on 6 data
sets which include 2 artificial imbalanced big data sets,
3 UCI imbalanced big data sets (Lichman 2013) and 1
real world data set (Liu and Liu 2016). The basic infor-
mation of the 6 data sets is listed in Table 1. In Table 1,
the imbalanced ratio is the ratio between the number of
positive class instances and the number of negative class
instances.

The first artificial imbalanced big data set denoted by
Artificial-1 which is generated with the following formula
(19). If f (x1, x2, . . . , x10) > 1, then the corresponding
instances are belonged to negative class, otherwise the cor-
responding instances are belonged to positive class. The

Fig. 3 The process of
constructing l balanced training
sets and training l base
classifiers SLFNs (the part in the
dashed rectangle)

123



3526 J. Zhai et al.

Algorithm 4: The ensemble algorithm based on fuzzy
integral for binary imbalanced big data classification
Input: D = S+ ∪ S−, the binary imbalanced big data; T , testing

set; l, the number of base classifiers; p, the number of
oversampling positive instances.

Output: j∗, the class label of x ∈ T .
1 // The first stage: oversampling with

MapReduce;
2 for (i = 1; i ≤ n+; i = i + 1) do
3 For x+

i ∈ S+, find its enemy nearest neighbor x−
i from S−

with MapReduce;
4 Randomly generate p positive instances with uniform

distribution in the nearest neighbor hypersphere of x+
i ;

5 end
6 // The second stage: Constructing balanced

training and training base classifiers;

7 Partition S− into l subsets S−
1 , S−

2 , · · · , S−
l ;

8 for (i = 1; i ≤ l; i = i + 1) do
9 Construct l balanced training sets Si = S−

i ∪ S+
up;

10 Train base classifier SLFNi with ELM, and soft-maximize its
outputs, obtain a probability distribution
(pi1(x), pi2(x), · · · , pik(x));

11 end
12 // The third stage: integrating the trained

base classifiers by fuzzy integral;
13 Calculate fuzzy densities gi (1 ≤ i ≤ l) by (14);
14 Calculate parameter λ by (13);
15 for (∀x ∈ T ) do
16 Calculate DM(x);
17 for ( j = 1; j ≤ k; j = j + 1) do
18 Sort j th column of DM(x) in descending order and

obtain (di1 j , di2 j,··· ,dil j );
19 Set g(A1) = gi1 ;
20 for (t = 2; t ≤ l; t = t + 1) do
21 Calculate g(At ) = git + g(At-1) + λgit g(At-1);
22 end
23 // Calculate p j (x) by (9), dil+1 j (x) = 0;

24 Calculate p j (x) = ∑l+1
t=2[dit−1 j (x)-dit j (x)]g(At-1);

25 end
26 end
27 Calculate p j∗ (x) = argmax1≤ j≤k{p j (x)};
28 Output j∗.

Table 1 The basic information of the 6 data sets

Data sets Number of
instances

Number of
attributes

Imbalance
ratio

Artificial-1 241,335 10 0.11 (10:90)

Artificial-2 321,564 2 0.11 (10:90)

Skin_segment 218,704 3 0.11 (10:90)

PokerHand 470,120 10 0.11 (10:90)

CoverType 232,350 54 0.10 (09:91)

Liver 13,000 5 0.04 (04:96)

artificial-1 includes 24,134 positive instances and 217,201
negative instances.

f (x1, x2, . . . , x10) = x21
a21

+ x22
a22

+ · · · + x210
a210

(19)

Table 2 The mean vectors and covariance matrices of two Gaussian
distributions

i μi Σi

1 (1.0, 1.0)T
(

0.6 − 0.2
− 0.2 0.6

)

2 (2.5, 2.5)T
(

0.2 − 0.1
− 0.1 0.2

)

The second artificial imbalanced big data set denoted by
Artificial-2 which is generated with two two-dimensional
Gaussian distribution p(x |ωi ) ∼ N (μi ,Σi ) (i = 1, 2),
which are corresponding to two classes, their mean vectors
and covariance matrices are given in Table 2. The artificial-
2 includes 32,156 positive instances and 318,348 negative
instances.

The first UCI data set is transformed from data set
Skin_segment (Lichman 2013), it includes 21,870 positive
class instances and 196,834 negative class instances. The
second UCI data set is transformed from data set PokerHand
(Lichman 2013), it includes 47,012 positive class instances
and423,108negative class instances.The thirdUCIdata set is
transformed from UCI data set CoverType (Lichman 2013),
it includes 20,911 positive class instances and 211,439 neg-
ative class instances. For convenience, the three transformed
UCI data sets are also denoted by Skin_segment, PokerHand
and CoverType.

The real-world data set is a liver data set (Liu andLiu2016)
with two imbalanced classes, which includes 12,500 negative
class instances and 500 positive class instances. All instances
were collected from a hospital located in Baoding of Hebei
Province, we omitted the name of the hospital and removed
three attributes name, sex and data from the original liver data
set due to protection of privacy of the patients. Among the 6
data sets, Liver has the highest imbalanced ratio 0.04, but it is
not a large data set rather than a medium-size data set. Liver
data set has 5 attributes, which are alanine aminotransferase
(ALT), aspertate aminotransferase (AST), total protein (TP),
albumin (ALB) and globulin (GLB). We have three purposes
to carry out the experiment on this medium-size data set.
The first one is to verify whether the proposed algorithm is
feasible on medium-size data set? the second one is to ver-
ify whether the proposed algorithm is feasible on extremely
imbalanced data sets? the third one is to verify the applica-
bility of the proposed algorithm, i.e., to verify whether the
proposed algorithm can deal with practical problems?

4.1 Experiment 1: compare MR-FI-ELMwith SMOTE,
SMOTE-RF-BigData andMR-V-ELM on F-measure
and G-mean

The experiments are conducted on a cloud computing plat-
formwith 5 nodes. The configuration of the cloud computing
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Table 3 The configuration of the cloud computing platform

Items Configuration

Operating system Ubuntu 13.04

Hadoop Hadoop 0.20.2

JDK JDK-7u71-linux-i586

Eclipse Eclipse-java-luna-SR1-linux

Table 4 The configurationof the nodes of the cloud computingplatform

Items Configuration

CPU Inter Xeon E5-4603 with two cores, 2.0GZ

Memory 8G

Network card Broadcom 5720 QP 1GB

Hard disk 1TB

Fig. 4 The confusion matrix

platform is given in Table 3, the configuration of nodes of the
cloud computing platform is given in Table 4.

In the scenario of binary imbalanced classification, let p
and n are the true positive class label and true negative class
label, respectively, Y and N are the predicted positive class
label and predicted negative class labels, respectively. Then,
a representation of classification performance can be formu-
lated by a confusion matrix (see Fig. 4).

The commonly used assessment metrics for imbalanced
data classification algorithms include Precision, Recall, F-
measure and G-mean, their definition are given as follows
(He and Garcia 2009).

Precision = TP

TP + FP
(20)

Recall = TP

TP + FN
(21)

F-measure = (1 + β)2 × Recall × Precision

β2 × Recall + Precision
(22)

where β is a coefficient to adjust the relative importance of
precision versus recall (usually, β = 1).

G-mean =
√

TP

TP + FN
× TN

TN + FP
(23)

Fig. 5 The relationship between the parameter l and F-measure

Fig. 6 The relationship between the parameter l and G-mean

In this paper, we use F-measure and G-mean as the mea-
sures to evaluate the performance of the proposed algorithms.
From formula (18), we can find that the parameter p, i.e., the
number of oversampling instances, determines the parameter
l, i.e., the number of basic classifiers, while l has a significant
influence on the performance of the integrated classification
system. In other words, the parameter p has a significant
influence on the performance of the integrated classification
system.Weexperimentally analyze the relationships between
the parameter l and F-measure and G-mean, the results are
given in Figs. 5 and 6. From Figs. 5 and 6, we can find that
the suitable value of l should be 5 or 6. In our experiments,
we set the parameter l = 5 for the six selected data sets. The
experimental results of F-measure and G-mean compared
with SMOTE, SMOTE+RF-BigData and MR-V-ELM are
listed inTables 5 and6, respectively. The experimental results
listed in Tables 5 and 6 demonstrate that the performance of
the proposed algorithm outperforms the three related algo-
rithms. We realize that the reasons why the MR-FI-ELM
outperforms the three related algorithms on the performance
include the following two points: (1) as a tool for classifier
fusion, fuzzy integral can well model the interactions among
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Table 5 The experimental
results of F-measure

Data sets MR-FI-ELM SMOTE SMOTE+RF-BigData MR-V-ELM

Artificial-1 0.6985 0.6623 0.6744 0.6652

Artificial-2 0.9006 0.8559 0.8709 0.8708

Skin_segment 0.7864 0.6233 0.7510 0.7519

PokerHand 0.8562 0.8211 0.8361 0.8334

CoverType 0.8323 0.8310 0.8248 0.8106

Liver 0.8742 0.8210 0.8419 0.8527

Table 6 The experimental
results of G-mean

Data sets MR-FI-ELM SMOTE SMOTE+RF-BigData MR-V-ELM

Artificial-1 0.7062 0.6430 0.6918 0.6814

Artificial-2 0.9210 0.8860 0.8910 0.9097

Skin_segment 0.9201 0.8763 0.9009 0.8566

PokerHand 0.8531 0.7230 0.8291 0.8418

CoverType 0.8650 0.7764 0.8407 0.8315

Liver 0.9421 0.9060 0.9205 0.9206

the basic classifiers which have complementary information.
(2) The proposed oversampling method extends the domain
of positive instances, which enhances the classification abil-
ity of the integrated classification system. In addition, from
the experimental results on the data set liver, we can find that
(1) the proposed algorithm is not only feasible on imbalanced
big data sets, but also feasible on medium-size data sets, (2)
the proposed algorithm is also effective on extremely imbal-
anced data sets. It imply for the experimental results on the
data set liver that the proposed algorithm can effectively deal
with medium-size real life tasks.

4.2 Experiment 2: compare MR-FI-ELMwith
MR-FI-BP on running time

The MR-FI-ELM and the MR-FI-BP are similar, the only
difference is that the former uses non-iterative algorithm
ELM to train basic classifiers, whereas the later uses iter-
ative algorithm BP to train basic classifiers. The purpose of
this experiment is to verify that theMR-FI-ELM is more effi-
cient than the MR-FI-BP due to the non-iterative learning.
In this experiment, we mainly focus on comparing the run-
ning time that the two algorithms used on the six data sets
under the circumstance that the accuracy (F-measure andG-
mean) at the same level as given in the second columns of
Tables 5 and 6, the experimental results of the running time
of the two algorithms are given in Table 7. From Table 7,
we can find that for every data set the running time of MR-
FI-ELM is much lower than the time of MR-FI-BP. In other
words, from the view point of experiments, the conclusion
that the MR-FI-ELM is more efficient than the MR-FI-BP is
true.

Table 7 The comparison of MR-FI-ELM and MR-FI-BP on running
time (second)

Data sets MR-FI-ELM MR-FI-BP

Artificial-1 72.50 184.29

Artificial-2 100.25 234.55

Skin_segment 119.32 285.14

PokerHand 80.31 199.00

CoverType 88.76 216.47

Liver 55.02 100.09

4.3 The statistical analysis on the experimental
results of F-measure and G-mean

In order to further verify the effectiveness of the proposed
algorithm, we statistically analyzed the experimental results
of F-measure and G-mean with paired T test in confidence
level 0.05 (Janez 2006; Zhai 2011; Zhai et al. 2012). For
the limitation of pages, we only provide here the statistical
analysis on F-measure and G-mean, and omit the statisti-
cal analysis on running time. Firstly, for each data set and
for each algorithm, we run the 10-fold cross-validation 10
times and obtain 4 statistics denoted by X1, X2, X3 and X4

(where Xi (i = 1, 2, 3, 4) are 100-dimensional vector) cor-
responding to SMOTE, SMOTE+RF-BigData, MR-V-ELM
and MR-FI-ELM, respectively. Next the paired T test is
applied to the experimental results by computing the val-
ues of MATLAB function t test2(X1, X4), t test2(X2, X4)

and t test2(X3, X4). The results of the statistical analysis on
theF-measure and theG-mean are listed in Table 8. From the
p values listed in Table 8, we can confirm that MR-FI-ELM
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Table 8 The results of
statistical analysis on F-measure
and G-mean

Data sets F-measure G-mean

p value 1 p value 2 p value 3 p value 1 p value 2 p value 3

Artificial-1 1.846e−06 1.910e−05 2.781e−03 2.002e−06 1.155e−04 3.056e−03

Artificial-1 2.113e−05 1.515e−04 1.804e−04 2.109e−05 1.971e−04 2.159e−04

Skin_segment 2.777e−06 3.104e−04 1.999e−04 2.702e−06 2.616e−05 1.777e−05

PokerHand 1.999e−05 1.847e−05 3.006e−05 1.505e−05 1.874e−04 2.304e−04

CoverType 1.555e−06 2.089e−04 2.010e−04 1.664e−05 2.000e−05 1.405e−04

Liver 3.003e−05 2.508e−05 1.880e−03 1.874e−05 1.382e−04 2.507e−03

statistically outperformsSMOTE, SMOTE+RF-BigData and
MR-V-ELM.

5 Conclusion

Based on MapReduce, non-iterative learning, ensemble
learning and oversampling, this paper proposed an efficient
classification algorithm for imbalanced big data. The pro-
posed algorithm MR-FI-ELM has three advantages: (1) its
idea is simple and it is easy to implement. (2) It not only
can effectively classify imbalanced big data, but also can
deal with practical problems with medium-size. (3) It is
feasible and effective for extremely imbalanced data. The
experimental results show that (1) the MR-FI-ELM is much
more feasible and outperforms the three related algorithms:
SMOTE, SMOTE+RF-BigData and MR-V-ELM, (2) the
MR-FI-ELM is more efficient than MR-FI-BP. In the future
work, we will investigate that the parameter p is dynami-
cally changed and that the influence of the dynamic p on the
performance of the proposed algorithm. In addition, we will
extend the proposed algorithm to the scenario of multiple
classification of imbalanced big data.
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