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Abstract
The exchanged crossed cube, denoted by ECQ(s, t), is a novel graph with fewer edges and smaller diameter compared to
other variations of the corresponding hypercube. The ring topology, denoted by Rn , is one of the most popular topologies
in Wavelength division multiplexing optical networks. This paper addresses the routing and wavelength assignment problem
for realizing ECQ(s, t) communication pattern on Rn , where n = s + t + 1. We propose an embedding scheme. Base on
the embedding scheme, a wavelength assignment algorithm using 2s+t−2 + �2t/3� wavelengths is devised. We show that the
wavelength assignment algorithm uses no more than 1.25 times of wavelengths compared to the optimal wavelength number,
i.e., it is a factor 1.25 approximation algorithm. Moreover, the number of additional required wavelengths is no more than
�2t−1/3�.

Keywords Congestion · Exchanged crossed cube · Ring topology · Routing and wavelength assignment · WDM optical
networks

1 Introduction

Owing to many promising features, such as extremely
high bandwidth, extremely small communication delay and
extremely low power consumption, optical networks have
been extensively adopted as the communication media
between processors within parallel computers, e.g., optical
network-on-chip approach (Liu andYan2013; Shachamet al.
2008; Ye et al. 2012). Moreover, optical networks also have
intensive applications in web browsing and video conference
(Yu et al. 2014a).

Wavelength division multiplexing (WDM in short) tech-
nique has been widely exploited in optical networks. In
WDM optical networks, the bandwidth of an optical link
is divided into multiple communication channels, each rep-
resented by its designated wavelengths. This way, multiple
data streams can be transmitted simultaneously through a
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same optical link, greatly enhancing the communication effi-
ciency.

AWDM optical networks consists of routing nodes inter-
connected by point-to-point links. An optical link is usually
assumed to be bidirectional. It is implemented by a pair
of unidirectional optical fibers with reversed directions.
Because of the high cost for optoelectrical conversions at
intermediate nodes, wavelength converters are not consid-
ered is this paper. In this case, end-to-end lightpaths are
usually set up between each pair of source–destination nodes.
For more details of WDM optical networks, please refer to
SivalingamandSubramaniam (2000).On the other hand, ring
topology has many advantages, such as ease in operation,
administration and maintenance, and therefore, it has been
considered as one of most promising topologies in WDM
optical networks (Chen and Shen 2010; Liu and Wu 2017;
Yu et al. 2014a; Yuan and Melhem 1998).

Because the wavelength resource is restricted in WDM
optical networks, and therefore, methods of minimizing the
number of required wavelengths is important. The primary
issue, to be addressed in this paper, is the routing and wave-
length assignment (RWA) problem (Zang et al. 2000). In
the RWA problem, a proper lightpath and its correspond-
ing wavelength are selected for each connection of a given
communication pattern, which satisfies the wavelength con-
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tinuity constraint and the distinct wavelength constraint so
that the number of required wavelengths is minimized. In
recent years, the study of the RWA problem for various com-
munication patterns realized on a variety of optical network
topologies has received considerable interest (Chen and Shen
2010; Chen et al. 2011; Liu 2015; Liu andWu 2017; Yu et al.
2014a, b, 2012; Yuan and Melhem 1998; Zhang et al. 2013,
2014). Some applications of the RWA problem on WDM
optical networks are also discussed, such as fast Fourier
transform computation (Chen et al. 2006) and bitonic sorting
(Zhang et al. 2015).

The array-based network is composed of four different
types of topologies, i.e., linear array, ring, mesh and torus
(Chen and Shen 2010; Yuan and Melhem 1998). Yuan and
Melhem studied theRWAproblems for hypercube communi-
cation patterns on array-based networks (Yuan and Melhem
1998). Their results are improved by Chen and Shen in 2010.
They also addressed the RWA problems for hypercube com-
munication patterns on three-degree and four-degree chordal
rings in Chen et al. (2011). Yu et al. investigated the RWA
problems for ternary n-cube communication patterns on lin-
ear array (Yu et al. 2012), ring (Yu et al. 2014a) and mesh
(Yu et al. 2014b), respectively. Zhang et al. tackled the RWA
problems for both half-duplex and full-duplex crossed cube
(Zhang et al. 2013) and locally twisted cube Zhang et al.
(2014) communication patterns on linear arrays, respectively.
Liu et al. explored the RWA problems for exchanged hyper-
cube communication patterns on linear arrays (Liu 2015) and
rings (Liu and Wu 2017), respectively. On the other hand,
the RWA problems for realizing hypercube (Zhang et al.
2015) and ternary n-cube (Yu et al. 2013) communication
patterns under the dynamic wavelength strategies have been
discussed, recently.

The exchanged hypercube, denoted by EH (s, t), is an
edge-diluted variation of the hypercube proposed by Loh
et al. (2005). It effectively reduces the number of edges from
the corresponding hypercube while still preserving numer-
ous desirable properties. The crossed cube CQn , proposed
by Efe (1992), is another famous variation of the hypercube
with smaller diameter (nearly half that of the correspond-
ing hypercube). Base on the exchanged hypercube and the
crossed cube, Li et al. (2013) proposed a novel intercon-
nection networks called exchanged crossed cube ECQ(s, t).
It retains most of the desirable properties of the exchanged
hypercube, while combines many attractive features of the
crossed cube. Some relatedworks on exchanged crossed cube
have been studied, such as connectivity (Ning et al. 2015),
super connectivity (Ning 2016), cycles embedding (Zhou
et al. 2017) and optimal path embedding (Zhou et al. 2017).
To the best of our knowledge, however, the RWA problem
for realizing exchanged crossed cube communication pat-
terns on ring-topology WDM optical networks has not been
investigated.

Let Ln and Rn denote a linear array topology and a
ring topology, respectively. In Liu and Chang (2018), we
addressed the RWAproblem for realizingECQ(s, t) commu-
nication patterns on Ln , wheren = s+t+1.Weprove that the
congestion for ECQ(s, t) on Ln is equal to 2s+t−1 +�2t/3�,
which is the lower bound of the optimal wavelength num-
ber. An optimal wavelength assignment algorithm achieving
this bound is also provided. However, when considering a
ring topology in the RWA problem, it is hard to devise an
optimal wavelength assignment algorithm (Chen and Shen
2010; Liu and Wu 2017; Yu et al. 2014a; Yuan and Mel-
hem 1998). Instead in this paper, we use an approximation
algorithm (Vazirani 2013) to address the RWA problem.

To address theRWAproblem for realizingECQ(s, t) com-
munication patterns on Rn , the rest of this paper is organized
as follows. Section 2 introduces some preliminary knowl-
edge. Section 3 proposes an embedding scheme and design a
wavelength assignment algorithm. Finally, we conclude the
paper in Sect. 4.

2 Preliminaries

In Sects. 2.1 and 2.2, the exchanged crossed cube and the ring
topology are introduced, respectively. In Sect. 2.3, we detail
the concepts about embedding schemes and congestions. In
Sect. 2.4, we give formal definition of the RWA problem for
realizing exchanged crossed cube communications patterns
on ring-topology WDM optical networks, and describe its
restricted constraints.

2.1 The exchanged crossed cube

The following definitions are given by Efe to define the
crossed cube.

Definition 1 (Efe 1992) Two binary strings x = x1x0 and
y = y1y0 are pair related, denoted by x ∼ y, if and only if
(x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.

Let G be a graph and b ∈ {0, 1}. We use G〈b〉 to denote
the graph obtained from G by prefixing every vertex with a
label b. Let n be a nonnegative integer. The n-dimensional
crossed cube, denoted byCQn , is a graph defined inductively
as follows:

Definition 2 (Efe 1992) CQ1 is the complete graph on two
nodes with labels 0 and 1. For n ≥ 2, CQn consists of
two subcubes CQ〈0〉

n−1 and CQ〈1〉
n−1 such that two vertices

u = 0un−2 · · · u1u0 ∈ V (CQ〈0〉
n−1) and v = 1vn−2 · · · v1v0 ∈

V (CQ〈1〉
n−1) are joined by an edge if and only if

(i) un−2 = vn−2 if n is even, and

123



Routing and wavelength assignment for exchanged crossed cubes on ring-topology optical networks 6695

Fig. 1 An exchange crossed cube ECQ(1, 3)

(ii) u2i+1u2i ∼ v2i+1v2i for 0 ≤ i < �(n − 1)/2�.

Let k ≥ 1 and u = uk−1 · · · u0 ∈ {0, 1}k be a binary
string of length k. For 0 ≤ i ≤ j < k, we use u j,i to denote
the substring u ju j−1 · · · ui of u and let Dec(u j,i ) stand for
the decimal of u j,i . We use ⊕ to stand for the exclusive-
OR operator. For 0 ≤ i < j , let [i, j] = {i, i + 1, . . . , j}.
For positive integers s and t , the exchanged crossed cube
ECQ(s, t) is an undirected graph defined as follows.

Definition 3 (Li et al. 2013) The vertex set of exchanged
crossed cube ECQ(s, t) is

V = {u = us+t · · · u1u0| ui ∈ {0, 1} for i ∈ [0, s + t]}.
Theedge set is composedof three types of disjoint sets E1, E2

and E3 described below:
E1 = {(u, v) ∈ V × V | u ⊕ v = 1}.
E2 includes the edges (u, v) for us+t,t+1 = vs+t,t+1, u0 =

v0 = 1, and there exists an � ∈ [1, t] such that ut,�+1 =
vt,�+1, u� �= v�, u�−1 = v�−1 if � is even, and u2i u2i−1 ∼
v2iv2i−1 for 1 ≤ i < �(� + 1)/2�.

E3 includes the edges (u, v) for ut,1 = vt,1, u0 = v0 = 0,
and there exists an � ∈ [t + 1, t + s] such that us+t,�+1 =
vs+t,�+1, u� �= v�, u�−1 = v�−1 if � − t is even, and
u2i+t u2i+t−1 ∼ v2i+tv2i+t−1 for 1 ≤ i < �(� − t + 1)/2�.

Accordingly, ECQ(s, t) contains 2s+t+1 vertices. It is
obvious that a vertex u with the rightmost bit 0 (respectively,
rightmost bit 1) has degree s + 1 (respectively, t + 1). Fig-
ure 1 depicts ECQ(1, 3), where the dashed lines, bold lines
and solid lines correspond to E1, E2 and E3, respectively.
We can see that each vertex u in ECQ(1, 3) with u0 = 0 is
of degree 2, and with u0 = 1 is of degree 4.

For each edge (u, v) ∈ E(ECQ(s, t)), it can be regarded
as two reversed directed edges and denoted by 〈u, v〉 and
〈v, u〉, respectively. For the sake of distinction, we use
Ê(ECQ(s, t)) to denote such a set, i.e., Ê(ECQ(s, t)) =
{〈u, v〉, 〈v, u〉| (u, v) ∈ E(ECQ(s, t))}.

Fig. 2 Two subgraphs of ECQ(1, 3)

Lemma 1 (Li et al. 2013) ECQ(s, t) is isomorphic to ECQ(t,
s).

By Lemma 1, hereafter, we may assume without loss
of generality that s ≤ t . Let ECQi (s, t) be a subgraph of
ECQ(s, t) induced by edges in Ei for i ∈ [1, 3]. According
to Definition 3, we have following proposition.

Proposition 1 The subgraph ECQ2(s, t) (respectively,
ECQ3(s, t)) contains 2

s (respectively, 2t ) disjoint copies of
CQt (respectively, CQs). Also, ECQ1(s, t) forms a perfect
matching between nodes in ECQ2(s, t) and ECQ3(s, t).

Denote by CQs+t,t+1
t for CQt in ECQ2(s, t) in which all

vertices u ∈ CQt have the same bits in us+t,t+1. Similarly,
CQt,1

s denotes those CQs in ECQ3(s, t) for all vertices u ∈
CQs having the same bits in ut,1. For brevity, CQ

s+t,t+1
t

and CQt,1
s are also denoted by CQx

t and CQy
s , respectively,

where x = Dec(us+t,t+1) and y = Dec(ut,1). For example,
subgraphs ECQ2(1, 3) and ECQ3(1, 3) are shown in Fig. 2a
and b, respectively. Note that ECQ2(1, 3) contains CQ

0
3 and

CQ1
3, and ECQ3(1, 3) contains CQ

i
1 for i ∈ [0, 7].

2.2 The ring topology

The ring topology, denoted by Rn , is a cycle with 2n nodes,
where n = s+ t+1. The nodes (respectively, the links) in Rn

are labeled clockwise from 1 to 2n (respectively, from �1 to
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Fig. 3 A ring topology R3

�2n ). For instance, Fig. 3 shows a ring topology R3, where the
nodes (respectively, the links) are labeled clockwise from1 to
8 (respectively, from �1 to �8). In this paper, nodes and links
in Rn represent routing nodes and optical links in a ring-
topology WDM optical network, respectively. To consider
directional links, we use Ê(Rn) = {〈i, (i +1)mod 2n〉, 〈(i +
1) mod 2n, i〉|i ∈ [1, 2n]} to denote the directional version
of E(Rn).

The linear array, denoted by Lx , is a path with 2x

nodes (Liu 2015; Yu et al. 2012, 2013; Zhang et al.
2014), where x is a nonnegative integer. Let E ′

n be a
link subset of Rn comprising eight links, where E ′

n =
{�2s+t−2 , �2s+t−1 , �3×2s+t−2 , �2s+t , �5×2s+t−2 , �6×2s+t−2 ,

�7×2s+t−2 , �2s+t }. Let R′
n denote the subgraph of Rn obtained

by removing the links in E ′
n from Rn , i.e., R′

n = Rn − En . It
is clear that the subgraph R′

n is composed of eight disjointed
copies of Ls+t−2, denoted by L0

s+t−2, L
1
s+t−2, . . . , L

7
s+t−2

clockwise. Figure 4 shows the subgraph R′
n of Rn . Note that

the nodes on Li
s+t−2 are labeled clockwise in the consecu-

tive order from i × 2s+t−2 + 1 to (i + 1) × 2s+t−2, where
i ∈ [0, 7].

2.3 Embedding schemes and congestions

Let G = (VG , EG) be the guest graph and H = (VH , EH )

the host graph, where |VG | = |VH |. An embedding scheme
of G in H is an ordered pair Φ = (Ψ ,Ω), where Ψ

is a bijection from VG to VH , and Ω is a mapping from
EG to a set of paths in H such that, for every edge e =
(u, v) ∈ EG , there is a path Ω(e) from Ψ (u) to Ψ (v)

in H . In this paper, we consider that G is the exchanged
crossed cubeECQ(s, t) and H is the ring topology Rn , where
n = s + t + 1.

Fig. 4 Subgraph R′
n of Rn

Definition 4 (Chen and Shen 2010; Liu 2015; Yu et al.
2012; Zhang et al. 2014) The congestion of a link � ∈
EH under embedding scheme Φ of G in H , denoted by
Cong(G, H , Φ, �), is the number of paths Ω(e) for all
e ∈ EG passing through �, namely,

Cong(G, H , Φ, �) = |{e ∈ EG |� ∈ Ω(e)}|.
The congestion of G in H under Φ is defined as

Cong(G, H , Φ) = max�∈EH Cong(G, H , Φ, �).
The congestion of G in H is defined as

Cong(G, H) = minΦ Cong(G, H , Φ).

Let λΦ(G, H) represents number of requiredwavelengths
for realizing a communication G on WDM optical net-
work H under embedding scheme Φ. The following lemma
shows that bothCong(G, H , Φ) andCong(G, H) are lower
bounds of λΦ(G, H).

Lemma 2 (Chen and Shen (2010); Yu et al. (2014a); Zhang
et al. (2013))λΦ(G, H) ≥ Cong(G, H , Φ) ≥ Cong(G, H).

The generalized cubes include some hypercube variants
as special cases such as crossed cubes, Möbius cubes and
locally twisted cubes (Zhang et al. 2014). Let GQx denote
an x-dimensional generalized cube, where x is a positive
integer. We use a binary string u = ux−1ux−2 · · · u0 to rep-
resent a vertex gq in GQx , and use num(gq) to denote
the assigned number of gq by an embedding scheme. Let
gqix (0 ≤ i ≤ 2x − 1) denote the vertex in GQx , where
Dec(ux−1 · · · u0) = i . The natural embedding, denoted by
ΦN , is an embedding scheme ofGQx in Lx so that the bijec-
tion from V (GQx ) to V (Lx ) is strictly increasing. That is, if
j < k then num(gq j

x ) < num(gqkx ), where j and k are non-
negative integer. In 2014, Zhang et al. proved that the natural
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embedding is an optimal scheme for embedding GQx into
Lx . In the following lemma, we describe related results of
the natural embedding on x-dimensional crossed cube CQx .

Lemma 3 (Zhang et al. 2014) Cong(CQx , Lx ) = Cong
(CQx ,Lx ,ΦN ) = �2x+1/3�, where x is a positive integer.

In Liu and Chang (2018), we have shown the following
lemma.

Lemma 4 (Liu and Chang 2018) Cong(ECQ(y, z), Lx ) =
2y+z−1 + �2z/3�, where x, y and z are positive integers such
that x=y+z+1 and y ≤ z.

From Lemma 4 and based on the relationship between
Lemmas 3.1 and 3.2 in Yu et al. (2014a), we can obtain that

Cong(ECQ(y, z), Rx ) ≥ 1/2×Cong(ECQ(y, z), Lx ) =
2y+z−2+(�2z/3�/2). SinceCong(ECQ(y, z), Lx ) is integer-
valued, therefore, we have the following corollary.

Corollary 1 Cong(ECQ(s, t), Rn) ≥ 2s+t−2 + 
�2t/3�/2�,
where n, s and t are positive integers such that n=s+t+1 and
s ≤ t.

Based on Lemma 2 and Corollary 1, it is straightforward
to obtain the following lemma.

Lemma 5 λΦ(ECQ(s, t), Rn) ≥ 2s+t−2+
�2t/3�/2�, where
n, s and t are positive integers such that n=s+t +1 and s ≤ t.

Since Lemma 5 considers any embedding scheme Φ,
therefore, we have following corollary.

Corollary 2 The optimal wavelength number for realizing
ECQ(s, t) communication pattern on WDM optical network
Rn is at least 2s+t−2 + 
�2t/3�/2�, where n = s + t + 1.

2.4 The RWA problem for realizing ECQ(s, t) on Rn

Both routing and wavelength assignment are considered in
this problem. The input to this problem includes the commu-
nication patterns represented by ECQ(s, t), and the WDM
optical network represented by Rn , where n = s + t + 1.
The problem is to find an embedding scheme Φ = (Ψ ,Ω) of
ECQ(s, t) on Rn such that the number of required wave-
lengths is minimum. The routing between each pair of
vertices u and v for e = (u, v) ∈ ECQ(s, t) can be deter-
mined by a shortest lightpath Ω(e) from vertex Ψ (u) to
vertex Ψ (v) on Rn . Under this embedding scheme, we then
deal with wavelength assignment for each link on Rn . The
output of this problem is the assigned wavelengths to links
on Rn .

Note that the wavelength assignment to links on Rn must
fulfill both the wavelength continuity constraint and the
distinct wavelength constraint. The wavelength continuity
constraint requires that all links along a lightpath from the

Fig. 5 Examples for wavelength continuity constraint

Fig. 6 Examples for distinct wavelength constraint

source node to the destination node must use the same wave-
length, while the distinct wavelength constraint requires
that all lightpaths passing through the same link must be
assigned distinct wavelengths. For instance, Fig. 5a (respec-
tively, Fig. 5b) shows a lightpath 2 → 3 → 4 → 5 on R3,
which satisfies (respectively, violates) the wavelength conti-
nuity constraint.

Figure 6 shows two lightpaths 2 → 3 → 4 and 3 →
4 → 5 passing through the same link 〈3, 4〉 on R3. Figure 6a
(respectively, Fig. 6b) shows an example which satisfies
(respectively, violates) the distinct wavelength constraint.

3 The proposed algorithms

In Sect. 3.1, we first propose an embedding scheme α. Then
a lower bound of the number of required wavelengths based
on embedding scheme α is derived. In Sect. 3.2, we describe
a wavelength assignment algorithm β. Performance of the
wavelength assignment algorithm compared to the optimal
wavelength number is also analyzed.

123



6698 Y.-L. Liu

Fig. 7 Partition V (ECQ(s, t)) into 8 disjoint subset

3.1 The embedding scheme

Letu = us+t · · · ut+1ut · · · u1u0 be avertex inV (ECQ(s, t)).
We partition V (ECQ(s, t)) into 8 disjoint vertex subsets as
follows:

S0 = {u|us+t = 0, ut = 0 and u0 = 1},
S1 = {u|us+t = 0, ut = 1 and u0 = 1},
S2 = {u|us+t = 0, ut = 1 and u0 = 0},
S3 = {u|us+t = 1, ut = 1 and u0 = 0},
S4 = {u|us+t = 1, ut = 1 and u0 = 1},
S5 = {u|us+t = 1, ut = 0 and u0 = 1},
S6 = {u|us+t = 1, ut = 0 and u0 = 0}, and

S7 = {u|us+t = 0, ut = 0 and u0 = 0}.

In Fig. 7, we uses ECQ(1, 3) as an example to illustrate
the partition mentioned above.

Clearly, the subgraph induced by Sm (m ∈ {0, 1, 4, 5})
comprises 2s−1 disjoint (t − 1)-dimensional crossed cubes,
and the subgraph induced by Sm (m ∈ {2, 3, 6, 7}) comprises
2t−1 disjoint (s − 1)-dimensional crossed cubes. If s ≥ 2,
for the subgraph induced by Sm (m ∈ {0, 1, 4, 5}), we denote
the (t−1)-dimensional crossed cube byCQm,i

t−1, where i (i ∈
[0, 2s−1−1]) is the decimal of us+t−1,t+1, and the vertex u in
CQm,i

t−1 is represented by cq
m,i, j
t−1 , where j ( j ∈ [0, 2t−1−1])

is the decimal of ut−1,1. In particular, if s = 1, CQm,0
t−1 is the

unique (t −1)-dimensional crossed cube, and the vertex u in
CQm,0

t−1 is denoted by cq
m,0, j
t−1 , where j ( j ∈ [0, 2t−1 − 1]) is

the decimal of ut−1,1. Similarly, for m ∈ {2, 3, 6, 7}, we can
define the (s − 1)-dimensional crossed cube CQm,i

s−1 and the

vertex cqm,i, j
s−1 , where i ∈ [0, 2t−1−1] and j ∈ [0, 2s−1−1].

Fig. 8 Embedding scheme α

Fig. 9 Numbers assigned to vertices in ECQ(1, 3)

Figure 8 shows Algorithm A, which describes embed-
ding scheme α. Given an exchanged crossed cube ECQ(s, t),
the embedding scheme α assign numbers to vertices in
ECQ(s, t). Let e = (u, v) be an edge in ECQ(s, t), the
path Ωα(e) will go through a shortest path from node Ψα(u)

to node Ψα(v) in Rn . Note that Ψα(u) = num(u) and
Ψα(v) = num(v).

Figure 9 shows the numbers assigned to the vertices in
ECQ(1, 3) by the embedding scheme α.

Corollary 3 Under the embedding scheme α, vertices belong
to subset Sm (m ∈ [0, 7]) are embedded in Lm

s+t−2 of Rn.

Proof It is clear that vertices belong to subset Sm (m ∈ [0, 7])
are numbered by the embedding schemeα fromm×2s+t−2+
1 to (m + 1)× 2s+t−2. From the description of Lm

s+t−2 (m ∈
[0, 7]) in Sect. 2.2, nodes of Lm

s+t−2 (m ∈ [0, 7]) are labeled
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fromm×2s+t−2+1 to (m+1)×2s+t−2. Thus this corollary
is true. ��
Proposition 2 Under the embedding scheme α, for m ∈
{0, 1, 4, 5} and i ∈ [0, 2s−1 − 1], vertices in each CQm,i

t−1
are embedded by the natural embedding in a disjointed lin-
ear subarray Lt−1 of Lm

s+t−2.

Proof Under the embedding scheme α, for each m ∈
{0, 1, 4, 5} and i ∈ [0, 2s−1 − 1], vertices in each CQm,i

t−1 are
numbered consecutively from (m × 2s+t−2 + i × 2t−1 + 1)
to (m × 2s+t−2 + (i + 1) × 2t−1). Therefore, for each
m ∈ {0, 1, 4, 5} and i ∈ [0, 2s−1 − 1], CQm,i

t−1 are embedded
in a disjointed linear subarray Lt−1 of Lm

s+t−2.
On the other hand, for each m ∈ {0, 1, 4, 5} and i ∈

[0, 2s−1−1], we have num(cqm,i, j
t−1 ) < num(cqm,i,k

t−1 ), where
0 ≤ j < k ≤ 2t−1 − 1. From the description of the natural
embedding in Sect. 2.3, thus, the proposition follows. ��
Proposition 3 Under the embedding scheme α, for m ∈
{2, 3, 6, 7} and i ∈ [0, 2t−1 − 1], vertices in each CQm,i

s−1
are embedded by the natural embedding in a disjointed lin-
ear subarray Ls−1 of Lm

s+t−2.

Proof The proof is similarly to that of Proposition 2. ��
Base on Propositions 2 and 3, we use Lm,i

t−1 (m ∈
{0, 1, 4, 5} and i ∈ [0, 2s−1 − 1]) to denote the linear sub-
array Lt−1 (of Lm

s+t−2), on which the vertices in CQm,i
t−1 are

embedded.

Corollary 4 Form ∈ {0, 1, 4, 5}, i ∈ [0, 2s−1−1], there exits
a link f ( f ∈ Lm,i

t−1), on which the congestion contributed by

edges in CQm,i
t−1 under the embedding scheme α, is at least

�2t/3�.
Proof From Lemma 3 and Propositions 2, it is straightfor-
ward to obtain this corollary. ��
Definition 5 (Zhang et al. 2013) Two length-(d+1) binary
strings u = udud−1 · · · u0 and v = vdvd−1 · · · v0 are pair
related, denoted by u∼v, if either

(1) d = 1, (u1, u0) ∈ R = {(00, 00), (10, 10), (01, 11),
(11, 01)}, or

(2) d > 1,ud = vd whend is even, and (u2i+1u2i , v2i+1v2i )

∈ R for all 0 ≤ i < �d/2�.
For 0 ≤ i < j ≤ d, let u j,i be a substring u ju j−1 · · · ui

of u. In the following, we use ũ j,i to denote the pair related
substring of u j,i . Let a and b be two binary string, we use
a ‖ b to denote the concatenation of a and b. Let u0,x =
0u0s+t−1:t+10u

0
t−1:11 be a binary string of length s + t + 1,

which represent a vertex in S0 such that Dec(u0s+t−1:t+1 ‖

Fig. 10 cycle(x) in ECQ(s, t)

u0t−1:1) = x , where x ∈ [0, 2s+t−2 −1]. In the following, we
also define vertex ui,x in Si (i ∈ [1, 7] and x ∈ [0, 2s+t−2 −
1]) as follows:

u1,x = 0u0s+t−1:t+11ũ
0
t−1:11

u2,x = 0u0s+t−1:t+11ũ
0
t−1:10

u3,x = 1ũ0s+t−1:t+11ũ
0
t−1:10

u4,x = 1ũ0s+t−1:t+11ũ
0
t−1:11

u5,x = 1ũ0s+t−1:t+10u
0
t−1:11

u6,x = 1ũ0s+t−1:t+10u
0
t−1:10

u7,x = 0u0s+t−1:t+10u
0
t−1:10

From Definition 3, we can find that, for each x (x ∈
[0, 2s+t−2 − 1]), the vertex set {um,x |m ∈ [0, 7]} forms a
cycle in ECQ(s, t). We use cycle(x) to denote the cycle.
Figure 10 shows cycle(x) in ECQ(s, t). For example in
ECQ(1, 3), cycle(1)= {00011, 01111, 01110, 1110, 11111,
10011, 10010, 00010}.

Let em,x = (um,x , u(m+1)mod7,x ) (m ∈ [0, 7] and x ∈
[0, 2s+t−2 −1]) be an edge in cycle(x), then we have follow-
ing proposition.

Proposition 4 The paths,Ωα(e0,x ), · · · , andΩα(e7,x ), form
a cycle in Rn, where x ∈ [0, 2s+t−2 − 1].
Proof Since for each x (x ∈ [0, 2s+t−2 − 1]), the path
Ωα(em,x ) (m ∈ [0, 7]) will go through a shortest path
from nodeΨα(um,x ) to nodeΨα(u(m+1)mod7,x ) in Rn . Recall
that vertex um,x belongs to subset Sm (m ∈ [0, 7]). From
Corollary 3, vertex um,x (m ∈ [0, 7]) is embedded on
linear subarray Lm

s+t−2 of Rn . Therefore, the eight paths
Ωα(e0,x ),Ωα(e1,x ), · · · , and Ωα(e7,x ) will form a cycle in
Rn . ��

The main idea of Proposition 4 is illustrated in Fig. 11.
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Fig. 11 Paths Ωα(ei,x ) (i ∈ [0, 7]) form a cycle in Rn

Corollary 5 Under the embedding scheme α, the congestion
of link � (� ∈ Rn) contributed by edges in each cycle(x)
(x ∈ [0, 2s+t−2]) is equal to 1.

Proof From Proposition 4, it is straightforward to obtain this
corollary. ��

Lemma 6 Cong(ECQ(s, t), Rn, α) ≥ 2s+t−1+�2t/3�,where
n = s + t + 1.

Proof From Corollary 4, for m ∈ {0, 1, 4, 5} and i ∈
[0, 2s−1 − 1], there exits a link f ( f ∈ Lm,i

t−1), on which the

congestion contributed by edges in CQm,i
t−1, is at least �2t/3�.

From Corollary 5, the congestion of link f contributed by
edges in each cycle(x) (x ∈ [0, 2s+t−2 − 1]) is 1. Since
we have 2s+t−2 such cycles in ECQ(s, t), hence, the con-
gestion of link f contributed by edges in these cycles is
at least 2s+t−2. Therefore, the congestion of link f under
the embedding scheme α is at least 2s+t−1 + �2t/3�, i.e.,
Cong(ECQ(s, t),Rn, α, f ) ≥ 2s+t−1 + �2t/3�. From Defi-
nition 4, we obtain that

Cong(ECQ(s, t), Rn, α)

= max
�∈E(Rn)

Cong(ECQ(s, t), Rn, α, �)

≥ Cong(ECQ(s, t), Rn, α, f )

≥ 2s+t−1 + �2t/3�

��

Theorem 1 λα(ECQ(s, t), Rn) ≥ 2s+t−1 + �2t/3�.

Proof From Lemmas 2 and 6, therefore, it is straightforward
to obtain this theorem. ��

Fig. 12 Wavelength assignment algorithm β

3.2 The wavelength assignment algorithm

Let DSL1 and DSL2 denote two directed link sets. For each
x (x ∈ [0, 2s+t−2 − 1]), we use cycle1(x) and cycle2(x)
to denote the two reversed direction cycles corresponding to
cycle(x). Let ed be andirected edge in ˆECQ(s,t),we also use
Ê(Ω(ed)) to denote the directional links on the directional
path Ω(ed). In 2013, Zhang et al. proposed the wavelength
assignment algorithm for implementing a half-duplex or full-
duplex crossed cube communicationpatterns on a linear array
WDM optical network. In that paper, an algorithm called
Assign_CQn_Ln was introduced to deal with the half-duplex
case, which provides an optimal wavelength assignment for
realizing a half-duplex crossed cube CQn on a linear array
Ln .

Figure 12 shows Algorithm B, which describes wave-
length assignment algorithm β. Given an exchanged crossed
cube ECQ(s, t) and the assigned numbers for all ver-
tex in V (ECQ(s, t)), the wavelength assignment algorithm
β will assign wavelengths to directed links in Ê(Rn).
Note that the wavelengths assigned in Step 1 are num-
bered 1, 2, . . . , 2s+t−2. In Step 2 (respectively Step 3),
Assign_CQn_Ln in Zhang et al. (2013) is invoked using two
parameters CQt−1 and Lt−1 (respectively, CQs−1 and Ls−1)
as inputs, and the wavelengths assigned in these two steps
are numbered 2s+t−2 + 1, 2s+t−2 + 2, . . . , 2s+t−2 +�2t/3�.
Theorem 2 Thewavelength assignment algorithmβ requires
2s+t−2 + �2t/3� wavelength.
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Proof Clearly, all edges in ECQ(s, t) have been taken into
account by Algorithm B. In Step 1, we first reset DLS1 and
DLS2 to be empty sets. Then there are 2s+t−2 iterations to
be performed, and each iteration requires one unused wave-
length. Hence, the total wavelengths assigned in this step
is 2s+t−2. In Step 2 (respectively, Step 3), edges in CQm,i

t−1

(respectively, CQm,i
s−1), are considered, and Assign_CQn_Ln

in Zhang et al. (2013) is invoke to assign wavelengths.
According to the results in Zhang et al. (2013), it follows
that �2t/3� (respectively, �2s/3�) wavelengths are required
for eachCQm,i

t−1 (respectively,CQ
m,i
s−1) in Step 2 (respectively,

Step 3). Recall that we have assumed s ≤ t . By Propo-
sitions 2 and 3, the wavelengths assigned by Step 2 and
3 can be reused, and hence, only �2t/3� wavelengths are
required for these two steps. Therefore, it is obvious that
wavelength assignment algorithmβ requires 2s+t−2+�2t/3�
wavelengths. ��

In wavelength assignment algorithm β, six wavelengths
are allocated for ECQ(1, 3). Figure 13 shows the wavelength
assignment to directed edges in ECQ(1, 3). Figure 14 shows
the wavelength assignment to directed links in Ê(R5).

Corollary 6 The wavelength assignment algorithm β uses
minimum number of wavelengths under the embedding
scheme α.

Proof From Theorems 1 and 2, therefore, the corollary fol-
lows. ��
Lemma 7 The wavelength assignment algorithm β uses no
more than additional �2t−1/3�wavelengths, compared to the
optimal wavelength number.

Proof From Corollary 2 and Theorem 2, we can obtain that
the difference of the requiredwavelengths between thewave-
length assignment algorithm β and the optimal wavelength
number is no more than (2s+t−2 + �2t/3�) − (2s+t−2 +

�2t/3�/2�) = �2t−1/3�, and therefore, this lemma is
proved. ��

Let r denotes the proportion of required wavelengths of
wavelength assignment algorithm β to the optimal wave-
length number, we obtain the following theory.

Theorem 3 The wavelength assignment algorithm β is a fac-
tor 1.25 approximation algorithm for the RWA problem of
realizing ECQ(s,t) communication pattern on WDM optical
network Rn, where n = s + t + 1.

Proof From Corollary 2 and Theorem 2, we have

r ≤ (2s+t−1 + �2t/3�)/(2s+t−2 + 
�2t/3�/2�)
= 1 + (�2t−1/3�)/(2s+t−2 + 
�2t/3�/2�)

Since s ≥ 1, we have

Fig. 13 Wavelength assignment to directed edges in ECQ(1, 3)

1 + (�2t−1/3�)/(2s+t−2 + 
�2t/3�/2�)
≤ 1 + �2t−1/3�/(2t−1 + 
�2t/3�/2�)
≤ 1 + �2t−1/3�/(3 × �2t−1/3� + �2t−1/3�)
= 1 + �2t−1/3�/(4 × �2t−1/3�)
= 1.25

Thus, we obtain that r ≤ 1.25, and this complete the proof.
��

Let d denotes the upper bound on difference of the
required wavelengths between the wavelength assignment
algorithm β and the optimal wavelength number. From
Lemma 7, it is clear that d = �2t−1/3�. For ease of com-
parison, the relation between s, t , r and d is described in
Table 1.
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Fig. 14 Wavelength assignment
to directed links in Ê(R5)

Table 1 Relation between s, t ,
p and d

s t r d

1 1 1 0

1 2 1 0

2 2 1 0

1 3 1.2 1

2 3 1.1111 1

3 3 1.0588 1

1 4 1.1818 2

2 4 1.1053 2

3 4 1.0571 2

4 4 1.0299 2

1 5 1.2381 5

2 5 1.1351 5

3 5 1.0725 5

4 5 1.0376 5

5 5 1.0192 5

4 Conclusion and future works

In this paper, we study the RWA problem for realizing
exchanged crossed cube communication patterns on ring-
topology WDM optical networks. We first design an embed-
ding scheme α. Based on this embedding scheme, we then
propose a wavelength assignment algorithm β, that uses
2s+t−2 +�2t/3� wavelengths. We prove that the wavelength
assignment algorithm β uses minimum number of wave-
lengths under the embedding scheme α. Moreover, we also
show that the wavelength assignment algorithm β is a fac-
tor 1.25 approximation algorithm, and it uses no more than
additional �2t−1/3� wavelengths, compared to the optimal
wavelength number.

For future research, it would be worthwhile to consider
the RWAproblem for other types of communication patterns,
such as locally exchanged twisted cubes (Chang et al. 2016),
exchanged folded hypercubes (Qi et al. 2015), Fibonacci
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cubes (Hsu 1993) and enhanced cubes (Tzeng andWei 1991).
It will also be promising to investigate other WDM optical
network topologies, such as linear array, meshes, and torus.
When solving the RWA problem, the dynamic wavelength
assignment strategy can be used to reduce the required wave-
lengths tremendously (Yu et al. 2013; Zhang et al. 2015).
Therefore, addressing these RWA problems by using the
dynamic wavelength assignment strategy will also be an
interesting research direction.
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