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Abstract
After discussing the basics of belief structures we introduce a new class of belief structures in which we select from among
the focal elements using a possibility measure. We refer to this as a maxitive belief structure, MBS. The concepts of belief and
plausibility are defined for an MBS, and it is noted how an MBS can be used to model imprecise possibility distributions. We
describe various operations with these structures including arithmetic and fusion. We look at the use of the Choquet integral
type aggregation for these MBS. Measures other than belief and plausibility were defined for these structures.

Keywords Uncertainty modeling · Imprecision · Theory of evidence · Imprecise possibility

1 Introduction

The classic Dempster–Shafer belief structure can be viewed
as a bi-levelmodel for representing the uncertainty associated
with a variable that takes its value in the space X (Dempster
1966, 1967; Shafer 1976; Yager 1987; Smets 1988; Yager
et al. 1994; Dempster 2008; Liu and Yager 2008; Yager
and Liu 2008). At the first level a subset of X is randomly
selected from a collection of subsets of X called the focal
elements. This makes use of a probability distribution over
the focal elements. Once having randomly selected this sub-
set, in the second step an object is chosen from this subset in
some unknown, indeterminate, manner. This chosen object
is the value of variable of interest. This indeterminism in
this second step leads to a model of uncertainty that mixes
both randomness and imprecision. One use of this structure
has been for modeling imprecise probabilistic information
(Caselton and Luo 1992). Here we introduce a variation of
the classic belief structure in which in the first step instead
of selecting from among the focal elements using a proba-
bility distribution we use a possibility, maxitive, distribution.
We refer to this new structure as a maxitive belief structure,
MBS. We look at various properties and features of the new
structure. We note that one use of the MBS is for modeling
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imprecise possibilistic information (Tsiporkova and Baets
1998; Dubois et al. 2013). An important real-world appli-
cation of the framework developed here is in multi-criteria
decision-making under uncertainty (Dammak et al. 2016). In
many situations rather than precisely knowing the degree of
satisfaction of a criterion by an alternative we are only able
to specify this satisfaction with some uncertainty that is best
modeled by an MBS.

2 Basic belief structure

Assume X = {xi for i = 1 to n} are a set of elements. Con-
sider a structure m defined on X consisting a collection of
non-empty subsets of X , Fj for j = 1 to q, called the focal
elements and a group of associated weights m(Fj ) = α j ∈
[0, 1] such that

∑q
j=1 α j = 1. This is used as the basis of

model of uncertainty called a Dempster–Shafer belief struc-
ture (Dempster 1966, 1967; Shafer 1976; Dempster 2008;
Liu and Yager 2008; Yager and Liu 2008). Let V be a vari-
able whose value is determined from the set of focal elements
F = {F1, . . ., Fq} by a probabilistic experiment where α j is
the probability that Fj will be the outcome. In addition let
U be a related variable taking its value in the space X . If
V = Fj∗, then U is selected from Fj∗ in some indetermi-
nate manner, that is all we know is that the value of U is
some element in Fj∗. Here we see that Poss(U = xk for
xk ∈ Fj∗) = 1.

One interpretation of the D–S belief structure is as an
imprecise probability distribution on X associated with the
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variable U . Here instead of precisely assigning probabilities
to the elements in X we indicate that an amount of probability,
α j , is allocated in some unspecified manner to the elements
in Fj .

If m is a belief structure so that two of the focal elements
are same Fk1 = Fk2 with weights αk1 and αk2 , we can replace
these by one focal element Fk = Fk1 = Fk2with weight
αk = αk1 + αk2 . We shall refer to this as the compression
principle.

Two concepts closely associated with a D–S structure are
the measures of plausibility, denoted Pl, and belief, denoted
Bel, which are set mappings from the space X into the unit
interval (Shafer 1976). We recall Pl: 2X → [0, 1] and Bel:
2X → [0, 1] are such that for any subset A of X Plm(A) =
∑

j,Fj∩A �=∅
α j and Belm(A) = ∑

j, Fj ⊆ A
α j . We observe that

for any subset A ⊆ X , Belm(A) ≤ Plm(A).
It can easily be shown that both Pl and Bel are monotonic

set measures on the space X (Klir 2006):

(1) Pl(∅) = Bel(∅) = 0
(2) Pl(X) = Bel(X) = 1
(3) If A ⊆ B ⊆ X , then Pl(A) ≤ Pl(B) and Bel(A) ≤

Bel(A)

We also note that Bel and Pl are duals, for any subset
A ⊆ X , Bel(A) = 1 − Pl( Ā).

Under the interpretation of a belief structure as an impre-
cise probability distribution associated with U it is well
known that Pl(A) is the upper bound on the probability of
A and Bel(A) is the lower bound on the probability of A.
In this spirit Prob(A) ∈ [Bel(A),Pl(A)]. An alternate view
is that Prob(A) can be seen as an imprecise probability with
Probm(A) = [Belm(A),Plm(A)].

Another measure that can be associated with a belief
structure is called a Pignistic measure (Smets 1992; Smets
and Kennes 1994) which is defined such that Pigm(A) =
∑q

j=1
Card(Fj∩A)m(Fj )

Card(Fj )
. We note that for any A

Plm(A) ≥ Pigm(A) ≥ Belm(A)

The pignisticmeasure is actually a probability distribution

pk = Pigm({xk}) =
q∑

j=1

Card(Fj ∩ {xk})m(Fj )

Card(Fj )

and for any subset A of X Pigm(A) = ∑

xk∈A
Pigm({xk}).

The concepts of possibility and certainty introduced by
Zadeh (1978, 1979) are useful concepts in discussing the
measures of plausibility or belief. Assume A and B are two
crisp subsets X , then the possibility of A given B is defined
as

Poss(A/B) = 1 if A ∩ B �= ∅

Poss(A/B) = 0 if A ∩ B = ∅

and the certainty of A given B is defined as

Cert(A/B) = 1 if B ⊆ A

Cert(A/B) = 0 if B �⊂ A

Using these concepts we see that Plm(A) = ∑q
j=1 Poss

(A/Fj ]m(Fj ) and Belm(A) = ∑q
j=1 Cert(A/Fj )m(Fj ).

Thus, the plausibility of A is the expected possibility of
A over the focal elements and the belief of A is the
expected certainty of A over the focal elements. We note
that Certainty(A/B) = 1 − Poss( Ā/B).

3 Maxitive/possibilistic belief structures

Here we shall introduce a variation of the classic D–S belief
structure also defined on the space X = {xi for i = 1 to n}.
Here again we have a collection of non-empty subsets of
X , Fj for j = 1 to q, called focal elements and a collec-
tion of associated weights π j ∈ [0, 1]; however, we require
Max j [π j ] = 1. Here again the variable V is a value from the
space F = {F1, . . ., Fq}; however, here it is determined via
a possibility measure λ (Klir 2006; Klir and Wierman 1999;
Wang and Klir 2009) on F such that λ({Fj }) = π j and for
any subset “B” of F we have λ(“B”) = Max j,Fj∈“B”[π j ].

Here againwe letU be a related variable taking its value in
the spaceX. As in the preceding if V = Fj∗ thenU is selected
from Fj∗ in some unspecified manner, that is all we know is
thatU is some element in Fj∗. We shall denote this structure
as g and refer to it as a maxitive Dempster–Shafer belief
structure. As we shall subsequently see one interpretation of
g is as an imprecise possibility distribution.

Herewe note that one conceivable source of the possibility
distribution λ onV is a fuzzy subsetD on the setF describing
our knowledge of the value of the variable V . In this perspec-
tive, as noted by Zadeh (1978), the value π j associated with
the possibility measure λ would be equal to the membership
grade of the focal element Fj in D, D(Fj ).

We note that a corresponding compression principle exists
for these maxitive belief structures. If F has two focal ele-
ments that are same, Fk1 = Fk2 with weights πk1 and πk2 we
can replace these by one focal element Fk = Fk1 = Fk2 with
weight πk = Max[πk1 ,πk2 ].

In this framework we can define the concepts of plau-
sibility and belief associated with a maxitive belief struc-
ture g. Assume E is any subset of X , then Plg(E) =
Max j,Fj∩E �=∅[π j ] andBelg(E) = Max j,Fj⊆E [π j ].We note
that if “A” is the subset ofF consisting of those focal elements
for which E ∩ Fj �= ∅, then Plg(E) = λ(“A”). Similarly if

123



A class of belief structures based on possibility measures 7911

“B” is the subset of F consisting of those focal elements for
which Fj ⊆ E, then Belg(E) = λ(“B”).

Under the interpretation of a maxitive belief structure g as
an imprecise possibility distribution on X we see that Plg(E)

is the upper bound on the possibility of E and Belg(E) is the
lower bound on the possibility of E. Here then Possg(E) ∈
[Belg(E), Plg(E)]. In an alternative view Possg(E) can be
seen as an imprecise possibility distribution. Possg[E] =
[Belg[E),Plg[E)]
Example Assume X = {x1, x2, x3, x4, x5}. Let g be a
maxitive D–S belief structure with focal elements: F1 =
{x1, x3, x5}, F2 = {x2, x4}, F3 = {x1, x4}, F4={x2, x3, x4}.
Here F={F1, F2, F3, F4}.

Assumeλ is amaxitive/possibilitymeasure onF such that:

π1 = λ({F1}) = 0.6, π2 = λ({F2}) = 1,

π3 = λ({F3}) = 0.5, π4 = λ({F4}) = 0.8

Since λ is amaxitivemeasure, then λ(“A”) = MaxFj∈“A”[π j ] and hence

λ({F1, F2}) = 1, λ({F1, F3}) = 0.6, λ({F1, F4}) = 0.8,

λ({F2, F3}) = 1, λ({F2, F4}) = 1, λ({F3, F4}) = 0.8,

λ({F1, F2, F3}) = 1, λ({F1, F2, F4}) = 1, λ({F1, F3, F4}) = 0.8

λ({F2, F3, F4}) = 1, λ({F1, F2, F3, F4}) = 1.

Assume E1 = {x2}, then
Poss(E1/F1) = 1 Cert(E1/F1) = 0
Poss(E1/F2) = 0 Cert(E1/F2) = 0
Poss(E1/F3) = 1 Cert(E1/F3) = 0
Poss(E1/F4) = 0 Cert(E1/F4) = 0

From this we get Plg(E1) = λ({F1, F3)) = 0.6 and
Belg(E1) = λ(∅) = 0

Assume E2 = {x1, x4}, then
Poss(E2/F1) = 1 Cert(E2/F1) = 0
Poss(E3/F2) = 1 Cert(E2/F2) = 0
Poss(E2/F3) = 1 Cert(E2/F3) = 1
Poss(E2/F4) = 1 Cert(E2/F4) = 0

From this we get Plg(E2) = λ(F) = 1 and Belg(E2) =
λ({F3}) = 0.5

4 Arithmetic and other operations on
maxitive belief structures

Assume V1 and V2 are variables whose values lie in the set R
of real numbers. Let us assume our knowledge of the values

of each of these variables is expressed in terms of maxitive
D–S structures. Assume V = V1 + V2 where + is the arith-
metic addition operation. Here we provide an approach for
obtaining the maxitive D–S structure for V .

As background we note that as discussed inMoore (1966)
if A and B are two discrete sets defined on the real line R,
then C = A + B is a subset of R where C = {x + y| for all
x ∈ A and y ∈ B}.
Example If A = {10, 15, 20} and B = {2, 4}, then A+ B =
{12, 14, 17, 19, 22, 24}

Using this we can extend the idea of addition to two max-
itive belief structures. Assume the knowledge V1 and V2 are
expressed via maxitive belief structures g1 and g2. Let g1 be
a maxitive belief structure with focal elements Ai for i = 1
to q and possibility measure λ1. Let g2 also be a maxitive
belief structure with focal elements Bj for j = 1 to r and
possibilitymeasureλ2. Here V = V1+V2 is amaxitive belief
structure g with focal elements, Fi j = Ai + Bj , for i = 1 to
q and for j = 1 to r and associated possibility measure λ so
that λ(Fi j ) = Min[λ1(Ai ), λ2(Bj )].

At times we shall find it more convenient to represent
this addition operator directly in terms of the corresponding
addition of maxitive belief structures, g = g1 + g1. Also
at times to simplify the notation we shall use the notation
g(Fi ) for λ({Fi }) and g(F1, F2, F3) for λ({F1, F2, F3}) and
g(“B”) = MaxFi∈“B”[g(Fi ))

We note that the operation λ({Fi j }) = Min[λ1({Ai }),
λ2({Bj })] always results in the appropriate type of weights
for a possibility measure. In particular, all λ({Fi j }) ∈ [0, 1]
and since there always exists a pair Ai∗ and Bj∗ so that
λ1({Ai∗}) = 1 and λ2({Bj∗}) = 1, then there always
exists one focal element Fi∗ j∗ so λ({Fi∗ j∗}) = 1. Since
Fi∗ j∗ = Ai∗ + Bj∗ , then Fi∗ j∗ is always non-null when Ai∗
and Bj∗ are non-null.

The following two properties can easily be shown to hold
for the addition of maxitive belief structures:

(1) Symmetry: g1 + g2 = g2 + g1
(2) Associatively: g1 + g2 + g3 = (g1 + g2) + g3 = g1 +

(g2 + g3)

In cases when addition of maxitive belief structures leads
to duplicate focal elements with different weights the com-
pression principle can be used to eliminate the duplicates.

Example Let g1 and g2 be two maxitive belief structures on
R. Assume that g1 has focal elements

A1 = {1, 2, 3}
A2 = {3, 4, 5}
A3 = {5, 6}
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and possibility measure λ1 is such g1(A1) = 0.7, g1(A2) =
0.8, and g1(A3) = 1.

In addition g2 has focal elements B1 = {10, 20} and B2 =
{25, 35} and possibility measure λ2 with λ2(B1) = 1 and
λ2(B2) = 0.5.

Here then g = g1 + g2 with focal elements

F11 = {11, 12, 13, 21, 22, 23}
F12 = {26, 27, 28, 36, 37, 38}
F21 = {13, 14, 15, 23, 24, 25}
F22 = {28, 29, 30, 38, 39, 40}
F31 = {15, 16, 25, 26}
F32 = {30, 31, 40, 41}

Further g is a maxitive measure with g(Fi j ) = g(Ai ) ∧
g(Bj ); hence, we have

g(F11) = 0.7 ∧ 1 = 0.7

g(F12) = 0.7 ∧ 0.5 = 0.5

g(F21) = 0.8 ∧ 1 = 0.8

g(F22) = 0.8 ∧ 0.5 = 0.5

g(F31) = 1 ∧ 1 = 1

g(F32) = 1 ∧ 0.5 = 0.5

The preceding approach can be extended to other binary
arithmetic operations. Assume g1 and g2 are two maxitive
belief structure with focal elements Ai , i = 1 to p and Bj ,
j = 1 to q, respectively. Let ⊥ be any arithmetic operator:
addition, subtraction, multiplication, division, exponential.
If g = g1⊥g2, then g is a maxitive belief structure with focal
elements

Fi j = {x⊥y| for all x ∈ Ai with y ∈ Bj } and
g(Fi j ) = Min[g1(Ai ), g2(Bj )) for all Ai and Bj .

We note here all Fi j are non-null and here g(Fi j ) a valid
possibility distribution.

If g1 is a maxitive belief structure (MBS) with focal
elements A j for j = 1 to q all subsets of R. If b is a
number, then g = b g1 is an MBS with focal element
Bj = b A j = {bx | for all x ∈ A j } and g(Bj ) = g1(A j )

for j = 1 to q. Using this and our definition of addition
of MBS we can easily obtain the weighted aggregation of
MBS. Thus, if gk for k = 1 to r are MBS with focal ele-
ments in R and if wk are a set of weights such wk ∈ [0, 1]
and

∑r
r=1 wk = 1, then the weighted average of these r

belief structures is g = ∑r
k=1 wkgk .

We now consider further operations with maxitive belief
structures. Assume X1, X2 and X3 are three not necessarily
different sets. Let S be a set operator defined as

S : I x1 × I x2 → I x3

That is if A and B are subsets of X1 and X2, respectively,
then S(A, B) = C where C is a subset of X3. Let g1 and g2
be twoMBS on X1 and X2, respectively, with focal elements
Ai for i = 1 to q and Bj for j = 1 to p. We are now
interested in obtaining the MBS g = S(g1, g2). Here we let
Fi j = S(Ai , Bj ) which is a subset of X3. We associate with
this a set mapping ĝ on X3 so that ĝ(Fi j ) = g1(Ai )∧g2(Bj ).
We note that ĝ is such that all ĝ(Fi j ) ∈ [0, 1] and there exists
at least one Fi∗ j∗ such that ĝ(Fi∗ j∗) = 1. This occurs for any
pair for where g1(Ai∗) = g2(Bj∗) = 1.

At this point we must distinguish between two classes of
the operator S. We call S non-null forming if for any A and
B that are not null S(A, B) �= ∅. On the other hand we
shall say that S is a null forming if for some A �= ∅ and
B �= ∅ we can have S(A, B) = ∅. We note the union is
an example of non-null forming S. Another example of non-
null forming S is the Cartesian product. An example of a null
forming operator is the intersection. We must use different
procedures for obtaining g from ĝ in these cases. If S is non-
nulling forming, then g is ĝ; the focal elements of g are also
the Fi j = S(Ai , Bj ) and g(Fi j ) = ĝ(Fi j ). We see in this
case that g is a possibility measure, all g(Fi j ) ∈ [0, 1], and
there is at least one Fi j , g(Fi j ) = ĝ(Fi j ) = 1. If S is null
forming, we must use the following procedure for obtaining
g = S(g1, g2)

(1) Focal elements of g are all the non-null Fi j , that is F =
{Fi j s.t. Fi j �= ∅}

(2) If there exists one Fi j �= ∅ such that ĝ(Fi j ) = 1, then
g is an MBS with focal elements all Fi j �= ∅ and for
these focal elements g(Fi j ) = ĝ(Fi j )

(3) If there is no Fi j �= ∅ such that ĝ(Fi j ) = 1. We let
α = Max[ĝ(Fi j )] over those Fi j �= ∅. Using this we
define g having focal element all Fi j �= ∅ and g(Fi j ) =
ĝ(Fi j )

α
.

We note here that g(Fi j ) ∈ [0, 1] and there exists at least
one Fi j with g(Fi j ) = 1.

5 Fusion of multiple MBS

A fundamental issue in the classicDempster–Shafer theory is
the fusion of multiple structures. The predominant method-
ology to accomplish this is the Dempster’s rule (Dempster
1966, 1967; Shafer 1976; Dempster 1968; Zadeh 1979; Fu
and Yang 2011). Here we look at the issue of fusion multiple
maxitive belief structure.

We note for the case of S(g1, g2) where S is the intersec-
tion, then S(g1, g2) as defined earlier becomes an extension
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of the Dempster’s rule. More generally assume gk for k = 1
to t are a collection of MBS based on possibility measures
λk , respectively, with focal elements Fkj for j = 1 to nk .
In the following we shall denote λk(Fkj ) = πk j . We now
can consider the fusion of these to obtain g = S(g1, . . ., gt ).
Here g is an MBS with focal elements Er where each Er is
composed by forming an non-null intersection made of one
focal element from each of the gk ; thus, each Er is the inter-
section Er = ⋂t

k=1 Fkjk �= ∅. Also for each Er we obtain
ĝ(Er ) = Mink=1 to t [λk(Fkjk )]. If there exists at least one
Er �= ∅ with ĝ(Er ) = 1, then g(Er ) = ĝ(Er ). If there is no
Er �= ∅ with ĝ(Er ) = 1, then we let α = Max[ĝ(Er )] for
Er �= ∅. Using this we define g(Er ) = ĝ(Er )

α
.

6 Choquet integral associated with anMBS

Let F = {F1, . . ., Fq} be a collection of focal elements, non-
empty subsets of X. Let r j be some numeric value associated
with each focal element. In many cases we are interested in
some kind of average of these values. In the case when we
have an MBS structure g based on the possibility measure λ

with λ({Fj }) = π j we often use the Choquet integral (Cho-
quet 1953; Beliakov et al. 2007) to obtain the average; we
shall denote this Choqλ(r j for j = 1 to q). Assume ρ is an
index function so that ρ(i) in the index of i th largest of the
r j ; thus, rρ(i) is the i th largest of the r j . Using this we get

Choqλ(r j for j = 1 to q)

=
∑q

i=1
(λ(“Hi”) − λ(“Hi−1”))rρ(i)

where “Hj” = {Fρ(1), . . ., Fρ(i))) is the subset of focal
elements with the i largest values of r j . Denoting wi =
λ(“Hi”) − λ(“Hi−1”) we see Choqλ(r j for j = 1 to q) =∑q

i=1 wi rρ(i). It is easy to show that each wi ∈ [0, 1] and
∑q

i=1 wi = 1. Thus, we see that the Choquet integral is
essentially providing a weighted average of rρ(i) . Here the
weights are determined by the measure λ.

We further note that since λ is a possibility mea-
sure with λ({Fj }) = π j and for a subset “B” of F we
have λ(“B”) = MaxFj∈“B”[π j ]. In the special case of
“Hi” we have λ(“Hi”) = Maxk=1 to i [πρ(k)]. Thus, here
wi = (Max[πρ(i) , λ(“Hi”) − λ(“Hi−1”)] = Max[0, πρ(i) −
Maxk=1 to i−1[πρ(k)]]. We observe that if πρ(i∗)

= 1, then wi

for all i > i∗. Here we shall use the notational convention
that in the case of anMBS g based on the possibility measure
λ that g(Fj ) = π j = λ({Fj }).

With a little bit of algebra we can express the Choquet
integral as

Choqg(r j for j = 1 to q) =
q∑

i=1

λ(“Hi”)(rρ(i) − rρ(i+1) )

In the case where λ is a possibility distribution, then

Choqq(r j for j = 1 to q)

=
q∑

j=1

(

Max
k=1 to i

[πρ(k)](rρ(i) − rρ(i+1) )

)

We now show that the Choquet integral can provide an
alternative and useful formula for the measure of plausibility
and belief associated with g.

Theorem Plg(E) = Choqλ(Poss(E/Fj for j = 1 to q)

Belg(E) = Choqλ(Cert(E/Fλ for j = 1 to q)

Proof (1) Let ρ be an index function so that ρ(i) is the index
of the i th largest Poss(E/Fj ); thus, Poss(E/Fρ( j)) is the
i th largest of the Poss(E/Fj ). Here then

Choqλ(Poss(E/Fj ) for j = 1 to q)

=
q∑

i=1

(λ(“Hi”) − λ(“Hi−1”))Poss(E/Fρ(i))

We note that if E ∩ Fj �= ∅, then Poss(E/Fj ) = 1 and
if E ∩ Fj = ∅, then Poss(E/Fj ) = 0. Assume j∗ are the
number of focal elements that intersect E. Using this we get

Choqλ(Poss(E/Fj ) j = 1 to q) =
j∗∑

i=1

(λ(“Hi ”) − λ(“Hi−1”))

since Poss(E/Fρ( j)) = 0 for those focal elements not inter-
secting E and Poss(E/Fρ( j)) = 1 for those focal elements
intersecting E. We further see that

j∗∑

i=1

(λ(“Hi”) − λ(“Hi−1”)) = λ(“Hj∗”) − λ(∅) = λ(Hj∗)

However “Hj∗” = {Fρ(1), . . ., Fρ( j∗)} is the subset of
focal elements that intersects E; thus, Choqλ (Poss(E/Fj ),

j = 1 to q) = λ(“A”) where “A” is the subset of focal
elements that intersects E,Plλ(E)

(2) In a similar way we can show that Choqλ(Cert(E/Fλ

for j = 1 to q) = λ(“B”)= Belλ(E)where “B” is the set of
focal elements contained in E since Cert(E/Fj ) = 1 if Fj ⊆
E and Cert(E/Fj ) = 0 otherwise.

A related integral is the Sugeno integral (Beliakov et al.
2007; Sugeno 1977; Klement et al. 2010). Here

Sugλ(r j for j = 1 to q) =
q

Max
i=1

[λ(Hi ) ∧ rρ(i)]

It is well known that the Sugeno integral is also a mean
operator. In the special case where λ is a possibility measure,
then
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Sugλ(r j for j = 1 to q) = Max
i=1 to q

[(

Max
k=1 to i

[πρ(k) ] ∧ rρ(i)

)]

Using this we can also show that

Sugλ(Poss(E/Fj ) for j = 1 to q) = Plλ(E)

Sugλ(Cert(E/Fj ) for j = 1 to) = Belλ(E)


�

7 Alternative measures associated with an
MBS

In the preceding we showed that two measures associated
with the variable U on the space X are the measures of plau-
sibility and belief where for any subset E of X

Plg(E) = Choqg(Poss(E/Fj ) for j = 1. . .q) and

Belg(E) = Choqg(Cert(E/Fj ) for j = 1 to q).

Here with g an MBS based on λ having focal elements
F = {F1, . . ., Fq} and associated with each Fj is a weight
g(Fj ) = π j we now provide a whole class of measures on
X , in addition to plausibility and belief, that can be generated
from g.

Let W = 〈W1, . . .,Wq〉 be a collection of vectors called
the allocation imperative. Each Wj is of dimension n j =
|Fj |, and the components of Wj are w j (k) ∈ [0, 1] with
∑n j

k=1 w j (k) = 1. If E is a subset of X, then for each focal

element Fj let z j = ∑|Fj∩E |
k=1 w j (k). Consider the set func-

tion μW,g defined so that for any subset E of X

μW ,g (E) = Choqg(z j for j = 1 to q)

=
q∑

i=1

(λ(“Hi”) − λ(“Hi−1”))zρ(i)

where ρ(i) is the index of the i th largest z j and “Hi” =
{Fρ(1), . . ., Fρ(i)}. We now show that μW,g is a measure on
X

(1) If E = ∅, then Fj ∩ E = ∅ for j and here z j = 0 for
all j = 1 to q and hence μW1g(∅) = 0.

(2) If E = X , then Fj ∩ X = Fj and |Fj | = n j and hence
z j = 1 for j . In this case μW1g(X) = 1

(3) If E1 and E2 are such that E1 ⊆ E2, then (E1 ∩ Fj ) ⊆
(E2 ∩ Fj ) and |(E1 ∩ Fj ) ≤ |(E2 ∩ Fj )| for all j . From
this it follows

∑|E1∩Fj |
k=1 w j (k) ≤ ∑|E2∩Fj |

k=1 w j (k).
From this it follows that if E1 ⊆ E3, then μW ,g(E1) ≤
μW ,g(E2). Thus, we see that μW ,g is a measure on X .

Let us look at some special cases ofW. First consider the
case where W is such for all Wj , w j (1) = 1. Here we see
that if Fj is such that if E ∩ Fj �= ∅, then |E ∩ Fj | ≥ 1 and
z j = 1. While if E ∩ Fj = ∅, then |E ∩ Fj | = 0 and z j = 0.
Here we see for thisW that z j is essentially the Poss(E/Fj ).
Thus, in this case

μW,g(E) = Choqg(Poss(E/Fj ) for j = 1 to q) = Plg(E)

Thus, in this special case of W j where w j (1) = 1 for all
j gives us the plausibility measure.

Consider now the special case where for all Wj we have
w j (n j ) = 1. Here we observe that if Fj ⊆ E , then E ∩Fj =
Fj and thus |E∩Fj | = n j and z j = 1.While if Fj �⊂ E, then
|E ∩ Fj | < n j and z j = 0. Thus, we see z j is essentially the
Cert(E/Fj ). Thus, in this case

μW ,g(E) = Choqg(Cert(E/Fj ) for j = 1 to q) = Belg(E)

We note that if E is a singleton, E = {x∗}, then
Plg({x∗}) = Max j [π j ] over all j so that x∗ ∈ Fj . On the
other hand in this case Belg({x∗}) = Max j [π j ] over all j so
that so that Fj = {x∗}

Another special case of interest is one inwhich each vector
Wj is such that w j (k) = 1

n j
for all k = 1 to n j . Here we

see that z j = |Fj∩E |
n j

, z j is the proportion of elements in
Fj that are in E. Let ρ be an index function on the focal
elements so that ρ(i) is the index of the focal element with
the i th largest z j . Thus, zρ(i) = |Fρ(i)∩E |

nρ(i)
and with “Hi”=

{Fρ(1), . . ., Fρ(i)} we have

μW ,g(E) =
q∑

i=1

(λ(“Hi”) − λ(“Hi−1”))zρ(i)

=
q∑

i=1

(

Max

[

0,

(

πρ(i) − Max
k=1 to i−1

[πρ(k)]
)])

×|Fρ(i) ∩ E |
nρ(i)

.

A standardization of the determination of the vectors Wj

can be had using a methodology introduced by O’Hagan
(1990). Here we provide a parameter β ∈ [0, 1] called the
attitudinal character or degree of optimism. The larger the
β, the more optimistic the resulting measure. Here for each
Wj we obtain its n j components, the w j (k), by solving the
following optimization problem.
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Maximize: -

n j∑

k=1

w j (k) ln(w j (k))

subject to:

n j∑

k=1

n − k

n − 1
= β

n j∑

k=1

w j (k) = 1

w j (k) ≥ 0 for k = 1 to n j

Weshall here refer to themeasure obtainedusing thisβ across
all Wj as μβ,g . We note that the following properties can be
shown

(1) if β = 1, then all w j (1) = 1 and μβ,g (E) = Pl(E)

(2) If β = 0, then all w j (n j ) = 1 and μβ,g (E) = Bel(E)

(3) If β = 0.5, then all w j (k) = 1
n j

(4) If β1 > β2, then μβ1,g(E) ≥ (E)μβ2,g(E) for all E

Another method for standardization of the Wj can be had
using a weight generating function f : [0, 1] → [0, 1] such
that (1) f (0) = 0, (2) f (1) = 1 and (3) f (a) ≥ f (b) if
a > b (Yager 2017). Using this function we can generate the
OWA weights for each Wj , w j (k) for k = 1 to n j as (Yager
1996)

w j (i) = f

(
1

n j

)

− f

(
(i − 1)

n j

)

.

We note that the function f ∗ such that f ∗(x) = 1 for
all x > 0 has w j (1) = 1 and generates the plausibil-
ity measure. The function f∗ such that f∗(x) = 0 for all
x < 1 has w j (n j ) = 1 and generates the belief measure.
In addition the function f (x) = x generates the weights
w j (k) = 1

n j
for all k. It can be shown that if f1 and f2 are

two function such that f1(x) ≥ f2(x) for all x, then the asso-
ciated generated measures, μ f1,g and μ f2,g , are such that
μ f1,g(E) ≥ μ f2,g(E) for all E. In addition we can associate
with every weight generating function f a measure of opti-
mism β = ∫ 1

0 f (x)dx . We see here that if f1(x) ≥ f2(x) for

all x, then β1 = ∫ 1
0 f1(x)dx ≥ ∫ 1

0 f2(x)dx ≥ β2. Here also

note that β = ∫ 1
0 f ∗(x)dx = 1, β = ∫ 1

0 f∗(x)dx = 0 and
i f f (x) = x , then β = 0.5

Consider a weight generating function f1 and the function
f2(x) = 1 − f1(1 − x). We see

(1) f2(1) = 1 − f1(0) = 1
(2) f2(0) = 1 − f1(1 − 0) = 1 − f1(1) = 0
(3) If x ≥ y, then f2(x) ≥ f2(y). We see this as follows.

Since f2(x) = 1 − f1(1 − x) and
f2(y) = 1− f1(1− y)when x ≥ y, then 1− x ≤ 1− y
and hence f1(1 − x) ≤ f1(1 − y)

but f2(x) = 1 − f1(1 − x) ≥ 1 − f1(1 − y) = f2(y).

Thus, when f1 is a weight generating function, then
f2(x) = 1 − f1(1 − x) is also a weight generating func-
tion; in this case we shall refer to f2 as the dual of f1. If f1
and f2 are dual weight generating functions and μ f1,g and
μ f2,g are the measures obtained from an MBS g using these
functions, then it can be shown thatμ f1,g andμ f2,g are duals
(Yager 2017).

If f1 and f2 are dual weight generating functions, f2(x) =
1− f1(1−x), then β2 = 1−β1. If f1 and f2 are dual pairs of
weight generating functions such that f1(x) ≥ f2(x) for all
x , then (1) μ f1,g(E) ≥ μ f2,g(E) for all E and (2) β1 ≥ β2.
Thus, in this case of f1(x) ≥ f2(x) a natural relationship
exists between their respective measures. The prototypical
example of this is f ∗ and f∗ and their associated measures
of plausibility and belief.

We shall find it convenient to assume the notation f̂ for
the dual of f. In addition we shall use the notation μ̂ f ,g for
μ�

f ,g
. If f and f̂ are duals let � = |β − β̂|.

Consider the weight generation function f (x) = x . Here
we see that f̂ (x) = x . Thus, f (x) = x is self-dual, in this
case μ f ,g(E) = μ̂ f ,g(E). We also observe in this case β̂ =
β = 0.5. We see that � takes its maximum of one for f∗
and f ∗ and its minimum value of zero for the self-dual case
f = x .
A useful class of weight generating functions are f (x) =

xt for t ∈ (0,∞). Here we note that for t → 0 we get f ∗
and for t → ∞ we get f∗. In addition for t = 1 we get the
function f (x) = x . Here we observe that β = ∫ 1

0 xtdx =
1

t+1 . We note here we have as dual f̂ (x) = 1− (1− x)t and

β̂ = 1 − 1
t+1 = t

t+1 . In this case � = | t−1
t+1 |. Thus, if t ≤ 1,

then � = 1−t
t+1 and if t ≥ 1, then � = t−1

t+1 .

8 Approximating belief plausibility range

Consider now an MBS g on X; as we noted, this can be
used to model an imprecise possibility distribution. In this
perspective we see that for any subset E of X we can say

Bel(E) ≤ Poss(E) ≤ Pl(E) or Poss(E) ∈ [Bel(E),Pl(E))]

Consider any dual pair f and f̂ such that f (x) ≥ f̂ (x)
for all x in this case we have μ f ,g(E) ≥ μ̂ f ,g(E). Further
since f ∗(x) ≥ f (x) for all x , then Plg(E) ≥ μ f ,g(E) or all
E. In addition since f (x) ≥ f∗(x) for all x, then μ̂ f ,g(E) ≥
Belg(E) for all E. Consider now the interval

Range f ,g(E) = [μ̂ f ,g(E), μ f ,g(E)]
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we see that the Range f ,g(E) ⊆ [Belg(E),Plg(E)]. Here
we see the Range f ,g(E) provides a narrower interval for
the value Poss(E). In some situations we may prefer to
use a narrower interval for expressing the possibility of E.
We should note that formally we cannot be certain that
Poss(E) ∈ Rang f ,g(E). Here Rang f ,g(E) is only providing
an approximation to the true interval value of Poss(E). In this
spirit we see if β is the degree of optimism associated with
the function f, then� = |β− β̂) can provide some indication
of confidence in using the range value Range f ,g(E) as our
approximation. Here we note that in the special case where f
is self-dual, f̂ = f , then μ f ,g(E) = μ f̂ ,g(E) and we have
no interval for Poss(E), here we have Poss(E) = μ f ,g(E).

We note that we can use the O’Hagan approach to obtain
dual measures. Let W = 〈W1, . . .,Wq〉 be a collection of
OWA weight vectors obtained by using an optimism degree
of β ∈ [0, 1] in the algorithm used for calculating the
w j (k). Let Ŵ = 〈Ŵ1, . . ., Ŵq〉 be a collection of OWA
weight vector such that Wj and Ŵ j are duals. In this case
we obtain the vector components ŵ j (k) = w j (n − k + 1).

From these then we calculate z j = ∑|Fj∩E)

k=1 w j (k) and

ẑ j = ∑|Fj∩E)

k=1 ŵ j (k). Using these we calculate μB,g(E) =∑q
i=1 (λ(“Hi”) − λ(“Hi−1”))zρ(i) where ρ(i) is the index of

i th largest z j and “Hi” = {Fρ(1), . . ., Fρ(i)}. We also now
calculate μ̂B,g(E) = ∑q

i=1 (λi (“Ĥi”) − λ(“Ĥi−1”))ẑρ̂(i)

where ρ̂(i) is the index of the i th largest ẑ j and “Ĥi” =
{Fρ̂(1), . . ., Fρ̂(i)}.

9 Randommethod of selecting object from
chosen focal element

Herewe shall consider a variation of themaxitive belief struc-
ture in which we use a different approach for selecting the
element from the chosen focal element. Again we have a
collection F = {F1, . . ., Fq} of focal elements and a max-
itive measure λ for choosing the value V from F. We shall
again let λ(Fj ) = π j where at least one of these has value
one. Again we let U be a related variable taking its value in
X = {x1, . . ., xn}. Here, however, if V = Fk we select the
value U from Fk in the manner described below.

Associated with each xi in X is a probability αi ∈ [0, 1].
We select the element x from Fk based on a random exper-
iment where the probability of selecting xi given U = Fk
is pik = αiPoss[{xi }/Fk )∑n

i=1 αiPoss({xi }/Fk }) . We see pik is the normalized

probability of selecting xi from Fk .
Note: The αi need not be a probability distribution but can

be a finite nonnegative collection of weights.
In the following we find it convenient to use the notation,

Fk(xi ) for Poss({xi }/Fk). It is essentially the membership
grade of xi in Fk . Using this we see that pik = αi Fk (xi )∑n

i=1 αi Fk(xi )
.

Denoting Tk = ∑n
i=1 αi Fk(xi ), the sum of the αi s of the

elements in Fk , we see pik = αi Fk (xi )
Tk

. Please note that Tk is
not the probability of selecting Fk , as Fk is chosen using the
measure λ.

Our interest here is in determining the anticipation that U
∈ E where E is some subset of X. We see that the probability
of that U ∈ E given Fj is Prob(E/Fj ) = ∑

xi∈E pi j =
1
Tj

∑
xi∈E αi Fj (xi ). To obtain the anticipation that U ∈ E ,

denoted Ant(E), we calculate the mean of the Prob(E/Fj )

with respect to the measure λ. We can obtain this value using
the Choquet integral of the Prob(E/Fj ) with respect to the
measure λ; using this we have

Ant(E) = Choqλ(Prob(E/Fj ) for j = 1 to q)

=
q∑

i=1

(λ(“Hi”)) − λ(“Hj(−1”)) Prob(E/Fρ(i))

where ρ is an index function on the focal elements so that
ρ(i) is the index of the focal element with i th largest value
for Prob(E/Fj ) and “Hi” = {Fρ(1), . . ., Fρ(i)}.

We note here that the value of Ant(E) is not an interval
but a specific value. The reason for this is the value of U is
selected from Fk in some well-defined manner.

We also note here that Ant is a measure on the space X
since we can easily show that

1. Ant(X) = 1, 2. Ant(∅) = 0 and 3. IfE1 ⊂ E2,

then Ant(E1) ≤ Ant(E2).

Let us look atAnt(E) for somenotable cases ofE. Consider
the case where E = {x1}, some arbitrary element in X, here
Prob(E/Fj ) = Prob( ({x1})

Fj
) = α1

Tj
Fj (x1) = p1 j and

Ant({x1}) = Choqλ(p1 j , for j = 1 to q)

= Choqλ

(
α1

Tj
Fj (x1) for j = 1 to q

)

.

Let id1 be an index function so that id1(i) is the index of
the i th largest p1 j and let H1i = {Fid1(1), . . ., Fid1(i)). Using
this we have

Ant({x1}) = Choqλ(p1 j , for j = 1 to q)

=
n∑

i=1

(λ(H1i )) − λ(H1(i−1)))p1id1(i)})

Ant({x1}) =
n∑

i=1

(λ(H1i ) − λ(H1i−1))
α1Fid1(i)(x1)

Tid1(i)

Assume n1 is the number of focal elements containing x1.
We see that Fid1(i)(i)(x1) = 0 for i > n1 and Fid2(i)(x1) = 1
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for i ≤ n1, from this we have Ant({x1}) = ∑n1
i=1 (λ(H1i ) −

λ(H1i−1))
α1

p̂id1(i)
.

For the case E = {x2}wegetAnt({x2}) = ∑n2
i=1 (λ(H2i )−

λ(H2i−1))
α2Fid1(i)(x2)

Tid1(i)

Let us consider the case with E = {x1, x2}. Here
Prob({x1, x2}/Fj ) = p1 j + p2 j = α1Fj (x1)+α2Fj (x2)

Tj
and

hence Ant({x1, x2}} = Choqλ(
α1Fj (x1)+α2Fj (x2)

Tj
for j = 1 to

q)
A natural question is that is there any simple relationship

between the values Ant({x1}) and Ant({x2}) and the value
Ant({x1, x2}). Unfortunately, the complexity of the Cho-
quet integral with respect to possibility measure λ precludes
the uncovering of any natural relationship. In particular
what is clear is that in general Ant({x1}) + Ant({x2}) �=
Ant({x1, x2}). Thus, while Ant is a measure it is not a prob-
ability measure.

10 Conclusion

We introduced a new class of belief structures in which we
select fromamong the focal elements using a possibilitymea-
sure instead of a probability measure. We referred to this as
a maxitive belief structure, MBS. The concepts of belief and
plausibility were defined for an MBS, and it was noted how
an MBS can be used to model imprecise possibility distribu-
tions.We described various operations that can be performed
with these structures including arithmetic and fusion. We
looked at the use of the Choquet integral type aggregation
for these MBS. Measures other than belief and plausibility
were defined for these structures.
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