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Abstract
The main challenge for most image–text tasks, such as zero-shot, is the way to measure the semantic similarity between
visual and textual feature vectors. The common solution is to map the image feature vectors and text feature vectors into the
Hilbert space and then rank the similarity by the inner product between feature vectors. In this paper, we learn the feature
representation of images and their sentence descriptions by different deep neural networks to learn about the inner-modal
correspondences between visual and language data. We then use a joint embedding structure based on angle calculation for
measuring the semantic similarity between visual and textual features. In the proposed method, a constant factor b keeps the
similarities of positive samples and negative samples at a certain distance. Since the proposed cosine similaritymethod involves
both normalization and vectors computation, we also develop the learning algorithm on neural networks for expressing the
semantic features of texts and images. We applied the angle-based method to the challenging Caltech-UCSD Birds and the
Oxford-102 Flowers datasets. The experiments demonstrate good performances on both recognition and retrieval tasks.

Keywords Semantic similarity measurement · Joint embedding structure · Angle-based method · Image–text tasks · Deep
neural network

1 Introduction

When visual tasks involve text information, such as zero-shot
image classification (Lampert et al. 2014; Romera-Paredes
and Torr 2015), images content caption (Fang et al. 2015;
Karpathy and Li 2015; Mao et al. 2015), image–sentence
retrieval (Gong et al. 2014b; Wang et al. 2015), visual ques-
tion answering (VQA) (Antol et al. 2015; Gao et al. 2015),
the main challenge becomes to how to measure the semantic
similarity between visual data and textual data (Baioletti et al.
2012). Most papers choose the inner product, which allows
the angles and magnitudes of the multimodal data’s feature
vectors in Hilbert Space (Kempf 1994) to be measured, as
the embedding function when they solve the related prob-
lems (Gong et al. 2014a; Kulis et al. 2011; Wang et al. 2015;
Chen et al. 2008, 2014).
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With the development of deep neural networks, the feature
representations of data in any shape of form (such as images,
text, audio) have achieved encouraging results. However,
after the feature vectors of heterogeneous data are mapped
into the Hilbert space, there is no good way to measure the
distance between those vectors. As for the inner product, the
larger the value, more similar the semantic representations
of two vectors. The inner product allows the rigorous intro-
duction of intuitive geometrical notions such as the length of
a vector or the angle between two vectors.

In the document similarity measurement, the weight of
document feature is represented by a N-dimensional vectors
(D) (Goyal et al. 2015; Shum et al. 2010). The content rel-
evance Simlarity(D1, D2) of two documents is commonly
measured by the cosine of angle between vectors D1 and D2,
instead of the inner product which is simpler in calculation.
Since the length of the vector is affected by the size of the
document, the effect of the magnitude should be eliminated
for higher accuracy.

Just as the document similarity measurement, in the
semantic similarity metric between visual data and textual
data, the magnitude of the feature vector is also affected by
other environmental factors. If we only use the angle between
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image feature vectors and text feature vectors to measure the
semantic similarity, themethodwill bemore effective.More-
over, the cosine of an angle is also invariant to the rescaling
of the inputs (Nair and Hinton 2015) and is very efficient
to evaluate distance in high dimension, especially for sparse
vectors.

Over recent years, cosine similarity has demonstrated
state-of-the-art performance for face verification (Nguyen
andBai 2010), speaker unsupervised adaptation (Dehak et al.
2010) as well as pattern recognition and medical diagnosis
(Ye 2011). However, the cosine similarity is always used for
the metric learning between data of homogeneous nature. As
for the heterogeneous data, there is no attempt to measure
the semantic similarity by cosine methods.

In this paper, we explore the issues of zero-shot (Reed
et al. 2016; Romera-Paredes and Torr 2015) object classi-
fication and text-based retrieval. The more complex tasks
we target, the fewer annotations we have, the more relevant
zero-shot learning is. Zero-shot means that the intersection
of categories between the training set and test set categories
is empty (Larochelle et al. 2008; Palatucci et al. 2009; Liao
et al. 2015). Therefore, it is necessary to establish the map-
ping relationship between images and visual descriptions.
Different from all the above methods in terms of distance
measures, the proposed method is based on calculating the
angle between visual and textual feature vectors and leads
to an effective metric learning method. We summarize our
contributions as follows:

– We propose an angle-based embedding method for mea-
suring the semantic similarity between visual and textual
feature vectors. The method demonstrates significant
improvements over the Caltech-UCSD Birds dataset
(Welinder et al. 2010) and the Oxford-102 Flowers
dataset (Nilsback and Zisserman 2008) in the tasks of
both zero-shot images retrieval and recognition.

– In order to keep the similarity of positive samples (a pair
of sample data where text and image have the same class
label) and negative samples (the image and text belong
to different categories) at a certain distance, the constant
factor b and the selection method on the value of b are
proposed.

– Due to the structure of joint embedding and angle cal-
culation, we develop the learning algorithm on neural
networks for expressing the semantic features of texts
and imagesmore accurately. It contains the derivation for-
mula of the cosine value between two high-dimensional
vectors on each a vector.

The rest of this paper is organized as follows: Sect. 2
presents the background, and the details of our method are
described in Sect. 3. In Sect. 4, several experiments are

conducted and analyzed. Conclusion and future work are dis-
cussed in Sect. 5.

2 Background

Over the past several years, advances in the deep neural net-
work (Lv et al. 2010) have driven rapid progress in visual and
sequential tasks. In this section, we briefly describe several
previous works that our methods are built upon.

2.1 GoogLeNet

The deep convolutional networks (Nilsback and Zisserman
2008; Donahue et al. 2013; Szegedy et al. 2014) have been
successfully used for visual recognition andmany other tasks
on large-scale benchmarks such as ImageNet (Deng et al.
2009). We use GoogLeNet, a top-performing entry of the
ILSVRC-2014 classification task, for images feature extract-
ing. GoogLeNet is based on very deep ConvNets (22 weight
layers) and small convolutional filters(apart from 3× 3, they
also use 1 × 1 and 5 × 5 convolutions). However, in this
work, the remaining challenges for the setting we study are
both fine-grained and zero-shot (Reed et al. 2016). Although
the target objects of the pictures are single and centered in the
CUBand Flowers dataset, domain knowledge is still required
to distinguish the various classes which are visually similar.

2.2 Char-CNN-RNN

Recently, recurrent networks like LSTM (Graves 1997) and
convolutional recurrent components (Zhang et al. 2015)
have yielded highly discriminative and generalizable text
representations learned automatically from words or even
characters. Similar toReed et al. (2016),we use the character-
level convolution recurrent network (Char-CNN-RNN) for
extracting visual descriptions features.

In Zhang et al. (2015), character-level convolutional neu-
ral networks(ConvNets) are used for text classification.
Different from image-based CNN, the text-based CNN uses
temporal (1D) convolution and temporal (1D) max-pooling.
After each convolution layer, rectified linear activation unit
(ReLU) which is defined as relu(x) = max(0; x) is used.
The whole network is constructed by using convolution,
pooling and threshold activation function layers. Accord-
ing to the fact that the character-level convolutional network
lacks a strong temporal dependency along the input text
sequence,Reed et al. (2016) proposed to stack a recurrent net-
work on the top of a mid-level temporal CNN hidden layer.
Benefit from both RNN and CNN, the low-level temporal
features can be easily extracted. The features can be learned
efficiently with fast convolutional networks, and temporal
structure can still be exploited by the recurrent network. This
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Fig. 1 Character-level convolutional recurrent net model

Fig. 2 Deep structured joint embedding with inner product as the com-
patibility function

can be viewed as modeling temporal structure at the abstract
or conceptual level, not strictly delineated by word bound-
aries.

As Fig. 1 shows, the size of the input matrix is fixed.
The RNN is stacked on the last max-pooling layer, and each
column of the matrix is a moment of the RNN input. And the
final encoded feature is the average hidden unit activation
hi over the number of matrix columns n, that is ϕ(d) =
1
n

∑n
i=1 hi .

2.3 DSJE with inner product

The approach of deep symmetric joint embedding (DSJE) in
Reed et al. (2016) can leverage images and visual descrip-
tions by learning a compatibility function. As Fig. 2 shows,
instead of using the bilinear compatibility function, the com-
mon way is using the inner product of features generated by
deep neural encoders as the matching score.

Same to Reed et al. (2016) and Akata et al. (2015a, b),
given data S = {(in, dn, ln), n = 1, . . . N } containing
images content in ∈ I , visual descriptions dn ∈ D and class
labels ln ∈ L , the goal of the deep structured joint embedding
(DSJE) is to learn functions fi : I → L and fd : D → L by
minimizing an empirical risk of the form:

min
fi , fd∈F

1

N

N∑

n=1

Δ(ln, fi (in)) + Δ(ln, fd(dn)) , (1)

where Δ : L × L → � measures the loss incurred while
incurred predicting fi (i) or fd(d) when the true label is l,
and if a = b, Δ(a, b) = 0 , otherwise, Δ(a, b) = 1.

Only a single model is needed for the image recognition
or retrieval. The zero-shot images classifier fi (i;w1) and
zero-shot text-based retriever fd(d;w2) derive a prediction
by maximizing the compatibility F F : I × D → � where
I is the image space and D is the visual description space,
over DSJE as follows:

fi (i;w1) = argmax
l∈L Ed∼D(l) [F(i, d;w1)] , (2)

fd(d;w2) = argmax
l∈L Ei∼I (l) [F(i, d;w2)] . (3)

the class label of the visual description or image, which
makes the compatibility function largest, is the result of zero-
shot recognition or text-based retrieval.

The inner product of features generated by deep neural
encoders is used as the compatibility function. The θ(i) and
ϕ(d) denote the learnable functions for images and text,
respectively. The inner product is written as:

F(i, d) = θ(i)Tϕ(d). (4)

In order to train the model, the compatibility function
between a visual description and its matching images should
be maximized, and the matching score of mismatching pairs
should be minimized, inversely. In this work, we also train
the model by this approach.

3 Method

As shown in Fig. 3, our approach measures the semantic
similarity between visual and textual feature vectors by cal-
culating the angle between feature vectors, where the image
feature vectors encoded by GoogLeNet and text feature vec-
tors encoded by the hybrid character-level convolutional
recurrent (char-CNN-RNN) neural network. Although the
feature extractors are different, the dimensions of visual fea-
ture vectors θ(i) and textual feature vectors ϕ(d) should be
the same.

During training, the input to our model is a batch of
images (the class labels for each picture are different) and
their corresponding visual descriptions (only one sentence
for each image). We first extract the feature representation in
the same dimension of images and descriptions, respectively,
by GoogLeNet and char-CNN-RNN.We then treat these fea-
ture vectors as input data for the compatibility function that
learns the semantic similarity between vectors.
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Fig. 3 Diagram for evaluating the semantic similarity of images and
visual descriptions. Images are embedded with the GoogLeNet (left
upper). Texts are embedded into the feature vectors of the same dimen-
sion as the image feature vectors with the char-CNN-RNN (lower left).
Pairwise similarities are computed with cosine (matching score shown
in angle size) in the Hilbert Space (for ease of understanding, abstract
the high-dimensional space into two-dimensional planes)

After the multimodal embedding, we can get a confusion
matrix (Visa et al. 2011) about positive and negative samples.
The data on the diagonal from the top left to the lower right
of the confusion matrix are all positive samples (the score
between a corresponding image and sentence pair), and the
others are all negative samples. In the asymmetric model,
by minimizing the cost function (Eq. 1), each value on the
diagonal of the confusionmatrix canbemaximized compared
to the corresponding row and column.

3.1 Motivation

Different from Akata et al. (2015a, b) and Reed et al. (2016),
where the semantic similarity metrics are based on the inner
product, we use the cosine of the angle between visual and
textual feature vectors as the compatibility function F : I ×
D → �:

F(i, d) = θ(i)Tϕ(d)

‖θ(i)‖ · ‖ϕ(d)‖ , (5)

where θ(i) denotes the image feature vector andϕ(d) denotes
the visual description feature vector. Our goal is to maximize
the compatibility between an image and its matching visual
descriptions and minimize compatibility between mismatch-
ing pairs.

Both the inner product and cosine pay attention to the
difference between two vectors in the direction instead of
position. With the change of the length of the vectors, the
inner product changes, too, while the cosine distance remains
the same. Since the cosine distance is not sensitive to themag-
nitude of the vectors, it can address the problem of unified
data metrics.

In general, there are three main reasons that calculating
angle is more suitable for similarity measurement:

Fig. 4 Illustration of the relationship among vectors X , Yand Z .
In a mathematical sense, X is more similar to Y because that
the vector Y is closer to X in direction than Z . Therefore, we
hope that F(X , Y ) > F(X , Z), while Inner_Product(X , Y ) <

Inner_Product(X , Z), Cosine(X , Y ) > Cosine(X , Z)

– Images and visual descriptions belong to heterogeneous
data. Besides, feature vectors of images and text are
extracted from two different neural networks, which
means that the measurement standards are not uniform.
Therefore, when calculating the angle between images
and texts feature vectors, the influence of the magnitude
should be eliminated.

– Compared to the inner product with no upper and lower
limit, the cosine value of angle ranges from − 1 to 1.
Because of the boundless of cosine, the selection of the
distance between compatibility of matching pairs and
score of mismatching pairs can be simplified and effec-
tive. In thiswork,wepropose a constant factorb to control
the disparity,whichwill be detailed in followingSect. 3.2.

– It may happen that feature vector Y is closer to X on
direction than Z , while Y is much shorter on the norm
than Z . If we use inner product as the compatibility,
Inner P(X ,Y ) < Inner P(X , Z). While for cosine sim-
ilarity, CS(X ,Y ) > CS(X , Z), empirically the closer in
the direction the vectors are similar, that is F(X , Y ) >

F(X , Z), as shown in Fig. 4.

The strengths and weakness of cosine from different
aspects are analyzed in Sect. 4.

3.2 Learning algorithm

Compared to cosine similarity, the inner product makes the
concept more precise and calculation more simple. Further-
more, the inner product not only considers the direction
relations between tow vectors, but also takes into account
their respective magnitude. These factors should be the rea-
sons for earlier researchusing the inner product as embedding
functions. Through the previous analysis and later experi-
mental result, calculating the semantic similarity after vector
normalization is more accurate for two heterogeneous data
in high-dimensional space. What is more, we derive the cor-
responding learning algorithm as follows.
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The loss function Δ(a, b) = {0, 1} in Eq. (1) is discon-
tinuous and non-differentiable. According to the irregular
structured SVM formulation (Tsochantaridis et al. 2005), we
can use a continuous and convex function as the surrogate
objective function:

J = 1

N

N∑

n=1

{Ci (in, dn, ln) + Cd(in, dn, ln)} . (6)

For each mini-batch, a confusion matrix (Visa et al. 2011)
is used to sample the training data. Each column of the con-
fusion matrix represents the compatibility (the cosine value)
between one image feature vector and all batch descriptions
feature vectors and vice versa. Therefore, only the diagonal
elements of the confusion matrix are the cosine of matching
pairs.

The goal is to maximize the value of each diagonal ele-
ment F(in, dn) with respect to the other cosine values both
on the corresponding rows and columns. In order to increase
the inter-class variety, a constant factor b which can keep a
certain gap betweenmatching scores andmismatching scores
is proposed (Xie et al. 2016; Wei et al. 2015). The misclas-
sification loss Ci (in, dn, ln) takes the form:

Ci (in, dn, ln) =
max
l∈L

{
0,Ed∼D(l) [F(in, d) − F(in, dn)] + b

}
.

(7)

And Cd(in, dn, ln) means that the losses between a text
feature and all image features:

Cd(in, dn, ln) =
max
l∈L

{
0,Ei∼I (l) [F(i, dn) − F(in, dn)] + b

}
.

(8)

In the equations, in refers to a view of a sample image
from each class, and dn refers to one of its ten corresponding
visual descriptions. d and i refer to the mismatching visual
descriptions and images, respectively. b refers to the constant
factor.

Figure 5 gives an intuitive illustration of how the con-
stant factor b can help with cross-viewmatching (Wang et al.
2015). On the left, the distance between a circle (image rep-
resentation) and the triangle (visual description information)
of the same color as the circle should be closest. Similarly, for
an image feature vector (red straight line on the x-axis) on the
right, the matching textual feature vector (another red line)
should have the smaller angle than other lines of different
colors (mismatching textual feature vectors). As a general
view, the constant factor b balances the distance between
cosine values of matching pairs (F1) and mismatching pairs
(F2, F3) on the left of Fig. 5. On the right, it is more intuitive
that the angles betweenmismatching pairs (β) are larger than
matching pairs’ angle (α), and the gaps are controlled in the

Fig. 5 Illustration of the constant factor b for visual and textual features
pairs. Circles represent images, and triangles represent descriptions on
the left. The red straight line on the x-axis represents image feature
vector, and other color lines represent text feature vectors. The same
color indicates matching images and texts (color figure online)

range of larger than arccos(b). The experiment on the effect
of the size of constant factor b is conducted in Sect. 4.

To train the model, a surrogate objective related to Eq. (6)
J isminimized. Since the originalGoogLeNet hasmadegreat
progress in image encoder, the deep convolution network
will not be optimized. The resulting gradients are back-
propagated only through fd by using SGD with RMSprop
to learn a discriminative visual description feature extrac-
tor. The d denotes the variable of description feature vector.
Therefore, the gradient as follows:

δ = ∂ J

∂d

= 1

N

N∑

n=1

{
∂Ci (in, dn, ln)

∂d
+ ∂Cd(in, dn, ln)

∂d

}

= 1

N

N∑

n=1

{δ1 + δ2}. (9)

In consideration of the premises, the gradient contains
the derivation formula of the cosine value between two
high-dimensional vectors on each a vector. The images and
descriptions feature vectors are defined in the form of ele-
ments: in(i1, i2, . . . , ik, . . . , im) and d(d1, d2, . . . , dk, . . . ,
dm). The subscript {1, 2, . . . , k, . . .m} denotes the dimen-
sional sequence of vector i and d, where m equals to the
dimension of feature vectors extracted from neural net-
works. Then the magnitude formulas of vectors in and dn

are: |i | =
√∑m

k=1(ik)
2 and |d| =

√∑m
k=1(dk)

2. Then, the
derivation formula of the cosine value to the elements dk of
visual description feature vector is as follows:
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δ′
dk = ∂ i T d

|i ||d|
∂dk

=
∂

∑m
k=1 ikdk√∑m

k=1 i
2
k

√∑m
k=1 d

2
k

∂dk

= 1
√∑m

k=1 i
2
k

∂

∑m
k=1 ikdk√∑m
k=1 d

2
k

∂dk

= 1

|k|

⎛

⎝ ik
√∑m

k=1 d
2
k

−
(∑m

k=1 ikdk
)
dk

(∑m
k=1 d

2
k

) 3
2

⎞

⎠

= 1

|k|

(
ik
|d| −

(
i T d

) ∗ dk
|d|3

)

. (10)

Therefore, the calculation result on vector d is shown as
follows:

δ′
d = 1

|i |

(
i

|d| −
(
i T d

)
d

|d|3
)

= i

|i ||d| −
(
i T d

)
d

|i ||d|3 . (11)

The result can be done in the same manner, so Eqs. (12)
and (13) can be worked out as follows:

δ1 = i

|i ||d| −
(
i T d

)
d

|i ||d|3 , (12)

δ2 =
(

i

|i ||d| −
(
i T d

)
d

|i ||d|3
)

−
(

in
|in||d| −

(
i Tn d

)
d

|in||d|3
)

, (13)

where i is a variable of image feature vector, in is the label
image feature vector which is also known as the image of
matching class for the description feature vector d, and the |i |
and |d| are the magnitudes of image feature vector i and text
feature vector d, respectively. δ is just the gradient between
total cost function and the last layer of text encoder, which
will be back-propagated through all layers of the character-
level convolutional recurrent neural network.

Algorithm 1 summarizes the DSJE training procedure.
After extracting visual and textual feature vectors (lines 5–6),
the compatibility values between matching pairs and mis-
matching pairs are computed (line 7–8). J indicates the cost
function (line 9). When matching pairs’ compatibility is less
than the mismatching pairs, J > 0 and network does not
convergence. It is worth noting that we only compute the
gradient of text encoder (line 10) and update w2 (line 11).

Algorithm 1 DSJE learning algorithm using SGD with
RMSprop
1: Input: minibatch images i , matching visual description d, learning

rate α, iteration E
2: Initial: weights of image and text network w1, w2
3: repeat
4: for n = 1 to minibatch_si ze do
5: θ(i) ← fi (i, w1)
6: ϕ(d) ← fd (d, w2)
7: sco_mismat ← F(θ(i), ϕ(d))

8: sco_mat ← F(θ(i), ϕ(d))

9: J ← C(Δ, sco_mismat, sco_mat)
10: δ ← ∂ J/∂(ϕ(d))

11: w2 ← w2 − αδ

12: end for
13: until trainingepochs equals to E

4 Experiment

Dataset We use the Caltech-UCSD Birds 200-2011 (CUB)
and the Oxford-102 flowers (Oxford Flower) datasets in our
experiments. The CUB dataset contains 11,788 bird images
of 200 different categories, and the Oxford-102 Flowers
dataset contains 8189 flower images of 102 different cate-
gories. Following Reed et al. (2016) andAkata et al. (2015b),
we split these into class-disjoint training and test sets. The
images in CUB are split into 100 training, 50 validation and
50 test categories. Once hyper-parameters have been cross-
validated, the training + validation (150 categories) classes
can be taken as the training set. The Oxford Flowers has 82
training + validation and 20 test classes. During mini-batch
selection for training, we randomly pick a view of the image
(10 views containing middle, upper left, upper right, lower
left and lower right crops for the original and flipped images)
and one of the ten descriptions.

Data Preprocessing For images features, we extracted 1024-
dimensional pooling units from GoogLeNet (Szegedy et al.
2014) with batch normalization (Ioffe and Szegedy 2015)
implemented in Torch byReed et al. (2016). For text features,
we also extracted 1024-dimensional hidden units from the
hybrid of the char-CNN-RNNdescribed inReed et al. (2016).
The alphabet’s length equals to 70 consisting of all lowercase
characters and punctuation, and the char-CNN input size is
set to 201. Longer text inputs are cut off at this point and
shorter ones are zero padded. SGD with RMSprop is used
to update parameters with adaptive learning rate 0.0007 (Lv
et al. 2007) and mini-batch size 40.

Task We mainly evaluate the proposed method through the
task of zero-shot images recognition and text-based images
retrieval on two public benchmarks. We also conduct the
experiments both on the effect of the compatibility function
in DSJE, the dimension of feature vectors and the value of
constant factor b.
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4.1 Zero-shot recognition and retrieval

For tasks of zero-shot image recognition and text-based
image retrieval, we first extract description encodings from
all test captions and average them per class. For the recog-
nition task (Eq. 2), given a test image, we extract image
feature vector. Then we compute the compatibility between
the image feature vector and description feature vectors of all
test class. The label of the visual description with maximum
the compatibility maximum is the recognition result of this
image. Therefore, the recognition accuracy can be obtained
by calculating the proportion of the test image whose label
is same to the text categories with the highest score.

For retrieval task, we compute the compatibility between
all test images feature vectors and the averaged text embed-
ding (Eq. 3). We report AP@50 (Reed et al. 2016), i.e., the
percent of top-50 scoring images whose class matches that of
the text query, averaged over the 50 test classes, and AP@1,
i.e., the accuracy of the highest scoring images whose class
matches that of the text query.

Here,we show the results of both zero-shot image recogni-
tion and text-based retrieval on the CUB dataset and compare
to the previous published results in Reed et al. (2016). For
the full generality and robustness to types and large vocabu-
lary, only the char-CNN-RNN language model is compared
in these tasks.

Besides the fine-grained visual descriptions in nature lan-
guage, the attributes (manually encoded vectors describing
shared characteristics) are also the current best side informa-
tion to visual features (Lampert et al. 2014). In this task, we
will also compare our results with the state-of-the-art results
based on attributes.

Table 1 summarizes our results onCUB. In both the recog-
nition (first one column) and retrieval (last two columns),
cosine as the compatibility function in our method outper-
forms the inner product in Reed et al. (2016). Especially for

Table 1 Zero-shot recognition and retrieval on CUB. “100” and “150”
refer to the training set of training(100) categories and the training +
validation (150) categories

Compatibility Recognition (%) Retrieval (%)

Top-1 ACC AP@1 AP@50

InnerProd (100) 50.1 56.0 42.5

Cosine (100) 58.8 70.0 47.5

InnerProd (150) 54.8 60.0 45.6

Attributes (150) 50.9 – 50.0

Cosine (150) 60.2 80.0 48.3

The “InnerProd” and “Cosine” refer to using the inner product
and cosine as the compatibility function of DSJE, respectively. The
“Attributes” refers to using vectors embedded by attributes as the text
feature vectors

Table 2 Zero-shot % recognition accuracy and retrieval average preci-
sion on the Oxford Flowers

Compatibility Recognition (%) Retrieval (%)

Top-1 ACC AP@1 AP@50

InnerProd 63.7 70.0 57.3

Cosine 68.7 85.0 60.2

the 100 classes training set, cosine performsmuch better than
inner product consistently for both recognition and retrieval
tasks.

In the recognition setting, there are notable improvements.
For the 100 classes training set (first two laws), cosine (58.8%
Top-1 ACC, 70.0% AP@1 and 47.5% AP@50) outperforms
the inner product (50.1% Top-1 ACC, 56.0% AP@1 and
42.5% AP@50) for zero-shot images recognition and text-
based retrieval. Notably for both recognition and retrieval,
using cosine (58.8% Top-1 ACC, 70.0% AP@1 and 47.5%
AP@50) as the compatibility trained on the 100 classes (sec-
ondly law) even works better than the inner product (54.8%
Top-1 ACC, 56.0% AP@1 and 45.6% AP@50) on the train-
ing + validation (150) categories. Besides, using cosine on
the 150 classes for retrieval (80.0%AP@1) is higher than the
inner product (60.0% AP@1) with 20% accuracy. Although
the cosine is 1.7% lower than the attributes in the retrieval
task, the cosine performs better than the attributes about 10%
in the classification task.

To demonstrate that our results generalize beyond the case
of bird images, we report the same set of experiments on
Oxford-102 Flowers dataset. The experimental setting here
is as the same as the previous experiments about recognition
and retrieval on CUB. Table 2 summarizes our results on the
Oxford Flowers.

For the zero-shot recognition (first column), using the
cosine as the compatibility function achieves 68.7% Top-
1 ACC compared to 63.7% with the inner product. For the
text-based retrieval (last two columns), notably for AP@1,
cosine (85.0%) obtains better result than the inner product
(70.0%).

To demonstrate that our results generalize beyond the case
of both bird images and flowers and avoid the influence of
others factors, we adopt the quantitative analysis method.
The experimental setting here is as the same as in Reed et al.
(2016), except that the compatibility function and threshold
value are different. According to the results shown inTables 1
and 2, on bothCUBandOxford Flowers dataset, using cosine
as the compatibility function is significantly better than the
inner product for both zero-shot image recognition and text-
based retrieval tasks.
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4.2 Effect of the different hyper-parameters

Since the cosine value is neatly bounded in [− 1, 1], the value
of constant factor b can be confirm basically. We investigate
the effect of the value of constant factor c on semantic sim-
ilarity measurement. The experimental setting here is as the
same as in Sect. 4, except that there are no experimental
results of inner product as the compatibility function.

The same value of the constant factor b is used for both
image classification and text-based retrieval tasks on CUB
and Oxford Flowers. As Table 3 shows, the optimal values
b is chosen by a cross-validation method in which differ-
ent values of b = {0.0009, 0.03, 0.1} are tried. The factor
b = 3 is used in our experiment, which has shown to out-
perform the other value for object recognition and retrieval
tasks.

Figure 6a, b, c shows the method that choosing 0.03 as the
constant factor b. We sampled randomly 140 matching pairs
and 140 mismatching pairs from the validation set on both
CUB and Flowers. Then, we calculated the cosine value, that
is the matching score, for each pair and drawn the cosine
value. The blue points denote score of matching pairs, and
the orange points denote that of the mismatching pairs. All
figures show that the values of blue points are basically higher

Table 3 Effect of enforced margin b

Dataset b Recog (%) Retri (%)

Top-1 ACC AP@1 AP@50

CUB (100) 0.009 53.5 62.0 44.4

0.03 58.8 70.0 47.5

0.1 55.5 62.0 43.6

CUB (150) 0.009 56.6 76.0 47.5

0.03 60.2 80.0 48.3

0.1 58.4 64.0 45.8

Flowers 0.009 65.5 85.0 56.4

0.03 68.7 70.0 60.2

0.1 67.8 65.0 59.3

Table 4 Effect of the feature vector dimensions

Dataset d Recog (%) Retri (%)

Top-1 ACC AP@1 AP@50

CUB (150) 128 57.1 72.0 52.6

512 57.5 70.0 52.0

1024 60.2 80.0 48.3

2048 56.3 68.0 50.1

Flowers 128 63.1 70.0 59.6

512 62.4 70.0 59.5

1024 68.7 85.0 60.2

2048 64.9 75.0 61.4

The d denotes the dimensions of image and visual description vectors
before joint embedding

than those of the orange points, and the gap between the
average values keeps in a certain range which is larger than
0.03.

In order to measure the semantic similarity between two
heterogeneous data of images and visual descriptions, the
feature vectors should be mapped into the same dimension
space. So we investigate the effect of the feature vector
dimensions. Obviously having larger or smaller dimension
is worse, but with this experiment we can see which dimen-
sional size is best at which task. The experimental setting of
char-CNN-RNN is as the same as before except the cell num-
ber of the final layer hidden units of RNN. As for the images
feature extractor (pre-trained GoogLeNet), a full connection
layer without activation function is added. For testing, the
protocol is the same as in Tables 1 and 2.

We show the performance of several feature vector dimen-
sions in Table 4. For CUB dataset, d = 1024 is competitive
in zero-shot classification and when the AP1 is calculated in
zero-shot retrieval. Butwhen computing theAP50 in retrieval
task, the 128 wins. As for the Flowers dataset, d = 1024 is
also lost in the AP50 in retrieval task, but the best effect on
AP@50 is achieved by 2048.

Fig. 6 Distribution of matching and mismatching cosine value. We
computed the cosine value of randomized sampling-based 140matching
pairs (blue points) and 140 mismatching pairs (orange points). Results

are reported on CUB (the training 100 classes and the training + val-
idation (150) classes) and Flowers. a Score on CUB (100 classes), b
score on CUB (150 classes), c score on Flowers (color figure online)
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Fig. 7 Qualitative results on CUB and Flowers

4.3 Qualitative results

Finally, Fig. 7 shows several examples of text-based images
retrieval results using a single text description on both CUB
and Flowers. For every query description, the top ten retrieval
images inmatching score are displayed. It isworth noting that
although most categories of the images are not consistent
with the label of the query text, they match basically the
description of the retrieved sentences. More importantly, the
average precision of cosine similarity is higher than that of
the inner product, especially for the Top 1.

5 Conclusion

We propose an angle-based method and develop the learn-
ing algorithm for measuring the semantic similarity between
visual and textual features. With using the constant factor,
the proposed method outperforms the inner product for zero-
shot image recognition and text-based retrieval tasks onCUB
and Oxford Flowers datasets.

We will further improve the quality of the visual descrip-
tion or enlarge the corpus collected fromWikipedia articles.
Moreover, the joint embedding structurewith the compatibil-
ity function of cosine has a wide range of applications such

as Visual Question Answering, which we plan to explore in
future work.
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