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Abstract
Considering restricted Boltzmann machine (RBM) as an unsupervised pre-training phase, this paper delivers a study on pre-
determined model parameters in extreme learning machine (ELM). Because of the non-iterative attribute in fine-tuning phase,
the property of hidden layer output plays an important part in model performance. For ELM, we give a theoretical analysis on
the hidden layer parameters related to matrix perturbation and continuity of generalized inverse. Then by empirically analyz-
ing the proposed RBM–ELM algorithm, we find that the impact of hidden layer parameters on generalization ability varies
among the experimental datasets. By exploring the training process and comparing the model parameters between random
assignment and RBM, we identify the special pattern of hidden layer output discussed in theoretical part and empirically
show that such pattern could harm the model performance.

Keywords Extreme learning machine · Restricted Boltzmann machine · Unsupervised pre-training

1 Introduction

Pre-training as a breakthrough to effective training strate-
gies for deep architectures, in spite of different algorithms
such as restricted Boltzmann machine (RBM) (Hinton et al.
2006) and autoencoder (Bengio et al. 2007), is all based
on the following approach: an unsupervised training phase

Communicated by X. Wang, A.K. Sangaiah, M. Pelillo.

B Ran Wang
wangran@szu.edu.cn

Zhiqi Huang
huangzhiqi@szu.edu.cn

Hong Zhu
xszhuhong@163.com

Jie Zhu
arthurzhujie@163.com

1 Guangdong Key Laboratory of Intelligent Information
Processing, College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China

2 College of Mathematics and Statistics, Shenzhen University,
Shenzhen, China

3 Faculty of Information Technology, Macau University of
Science and Technology, Macao, China

4 Department of Information Management, Central Institute for
Correctional Police, Baoding, Hebei, China

followed by a supervised fine-tuning phase. A comparison
between Bernoulli RBM layers, stacked denoising autoen-
coders and standard feed-forwardmultilayer neural networks
(Erhan et al. 2009, 2010) empirically shows that the unsuper-
vised pre-training not only gives relatively good set of initials
for tuning phase but also seems to act as a regularizer. And
such properties consist with different network structures, size
of datasets and order of observations, which demonstrate the
importance of starting point in the non-convex optimization
problem.

The existing research about unsupervised pre-training (Yu
et al. 2010) is mainly based on the same fine-tuning method:
back-propagation (BP) using gradient descent optimization
algorithm and its improved versions. The tuning-based BP
algorithm requires iterations for continuously changing the
parameter according to loss function which often takes con-
siderable amount of time and may have the cost-effective
problem. In this paper, focusing on non-iterative tuning
phase, we incorporate the idea of pre-training using RBM
into extreme learningmachines (ELMs) and evaluate the new
RBM-ELM model. ELM, as a type of single hidden layer
feed-forward neural networks (SLFNs) proposed in Huang
et al. (2004, 2006), has been studied by many researches
in recent decades (Wang et al. 2012, 2017b, 2018). Some
researchers are focusing on various data types and training
tasks (Ding et al. 2017a, b; Wang et al. 2015), and some stud-
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ies have already shown that ELM is capable of handling big
data (Mao et al. 2017; Zhai et al. 2017; Wang et al. 2017a; Li
et al. 2017; Zhang et al. 2017). The training of the original
ELMconsists of two parts: first, theweights and bias between
input and hidden layers are randomly assigned; second, the
weights between hidden and output layers are obtained by
solving a systemof linear equations using generalized inverse
(GI). Now, instead of random assigning, the RBM is used
as an unsupervised pre-training phase for weights and bias
between input and hidden layers; then, the weights between
hidden and output layers are analytically solved by the gen-
eralized inverse.

Noting that such approach in SLFN is already men-
tioned in Pacheco et al. (2017), Chen et al. (2017) and
extended to multiple-hidden layer feed-forward neural net-
works (MLFNs) in Wang et al. (2017c), Meng et al. (2017),
we focus on, through extensive experimentation, how RBM
affects the initial values of the network. And what causes the
performance difference of RBM-ELM comparing with sim-
ple ELM across various datasets and sizes of hidden layer.
Contrast fromprevious studies, the experimental results show
that the generalization ability is not always improved by
RBM pre-training. Following this line of phenomenon, we
find that for some datasets, the trained RBM could lead to
low variance of the hidden layer matrix. In such situation, the
hidden layermatrix could be viewed as a constantmatrix plus
a perturbation, which would cause large variance of weights
matrix between hidden and output layers due to discontinu-
ity of the generalized inverse. Some theoretical analysis and
explanations related to the matrix perturbation are given.

The rest of this paper is organized as follows. Section 2
lists a brief review on the concepts and algorithms of ELM
and RBM. Section 3 discusses some theoretical proofs of
generalized inverse. Details of RBM-ELMmodel and perfor-
mance evaluation are given in Sect. 4. In Sect. 5, we conclude
this paper.

2 Related work

2.1 Extreme learningmachine

ELM means a three-layer feed-forward network with sin-
gle hidden layer in which the weights and bias between input
layer and hidden layer are randomly assigned and theweights
between hidden layer and output layer are solved by a sys-
tem of linear equations using generalized inverse. A simple
structure of ELM for regression problem is shown in Fig. 1
with n nodes in input layer,m nodes in hidden layer and only
one node in output layer, while for classification problem, the
number of output nodes equals to the number of categories.

Given a set of samplesS = {(xi , ti )|xi ∈ Rn, ti ∈ Rd}Ni=1,
training process of ELM is to determine model parameters
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Fig. 1 A simple ELM structure

{wi j , b j , β j } (i = 1, 2, . . . , n; j = 1, 2, . . . ,m). Since the
weights wi j and bias b j are randomly selected, the train-
ing process is only about determining the connections β j

between hidden layer and output layer. Let

GN×m =

⎡
⎢⎢⎢⎣

w1x1 + b1 · · · wmx1 + bm
w1x2 + b1 · · · wmx2 + bm

...
. . .

...

w1xN + b1 · · · wmxN + bm

⎤
⎥⎥⎥⎦ (1)

be the middle matrix, where wj is the j th column of the
weight matrix W between input layer and hidden layer. Let
g(·) be the sigmoid function and H be hidden layer matrix,
then

HN×m = [g(G)]N×m = [hi j ]N×m (2)

Suppose the target matrix is T = [t1, t2, . . . , tN ]T , then the
training of ELM is transferred to solve the system of lin-
ear equations Hβ = T. In general, the solution H− is not
unique. It is suggested in Huang et al. (2006, 2012) to use
the minimum-norm least-square solution. Instead of solv-
ing the system of linear equations, the optimization problem
changes to:

min
||β||

( min
β∈Rm

||T − Hβ||) (3)

which means β0 is the solution of (3) if it has the smallest
norm among all the least-square solutions. And the solution
is Moore–Penrose generalized inverse H†:

Hβ = T → β̂ = H†T (4)

Now the training process of an ELM can be viewed as three
steps:
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1. Increasing the data dimension from input dataS tomiddle
matrix G. In most cases, the number of hidden nodes m
is greater than number of input attributes n;

2. Transferring middle matrix G to hidden layer matrix H
with rank increased by sigmoid activation function;

3. Solving a system of linear equations with full rank of
coefficient matrix.

In the following, we give some propositions and remarks
regarding the ELM training phase.

Proposition 1 Assume that v = {v1, v2, . . . , vN }, vi =
{vi1, vi2, . . . , vin}, i = 1, 2, . . . , N denotes a set of n-
dimensional vectors, such that 1 ≤ rank(v) ≤ n. Then with
probability 1, the sigmoid transformation will transfer v into
a set of vectors of full rank:

rank(H) = n w.p.1 (5)

where H = {h1,h2, . . . ,hN }, hi = {hi1, hi2, . . . , hin},
hi j = sigmoid(vi j ) = 1/(1 + evi j ), i = 1, 2, . . . , N,
j = 1, 2, . . . , n.

Proposition 2 The generalized inverseH† is continuous ifH
is a full rank matrix.

The proof for Propositions 1 and 2 can be found in Fu et al.
(2014). According to the ELM training process and the two
important propositions, we have the following remarks

Remark 1 In step 2, themiddlematrixG is coming from input
data S via a linear transformation and is generally waning
rank. Proposition 1 guarantees that the sigmoid transforma-
tion will transfer a waning rankmatrixG to a full rankmatrix
H.

Remark 2 In step 3, to reach theminimum-norm least-square
estimator of β, the generalized inverse of a full rank matrix
is calculated. Proposition 2 guarantees the stability of the
solution.

Remark 3 Since the input matrix of ELM is transferred to a
middle matrix by a group of random parameters, the rela-
tionship between the perturbation of weights and sensitivity
of solution measures the stability of the model. According to
the experimental result in Fu et al. (2014, Section 5), the full
rank matrix H is insensitive to the perturbation and can get
a more stable solution for Hβ = T.

2.2 Restricted Boltzmannmachine

RBM is a generative stochastic model which can be used
to capture the probability distribution over a set of inputs
(Hinton et al. 2012). Figure 2 shows the structure of a RBM.
The topology of RBM is a two-layer bipartite graph: the
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Fig. 2 Structure of a RBM

underlying visible layer, denoted as v = [v1, v2, . . . , vn],
is used to receive the input data and the upper hidden layer,
denoted as h = [h1, h2, . . . , hm], is used to generate a new
vector based on visible layer and training algorithm.

Suppose a training set S = {v1, v2, . . . , vN } that con-
tains N observations, where vτ = [vτ1, vτ2, . . . , vτn], τ =
1, . . . , N is the τ th sample observation. Then, the energy
(Smolensky 1986) of a RBM configuration is defined as fol-
lowing:

Eθ (v,h) = −
n∑
j=1

a jv j −
m∑
i=1

bi hi −
n∑
j=1

m∑
i=1

wi jv j hi (6)

where a = [a1, a2, . . . , an] ∈ Rn is the visible layer
bias, b = [b1, b2, . . . , bm] ∈ Rm is the hidden layer bias,
W = [wi j ] ∈ Rm×n is the weight matrix and θ = W, a,b
represents the set of model parameters. According to (6), the
probability of system being in current status can be obtained
by

pθ (v,h) = 1

Zθ

e−Eθ (v,h) (7)

where Zθ = ∑
v,h Eθ (v,h) is the normalization factor. From

joint distribution (7), we have v’s marginal probability dis-
tribution

pθ (v) = 1

Zθ

∑
h

e−Eθ (v,h)

The object of training RBM is to minimize the Kullback–
Leibler divergence from the model distribution pθ to the true
distribution of the data pt , i.e., DKL(pt ||pθ ). And this is
equivalent to maximizing the log likelihood function

L(θ; v) =
∑
v

ln
1

Zθ

∑
h

e−E(θ;v,h)

Assume the data in visible and hidden layers are all sub-
jected to Bernoulli distribution, then value of each node
is in {0, 1}. For numerical attributes, one can refer to the
Gaussian–Bernoulli RBM in Hinton (2010), Salakhutdinov
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et al. (2007).Nowapplygradient descentmethodwith respect
to θ ; we have the following:

∂L(θ; v)
∂wi j

=
N∑

τ=1

[
p(hi = 1|vτ )vτ

j −
∑
v

p(v)p(hi = 1|v)v j

]

∂L(θ; v)
∂a j

=
N∑

τ=1

[
vτ
j −

∑
v

p(v)v j

]

∂L(θ; v)
∂bi

=
N∑

τ=1

[
p(hi = 1|vτ ) −

∑
v

p(v)p(hi = 1|v)
]

(8)

where the conditional probability is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(hi = 1|v) = sigmoid

(
bi +

n∑
j=1

wi jv j

)

p(v j = 1|h) = sigmoid

(
a j +

m∑
i=1

wi j hi

)

Derived from Zθ , on the right-hand side of (8),
∑

p(v) shows
up in all three equations, and the computational complexity
is O(2m+n). Due to the number of visible and hidden nodes,
it is hard to update the parameters based on these gradient
formulas. An efficient approximation method named con-
trastive divergence (CD) was introduced by Hinton (2006).
The main idea of k step CD is that instead of minimizing
DKL(pt ||pθ ), the method minimizes the difference between
pt and pkθ , i.e., DKL(pt ||pkθ ), where pkθ is the distribution
over the k step reconstructions of the data vectors generated
by Gibbs sampling. In practice, we usually choose k = 1;
then, the CD-1 for updating gradient descent is listed below

∂L(θ; v)
∂wi j

≈
N∑

τ=1

[
p(hi = 1|v(τ,0))v

(τ,0)
j

− p(hi = 1|v(τ,1))v
(τ,1)
j

]

∂L(θ; v)
∂a j

≈
N∑

τ=1

[
v

(τ,0)
j − v

(τ,1)
j

]

∂L(θ; v)
∂bi

≈
N∑

τ=1

[
p(hi = 1|v(τ,0)) − p(hi = 1|v(τ,1))

]

(9)

where v(τ,0) is the starting point of sampling from training
dataset and v(τ,1) is the sampled point using CD-1 algorithm.
We can use (9) as the gradient formulas.

3 Perturbation of generalized inverse

In this section, we will give some new theoretical findings
for the ELM training phase, based on the preliminaries intro-
duced in Sect. 2.

From Proposition 2, we already know that the general-
ized inverse is continuous if the matrix is full rank. Now
we focus on a special case: the matrix H is still full rank,
but the values inside H are all near a constant. We have two
aims in this section. One is to prove the discontinuity of gen-
eralized inverse if matrix H is not full rank. Second is to
discuss the pattern and trends of hidden layer output when
generalized inverse is discontinuous. Because generalized
inverse is closely related to the singular value decomposition
(SVD), starting from CourantFischer min–max theorem, we
will prove the perturbation rule of singular value.

Proposition 3 (CourantFischer) Suppose A is a n × n real
symmetric matrix, let {p1,p2, . . . ,pr }, r = 0, 1, . . . , n − 1,
denote the set of n-dimensional vectors. Also, enumerate the
n eigenvalues of A, λ1, λ2, . . . , λn in increasing order, i.e.,
λ1 ≤ · · · ≤ λn. Then, we have

min{pi }
max||x||=1

xT pi=0

xTAx = λr+1 (10)

max{pi }
min||x||=1

xT pi=0

xTAx = λn−r (11)

The proof of Proposition 3 can be found in Parlett (1998).
Now suppose we have a m × n matrix A with rank(A) = k,
the norm of A and its generalized inverse A† can be repre-
sented by its singular values.

Proposition 4 Suppose the singular values ofAm×n areλ1 ≥
λ2 ≥ · · · ≥ λk > 0, then

||A|| = λ1 and ||A†|| = λ−1
k (12)

Proof The definition of norm

||A|| = max||x||=1
||Ax||, x = Rn

According to the definition of Euclidean norm

||Ax||2 = xTATAx

The eigenvalues of ATA are λ21 ≥ λ22 ≥ · · · ≥ λ2k and
eigenvectors v1, v2, . . . , vk , so
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max||x||=1
||Ax||2 = max||x||=1

(
xTATAx

)

= max||x||=1

(
xT

k∑
1

λivivTi

)
x

= max||x||=1

k∑
1

λ2i

(
xT vi

)2

with
∑k

1(x
T vi )2 ≤ 1, then max||x||=1

||Ax||2 ≤ λ21. If let x = v1,

then

xTATAx = λ21 ↔ max||x||=1
||Ax||2 = λ21 ↔ ||A|| = λ1

Now consider the ||A†||. Assume A has singular value
decomposition (SVD) A = U�VT , then A† = V�†UT ,
where

� =

⎡
⎢⎢⎢⎣

λ1

. . .

λk

⎤
⎥⎥⎥⎦ and �−1 =

⎡
⎢⎢⎢⎣

λ−1
1

. . .

λ−1
k

⎤
⎥⎥⎥⎦

||A†||2 = max||x||=1
||A†x||2

= max||x||=1

{(
V�−1UT x

)T (
V�−1UT x

)}

= max||y||=1
yT�−2y

Same as the norm of A, the norm of A† is the square root of
the largest eigenvalue of �−2 which is λ−1

k .
Suppose a small perturbation δA and B = A + δδA.

Regarding the singular values of A and B, we have the fol-
lowing proposition. �	

Proposition 5 Suppose rank(A) = rank(B) = k and the
singular values of A are λ1 ≥ λ2 ≥ · · · ≥ λk , because B
has the same rank with A, B has singular values σ1 ≥ σ2 ≥
· · · ≥ σk . Then,

σi ≤ λi + ||δA|| (13)

Proof According to the singular value decomposition (SVD),
ATA has the eigenvalues λ21, λ

2
2, . . . , λ

2
k and eigenvector

v1, v2, . . . , vk ; then, apply the min–max rule in Proposi-
tion 3; let vi = pi , we have

σ 2
r+1 ≤ max||x||=1

xT pi=0

xTBTBx

= max||x||=1
xT pi=0

xT (A + δA)T (A + δA) x

≤ max||x||=1
xT pi=0

{(
xTATAx

) 1
2 +

(
xT (δA)T (δA) x

) 1
2
}2

≤
{

max||x||=1
xT pi=0

(
xTATAx

) 1
2

+ max||x||=1
xT pi=0

(
xT (δA)T (δA) x

) 1
2
}2

≤ (λr+1 + ||δA||)2 , r = 1, 2 . . . , k − 1.

Thus

σr+1 ≤ λr+1 + ||δA|| ↔ σr ≤ λr + ||δA||

�	
Proposition 6 If the m×n (m < n) matrixA is waning rank,
rank(A) = k < n, the small perturbation δA increases the
rank of B = A + δA.

rank(A + δA) > rank(A) = k (14)

Then, we have the inequation:

||(A + δA)†|| ≥ 1

||δA|| (15)

Proof Assume rank(A+δA) = r > k, then the r th singular
value of matrix A is λr = 0. According to Proposition 5, the
r th singular value of A + δA, σr has

σr ≤ ||δA||

Meanwhile, apply Proposition 4, the norm of (A+ δA)† has

||(A + δA)†|| ≤ 1

σr

Therefore

||(A + δA)†|| ≥ 1

||δA||
�	

Example 1 Let H =
⎡
⎣
1 0
0 0
0 0

⎤
⎦, then rank(H) = 1, which is

not full rank. It is easy to calculate that H† =
[
1 0 0
0 0 0

]
.
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Suppose that δH =
⎡
⎣
0 0
0 ε

0 0

⎤
⎦, ε 
= 0, thenH+δH =

⎡
⎣
1 0
0 ε

0 0

⎤
⎦.

Noting that the rank is increased from 1 to 2 and H + δH is

full rank, we get (H + δH)† =
[
1 0 0
0 ε−1 0

]
. It is easy to see

that limit of (H + δH)† does not exists when ε → 0. And
the variance will increase when ε decreases.

Remark 4 (15) and Example 1 demonstrate that if A is a wan-
ing rank matrix and a perturbation of A increases the rank
of A + δA, the smaller of ||δA||, the larger ||(A + δA)†||
will be. When ||δA|| → 0, ||(A+ δA)†|| → ∞, the general-
ized inverse does not exist. We conclude that the generalized
inverseH† is discontinuous ifH is waning rank. This conclu-
sion is related to the continuity of singular value. For diagonal
matrix �, we get the generalized inverse by taking the recip-
rocal of each nonzero element on the diagonal, leaving the
zeros in place and then transposing the matrix.

Remark 5 In the next section, we will show that for some
datasets, the RBM pre-trained hidden layer outputs are close
to each other. Although the hidden layer matrix is still full
rank, but because of the low variance, the matrix could be
viewed a perturbation around a constant. Thus, when solv-
ing the connections between hidden and output layers, the
generalized inverse is decided by the scope of perturbation,
not the value itself. Named as “pseudo-full rank,” this degen-
erating of hidden layer output has a negative impact onmodel
generalization ability. The situation might not only happen
to unsupervised pre-training but also for random initiating.
That means, monitoring the variance of hidden layer matrix
is necessary when work with ELM.

4 Algorithm and experiments

In this section, wewill conduct some empirical studies to val-
idate the theoretical findings in Sect. 3. More specifically, we
determine the hidden layer of an ELM by unsupervised pre-
training strategy. Instead of randomly selecting weights and
bias, now we train a RBM based on input data S, number of
visible nodes n and number of hidden nodes m. The training
steps of RBM-ELM are given in Algorithm 1. Then, some
benchmark datasets with different sizes and number/type of
attributes are chosen from UCI Machine Learning Reposi-
tory (Lichman 2013) and handwritten databases (LeCun et al.
2010). An empirical comparison is made between original
ELM and RBM-ELM.

By experimenting such approach, we mainly focus on the
following aspects: (1) significance ofmodel performance; (2)
influence of the hidden layer size; (3) variation of parameters
during training.Andfinally,we summarize the effect ofRBM
unsupervised pre-training on ELM.

Algorithm 1: Proposed RBM-ELM Algorithm

Input: ;
Training sample S = (X,T);
Activation function g(·);
Number of hidden nodes m;
Number of iteration ITER;
Learning rate η

Output: Esimated w∗, a∗,b∗ and output weight β̂
1 Randomly assign input weight w1 and bias a1,b1;
2 for t = 1 to ITER do
3 Compute the gradient (�wt ,�at ,�bt ) by (9);
4 Update (wt+1, at+1,bt+1) by

⎧⎪⎨
⎪⎩

wt+1 = wt + η �wt

N

at+1 = at + η �at
N

bt+1 = bt + η �bt
N

(16)

5 end
6 Let w∗ = wITER+1, a∗ = aITER+1, b∗ = bITER+1;
7 Compute the hidden layer output matrix H = g(w∗X + b∗);
8 Compute the output weight β̂ = H†T;

9 return (w∗, a∗,b∗, β̂)

4.1 Datasets and experiment

We collect 14 representative classification datasets which
focus on various learning fields. These datasets contain both
categorical attributes and numerical attributes, which will be
used to evaluate the performance of RBM-ELM. The meta-
data of these datasets with training configurations are shown
in Table 1.

Datasets 1–5 are of categorical attributes and datasets 6–
14 are of numerical attributes. All numerical attributes are
normalized within the range of [0, 1]. In order to handle cat-
egorical data, we need to transfer each category into a list of
numbers. For example, suppose that the categorical attribute
F = {x, y, z}. We transform F into 3 attributes by taking
value either 0 or 1, which are indicators of x, y, z. Since one
categorical attribute will be extended to a list of indicators,
the final dataset feeds to the model may have an obvious
increase in attribute number.

Both ELM and RBM-ELM are trained according to the
parameters column in Table 1. We apply the same num-
ber of hidden nodes m in hidden layer on two models. For
RBM-ELM, η is the leaning rate and ITER is the maxi-
mum iteration in Algorithm 1. To comprehensively verify
the model generalization ability and avoid over-fitting, the
tenfold cross-validation is applied on each dataset. During
training, the original dataset is randomly partitioned into
10 equal sized subsets. Of the 10 subsets, a single sub-
set is retained as the validation set for testing the model,
and the remaining 9 subsets combined are used as training
samples. The cross-validation process is then repeated 10
times with each of the 10 subsets used exactly once as the
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Table 1 Datasets for performance comparison

ID Dataset #Example #Attribute #Class Parameters

1 MNIST 55,000 748 10 m = 800; η = 0.01; ITER = 30

2 Connect-4 67,557 42(126) 3 m = 500; η = 0.01; ITER = 10

3 Chess 3196 36 2 m = 200; η = 0.01; ITER = 30

4 Nursery 10,368 8(27) 5 m = 300; η = 0.01; ITER = 30

5 HIV-1 Protease Cleavage 6590 8(160) 2 m = 220; η = 0.01; ITER = 30

6 Pen-Based Recognition 10,992 16 10 m = 50; η = 0.01; ITER = 20

7 EEG Eye State 14,980 15 2 m = 100; η = 0.01; ITER = 30

8 MAGIC Gamma Telescope 19,020 11 2 m = 100; η = 0.01; ITER = 30

9 ISOLET 7797 618 26 m = 800; η = 0.01; ITER = 30

10 Shuttle 58,000 9 7 m = 100; η = 0.01; ITER = 50

11 Letter Recognition 20,000 16 26 m = 350; η = 0.01; ITER = 30

12 Image Segmentation 2310 19 7 m = 200; η = 0.01; ITER = 10

13 Sensorless Drive 58,509 49 11 m = 200; η = 0.01; ITER = 30

14 MiniBooNE Particle 130,065 50 2 m = 300; η = 0.01; ITER = 30

Number in bracket is the number of numerical attributes after transformation

Table 2 Tenfold
cross-validation of selected
datasets

ID ELM RBM-ELM RBM-ELM
versus ELM

Accuracy (%) Avg. training
time (s)

Accuracy
(%)

Avg. training
time (s)

p value

1 89.74 ± 0.0120 4.81 94.38 ± 0.0125 80.71 < 0.001

2 76.38 ± 0.0043 16.82 78.16 ± 0.0037 84.15 < 0.001

3 94.83 ± 0.0161 0.29 98.46 ± 0.0058 5.00 < 0.001

4 92.31 ± 0.0092 1.88 95.43 ± 0.0053 28.50 < 0.001

5 90.92 ± 0.0052 0.54 92.42 ± 0.0080 13.69 < 0.001

6 93.53 ± 0.0093 0.18 95.63 ± 0.0079 2.48 < 0.001

7 76.90 ± 0.0105 0.37 72.44 ± 0.0177 11.41 < 0.001

8 85.60 ± 0.0084 0.46 86.06 ± 0.0110 12.79 0.3329

9 90.38 ± 0.0096 5.69 94.21 ± 0.0075 41.05 < 0.001

10 99.19 ± 0.0019 1.86 95.33 ± 0.0272 46.24 < 0.001

11 86.96 ± 0.0047 3.50 85.59 ± 0.0045 32.99 0.0031

12 95.71 ± 0.0127 0.23 93.20 ± 0.0096 1.32 < 0.001

13 84.36 ± 0.0059 5.37 77.11 ± 0.0054 82.81 < 0.001

14 91.60 ± 0.0019 16.03 92.47 ± 0.0014 348.85 < 0.001

For each dataset, the highest training accuracy is in bold face

validation set. The mean and standard deviation of testing
accuracy on validation set are calculated for performance
comparison. The algorithms are implemented in Python3.5
under the hardware environment with AMD Ryzen7 1700X
CPU, 32GB RAM and 64-bit Ubuntu 17.04LTS operating
system.

4.2 Result analysis

The experimental results are listed in Table 2. Highest testing
accuracy is in bold face, and the Student’s t test is given to

show the significance between two models. From the table,
we can view that the testing accuracy of RBM-ELM is better
than ELMon 8 out of 14 datasets. And the small pvalue indi-
cates that the difference between two models is significant.
Then, the situation reversed for the other 5 datasets, such that
ELM has the better performance. In Sect. 4.3, we will show
that this low accuracy onRBM-ELM is caused by the discon-
tinuity of generalized inverse proved in Sect. 3. Furthermore,
for dataset ID=8, the two algorithms are giving almost the
same performance. It is hard to say which one is uniformly
better for ELM and RBM-ELM with respect to the testing
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Fig. 3 Different network structures
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accuracy. In another word, the effect of RBM pre-training
depends on the datasets. Noting that the above experiments
are conducted with fixed size of hidden layer. The hidden
layer has the same number of nodes for the two models.
Whether the change of hidden layer size would have a critical
impact on the testing accuracy is still unknown. Especially,
we are concerning whether the performance advantage will
remain when number of hidden nodes changes. To answer
this question, we conduct an additional experiment. For each
dataset, 90% of the samples are selected as the training set
and the remaining 10% as the testing set. Starting close to
the number of input attributes, let the number of hidden layer
nodes increase in a certain step, we recorded the different
testing accuracy.

From Fig. 3, each dataset in Table 1 is trained with dif-
ferent hidden structures. Considering the overall result, the
accuracy increases with more hidden nodes, and the perfor-
mance advantage holds when changing the hidden layer size.
For example, the first sub-figure is the MNIST handwritten
digits dataset. With hidden layer varying from 50 to 800 with
step 50, the RBM-ELM testing accuracy (green curve) is
always above the ELM testing accuracy (blue curve) which
matches the significance result in Table 2.

4.3 Network comparison

According to the previous results, we already find that there
is a significant performance difference between RBM-ELM
and ELM in most of the cases. By embedding hidden nodes
designed usingRBM, it isworthy to track value of parameters
and intermediate results such as hidden matrix and its gener-
alized inverse. Looking into such details, we can tell that the
difference between two algorithms is not only from the final
performance but also inside the training process. Thus, we
carry out another experiment comparing the statistics of the
weight matrixW, hidden layer matrix H and its generalized
inverse H† particularly on the datasets which RBM-ELM
performs worse than ELM.

For the sake of simplicity, the visualization in this part
is conducted only on a negative case (RBM-ELM performs
worse thanELM), i.e., dataset Letter Recognition, and a posi-
tive case (RBM-ELMperformsbetter thanELM), i.e., dataset
MNIST. For other datasets, patterns are similar. With 800
hidden nodes, Figs. 4 and 5 show the distribution of weight
variance for datasets Letter Recognition andMNIST, respec-
tively. In the left two sub-figures, each dot stands for the
variance of weights connecting to a hidden node. It is the
column variance of W. For example, input dataset has 16
attributes and hidden layer has 800 nodes, so hidden node
h1 has 16 connections which are w1,1 to w16,1, and the first
dot represents the variance of these connections. It is sur-
prisingly found from Fig. 4 that the RBM pre-trained weight
matrix for dataset Letter Recognition has very low column
variance, which means the weights are just slightly different
from each other. As discussed in Sect. 2 and Algorithm 1,
the weight matrix between visible and hidden layers will
transform input data into hidden layer matrix. Therefore,
with the low-variance weight matrix, the unlikely trends of
hidden layer output could be expected. As a result, RBM-
ELM performs worse than traditional ELM on dataset Letter
Recognition. On the contrary, as shown in Fig. 5, the low-
variance phenomenondoes not exist for datasetMINST; thus,
RBM-ELM performs better than traditional ELM on this
dataset.

Figure 6 takes a random observation on the hidden layer
output values for dataset Letter Recognition. Although both
hidden layer matrices are full rank, the ELM hidden layer
output is close to a uniform distribution within [0, 1], and
while the RBM hidden layer output has low variance, it is
nearly a perturbation around constant 0.5. While in Fig. 7 we
repeat the procedure in MNIST dataset, there is no waning
rank phenomenon in hidden layer output.

Furthermore, the next step is the same for both RBM-
ELM and ELM: compute the generalized inverse for hidden
layer matrixH. Table 3 reveals the difference of generalized
inverse (GI)matrix betweenELMandRBM-ELMfor dataset

Fig. 4 Weight variance comparison between ELM and RBM-ELM on Letter
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Fig. 5 Weight variance comparison between ELM and RBM-ELM on MNIST

Fig. 6 Hidden layer output comparison between ELM and RBM-ELM on Letter

Fig. 7 Hidden layer output comparison between ELM and RBM-ELM on MNIST

Letter Recognition. Both have zero mean, and the large vari-
ance of GI in RBM-ELM is noteworthy. This phenomenon
is actually due to the discontinuity of generalized inverse
in waning rank matrix. The experimental result matches the
theoretical analysis in Sect. 3.

5 Conclusion

In this paper, to study how initial weights affect the non-
iterative training, the RBM is used as an unsupervised pre-
training phase for ELM. We first give a detailed illustration
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Table 3 Generalized inverse (GI) comparison

Model GI mean GI variance

ELM 1.7052 × 10−7 0.0362

RBM-ELM 1.5632 × 10−7 42052.53

about background and relatedworks followed by introducing
the RBM-ELM algorithm. Then, we prove the discontinuity
of generalized inverse if the full rank matrix is close to a
perturbation from waning rank. Next, to evaluate the model,
some experiments were carried out with benchmark datasets
and comparisonwasmade between standardELMandRBM-
ELM. With the empirical study, we summarize the effect of
RBM combined with ELM. The conclusions can be listed as
follows:

1. For some of the experimental datasets, the performance
of unsupervised pre-training using RBM is significantly
better than random initiating.

2. Increasing hidden layer size by adding more nodes, the
testing accuracy is improved on both standard ELM and
RBM-ELM. And for a particular dataset, the advantage
of RBM-ELM remains when hidden layer size changes.

3. According to our experiments, the RBM-ELM is not
always surpass the standard ELM. The training of RBM
could lead to a low- variance scenario in hidden layer.
Because of the discontinuity of generalized inverse, it
will finally cause large parameter variation in solution.

4. When the hidden layer is floating around a constant, it
should be treated as perturbation of waning rank matrix,
instead of full rank.
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