
METHODOLOGIES AND APPLICATION

An improved rough set approach for optimal trust measure parameter
selection in cloud environments

Somu Nivethitha1 • M. R. Gauthama Raman2 • Obulaporam Gireesha3 • Krithivasan Kannan4 •

V. S. Shankar Sriram3

Published online: 31 January 2019
� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of

appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional

quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new

services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which

involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs

are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service

selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type.

Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a

cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor,

and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature

selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based

computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity.

Keywords Trust measure parameters (TMPs) � Rough set theory (RST) � Hypergraph � Binary fruit fly optimization

(BFFO) � Hypergraph-based computational model (HGCM) � Cloud service ranking

1 Introduction

Cloud computing has been gaining much attention by a wide

variety of business and academic organizations due to its

overwhelming benefits such as broad network access, mea-

sured service, resource pooling, on-demand service, and rapid

elasticity (Sosinsky 2010). Being an open standard model,

cloud provides ‘XaaS’—anything as a service (software,

platform, infrastructure, storage, security, data, database, etc.)

to its users through various deployment models (private cloud,

community cloud, public cloud, and hybrid cloud) (Sosinsky

2010; Mell and Grance 2011). The giants of IT (Amazon,

IBM, Google, Rackspace, etc.) have become the pioneers of

cloud service offerings in almost all cloud service delivery

models (XaaS), while the rest have begun to migrate their

business applications to cloud, in order to bring down the

infrastructure and operational costs (Ding et al. 2014a).

This scenario has resulted in two major research chal-

lenges with respect to the selection of appropriate and

trustworthy cloud service providers which can be stated as,
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1.1 Problem 1 How to identify the trustworthy
cloud service providers?

The phenomenal increase in the number of CSPs offering

functionally similar cloud services at different feature, cost,

and quality makes the selection of trustworthy CSPs, a

challenging task (Thampi and Bhargava 2013). The

application of trust assessment mechanism to the cloud

service selection problem helps the user to find the trust-

worthy service provider (Somu et al. 2017b). Trustwor-

thiness is a most important comprehensive quality metric

of the cloud service, which can be assessed either in an

objective or subjective manner with respect to the several

trust measure parameters (TMPs) such as usability, assur-

ance, security, availability, performance, and cost

(Marudhadevi et al. 2014; Qu 2016; Tang et al. 2017). The

importance of trust metric and their relation to the quality

of the cloud services has resulted in the development of

several trust-based service evaluation and service selection

models for the identification of suitable and trustworthy

CSPs (Liao et al. 2007; Ding et al. 2014a, b, Sun et al.

2014, 2016; Wang et al. 2015; Qu 2016; Ma et al. 2016).

However, these models evaluate the trustworthiness of the

CSPs based on a pre-defined set of TMPs which affects the

accuracy and complexity of the service selection model.

1.2 Problem 2 What are the major requirements
to build an efficient trust-based cloud
service selection model?

In general, a trust-based cloud service selection model

identifies the trustworthy CSPs using various trust evalu-

ation mechanisms based on objective (QoS values) and

subjective (user feedbacks) assessment data. An efficient

cloud service selection model should be adaptive to the

dynamic nature of cloud services which further compli-

cates the process of trust-based service evaluation. For

example, it is hard to evaluate the trustworthiness of the

existing cloud service and a new cloud service due to the

context (time and location)-based performance variation

and lack of assessment data, respectively (Qu et al. 2015).

Trust prediction, a classification, and a multi-criteria

decision-making (MCDM) problem is one plausible solu-

tion for the above-said challenge through the accurate trust

evaluation of cloud service providers, especially when the

trustworthiness of new CSPs needs to be evaluated (Ak-

shya Kaveri et al. 2017; Obulaporam et al. 2018). The

significance of trust prediction models in service-oriented

environments has resulted in several research contributions

in web service selection, cloud service selection, recom-

mender systems, pervasive environments, and social net-

works (Ding et al. 2017b; Mao et al. 2017; Su et al. 2017).

According to Vimal Kumar et al. ‘A good TMP would be

easily measurable from the service provider’s side and

would be contextually related to the service the end user

wants to use on the cloud’ (Thampi and Bhargava 2013).

For example, let us consider a cloud ecosystem where 0n0

cloud service users need to find a suitable and trustworthy

cloud service provider from 0m0 functionally similar cloud

service providers. In a real-world scenario, the severity of

the cloud service selection gets complicated with the ever-

growing nature of the cloud user requests and the cloud

service providers. In general, the performance assessment

of each cloud service provider is based on the historical

QoS and feedback information provided by the historical

users across the QoS attributes. Further, the importance of

the QoS attributes varies with respect to the cloud service

type and user preferences. Hence, a generic solution to the

above-said challenges (Problems 1 and 2) can be presented

through the design of an efficient feature selection tech-

nique which can identify the optimal TMP reduct with

respect to the service type requested by the users or their

own preferences (Somu et al. 2017b). It also addresses

‘Lack of an advanced multi-criteria-based measurement of

user preferences,’ an open issue in the present cloud ser-

vice selection models and approaches (Sun et al. 2014). To

summarize, the design of an efficient feature selection

technique enhances the accuracy of the cloud service

selection model in terms of reduced complexity (minimizes

the search space) and better service selection (recommends

the service providers that have maximum adherence with

the users’ QoS requirements).

Feature selection is found to be one of the most challenging

problems in the field of engineering science which aims at the

identification of the minimal subset of features that have same

information content as that of the original information system

(Chen et al. 2015, 2017). In specific, feature selection tech-

niques have their significance in cloud service selection

problem through the identification of optimal service-specific

TMPs, thereby reducing the complexity and enhancing the

accuracy of the cloud service selection model (Somu et al.

2017b). Among the various computational intelligent models

like principle component analysis (PCA), independent com-

ponent analysis (ICA), instance-based feature selection, cor-

relation-based feature selection, information gain-based

feature selection, Bayesian feature selection, etc. rough set

theory (RST) is found to be the major choice of researchers

due to its capability of handling imprecise, uncertain and

vague data (Pawlak 1982b; Chen et al. 2015; Raza and Qamar

2018; Zouache and Ben Abdelaziz 2018). In general, RST for

feature selection operates over the positive region based on

attribute dependency to find the subset of original features

(reducts) from the given dataset. However, the dependency

computation of RST is found to be computationally extensive

since it involves the generation of equivalence class using both
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conditional and decision attribute followed by the generation

of the positive region (Raza and Qamar 2018). One simple

solution toward this problem is the generation of all possible

reducts and choosing the one which has a higher dependency

on the decision attribute and minimal cardinality. However,

this approach is not applicable for the dataset with a large

number of features and samples since the time incurred for the

generation of all possible subset is in the order of exponential

powers (Jiang et al. 2015). Several research works toward the

integration of RST with the greedy approaches like hill

climbing, forward selection, backward elimination, condi-

tional entropy-based significant estimation, discernibility

matrix-based methods, etc., failed to guarantee an optimal

solution within a reasonable time (Chen et al. 2015; Das et al.

2018).

In general, finding all possible subset is an NP-hard

problem (Gheyas and Smith 2010). Recent research con-

tributions in the development of an efficient feature

selection technique have revealed the significance of meta-

heuristic techniques like genetic algorithm, particle swarm

optimization, cuckoo search optimization, gray wolf opti-

mization, firefly optimization, etc., in solving NP-hard

problems (Table 1) (Gheyas and Smith 2010; Raman et al.

2016; Somu et al. 2016; Gauthama Raman et al. 2017a).

Even though these meta-heuristic techniques guarantee the

global optimal solution, they suffer from high time and

computational complexity issues due to the distribution of

computing and memory ability of various degrees to each

individual in the generations (Chen et al. 2015).

Fruit fly optimization algorithm (FFOA) is a new, sim-

ple, computationally effective swarm intelligent evolu-

tionary algorithm proposed by Pan 2012 which is inspired

by the food foraging behavior of fruit flies. Due to the

inherent ability of FFOA in providing faster convergence

and guaranteeing global optimal solution, it has been suc-

cessfully applied for parameter optimization, combinatorial

optimization and function estimation in various domains

like image processing, bio-informatics, stock market anal-

ysis, etc. (Pan 2012; Dai et al. 2014; Shen et al. 2016).

Hence, in this work, we have introduced a binary variant of

FFOA (BFFO) for identifying the minimal rough set

reducts. The major contribution in this work is as follows:

1. RST-HGBFFO exploits the hyperclique property of

hypergraph to enhance the performance of BFFO

through minimal time complexity and improved con-

vergence rate.

2. HGBFFO integrated with RST (supervised quick reduct

(SQR) and quick relative reduct (QRR)) to enhance the

performance of RST for the identification of the optimal

reduct in minimal time. This work is the extension of our

previous work, where we have proposed a novel trust

assessment model (TrustCom) and an efficient feature

selection technique based on RST and hypergraph prop-

erties (Somu et al. 2017b).

Table 1 Related works

Authors Technique proposed Optimization technique

hybridized with rough sets

Applications

Inbarani et al. (2015) Rough set improved harmony search quick reduct

algorithm

Improved harmony search Medical

Applications

Jothi and Inbarani (2016 and

Ganesan et al. (2017))

Tolerance rough set firefly-based quick reduct Fire fly optimization algorithm

Udhaya Kumar and Hannah

Inbarani (2017)

PSO-based rough set feature selection technique and

neighborhood rough set classifier method

Particle swarm optimization

Chen et al. (2010) Rough set approach for feature selection based on ant

colony optimization

Ant colony optimization Generic

Applications

Chen et al. (2015) Rough set reduct using fish swarm algorithm Fish swarm algorithm

Luan et al. (2016) Attribute reduction algorithm based on rough sets and

improved artificial fish swarm algorithm

Improved artificial fish swarm

algorithm

Chen et al. (2017) Neighborhood rough set reduct with fish swarm Fish swarm algorithm

Su and Guo (2017) Minimum attribute reduction based on rough set theory

and artificial fish swarm

Artificial fish swarm algorithm

Aziz and Hassanien (2018) Rough sets based on modified cuckoo algorithm Modified cuckoo search

algorithm

Das et al. (2018) Incremental feature selection using rough set based on

genetic algorithm

Genetic algorithm

Zouache and Ben Abdelaziz

(2018)

Swarm intelligence algorithm based on quantum-

inspired and rough sets

Firefly optimization and

particle swarm optimization

Hassanien et al. (2017) Improved moth flame optimization algorithm for rough

sets

Improved moth flame

optimization algorithm

Agricultural

applications
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3. This work uses Cloud Service Measurement Index

Consortium—Service Measurement Index (CSMIC—

SMI) metric as a standard for TMP (Valley 2011; Garg

et al. 2013; Somu et al. 2017a). Further, chi-square test

was applied to the considered datasets to assess the

independent nature of the TMPs (Moore 1976).

4. Experiments were conducted using three different

datasets, namely quality web service (QWS) dataset,

Cloud Armor trust feedback dataset, and Centre for

Information Super Highway (CISH)—SASTRA syn-

thetic trust feedback dataset. The performance of RST-

HGBFFO was validated using hypergraph-based com-

putational model (HGCM) and WEKA tool in terms of

reduct size, service ranking, classification accuracy,

and time complexity (Øhrn 2001; Somu et al. 2017a).

The paper is structured as follows: Sect. 2 gives a brief

introduction to the rough set theory, hypergraph, and fruit

fly optimization. Section 3 discusses the proposed RST-

HGBFFO feature selection technique. Section 4 highlights

the experimentation and performance analysis of RST-

HGBFFO over the state-of-the-art techniques based on the

reduct size, service ranking, classification accuracy, and

runtime analysis. Section 5 concludes the paper.

2 Materials and methods

2.1 Rough set theory

Rough set theory is an intelligent mathematical tool, pro-

posed by Pawlak (1982b) for handling imprecise, uncertain

and vague dataset. Unlike traditional soft computing

techniques like fuzzy sets, Dempster-Shafer theory, etc.,

RST does not require any additional or prior information

about the dataset. Therefore, RST has been extensively

used in a wide range of applications for knowledge and

data discovery. The fundamental assumptions in RST are

as follows: (i) Objects in the universe of discourse are

represented by the attributes with some information asso-

ciated with them, and (ii) objects that consist of similar

information are indiscernible. This section discusses a few

basic concepts and definition of RST which are usually

employed for the identification of the optimal reduct

(Pawlak 1982a, b; Abraham 2009).

The data analysis process in the rough set theory (RST)

initiates from the Information System ISð Þ represented in

the form of a table where rows correspond to the samples

and columns correspond to the attributes (Table 2a).

Mathematically, an information system can be viewed as

four-tuple vector IS ¼ U;A;V; fð Þ; where U is the universe

with non-empty set of objects, A is the non-empty set of

attributes, V is the union of attributes such that V ¼
S

a2A Va and f : U � A! Va is the information function

such that a 2 A and x 2 U; f x; að Þ 2 Va. For every M

subset of A, there exists an associated equivalence relation

called indiscernibility relation as defined in Eq. (1) (Min

and Liu 2009; Pawlak 1982a; Yao 2004).

INDM ¼ f x; yð Þ 2 U2j8a 2 M; f x; að Þ ¼ f y; að Þg ð1Þ

The family of all equivalent classes of INDM is denoted

either by U=INDM or U=M and an object x contained in the

equivalent class of INDM is represented as x½ �M . Basically,

the class of attributes in Is can be distinguished into con-

ditional Cð Þ and decisional Dð Þ attributes A ¼ C [ Dð Þ;
where such case is referred as decision table Dsð Þ
(Table 2b). For any M � C [ D and X 2 U, the M-lower

approximation and M-upper approximation are defined in

Eqs. (2) and (3) (Pawlak 1982a).

YM ¼( x½ �M2 U=IND Mð Þ : x½ �M� X
� �

ð2Þ

YM ¼
[

x½ �M2 U=IND Mð Þ : x½ �M\X 6¼ 0
� �

ð3Þ

The M� boundary region of set Y is defined as

BndM ¼ YM � YM . Generally, the roughness of the given

decision table DTð Þ of set Y is computed using Eq. (4).

Table 2 Information system (Is)

and decision system (Ds)
Information system (Is) Decision system (Ds)

U Conditional attributes (A) U Conditional attributes Að Þ Decisional attributes Dð Þ

Education Subject State Education Subject State Job

(a) (b)

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1

3 2 1 1 3 2 1 1 3

4 3 3 1 4 3 3 1 2

5 3 2 2 5 3 2 2 3

6 1 4 3 6 1 4 3 1

7 3 2 3 7 3 2 3 3

8 1 4 1 8 1 4 1 1
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Yd ¼
BndMj j

YMj j ð4Þ

The measure of roughness is found to be an important

metric in RST since it reflects the degree of uncertainty of

an approximation set. The value of Yd lies in the range of

[0,1], where 0 implies every information in the underlying

set Y is known and 1 implies lack of information regarding

the underlying set Y . The M-positive region PoS Dð Þ of

U=IND Dð Þ with respect to Y is defined as a set of all

objects in U that can be certainly classified to the classes of

U=IND Dð Þ by the means of M (Eq. 5)(Pawlak 1982a).

PoSM Dð Þ ¼
[

Y2U=IND Dð Þ
YM ð5Þ

The degree of dependency among the set of attributes

Mð Þ and the decisional attribute Dð Þ can be computed

through the positive region using Eq. (6).

cM Dð Þ ¼ PoSB Dð Þj j= Uj j ð6Þ

Obviously, cM Dð Þ 2 0; 1f g; where 0 represents M is

independent of D; 1 represents M is completely dependent on

D;, and 0\cM Dð Þ\1 represents the partial dependency

between M and D. The main objective of RST is the removal

of redundant and irrelevant features, and therefore, the

reduced set of attributes (reducts) consists of the same

information content as that of the original dataset. Mathe-

matically, the set of all reducts can be denoted as in Eq. (7).

R Cð Þ ¼ R � CjcR Dð Þf g ¼ cC Dð Þ8M � R; cR Dð Þ 6¼ cC Dð Þ
ð7Þ

Since the dataset consists of multiple reducts, the opti-

mal reduct is defined as in Eq. (8).

ROpt ¼ fR0 2 Rj8R00 2 R; R0j j\ R00j jg ð8Þ

2.2 Hypergraph

Hypergraph is a generalization of the traditional graph

theory in which the edges (hyperedges) correspond to the

collection of two or more vertices. Mathematically,

hypergraph HGð Þ is represented as an order 2-tuple HG ¼
V ;Ef g; where V ¼ V1;V2; . . .;Vnf g is the finite set of

vertices and E ¼ e1; e2; . . .; emf g corresponds to the

hyperedges which is a non-empty subset of V; such that

Ei 6¼ ; and
S

Ei ¼ V ; 8i ¼ 1; 2; . . .; nð Þ. In recent years, the

integration of hypergraph with various computational

models has proven its efficiency in many applications in

terms of minimal complexity since they are modeled based

on the algebraic and duality concepts, i.e., geometry and

topology structure (Raman et al. 2016, 2017, Somu et al.

2016, 2017a, b, 2018a, b; Gauthama Raman et al.

2017a, b). In this subsection, we discuss few basic concepts

and definitions of hypergraph and clique property to

improve the performance of binary fruit fly optimization

algorithm (Berge 1973).

Definition 1 Hypergraph Let HG ¼ V ;Ef g, be a hyper-

graph, then the representative graph RG ¼ Vr;Erf gð Þ of

hypergraph is defined as follows (Fig. 1):

(a) Vr ¼ n or Vr ¼ E, when hypergraph H has no

repeated hyperedges

(b) a; bf g 2 Eja 6¼ b, if and only if ea \ eb 6¼ ;

Definition 2 Neighborhood hypergraph Let RG ¼
Vr;Erf g be a graph and m � Vr. Then, the closed neighbor

L in RG is defined in Eq. (9).

CL mð Þ ¼ L 2 VrjL is adjacent of m inRGf g [ mf g ð9Þ

Definition 3 Complete graph: A graph RG ¼ Vr;Erf gð Þ is

said to be complete, if there exists edge e 2 Er between the

vertices Vi;Vj

� �
2 Vr8i; j ¼ 1; 2; . . .; n0f gji 6¼ j where n; is

the number of vertices in RG.

Definition 4 K-clique Given a graph RG ¼ Vr;Erf g, K�
clique of RG is a subset D � Vr and K ¼ Dj j, such that D

obeys definition (Fig. 2).

Proposition 1 Consider a RG ¼ Vr;Erf g and clique

D � Vr, then D is the clique of RG, if and only if
Tm

i¼1 DL Við Þ.

Proof Let D be a clique of graph RG and q � Vr, then

q 2 DL Við Þ; 8i ¼ 1; 2; . . .;mð Þ&D �
Tm

i¼1 DL Við Þ: Con-

versely, consider D �
Tm

i¼1 DL Við Þ. Let g and h be two

distinct elements of D, then from the hypothesis

q 2 DL Við Þ; 8i ¼ 1; 2; . . .;mð Þ, g and h are adjacent. Hence,

D is the clique of RG (Fig. 3).

2.3 Fruit fly optimization algorithm

Fruit fly optimization algorithm (FFOA) is a novel meta-

heuristic technique based on the food foraging behavior of

Fig. 1 H ¼ V ;Ef g;V ¼ v1; v2; v3; v4; v5; v6f g; e ¼ e1; e2; e3; e4f g; e1

¼ v1; v2f g; e2 ¼ v2; v3f g; e3 ¼ v3; v4; v5f g; e4 ¼ v4; v5f g

An improved rough set approach for optimal trust measure parameter selection in cloud… 11983
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fruit flies to identify the global best solution for opti-

mization problems (Pan 2012; Dai et al. 2014; Shen et al.

2016). The fruit flies have a superior sense of smell

(osphresis) and perception (vision) compared to other

species. The osphresis organ of a fruit fly can collect all

kinds of smell in the environment. It can smell the food

source at a distance of 40 km. Once a fly reaches a location

nearer to the food source, it makes use of its sensitive

vision and the company’s flocking location to locate the

food. Figure 4 depicts the food foraging behavior of the

fruit flies (particles) in the search space. Initially, the par-

ticles begin to traverse the search space in search for an

optimum solution in a randomized manner. During each

iteration, the fitness of each particle was assessed using the

fitness evaluation function in terms of particle’s current

location. The smell concentration of each particle repre-

sents their fitness value. On to the subsequent iterations, the

particles fly based on the location of the particle with

maximum fitness value. Based on the food foraging

behavior of the fruit flies, the steps in FFOA can be cate-

gorized as follows:

Step 1 The major parameters of the FFOA, such as

maximum number of generations MaxGenð Þ, population

size PoPSizeð Þ, number of population PoPNumð Þ, fitness

value Fitnessð Þ, local best smell concentration BestSmellð Þ,
global best smell concentration GBestSmell

ð Þ, best position

BestPosð Þ, and random position of the particles were ini-

tialized with appropriate values as defined in Eqs. (10) and

(11).

XAxis ¼ RandðÞ ð10Þ
YAxis ¼ Rand(Þ ð11Þ

Step 2 The particles were stimulated to construct the

population and traverse the search space using the

osphresis gland for its food foraging process using

Eqs. (12) and (13).

Xi ¼ XAxis þ Random value ð12Þ
Yi ¼ YAxis þ Random Value ð13Þ

Step 3 For each iteration, the fitness of each particle was

assessed by substituting its current position in the fitness

evaluation function (Eqs. (14) and (15)).

Si ¼
1

Di

;Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i þ Y2
i

q
ð14Þ

Smelli ¼ Fitness Sið Þ ð15Þ

(a) (b)

Fig. 2 a 3-clique, b 4-clique

(a) (b)

(c) (d)

Fig. 3 a A graph (GRep) with 6

vertices and 8 edges; b, c, and

d possible cliques of GRep is

D1={VR1, VR2, VR5}, D2={VR2,

VR3, VR4, VR5}, and D3={VR6,

VR5, VR4}
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Step 4 The smell concentration and position coordinates

of the fittest particle (a particle with maximum fitness

value) were retained. For subsequent iterations, the parti-

cles traverse the search space with respect to the position of

the fittest particle (Eqs. 16–19).

BestSmell ¼ Max Smellið Þ ð16Þ
GBestSmell
ð Þ ¼ BestSmell ð17Þ
XAxis ¼ X Best indexð Þ ð18Þ
YAxis ¼ Y Best indexð Þ ð19Þ

Step 5 Steps 2 and 4 were repeated in an iterative

manner for a maximum number of generations or until an

optimal solution is attained.

3 RST-HGBFFO: the proposed trust measure
parameter selection technique

Feature selection or dimensionality reduction is a primary

and indispensable phase in many data analytic applications.

It is the process of finding the minimal set of attributes or

reducts that reveals the maximum information content of

the original dataset (Deogun et al. 1998). The major

objective behind the design of any feature selection tech-

nique is to increase the accuracy and reduce the compu-

tation burden of the learning model. In general, feature

selection techniques evolve from the decision system DSð Þ
which consists of 0S0 observations O ¼ O1;O2; . . .;OSf g,
0A0 conditional attributes A ¼ A1;A2; . . .;ACf g, and a

decisional attribute Dð Þ (Table 3) (Jia-Yuarn 2003; Hu

2012). Since all the conditional attributes in the decision

table may not be important at all times, the importance of

these attributes can be determined by the measure of rel-

evancy and redundancy (Nina 2007). An attribute or fea-

ture is relevant, when it is highly predictive of the

decisional attributes Dð Þ, and is redundant, when it is

highly correlated with the neighboring conditional attri-

butes Dð Þ. Hence, an optimal reduct must consist of fea-

tures that are independent on each other Að Þ and closely

related to the decisional attribute Dð Þ. Further, the perfor-

mance of any learning model can be improved in terms of

enhanced accuracy and reduced complexity due to mini-

mized search space through the identification of optimal

reducts (Jensen and Shen 2003).

Fig. 4 Fruit fly’s food foraging

behavior

Table 3 Decision system
Observations Oð Þ Conditional attributes Að Þ Decisional attribute Dð Þ

A1 A2 A3 … AC

O1 V11 V12 V13 … V1C D1

O2 V21 V22 V23 … V2C D2

O3 V31 V32 V33 … V3C D3

.

.

.

.

.

.

.

.

.

.

.

.

… .

.

.

.

.

.

OS VS1 VS2 VS3 … VSC DD
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The prominence of RST over other statistical and machine

learning techniques has motivated the researchers and aca-

demicians toward the exploitation of RST for various research

problems in medical diagnosis (Somu et al. 2016), intrusion

detection systems (Raman et al. 2016; Gauthama Raman et al.

2017a), cloud service selection (Liu et al. 2016; Somu et al.

2017a), etc. A more generic way to obtain the reducts using

RST is to generate all possible combinations of the feature

subsets and identify the subset that maximizes the dependency

function (Zhong et al. 2001; Jensen and Shen 2004; Nina

2007; Wang et al. 2007). However, the above-said approach

holds good for small volume datasets, while in the case of

massive and high-dimensional datasets, the complexity of the

learning model increases exponentially (Somu et al. 2016).

Therefore, for large-scale datasets, SQR and QRR were used

to obtain the reducts (Velayutham and Thangavel 2011; Chen

et al. 2015). The execution of SQR begins with an empty set,

followed by the iterative addition of substantial features that

maximize the dependency function. The major problem with

this approach is the lack of global optima (traps at local

minima) due to the instability in the dependency metric

experienced by the iterative inclusion and exclusion of fea-

tures. To avoid this, QRR replaces the dependency metric of

RST by relative dependency function (Inbarani et al. 2014).

This work presents RST-HGBFFO, a cooperative bio-

inspired algorithm which hybridizes the benefits of

hypergraph and binary fruit fly optimization technique with

RST (SQR and QRR) for the identification of optimal

service–specific trust measure parameters or conditional

attributes with minimum time complexity (Algorithm 1).

The main objective of the proposed approach is to identify

the optimal reducts, i.e., service-specific trust measure

parameters thereby minimizing the computational and time

complexity of the cloud service selection model. RST-

HGBFFO operates over a m-dimensional binary search

space with PoPNum fruit flies or particles which are repre-

sented by a 0m0 tuple vector (particle’s location). Each tuple

vector varies in its length with respect to the number of

features Að Þ. For example, a four-tuple vector 0011h i
corresponds to the presence of A3;A4 and the absence of

A1;A2 (Table 4). Figure 5 presents a generic data flow of

RST-HGBFFO.

Table 4 n-tuple vector and feature subset

Conditional features Feature subset

A1 A2 A3 A4

1 1 0 1 A1;A2;A4ð Þ
0 0 1 1 A3;A4ð Þ
1 1 1 0 A1;A2;A3ð Þ
0 0 1 0 A3ð Þ

Fig. 5 Rough set theory-based hypergraph-binary fruit fly optimization trust measure parameter selection technique
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The detailed explanation of the working of RST-

HGBFFO is given as follows:

Phase 1—Initialization phase It initializes the popula-

tion size PoPSizeð Þ, maximum generation MaxGenð Þ, fitness

function Fitnessð Þ, local best smell concentration

BestSmellð Þ, global best smell concentration GBestSmell
ð Þ, best

position BestPoSð Þ, and number of particles PoPNumð Þ.
Phase 2—Generation of initial population In general,

the position of each particle in the traditional BFFO was

initialized in a random fashion. Similarly, the initial pop-

ulation of RST-HGBFFO was obtained through a step-by-

step procedure: (i) construct a two-dimensional matrix

M½ �PoPNum�PoPSize
with randomly generated binary string

(Fig. 6(a)), (ii) construct a hypergraph HGð Þ using

M½ �PoPNum�PoPSize
(Fig. 6b), and (iii) application of hyper-

clique property on HG (Definition 4) to obtain the refined

population (Gauthama Raman et al. 2017b) (Fig. 6c).

Phase 3—Fitness evaluation Each initial set of particles

or population obtained from phase 1 was evaluated using

Fitness

PoP

A

D

D D D

D

D D D

A
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the fitness function defined based on the attribute depen-

dency measure of RST. The fitness evaluation function of

RST-HGBFFO was designed with respect to the depen-

dency metric FitnessSQRð Þ and relative dependency metric

FitnessQRRð Þ of RST given in Eqs. (20) and (21),

respectively.

FitnessSQR ¼ cR Dð Þ ¼ PoSR Dð Þj j
Uj j ð20Þ

FitnessSRR ¼ cR Dð Þ ¼ U=IND Rð Þj j
U=IND R [ Dð Þj j ð21Þ

Phase 4—Updation Once the fitness of each population

was computed using the fitness evaluation function

[Eqs. (20) and (21)], the value of the Smell function

BestSmellð Þ was updated with the fitness value of the fittest

particle, i.e., the population with high fitness value (de-

pendency metric). For each iteration, the global best smell

value GBestSmell
ð Þ was updated based on the local best smell

BestSmellð Þ, i.e., the smell concentration value of the

GBestSmell
ð Þ and BestSmell was compared against each other.

Further, the GBestSmell
is updated with the high smell con-

centration value ðBestSmell [GBestSmell
;GBestSmell

 
BestSmellÞ. The position of the fittest particle is stored in

BestPoS and set as a seed for the subsequent iteration.

Phase 5—Generation of new population Check for the

termination condition (optimal solution Fitness ffi 1ð Þ or

MaxGen). If the optimal solution was found, return the

BestPoS, i.e., the optimal TMP. Else, repeat phase 3 and 4.

3.1 Example

Let us consider a decision table (Table 5) with 20 obser-

vations represented in the form of seven conditional attri-

butes A1;A2; . . .;A7ð Þ and a decisional attribute Dð Þ: The

execution of RST-HGBFFO TMP selection technique

begins with the initialization of MaxGen ¼ 3;PoPSize ¼ 7;
PoPNum ¼ 20;Fitness ¼ 0;BestSmell ¼ 0;GBestSmell

¼ 0 and

BestPoS ¼ 0; 0; 0; 0; 0; 0; 0h i (Table 6). The hyperclique

property of hypergraph was exploited for the generation of

initial population of BFFO (Fig. 7). The particles fly over

the search space from their initial random position in

search for the optimal reduct based on their sense of smell

and vision. Over a certain period, the particles get dis-

placed to a new position P1 ¼ 0; 1; 0; 1; 1; 1; 0;P2 ¼ 1;ð
0; 1; 0; 1; 1; 1;P3 ¼ 1; 0; 1; 1; 0; 1; 1;P4 ¼ 0; 0; 1; 1; 1; 1h iÞ,
where 0 and 1 represent the absence and presence of the

feature, respectively. The fitness of each particle was

evaluated based on the particle’s current location using the

fitness evaluation function of SQR and QRR given in

Algorithm 1 P1 ¼ 0:34;P2 ¼ 0:60;P3 ¼ 0:21;P4 ¼ 0:53ð Þ
(Table 7).

The smell concentration value of the particle with high

fitness value was stored in BestSmell and compared against

(a) (b)

(c)

Fig. 6 Generation of initial

population: a random

population, b construction of

hypergraph and application of

hyperclique property, c initial

population
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GBestSmell
GBestSmell

¼ 0ð Þ. The comparison resulted in the

replacement of the smell concentration of GBestSmell
with

higher smell concentration value BestSmell ¼ 0:60;ð
GBestSmell

¼ 0;BestSmell [GBestSmell
;GBestSmell

¼ 0:60Þ. The

position of the particle with high fitness value was stored in

BestPos BestPos ¼ 1; 0; 1; 0; 1; 1; 1ð Þ (Table 8).

In the subsequent iteration, the random position of the

particles was initialized based on BestPos ¼ 1; 0; 1; 0; 1;

1; 1. The displaced position of the particles P11;P12;P13

and P14 after time interval t was 1; 1; 1; 0; 1; 1; 1;

1; 0; 0; 1; 1; 1; 0; 1; 1; 1; 1; 0; 0; 1h i, and 0; 1; 1; 0; 1; 1; 1

(Table 9). The fitness value of each particle based on their

current position was computed as P11 ¼

Table 5 Decision table: an

example
Observations Oð Þ Conditional attributes Að Þ Decisional attributes Dð Þ

A1 A2 A3 A4 A5 A6 A7

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

18 2 1 2 2 2 1 2 1

19 1 2 3 3 1 2 1 1

20 1 2 2 2 1 1 1 1

Table 6 Initialization phase

S. no Parameters Value

1 Fitness 0

2 BestSmell 0

3 GBestSmell
ð Þ 0

4 Smell 0

5 BestPoS h0,0,0,0,0,0,0i

Fig. 7 Construction of

hypergraph and application of

hyperclique property

Table 7 Iteration 1—optimal

fitness value and reduct
Particle Pf

� �
Conditional attributes Feature subset Fitness value

A1 A2 A3 A4 A5 A6 A7

P1 0 1 0 1 1 1 0 A2;A4;A5;A6f g 0.34

P2 1 0 1 0 1 1 1 A1;A3;A5;A6;A7f g 0.60

P3 1 0 1 1 0 1 1 A1;A3;A4;A6;A7f g 0.21

P4 0 0 1 1 1 1 1 A3;A4;A5;A6;A7f g 0.53

Table 8 Fitness and position update

S. no Parameters Value

1 BestSmell 0.60

2 GBestSmell
0.60

3 BestPoS h1,0,1,0,1,1,1i

11990 S. Nivethitha et al.

123



0:17;P12 ¼ 1;P13 ¼ 0:21, and P14 ¼ 0:52 (Table 9). An

optimality check on the fitness value resulted in the

attainment of the optimal solution P13 ¼ 1; 0;ð
0; 1; 1; 1; 0 ¼ 1Þ. The smell concentration value of GBestSmell

was updated with the optimal fitness value BestSmell ¼ð
1;GBestSmell

¼ 0:60;BestSmell [GBestSmell
;GBestSmell

¼ 1Þ. The

position of the fittest particle stored in BestPos

BestPos ¼ 1; 0; 0; 1; 1; 1; 0ð Þ represents the optimal reduct

TMPð Þ, which can be decoded as A1;A4;A5;A6.

4 Experimental results and discussion

The implementation of RST-HGBFFO was carried out

using Python 3.6 (Scikit-rough sets package) on an Intel�

CoreTM i5 processor @ 2.40 GHz system running Win-

dows 7 OS with 16 GB RAM. The performance evaluation

of RST-HGBFFO was validated using two benchmark

datasets, namely QWS dataset, and Cloud Armor trust

feedback dataset & a synthetic trust feedback dataset

obtained from the Centre for Information Super Highway

(CISH), SASTRA Deemed University (Sheng; Al-Masri

and Mahmoud 2007).

4.1 Dataset description

(i) QWS dataset QWS is a public QoS dataset owned

and maintained by E. Al-Masri and Q.H Mah-

moud, University of Guelph, Canada (Al-Masri

and Mahmoud 2007). This QoS dataset is widely

used in several research works and evaluation

studies on QoS in service-oriented environments.

It contains QoS records of 365 real-world web

services which were collected using Web Service

Crawler Engine (WSCE) developed by Al-Masri

and Mahmoud. These services were tested over a

period of 10 min for three continuous days. The

trust rate or service classification of each service

was assessed using the web service relevancy

function (WsRF) with respect to various quality

metrics like availability, response time, security,

etc. (Table 10). The web services were classified

into four categories, namely platinum (high qual-

ity), gold, silver, and bronze (low quality) based

on the rating provided by WsRF. The service

offering qualities of the web services were repre-

sented in numerical form (1 to 4).

(ii) Cloud Armor trust feedback dataset It was

obtained from Cloud Armor, a research project

at University of Adelaide which deals with the

development of a robust and scalable trust man-

agement model for cloud environments. The

Cloud Armor trust feedback dataset comprises

10,080 QoS feedbacks given by approximately

7,000 customers over various time stamps

(9 years) for 114 real-world cloud services

(Table 11).

(iii) Synthetic trust feedback dataset at CISH, SASTRA

University It comprises the trust feedbacks

obtained from the students for a diverse set of

cloud services (academic and student) provided by

the private cloud at CISH, SASTRA University.

This dataset consists of users’ feedbacks in the

range of 0; 5½ � for 12 trust measure parameters

Table 9 Iteration 1—optimal

fitness value and reduct
Particle Pf

� �
Conditional attributes Feature subset Fitness value

A1 A2 A3 A4 A5 A6 A7

P11 1 1 1 0 1 1 1 A1;A2;A3;A5;A6;A7f g 0.17

P12 1 0 0 1 1 1 0 A1;A4;A5;A6f g 1

P13 1 1 1 1 0 0 1 A1;A2;A3;A4;A7f g 0.21

P14 0 1 1 0 1 1 1 A2;A3;A5;A6;A7f g 0.52

Table 10 Trust measure parameters in QWS dataset

(TMP1 � TMP12 : conditional attributes; service classification: deci-

sional attribute)

Trust measure parameters (QoS attributes)

TMP1 Response time TMP6 Compliance

TMP2 Availability TMP7 Best practices

TMP3 Throughput TMP8 Latency

TMP4 Successability TMP9 Documentation

TMP5 Reliability TMP10 WSRF

Table 11 Trust measure parameters in Cloud Armor and synthetic

trust feedback dataset (TMP1 � TMP10 : conditional attributes; trust

result: decisional attribute)

Trust measure parameters (QoS attributes)

TMP1 Availability TMP7 Storage space

TMP2 Security TMP8 Features

TMP3 Response time TMP9 Ease of use

TMP4 Accessibility TMP10 Technical support

TMP5 Price TMP11 Customer service

TMP6 Speed TMP12 Level of expertise
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(availability, security, response time, etc.) and

corresponding trust result (Table 11). Since the

significance of the TMPs varies with respect to the

service type requested by the users and their

preferences, the cloud services in the considered

datasets were grouped based on their service type.

The TMPs or quality service attributes given in

Tables 10 and 11 represent the KPIs in the

CSMIC-SMI metrics (Valley 2011; Somu et al.

2017b).

RST-HGBFFO employs CSMIC-SMI as a standard met-

ric for the QoS attributes or TMPs (Valley 2011). The

CSMIC-SMI metric is generally viewed as a hierarchy of

categories, attributes, and sub-attributes or key performance

indicators (KPIs). At the first level of the CSMIC-SMI

hierarchy, the entire metric space is divided into seven cat-

egories. Further, each category is partitioned into four or

more attributes. At the extremity, the attributes are further

divided into one or more sub-attributes or KPIs, whose actual

count varies with the nature of cloud business solutions. The

CSMIC-SMI hierarchy reveals the high-dimensional nature

of the cloud objective (monitoring QoS value) and subjective

(user feedbacks) assessment data with respect to the QoS

attributes and QoS records (samples). However, due to the

unavailability of appropriate benchmark datasets, we have

used two benchmark datasets (QWS dataset and Cloud

Armor synthetic feedback dataset) and one synthetic dataset

(CISH—SASTRA trust feedback dataset) to prove the effi-

ciency of RST-HGBFFO over the state-of-the-art rough set-

based feature selection techniques. Further, the relation

between the QoS attributes in the considered datasets and

CSMIC-SMI metrics is given in Tables 10 and 11.

4.2 Results and discussions

The experiments carried out can be divided into three

phases, namely data preprocessing, generation of reducts,

and performance validation. At the initial phase, the con-

sidered datasets were processed using appropriate data

preprocessing techniques and the training and testing

datasets were generated in 80:20 ratio. In the subsequent

phase, the reducts were obtained from the existing and the

proposed (RST-HGBFFO) feature selection techniques.

Finally, the performance of RST-HGBFFO was evaluated

using Weka tool and HGCM in terms of reduct size, service

ranking, classification accuracy, and runtime analysis

(Øhrn 2001; Somu et al. 2017a).

4.2.1 Phase 1—data preprocessing

At the initial stage of the experiment, each sample in the

considered dataset was transformed into a compatible format

supported by the classifiers. Further, data normalization was

used to minimize the impact of the features with high value.

Each feature in the sample is normalized in such a way that

all the values lie in the range of [0,1] [Eq. (22)].

fab ¼
fabPn

b¼1 fab

; 8a ¼ 1; 2; . . .; Sð Þ; b ¼ 1; 2; . . .; nð Þ ð22Þ

where S and n are total number of samples and features in

the dataset, respectively.

The discrete and continuous values in the synthetic trust

feedback datasets were converted into a compatible format

by data mapping technique, i.e., mapping the discrete and

continuous values to numerical values ranging from 1 to

AC, where AC represents the total number of conditional

attributes. Further, the considered dataset was subjected to

chi-square test with r � 1; c� 1ð Þ degrees of freedom,

where r and c represent the number of rows and columns,

respectively, to check the degree of dependency among the

QoS attributes. During the experiments, it was noted that a

minimum of 80% of the TMPs were found to be dependent

on each other, even at a level of 10% significance. Hence,

the inter-relation between the QoS attributes has to be

exploited for identification of the optimal feature subset.

Finally, the training and testing datasets for each consid-

ered dataset were generated in 80:20 ratio.

4.2.2 Phase 2: generation of reducts

In this phase, the optimal TMP reduct was generated for

RST-HGBFFO and the state-of-the-art feature selection

techniques. The reducts for the existing rough set theory-

based feature selection techniques like RSARSubsetE-

val_Genetic Search RSTGSð Þ, RSARSubsetEval_PSO

Search RSTPSOð Þ, RSARSubsetEval_Cuckoo Search

RSTCUð Þ, RSARSubsetEval_ANT Search RSTANð Þ,
RSARSubsetEval_Harmony Search RSTHSð Þ, RSARSub-

setEval_Firefly Search RSTFFð Þ, and RSARSubsetE-

val_Bat Search RSTBSð Þ were generated by the integrating

attribute evaluator (RSARSubsetEval) with the search

techniques (PSO Search, Cuckoo Search, Genetic Search,

etc.) (Witten et al. 2016). In addition, we have used few

state-of-the-art classifiers like Bayes Net, SVM, K Star, BF

Tree, J48, and Random forest in WEKA tool to validate the

reducts obtained from the proposed and the existing rough

set-based feature selection techniques in terms of classifi-

cation accuracy. As mentioned earlier, the identification of

all possible subsets in a high-dimensional and massive

dataset is an NP-hard problem. Further, from the extensive

survey, it is evident that meta-heuristic techniques out-

perform the statistical and graph-based techniques in

solving NP-hard problems. Hence, the comparative analy-

sis of RST-HGBFFO (SQR and QRR) was carried out

using the state-of-the-art RST-based feature selection
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techniques rather than our previous work, rough set

hypergraph-based feature selection technique (RSHT)

(Somu et al. 2017b). The critical parameter in RST-

HGBFFO was set as MaxGen ¼ 100, and PoPNum varies

from 10 to 50 in the scale of 5; similarly, the default

parameter values were used for the existing rough set-

based feature selection techniques.

4.2.3 Phase 3: performance validation

The performance of RST-HGBFFO over the other RST-

based feature selection techniques was evaluated using

Weka tool and HGCM in terms of various quality metrics

described as follows:

(i) Reduct size

Figures 8 and 9 present the impact of the number of pop-

ulation NumPop

� �
on the fitness value of RST-HGBFFO

(SQR and QRR) for the considered datasets. From Figs. 8

and 9, it can be observed that RST-HGBFFO achieves

better dependency metric, i.e., the optimal fitness value

(0.999) at NumPop ¼ 50, i.e., BestPos, the position of the

fittest particle at NumPop ¼ 50 is presented as optimal

reducts for RST-HGBFFO in Figs. 10, 11, and 12.

The reducts obtained from the existing and proposed

(RST-HGBFFO) feature selection techniques (phase 2)

were evaluated based on the reduct size. Based on the

experiments, the following observations were made,

1. For QWS dataset, the optimal reduct provided by

RST-HGBFFO (SQR and QRR) was similar to that

of RSTPSO;RSTAN ;RSTHS;, and RSTFF (Fig. 10).

2. For Cloud Armor trust feedback dataset, the

optimal reduct provided by RST-HGBFFO (SQR

and QRR) was similar to that of RSTCU ;RSTHS;,

and RSTBS (Fig. 11).

3. For CISH-SASTRA trust feedback dataset, the

optimal reduct provided by RST-HGBFFO (SQR

Fig. 8 Impact of population on the fitness value—SQR

Fig. 9 Impact of population on the fitness value—QRR
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and QRR) was similar to that of RSTPSO and RSTCU

(Fig. 12).

(ii) Classification accuracy

For further validation, the reducts obtained from the

existing and proposed (RST-HGBFFO) feature selection

techniques (phase 2) were evaluated based on the classifi-

cation accuracy. Based on the experimental evaluations, it

can be observed that the available classifiers (Bayes Net,

SVM, K Star, BF Tree, J48, and Random Forest) in Weka

tool exhibited high classification accuracy when trained

with the optimal reducts obtained from RST-HGBFFO

(SQR and QRR) for the considered datasets (Figs. 13, 14,

and 15). A noteworthy point is that RST-HGBFFO has

similar performance to RSTCU when SVM was trained with

the reducts obtained from QWS dataset.

The validation based on the reduct size, i.e., the cardi-

nality of the reduct, shows that the performance of RST-

HGBFFO was similar to the state-of-the-art rough set-

based feature selection techniques (Figs. 10, 11, and 12).

Fig. 10 Validation—reduct size (QWS dataset)

Fig. 11 Validation—reduct size (Cloud Armor trust feedback dataset)

Fig. 12 Validation—reduct size (synthetic trust feedback dataset—CISH, SASTRA)
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Fig. 13 Validation—classification accuracy (QWS dataset)

Fig. 14 Validation—classification accuracy (Cloud Armor trust feedback dataset)

Fig. 15 Validation—classification accuracy (CISH—SASTRA trust feedback dataset)
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The similarity in the cardinality of the feature subset does

not imply the optimality of the features in the optimal

feature subset. Even though RST-HGBFFO and few

existing RST-based feature selection techniques have

similar reduct size, the reducts obtained from RST-

HGBFFO provide the optimal reduct that maximize the

fitness function, i.e., dependency metric. Further, from

Figs. 13, 14, and 15, it was evident that the classifiers

exhibit high classification accuracy when trained with the

optimal feature subset obtained from RST-HGBFFO.

(iii) Service ranking

The optimal TMP reduct obtained from phase 2 was fed as

input to the hypergraph-based computational model

(Fig. 5). HGCM ranks the CSPs based on the adherence

between the CSPs’ provision and users’ unique require-

ments for various CSMIC-SMI KPIs. For validation pur-

poses, we have considered case study 2, which comprises 5

CSPs provisions (Amazon EC2 S1ð Þ, Windows Azure S2ð Þ,
Rackspace S3ð Þ, cloud services from private cloud set up at

SASTRA University S4and S5ð Þ) and one user requirement.

HGCM processes the CSP provisions and user’s require-

ments for the entire set of CSMIC-SMI metric and ranks

the cloud service providers as S3; S4; S5; S1; and S2. During

the validation phase, HGCM processes the QoS data of

CSP provisions and CU’s requirements based on the opti-

mal reduct obtained from phase 2 and ranks the CSPs as

S3; S4; S5; S1; and S2. From Table 12, it was more clear that

the service ranking of RST-HGBFFO (SQR and QRR) was

similar to RSTGS;RSTPSO;RSTAN ; and RSTFF . However,

RST-HGBFFO outperforms RSTGS;RSTPSO;RSTAN ; and

RSTFF in terms of minimal reduct and run time.

(iv) Run time analysis

In addition to above quality metrics, runtime analysis has

its own significance in evaluating the performance of the

feature selection technique. With respect to feature selec-

tion technique, time complexity can be redefined as the

total time taken by the technique to identify the optimal

reduct. From the experiments carried out, the following can

be observed:

1. For QWS dataset, the run time of RST-HGBFFO (SQR

and QRR) was slightly higher than RSTCU ;RSTAN ;, and

RSTBS (Fig. 8).

2. For Cloud Armor trust feedback dataset, the run time

of RST-HGBFFO (SQR and QRR) was similar to

RSTBS, but slightly higher than RSTFF (Fig. 9).

3. For CISH-SASTRA trust feedback dataset, the run

time of RST-HGBFFO (SQR and QRR) to find the

optimal subset was found to be minimal (Fig. 10).

To summarize, even though the reduct size of RST-

HGBFFO (SQR and QRR) was found to be similar to some

of the state-of-the-art feature selection techniques

(RSARSubsetEval_PSO Search RSTPSOð Þ, RSARSubsetE-

val_Cuckoo Search RSTCUð Þ, RSARSubsetEval_ANT

Search RSTANð Þ, RSARSubsetEval_Firefly Search

RSTFFð Þ, RSARSubsetEval_Harmony Search RSTHSð Þ, and

RSARSubsetEval_Bat Search RSTBSð Þ), it substantiates its

efficiency in terms of classification accuracy and run time

analysis. Even though the run time of RSARSubsetE-

val_Firefly Search RSTFFð Þ, RSARSubsetEval_ANT

Search RSTANð Þ, RSARSubsetEval_Cuckoo Search

RSTCUð Þ, and RSARSubsetEval_Bat Search RSTBSð Þ was

found to be minimal, RST-HGBFFO outperforms the state-

of-the-art rough set-based feature selection techniques in

terms of classification accuracy and reduct size (Fig. 10-

12).

The overwhelming performance of RST-HGBFFO was

due to the search strategy of HGBFFO which involves the

application of hyperclique property of hypergraph for the

optimal number of 1’s in the population of BFFO. Further,

the search strategy of HGBFFO optimizes the relevance

between the features (TMPs) and the target class (trust

value) and reduces the redundancy among the selected

Table 12 Validation of RST-HGBFFO TMP selection technique—service ranking

S. no Feature selection techniques Service ranking

1 RSARSubsetEval_Genetic Search RSTGSð Þ S3\S4\S5\S1\S	2
2 RSARSubsetEval_PSO Search RSTPSOð Þ S3\S4\S5\S1\S	2
3 RSARSubsetEval_Cuckoo Search RSTCUð Þ S4\S2\S1\S5\S3

4 RSARSubsetEval_ANT Search RSTANð Þ S3\S4\S5\S1\S	2
5 RSARSubsetEval_Harmony Search RSTHSð Þ S1\S5\S3\S4\S2

6 RSARSubsetEval_Firefly Search RSTFFð Þ S3\S4\S5\S1\S	2

7 RSARSubsetEval_Bat Search RSTBSð Þ S2\S4\S1\S3\S7

8 Rough set theory-based hypergraph-binary fruit fly optimization-supervised quick reduct (RST-HGBFFO SQR) S3\S4\S5\S1\S	2

9 Rough set theory-based hypergraph-binary fruit fly optimization-quick relative reduct (RST-HGBFFO-QRR) S3\S4\S5\S1\S	2

* Original service ranking of the 5 cloud service providers
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TMPs which resulted in an optimal feature subset that

maximizes the fitness function, i.e., dependency metric.

5 Conclusions

The immense benefits provided by the cloud computing

ecosystem have enticed diverse organizations to become a

part of this phenomenal technology. This scenario has led

to the substantial increase in the number of cloud service

providers offering a wide variety of cloud services, which

makes it difficult for the users to find suitable and trust-

worthy CSPs who comply with their QoS requirements.

Tireless efforts by the research community have yielded

trust-based service selection models as a prominent solu-

tion for the above-said challenge. However, the intrinsic

relation between the accuracy of the trust-based service

selection models and the optimality of the service-specific

TMP subset makes the identification of the optimal service-

specific TMP subset an open research challenge.

Hence, this paper put forth an efficient rough set theory-

based hypergraph-binary fruit fly optimization (RST-

HGBFFO), a cooperative bio-inspired technique for the

identification of the optimal TMPs based on the service

type and user preferences. The hyperclique property of

hypergraph was exploited for the generation of initial

population to enhance the performance of the binary fruit

fly optimization algorithm in terms of reduced time com-

plexity and by avoiding premature convergence. Further,

HGBFFO was integrated with rough set theory for the

identification of optimal TMP with minimal time com-

plexity, i.e., the fitness of each particle of HGBFFO was

evaluated based on the RST-specific fitness function. The

CSMIC-SMI metric was used as a standard for TMPs. The

experiments were conducted using QWS dataset, Cloud

Armor and synthetic trust feedback dataset obtained from

the private cloud at CISH, SASTRA University. The per-

formance of RST-HGBFFO over the state-of-the-art fea-

ture selection technique was evaluated using HGCM and

Weka tool in terms of reduct size, service ranking, classi-

fication accuracy, and time complexity. Further, RST-

HGBFFO was found to be computationally attractive,

scalable, and applicable in the field of intrusion detection,

stock market analysis, service ranking, weather forecasting,

DNA sequencing, metadata validation in geographical

information system (GIS), etc.
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Glossary

CSP Cloud service provider(s)

CU Cloud user(s)

QoS Quality of service

TMP Trust measure parameter(s)

RST Rough set theory

BFFO Binary fruit fly optimization

RST-HGBFFO Rough set theory-based

hypergraph-binary fruit fly

optimization

HGCM Hypergraph-based computational

model

XaaS Anything as a service

MCDM Multi-criteria decision making

FFOA Fruit fly optimization algorithm

CSMIC-SMI Cloud service measurement index

consortium-service measurement

index

SQR Supervised quick reduct

QRR Quick relative reduct

RST-HGBFFO The proposed trust measure

parameter selection technique

O ¼ O1;O2; . . .;OSf g Observations

A ¼ A1;A2; . . .;AC Conditional attributes

D Decisional attributes

MaxGen Maximum number of generations

PoPSize Population size

PoPNum Number of populations

Fitness Fitness value

BestSmell Local best smell concentration

GBestSmell
Global best smell concentration

BestPos Best position
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