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Abstract
Considering that the stock returns distribution displays leptokurtosis as well as left-skewed properties, and the returns

volatility process exhibits heteroscedasticity as well as clustering effects, the asymmetric GARCH-type models with non-

Gaussian distributions (AGARCH-nG) are employed to describe the volatility process. In addition, the AGARCH-nG

models are hybridized with artificial neural network (ANN) technique for forecasting stock returns volatility. Since the

least square support vector machine (LS-SVM) technique displays strong forecast ability, we present an improved particle

swarm optimization (IPSO) algorithm to optimize the parameters of LS-SVM technique in the process of stock returns

volatility prediction. Then, we compare the forecasting performances of individual AGARCH-nG models, the hybrid

AGARCH-nG-ANN methods and the data mining-based LS-SVM-IPSO method using stock markets data. The empirical

results verify the effectiveness and superiority of the proposed method, which demonstrates that the LS-SVM-IPSO

approach outperforms the AGARCH-type models with non-Gaussian distributions and those integrating with the artificial

neural network methods.

Keywords Stock volatility forecasting � Leptokurtosis distribution � Artificial neural network � Least square support vector
machine � Particle swarm optimization algorithm

1 Introduction

The stock market is an extremely complex nonlinear

dynamic system, in which the ability of forecasting stock

returns volatility with great precision is of significant

importance for investors and regulators. Volatility model-

ing and prediction of stock index returns are important

subjects in financial risk management including derivative

pricing, risk measurement and multi-period portfolio

selection. Since it can proxy the risk conditions in financial

markets, it has attracted a great deal of attentions. Taking

into account the stylized facts of financial phenomena, the

GARCH-type family models are extensively used for

capturing the clustering properties in financial asset returns

volatility prediction (Bentes 2015a, b; Abounoori et al.

2016; Lv and Shan 2013). However, the GARCH family

models belong to parametric models which require prior

structure assumptions of financial data. Considerable

researchers have found that financial time series data does

not follow normal distribution assumption. On the contrary,

it exhibits leptokurtosis and heavy tailed properties in

addition to excessive skewness and kurtosis. Hence, non-

Gaussian distributional assumptions need to be imposed to

the GARCH-type family processes to capture the left-

skewed distributional characteristics of financial returns.

Besides, the GARCH family processes cannot describe the

nonlinear complex dependence relationships among finan-

cial asset variables, which may lead to unsatisfactory

forecasting consequences. To overcome the drawbacks of

conventional financial forecasting models and to enhance
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the volatility prediction ability, it calls for more advanced

techniques to identify these complex patterns.

With rapid developments of artificial intelligent tech-

nologies, the artificial neural network techniques and

machine learning techniques have been attracting more and

more attentions in recent years and have been widely

applied in finance fields (Hajizadeh et al. 2012; Bildirici

and Ersin 2009; Kristjanpoller et al. 2014), especially for

financial asset returns and volatility predictions (Lahmiri

2016a, b). The integration of artificial intelligent tech-

nologies with conventional GARCH-nG models can

effectively improve the volatility forecasting performances

of stock indices and has become hot research topics (Tseng

et al. 2009). Furthermore, intelligent optimization algo-

rithms comprising genetic algorithm, particle swarm opti-

mization algorithm and so on have been utilized to improve

the estimation accuracy of intelligent algorithm

parameters.

However, it may not always appropriate to choose

forecasted series of GARCH-type families as inputs to

artificial neural network for further volatility predictions.

Because the financial asset variables typically display

nonlinear and non-Gaussian behaviors, it requires two

aspects of extensions. One research extension is the

abnormal distribution assumptions for modeling of returns

time series distribution, and the other research direction is

the assumption-free techniques to identify the evolutional

dynamic pattern for the volatility process. Hence, our

research will also focus on these two aspects to compare

the forecasting ability of AGARCH-nG-ANN models with

the improved support vector machine method based on

modified optimization algorithm.

Support vector machine is a rather powerful machine

learning method based on the statistical learning theory,

which takes the structural risk minimization as the princi-

ple, and effectively suppresses the over-learning phe-

nomenon, thus displaying good generalization capabilities.

The training of the model is transformed into solving a

quadratic programming problem to ensure the global

optimality and to solve the local minimum problem in the

neural network. The LS-SVM (Suykens et al. 2002) is the

support vector machine that takes quadratic loss functions

as empirical risks. It replaces inequality constraints with

equality constraint and transforms the training of the model

into linear solutions to the equations, which simplifies the

calculation process and shortens the training time with

more deterministic training consequences so that it is

suitable for online applications. Therefore, this study

investigates the predictive power of LS-SVM based on

improved particle swarm optimization algorithm in stock

index volatility forecasting, and the outcomes are con-

trasted with those of the hybrid approaches.

Since the previous works about volatility forecasting

mainly involve artificial neural network hybridized with

GARCH model without non-Gaussian innovations or

merely involve the support vector machine technique

without parameter optimization. In this paper, we construct

the LS-SVM method optimized by the modified PSO

algorithm to enhance the returns volatility forecasting. In

addition, we incorporate the non-Gaussian innovations to

the previous AGARCH-ANN models. Then, we compare

the volatility forecasting performances of the proposed

model with other two extended models using stock market

data from wind database, namely the asymmetric GARCH

models with non-Gaussian distributions hybridized with

artificial neural network and the individual parametric

asymmetric GARCH models. The forecasting accuracy

results provide suggestions for the stock market investors.

2 Literature review

Because of the high peakness and excessive kurtosis,

financial time series data are generally not normally dis-

tributed. Several works have examined the influences of

different choices of distribution forms. Generally, the

generalized error distribution assumption is made for

innovations since its capability of characterizing excessive

kurtosis, and the Student-t distribution assumption is made

for innovations to flexibly characterize the fat tails of

financial time series. Zhu and Galbraith (2010) proposed

the asymmetric Student-t (AST) distribution which allows

separate parameters to control skewness and thickness of

the tails. Through exploiting the asymmetrical and fat-

tailed models, researchers have found evidence supporting

the usefulness of such extensions in describing the complex

pattern of financial data (Alberg et al. 2008).

There has been growing interests in modeling nonlinear

models, and nonparametric models for volatilities predic-

tion have gone through major developments (Kristjanpoller

and Minutolo 2016). Researchers have made efforts to take

advantage of the artificial intelligence techniques for

applications in finance and economics (Cheng and Wei

2009; Ramyar and Kianfa 2017). Previous studies have

found that the hybrid model integrating asymmetric

GARCH models and the artificial neural network tech-

niques display much more closeness to the actual volatility

process (Kristjanpoller et al. 2014), which indicate that the

GARCH-type ANN models provide better prediction per-

formances than pure GARCH-type models. Especially

when extending the asymmetric GARCH family models

with artificial neural network approaches, it can effectively

enhance the forecasting ability. However, when using

extracted technique indicator as inputs to ANN with back-

propagation neural network, Lahmiri (2017) found that it
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produced higher accurate estimation consequences than the

hybrid EGARCH-ANN approaches. Currently, the ANN is

one of the most widely used nonlinear forecasting models

that deal with the complex correlation pattern among

variables, especially applications in stock price predictions

(Qiu et al. 2016; Zahedi and Rounaghi 2015; Göçken et al.

2016). Ince et al. (2017) investigated the predictive accu-

racy of exchange rate with ANN and the monetary model.

Choudhary and Haider (2012) assessed the power of sev-

eral ANN combination models for inflation forecasting and

found that these may serve as credible tools. Dhamija and

Bhalla (2010) employed data during financial meltdown

period to demonstrate the usefulness of GARCH models

and artificial neural network technique in determining the

long-run nonlinearity of sample data. Monfared and Enke

(2015) presented an adaptive neural network filter so as to

predict the error in GARCH models and then applied it to

predict the GARCH process.

However, the ANN technique has certain troublesome

problems such as difficulties in determining the number of

hidden layer nodes in neural network, the existence of

excessive learning phenomenon and the local minimum

problem in the training process. Fortunately, the support

vector machine method is developed from statistical

learning theory, which has obvious advantages in the pre-

diction of small samples, nonlinear and high-dimensional

problems. Researchers have extensively applied SVM in

the fields of economics and finance, such as making eco-

nomic forecasts and predicting bankruptcy (Zhao et al.

2017). With the further study of SVM methods, various

improvement methods have been proposed and applied

(Rojo-Álvarez et al. 2014). It is illustrated that the LS-

SVM method has good robustness and is suitable for large-

scale computing. Zhao et al. (2016) stated that it is more

advantageous to use LS-SVM as the nonlinear prediction

model, but it also needs modifications to improve func-

tionalities. Ismail et al. (2011) proposed the integration of

self-organizing maps and LS-SVM technique for time

series forecasting. The PSO algorithm has been widely

used in recent years (Abualigah and Khader 2017;

Abualigah et al. 2018). In order to improve the classifica-

tion accuracy, Liu and Zhou (2015) introduced PSO algo-

rithm into the LS-SVM model for novel data classification

approach. With reference to the above ideas, this paper

presents an improved PSO algorithm to optimize the LS-

SVM parameters so as to enhance the accuracy of predic-

tions. Furthermore, it is noted that few studies have

attempted to comprehensively compare parametric

approaches and nonparametric approaches in stock

volatility forecasting, our study will contribute to the

selection of methods in financial volatility prediction

techniques.

The motivation of this study is to enhance the returns

volatility forecasting of previous methods and investigate

whether the improvements can be achieved by the LS-

SVM technique optimized by IPSO algorithm. In order to

compare the different performance properties of LS-SVM-

IPSO and hybrid AGARCH-nG-ANN as well as the

AGARCH family models, three kinds of models are con-

structed to conduct the stock index volatility forecasting.

3 GARCH-type models with non-Gaussian
distributions

In this paper, three volatility forecast techniques including

the traditional GARCH-type processes, the hybrid artificial

neural network using GARCH-nG prediction outcomes as

inputs and the IPSO-modified LS-SVM method are com-

pared to predict stock index historical volatility. In this

section, we will focus on the extensions of GARCH-type

family models. A critical feature of the substantial progress

has been the incorporation of fatter tails and asymmetric

effects into the variance process, which will better improve

the fitting of the tail decay rates since declines in financial

returns may involve more extreme returns movements.

4 Asymmetric GARCH models

For the sake of capturing the clustering property and

heteroscedasticity effects, the time changing volatility

process rt can be expressed in GARCH (m,n) models

(Bollerslev 1986) as follows, which depends on p order

past conditional variance as well as q order past squared

innovations.

r2t ¼ x1 þ
Xp

i¼1
a1ie

2
t�i þ

Xq

i¼1
b1jr

2
j�i

et ¼ rtZt
ð1Þ

where Zt is i.i.d. random variables with zero mean and unit

variance, et represents uncorrelated series with zero mean

and variance rt, a1i[ 0, and b1j[ 0 as well as the following

constraints are satisfied to ensure stability.
Xp

i¼1
a1i þ

Xq

i¼1
b1j\1 ð2Þ

In order to better capture the significant asymmetry in

asset returns caused by asymmetric effects of different

shocks, the EGARCH and GJR-GARCH models are most

frequently employed. The last two versions can account for

the leverage effects of returns on conditional variance,

which means that the large returns decline may cause larger

return volatility than the increases with the same

amplitude.
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Since the EGARCH model (Nelson 1991) describes the

variance as the asymmetric function of disturbance error et,
it can be used to account for the asymmetric effects in

volatility, capturing the asymmetric behaviors of returns,

which can be expressed in the following form:

logðrtÞ ¼ x2 þ
Xp

i¼1
a2i

et�ij j
ffiffiffiffiffiffiffiffi
rt�i

p �
ffiffiffi
2

p

r" #
þ c2i

et�1ffiffiffiffiffiffiffiffi
rt�i

p

þ
Xq

j¼1
b2j logðrt�jÞ ð3Þ

where x2, a2i and b2j denote the model parameters with no

restrictions, respectively.

Another model that can capture the asymmetric char-

acteristics of returns is the GJR-GARCH model, which

allows the conditional variance to react differently to the

negative and positive innovations. It can be expressed as

follows:

r2t ¼ x3 þ
Xp

i¼1
b3ir

2
t�i þ

Xq

i¼1
a3ie

2
t�i þ

Xq

i¼1
c3ie

2
t�iH

ð4Þ

where H = 1 if et-i\ 0, and H = 0 if et-iC 0, a3iC 0,

b1jC 0 and a3i? c3iC 0. Besides, the following constraints

need to be satisfied.

Xp

i¼1
a3i þ

Xq

i¼1
b3j þ

1

2

Xq

i¼1
c3j\1 ð5Þ

5 Non-Gaussian innovation distributions

Considering that the financial returns series distribution

typically displays leptokurtosis and heavy tailed charac-

teristics in addition to excessive kurtosis, the non-Gaussian

distributional assumptions are often imposed to the

GARCH-type volatility models (Chuang et al. 2007), such

as the Student-t distribution, the generalized error distri-

bution (GED) and the generalized asymmetric Student-

t distribution (Zhu and Galbraith 2011). The different

hypotheses of the error distributions in GARCH-type

models are to capture different statistical features. The

asymmetric GARCH models allow various features of

returns distributions by specifying the distributions of

innovations.

For the stock returns series yt with mean l and variance

r, the Student-t density distribution function has the fol-

lowing expression.

f ðy; l; r; mÞ ¼ Cðtþ 1=2Þ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt� 2Þ

p
Cðtþ 1=2Þ

1þ ðy� lÞ2

r2ðt� 2Þ

 !�ðtþ1Þ
2

ð6Þ

where C represents the gamma function, and the degree of

freedom parameter that controls the thickness satisfies the

condition of m[ 2.

For the generalized error distribution assumption of

returns distribution, it has the following density function.

f ðy; l; r; hÞ ¼ h
2rCð1=hÞ exp � yt � lj j

r

h
 !

ð7Þ

where h represents the control parameter.

The generalized asymmetric Student-t distribution

allows separate parameter to control the thickness and

skewness of tails, which is important for quantities relying

on tail features. The general form of the AST density in

rescaled version can be expressed as follows:

fASTðyÞ ¼

1

r
1þ 1

v1

y� l
2a4rKðv1Þ

� �2
" #�ðv1þ1Þ=2

; if y� l

1

r
1þ 1

v2

y� l
2ð1� a4ÞrKðv2Þ

� �2
" #�ðv2þ1Þ=2

; if y[ l

8
>>>>><

>>>>>:

ð8Þ

where KðtÞ ¼ Cððvþ 1Þ=2Þ=
ffiffiffiffiffi
pv

p
Cðv=2Þ½ �, C represents

the gamma function and a[(0,1), v1[ 0 and v2[ 0.

5.1 GARCH-nG parameter estimation method

For the selection of the optimal parameter lag for the

GARCH-nG models, the penalized model order selection

criteria containing the Bayesian information criterion (BIC)

and the Akaike’s information criterion (AIC) are employed.

Traditionally, the maximum likelihood estimation

method is employed for parameter estimations of GARCH-

type variance equation. And the estimations are obtained

through numerical maximization of each of the corre-

sponding likelihood functions. Let the parameter vector of

the likelihood function be W, and then the general likeli-

hood function form can be expressed as follows.

lðW; yÞ ¼
XT

t¼1
log d� log rt þ log fY sþ d

rt � l
rt

� �� �

ð9Þ

where s denotes themean value of the density function fY, and

d denotes the standard deviation of the density function fY.

6 Least square support vector machine
with improved particle swarm
optimization

There often exist nonlinear patterns in financial time series

that cannot be characterized by parametric models. Hence,

the approximation of the real relationships in financial data

11870 X. Gong et al.

123



calls for more advanced methods. In this study, we mainly

focus on artificial intelligence-based ANN methods and the

machine learning-based LS-SVM method. Specifically, the

ANN is hybridized with the asymmetric GARCH models

with non-Gaussian innovations. And we propose the least

square support vector machine technique with improved

particle swarm optimization, in which the multi-region

adaptive PSO algorithm is employed for parameter

estimations.

6.1 Artificial neural network

The artificial neural network has unique advantages in

dealing with stock price forecasting, which is a multi-fac-

tor, uncertain and nonlinear time series forecasting prob-

lem. Volatility changes display nonlinear features, and the

transaction information contains a large number of deci-

sions inherently in stock returns volatility changes.

Through the study of historical data, neural network can

search the rules and patterns of parameters autonomously

from the complex financial time series data.

The ANN that depends on no hypotheses tries to mimic

the structure of biological neural network, where a set of

neurons are connected in layers. It has the advantages of

adaption on the basis of the properties extracted from the

research problem. The typical ANN that is organized

hierarchically is generically composed of one input layer

that has x variables, one hidden layer and the output layer

that has forecasted variable y calculated as follows.

yi ¼ f
Xp

j¼1
xjwij þ g

� �
ð10Þ

where wij denotes the connection weights between neuron

j and neuron i, g is the bias, and f denotes the activation

function affecting the output amplitude. The input layer of

ANN corresponds to the input variables, and the hidden

layer is employed for capturing nonlinear relationships.

Typically, the sigmoid function is chosen as well as the

Levenberg–Marquadt algorithm being employed for net-

work training. And the connecting weights are adjusted

according to the following rule.

Dwi ¼ �ðMt
iMi þ cIÞ�1

Miei ð11Þ

in which M is the Jacobian matrix, I represents the identity

matrix, and c denotes the adaptive learning parameter.

The commonly used ANN techniques comprise the BP

neural network (BP-NN), the wavelet neural network and

the RBF neural network, among which the BP-NN tech-

nique is chosen in this work since it is the most extensively

employed technique. Theoretically, the BP-NN is capable

of approximating any complicated nonlinear functions,

displaying strong generalization abilities and self-learning

features. The back-propagation neural network takes inputs

from the previous layer and then sends outputs to the next

layer. The BP neural network technique is introduced into

the stock volatility analysis and evaluation to understand

the internal mechanism of the volatility dynamics so as to

effectively predict the volatility changes.

6.2 Least square support vector machine

However, the ANN also has drawbacks of over-fitting

problems. Additionally, the BP neural network has the

disadvantages of easily falling into local solutions and slow

convergence speed in handling with high-dimensional data

(Dai et al. 2014). Whereas the support vector machine is a

typical machine learning algorithm with complete mathe-

matic theories and excellent learning abilities that have

become a hot research topic in machine learning fields and

have been successfully applied in many fields. The SVM

takes the training error as the constraint condition of the

optimization problem and regards the minimization of the

confidence range as the optimization goal. Namely, it is a

learning method based on the structural risk minimization

criterion, whose promotion ability is obviously superior to

the neural network. It is assumed that there are two types of

sample points in the two-dimensional space, and the data

samples are mapped into high-dimensional space through

nonlinear functions. Subsequently, a pair of parallel hyper-

planes are constructed to separate the training samples and

to maximize the distance between each point in the sample

set and the hyper-plane.

The SVM training solves a constrained quadratic pro-

gramming problem, and the number of constraints is equal

to the sample size. Therefore, when the sample size is fairly

large, it may take long time for training. To improve the

training efficiency of SVM, the least square support vector

machine is applied based on SVM. Compared with the

SVM, the LS-SVM replaces slack variables by square of

training error and uses equality constraints instead of

inequality constraints. The training process only requires

solving a linear system of equations, which avoids the

time-consuming QP problem. Furthermore, it displays

simple calculation and fast convergence speed with high

precision that has been widely applied in the fields of

nonlinear process modeling. Since this paper focuses on

nonlinear process modeling based on the LS-SVM

regression, its basic principle is primarily described below.

Suppose that the training sample set is {(x1,y1),

(x2,y2),…, (xt,yt)}, where xi[R
N stands for the input of the

ith sample and yi[R stands for the output of the ith sample,

i = 1, 2, …, l. For the nonlinear system, the nonlinear

function is assumed to be expressed in the following form.

f ðxÞ ¼ wT � u xð Þ þ b ð12Þ
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where u(�) denotes the kernel space mapping function that

maps the input data of the original space to the high-di-

mensional feature space. The slack variable of the SVM

optimization problem is replaced by the square error term

and the inequality constraint is varied to equality con-

straint. Then, the optimization problem of the LS-SVM

regression is expressed as follows.

min
w;b;e

Jðw; eÞ ¼ 1

2
wTwþ C

2

Xl

i¼1
e2i

s:t: yi ¼ wTuðxiÞ þ bþ ei; i ¼ 1; 2; . . .; l

ð13Þ

where the weight vector w[RN; the error variable ei[R; b
represents the deviation amount; C stands for the regular-

ization parameter.

Lðw; b; e; aÞ ¼ Jðw; eÞ �
Xl

i¼1
aiðwTuðxiÞ þ bþ ei � yiÞ

ð14Þ

According to the above optimization function, the

Lagrange function can be defined as follows.

where the Lagrange multiplier (i.e., support vector)

ai[R. According to the KKT conditions, the following are

available.

oL

ow
¼ 0 ! w ¼

Xl

i¼1
aiuðxiÞ ¼ 0

oL

ob
¼ 0 !

Xl

i¼1
ai ¼ 0

oL

oei
¼ 0 ! ai ¼ Cei

oL

oai
¼ 0 ! wTuðxiÞ þ bþ ei � yi ¼ 0

8
>>>>>>>>><

>>>>>>>>>:

ð15Þ

Eliminate variables w,ei, the matrix equation can be

derived in the following.

0 1 1 � � � 1

1 Kðx1; x1Þ þ
1

2c
Kðx1; x1Þ � � � Kðx1; xnÞ

1 Kðx2; x1Þ Kðx2; x2Þ þ
1

2c
� � � Kðx2; xnÞ

..

. ..
.

1 Kðxn; x1Þ Kðxn; x2Þ � � � Kðxn; xnÞ þ
1

2c

2
6666666664

3
7777777775

ð16Þ

b

a1
a2

..

.

an

2
66666664

3
77777775

¼

0

y1

y2

..

.

yn

2
66666664

3
77777775

ð17Þ

where K(x,xi) =\u(x),u(xi)[ in Eq. (16) stands for the

kernel function that represents the inner product of the

high-dimensional feature space. According to the func-

tional theory, as long as satisfying the Mercer conditions,

the function can be used as kernel functions, which com-

monly contains the linear functions, the perceptron func-

tions and the radial basis functions. In view of better

performances of radial basis functions, the radial basis

function K(xi,xj) = exp(-kxi - xjk2/(2r2)) is chosen as the

kernel function of LS-SVM. Finally, the decision function

is determined as shown in Eq. (18):

f ðxÞ ¼
Xn

i¼1
aiKðx; xiÞ þ b ð18Þ

The selection of kernel function causes great influences

on the generalization ability of the system. Hence, the

selection of kernel function constitutes the core issue of the

support vector machine theories. Unfortunately, there has

been no effective ways to choose kernel functions so far. In

practice, there are several commonly used kernel functions

in the following forms:

(1) Polynomial kernel function: K(xi�x) = [(xi�x) ? 1]q,

where q stands for the polynomial parameter;

(2) Radial basis function: K(xi�x) = exp(- kxi - xk2/
r2), where r denotes the radial basis function

parameter;

(3) Sigmoid kernel function: K(xi�x) = tanh(v(xi�x) ? c),

where v[ 0,c\ 0.

What can be seen is that the number of intermediate

nodes in LS-SVM is finally transformed into solving a

convex optimization problem, which is theoretically opti-

mal. As shown in the LS-SVM structure in Fig. 1, x = (x1,

x2,…, xm) denotes the input vector, m represents the

dimension of the input vector, n is the number of support

vectors, and the number of nodes in the middle layer is

n with n = m.

6.3 Improved particle swarm optimization
algorithm

In general, the commonly used methods of parameter

estimation are as follows: (1) the least square estimate of

linear method. The advantage of this method is the simple

K(x1,  x)  K(x2,  x)  K(xn,  x)  

a1 y1 a2 y2 an yn

y

x1 x2 x3 xm

Fig. 1 The structure of LS-SVM
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calculation process, in which only large equations need to

be solved. On the contrary, the disadvantage is that the

regression equation has large residuals and relatively low

prediction accuracy. (2) the Quasi-Newton method for

solving unconstrained optimization problem. However,

during the parameter optimization process, this method

becomes easy to fall into local extremum, so that the

obtained model may deviate from reality. At the same time,

this method also requires partial derivative of the optimized

function, which is difficult to be satisfied in practical

problems. Concerning how to find a fast and effective

algorithm to estimate the parameters is an important

research issue. Fang et al (2010) pointed out that the

determination of parameters belonged to the nonlinear

combinatorial optimization problem, and most of the

optimal solutions of the objective function to the parame-

ters were pathological problems with no analytic solutions.

Therefore, it requires the introduction of advanced and

flexible optimization algorithm such as the intelligent

optimization algorithm. However, the direct use of particle

swarm optimization algorithm for parameter estimation has

the disadvantage of large estimation errors. In this section,

some improvements are proposed and the improved algo-

rithm is employed to estimate the parameters.

The basic PSO algorithm searches for the optimal

solution by cooperation and information sharing among

individual groups in every iteration, estimating the objec-

tive function of the particle and determining the best

position pbest of each particle at time t and the best posi-

tion of the group gbest, and then iteratively update the

particle velocity and position. As the particles in the PSO

move toward the best position in their own history and

gather around the best position in the cluster, the rapid

convergence effects of the particle population are formed,

which will also result in falling into the local optimal

solution and the early convergence phenomenon. More-

over, the usage of real financial market data to estimate the

nonlinear optimal model parameters can readily lead to the

local optimal solution, resulting in inaccurate outcomes.

Therefore, it is of significant importance to improve the

computational efficiency of the PSO algorithm.

The basic particle swarm algorithm assumes that each

particle flies in the n-dimensional space, Xi = (xi1, xi2,…,

xin) represents the current position of particle i, Vi = (vi1,

vi2,…, vin) represents the current flying speed of particle i,

pi = (pbesti1, pbesti2,…, pbestin) denotes the optimal loca-

tion for the individual particle i. The particles are dynam-

ically adjusted according to individual and group flight

experiences, with the velocity vij and the position xij
upgrade equation satisfying Eq. (19)

vij t þ 1ð Þ ¼ vij tð Þ þ c1r1 pbestij tð Þ � xij tð Þ
	 


þ c2r2 gbestj tð Þ � xij tð Þ
	 


xij t þ 1ð Þ ¼ xij tð Þ þ vij t þ 1ð Þ
ð19Þ

where c1, c2 stand for the learning factors, c1 can adjust the

flying distance of the particle to its best position, c2 can

adjust the particle’s optimal flight step to the crowds, r1, r2
stand for the random numbers in [0,1], gbestj(t) denotes the

jth-dimensional component of the optimal position of the

particle swarm at the tth iteration. The first term in the first

formula represents the inertia term, and the second term

represents the cognition term, which means learning from

its own history, also known as individual cognition. The

third expression of collective information indicates that it is

based on group information, with the adjustment reflecting

coordination between particles. The so-called sociality is

essentially the enhancement of the probability of the

implementation of behaviors when an individual sees other

individuals strengthening certain behaviors.

In order to improve the particle swarm initialization

accuracy and to reduce the post-particle search time, Yang

and Lee (2012) proposed a multi-basin PSO algorithm to

keep the population of particles exploring in multiple

regions so as to avoid premature, preventing falling into the

local optimum. In order to increase the particle diversity,

Pehlivanoglu (2013) proposed a multi-frequency vibration

PSO algorithm with parameter variation. Based on these

methods and taking account of the idea of mutation, a

multi-region adaptive PSO algorithm with parameter and

population adaptive mutation is proposed. The multi-region

search of the initial particles is carried out to improve the

initialization effects, the adjustment probability is adap-

tively determined according to the convergence of the

algorithm, and the chaos traversal properties are utilized to

avoid falling into the local optimum. The improved particle

swarm optimization algorithm includes the following

operations: the population initialization with multi-region

local search; the adaptive mutation of particle swarm

parameter; the adaptive mutation of population global

region.

6.3.1 Population initialization with multi-region local
search

The linear local search method is utilized to find the local

minimum from the randomly generated initial parameter

set Hi. The iterative formula of partial search is Hi?1-

= Hi? lidi, di= - M(i)-1rf(Hi), where li denotes the

phase step, di denotes the gradient direction, M(i) repre-

sents the non-singular square matrix, which is an approx-

imation of the Hessian matrix satisfying positive

definiteness, and dirf(Hi) = - rf(Hi)
TM(i)-1rf(Hi)\ 0.
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The gradient direction di is updated at each iteration, and

the phase step li satisfies the Wolfe condition, that is,

f(Hi? lidi) B f(Hi) ? z1lirf(Hi) di, rf(Hi? lidi)
TdiC z2-

? lidi)
TdiC z2rf(Hi) di, where z1, z2[[0,1].

The individual region converged to the local extremum

is defined as W(Hn): = {H[Rn:limi?!Hi = Hn}. Based on

the local search method with global convergence, the

whole search space Rn is divided into several regions

W(Hn), in which each region contains the optimal value of

convergence of the initial particle swarm. And the initial

particle swarm in the same region converges to the same

objective function value. Then, the parameter set S1 ¼
ðH1

1;H
1
2; . . .;H

1
nÞ initialized after the local search is supe-

rior to the original parameter set S0 ¼ ðH0
1;H

0
2; . . .;H

0
nÞ.

6.3.2 Parameter adaptive mutation

The particles show strong convergence and decreasing

rates in following the optimal particles. In order to increase

the diversity of particles and to prevent it from falling into

the local optimum, adaptive crossover and mutation oper-

ators are introduced according to the distance between each

particle and the optimal particle L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1 ðx1i � x2iÞ2
q

,

adaptively determining the algorithm adjustment proba-

bility under convergence. The particles in the population

are taken out sequentially to determine whether the spatial

distance between the extracted particle and the backup

multi-region initialized optimal particle is less than the

threshold Ds = (1 - t/T)p9 (ub - lb). If it is less than the

threshold, the crossover operation is performed to enhance

the search of the middle region of the particle, where ub

and lb are the upper and lower limits of the problem,

p represents the adjustment parameter.

The initial particle size of the algorithm is diversified. At

this time, the larger threshold value is suitable for popu-

lation adjustment. As the iterations proceed, the population

tends to aggregate and a small threshold needs to be set to

allow more particles to cross and mutate. The cross-oper-

ation formula can be expressed as bx1 = x1e ? x2(1 - e),

bx2 = x1(1 - e) ? x2e, where bx1, bx2 denote new parti-

cles generated by crossover, and e stands for the random

number sequence in (0,1). After the crossover operation,

the new particle’s fitness value is calculated. If the fitness

value becomes better, the old particle is replaced by the

new one. In contrast, if the fitness value becomes worse,

then the mutation operation is introduced to enhance the

fine search around the particle. The mutation operation can

be expressed as cx1 = x ? (1 - t/T)q(ub - x), cx2-
= x - (1 - t/T)q(x - lb), where cx1, cx2 are new particles

generated by mutation, q denotes the weight of variation.

After the crossover and mutation operations, the global

optimal particle is moved relatively a little distance in the

upper and lower limits to get a new set of particles and then

recalculates the fitness value of the particles, as well as

selecting the particles with better fitness value instead of

the optimal particles.

6.3.3 Population global adaptive variation

For the sake of avoiding the algorithm getting into the local

optimum, chaotic variables are introduced. By utilizing the

chaotic ergodic properties, it leads the particle swarm to the

optimal solution. According to the particle convergence

trend and the fitness value differences in the population,

mutation probability is set for each particle. Define the

degree of convergence Ot ¼ 1=½1þ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞð

Pn
i¼1 ðfitti � fittmeanÞ

2Þ
q

�, where u is the adjustment

factor, fiti denotes the fitness value of the ith particle at the tth

iteration, and fitmean represents the average fitness value of all

the particles after the tth iteration. When the degree of pop-

ulation aggregation increases, the differences of fitness val-

ues became smaller and the convergence degreeQt becomes

larger. Set the mutation probability

Pmu ¼ sinððp=2Þ � ðf tgbest=f ti Þ � OtÞ. When rand\Pmu is met,

the particles are mutated and the local extremum can jump

out. Chaos mutation is applied to the particles that meet the

mutation conditions, with the formula of chaos variation

expressed as xijm ¼ xtijmin þ qtþ1
ij ðxtijmax � xtijminÞ,

xnewij ¼ 0:5ðxij � xijmÞ, where qtþ1
ij is the chaotic variable

traversed in (0,1), xijm denotes the value of the ith particle

after the variation in the jth dimension, xtijmin and xtijmax,

respectively, represent the minimum and maximum values

experienced in the tth iteration and xnewij is the new particle

generated after the mutation.

6.3.4 Multi-region adaptive PSO algorithm flow design

Step 1 Initialize the population randomly, update the

iterative formula Hi?1, and adjust the particle population

size and velocity Vi on the multi-region parameter space

set Hn to obtain the number of particles backed up by the

multi-region local search.

Step 2 Update particle velocity vij and position xij
according to formula (18) and record the global optimal

particle gbest and the historical optimal particle pbest.

Step 3 Perform cross-mutation operation on the particles

in the population according to the conditions.

Step 3.1 Determine whether the distance L between the

particles taken out in sequence and the global optimum

particle meets the threshold condition Ds. If not, move to

the next particle, repeat step 3.1, otherwise go to the next

step.
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Step 3.2 Cross-operate on the particles satisfying the

threshold condition Ds to generate the new particle bxi. If

the fitness value gets better, replace the particle and

move on to the next particle. Repeat from step 3.1,

otherwise go to step 3.3.

Step 3.3 Perform mutation operation to generate new

particles cxi, calculate the new particle fitness value and

compare it with the original particle, then replace the

particle with poor fitness values, and turn to the next

particle, repeat from step 3.1, update the global optimal

particle gbest and the particle historically optimum

pbest.

Step 4 The mutation probability Pmu is calculated

according to the convergence degree Qt to determine

whether the particle satisfies the chaotic mutation

condition. If the particle satisfies the condition, the

chaotic mutation xijm is applied for adaptive mutation,

with the particle fitness values calculated. Then, the

global optimal particle gbest and the particle history

optimum pbest are updated.

Step 5 Determine whether the algorithm meets the

termination criteria. If satisfied, then terminate the

algorithm, output gbest and pbest; if not satisfied, then

t = t ? 1, go to step 2.

7 Empirical results

7.1 Data description

In this section, the S&P 500 index (SP500) and the Chinese

Shanghai and Shenzhen 300 composite index (HS300) are

investigated. The study dataset includes the actual obser-

vation values from January 4, 2010 to December 29, 2017,

among which the former 80% of the observation values are

utilized for training and the last 20% observation values are

utilized for forecast evaluations. The corresponding data

are collected from the wind database. The basic statistical

features of stock index returns are computed for both stock

index series containing the volatility, skewness and kur-

tosis as well as the heteroscedasticity test and normality

test. Figure 2 displays the SP500 and HS300 stock indices

and the corresponding returns. Both the Ljung-Box Q2(10)

statistics and the ARCH effects test for the squared returns

indicate that both the returns indices exhibit strong

heteroscedasticity effects. Additionally, the Jarque–Bera

tests of both series reject the normal distribution, and the

kurtosis values suggest that both the returns series have

higher peakness compared to the Gaussian distribution.

There exist certain explanatory factors that influence the

asset returns in financial markets significantly. Primarily,

eight technical indicators are extracted from historical

volatility series. The technical indicators analysis is based

on statistical principles, employing a large number of his-

torical data with addition, subtraction, multiplication and

division of statistics and calculation methods to create a

series of mathematical formula index system. The

Fig. 2 The stock price index

and returns of HS300 and SP500
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combination of historical data and technical indicators for

stock forecasting will make the results more effective. And

Table 1 provides the descriptions of the technical analysis

indicators.

7.2 Performance indicator

In order to compare the prediction performances by dif-

ferent approaches, the following indicators containing the

mean absolute error (MAE), the mean of squared error

(MSE) and the root mean square error (RMSE) are chosen

to evaluate the error accuracy.

MAE ¼ 1=n
Xn

i¼1
ya � yf
�� �� ð20Þ

MSE ¼ 1=n
Xn

i¼1
ðya � yf Þ2 ð21Þ

RMSE ¼ 1=n
Xn

i¼1
ðya � yf Þ2

� �1=2
ð22Þ

where ya denotes the actual values, yf denotes the model

forecast values, and n represents the observation number.

7.3 Experimental results and discussion

In the GARCH-nG method, the fitness of GARCH-nG,

EGARCH-nG and the GJR-nG models are initially evalu-

ated. According to the AIC and BIC criteria, the best

parameter lag for GARCH-nG combined with various

(p,q) orders ranging from (1,1) to (10,10) is calculated.

And the best model specification to fit the distributional

characteristics of the data is found based on a set of criteria.

We report the corresponding estimation parameters of

asymmetric GARCH-non-Gaussian models of SP 500

index and HS300 index in Tables 2 and 3. Furthermore, the

volatility forecasting consequences using EGARCH para-

metric method with Student-t distribution, GED distribu-

tion and AST distribution are presented in Fig. 3, where the

SP500 index volatility and HS300 index volatility are taken

as examples.

In the second hybrid method, the obtained volatility

estimations from GARCH-nG models complemented with

technical indicators are fed to the neural network. The

GARCH-nG models are hybridized with the ANN method

and the realized volatility is regarded as the output target of

the network. Namely, the hybrid method takes as inputs the

Table 1 Description of technical indicator

Technical

indicator

Meaning Technical

indicator

Meaning

Moving average The average stock price of a few days, which can

observe the trend of the stock price

Trade volume

index

Cumulation of the daily total stock market volume.

When the closing price is higher than the previous

one, the total volume is positive; or otherwise

Random index Include the highest price and the lowest price in the

calculation cycle, taking into account the random

amplitude in the stock price volatility

Popular

trading

index

Use the highest point, the lowest point and the

differences between open market and the ratio in a

certain period to reflect the stock market strength,

trading momentum.

Smoothing the

difference with

the moving

average

Using the aggregation and separation function of

fast moving average and slow moving average to

conduct double smoothing operation to determine

the time of buying and selling signals

Buyers

willingness

index

Reflect the strength of the trend between yesterday’s

closing price of the stock index and today’s

highest index and the lowest index, thus reflecting

the stock index will

Relative strength

Index

Compare the average closing up and the average

closing down in a certain period to analyze the

market’s intentions and strength

Deviation

rate

The relationship between the price index and the

moving average ratio. The stock price deviation

from the moving average level in order to

determine the trading behavior of investors

Table 2 Parameter estimation of EGARCH-non-Gaussian models of S&P500

Model EGARCH-nG (Student-t, GED, AST) model

Parameter w2 a2 b2 c2 v h a4 v1 v2

SP500 0.0009

(0.0007)

0.2227

(0.0319)

0.6319

(0.9578)

0.0329

(0.0874)

6.0743

(0.7953)

2.9364

(0.0817)

0.4390

(0.0182)

6.5508

(0.8517)

15.1733

(5.9442)

HS300 0.0002

(0.0030)

0.0708

(0.0187)

0.9136

(0.0292)

0.0457

(0.0631)

6.4681

(0.8053)

2.6727

(0.0670)

0.4557

(0.0177)

6.6023

(0.8283)

15.2631

(6.0215)

The value in parenthesis denotes the standard deviation error
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simulated volatility as well as the specified explanatory

variables for training the network. This hybrid method is

capable of keeping the fine properties of GARCH-nG

models while enhancing with the ANN technique. During

the ANN running stage, the sample dataset is divided into

the training period and the prediction period, in which the

training data are utilized to determine model specifications,

and the forecast data are reserved for evaluation. And

repeated training is carried out in the hidden layer to

determine appropriate numbers of neurons. When the error

between the desired output and the actual output is less

than the specified value or if the termination criterion is

satisfied, the network training is completed with the

weights and bias being saved. The network with back-

propagation is trained employing the Levenberg–Mar-

quardt method, and the input variables are normalized

between values of - 1 and 1.

In the third method, the proposed IPSO algorithm is

applied to the LS-SVM for optimizing parameters. And the

evolutions of fitness function with respect to generations of

IPSO algorithm and PSO algorithm are compared in Fig. 4.

What can obviously see from the plot is that the IPSO

algorithm converges faster along with lower values than

that of PSO algorithm. Since it uses the technical indicators

Table 3 Parameter estimation of GJR-GARCH-non-Gaussian models of HS300

Model GJR-GARCH-nG (Student-t, GED, AST) model

Parameter w3 a3 b3 c3 v h a4 v1 v2

SP500 0.0004

(0.0002)

0.1573

(0.0197)

0.8192

(0.0202)

0.0285

(0.0174)

2.7389

(0.3902)

2.8541

(0.0769)

0.5216

(0.0102)

6.4904

(0.8112)

16.2104

(6.5971)

HS300 - 0.0004

(0.0004)

0.3912

(0.0081)

0.3683

(0.0012)

0.0316

(0.0224)

3.0117

(0.4128)

2.5217

(0.0548)

0.5668

(0.0094)

6.2206

(0.7945)

16.3872

(6.2450)

The value in parenthesis denotes the standard deviation error

Fig. 3 The volatility forecasting

using EGARCH with different

innovation distributions

Fig. 4 The fitness functions of

IPSO algorithm (left panel) and

PSO algorithm (right panel)
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affecting the stock index returns volatility, it is expected

that the model can better capture the impacts of market

variables.

Tables 4 and 5 report the evaluation accuracy results

according to the measurement metrics. The lower the

measurement indicators are, the higher prediction accuracy

of the model is. What can be seen from the results is that

the AGARCH process models with asymmetric Student-

t innovation distribution display slightly lower prediction

errors than that with normal distribution for both the two

stock indices. This finding suggests that the S&P 500 stock

index and HS300 index exhibit fat-tailed properties, which

require taking account of the non-Gaussian distributional

assumptions to model the volatility dynamic process.

Similarly, the asymmetric GARCH-type models provide

lower measurement errors in case of modeling the stock

index volatility, which suggests that it is appropriate to

consider the asymmetric effects of volatility modeling. The

consequences provide evidence for the usefulness of non-

Gaussian distributions in fitting financial assets.

In addition, it can be concluded that the hybrid

AGARCH-ANN models that utilize the outcomes of

AGARCH family models as inputs perform better than the

AGARCH models on the whole. And the hybrid

AGARCH-ANN model has been proven robust for

different specifications and performs better than the

GARCH-nG models in predicting the stock index volatil-

ity. The obtained consequences support the findings of

previous works that the combination of asymmetric

GARCH models with neural network can improve the

prediction ability of the individual GARCH process models

in forecasting the stock index volatility.

However, it is not always an efficient approach when

compared to the modified machine learning methods. As

indicated by the performance measurements, the LS-SVM-

IPSO technique outperforms other methods by providing

the lowest forecasting errors in forecasting the volatility of

S&P 500 index and HS 300 index. Moreover, in contrast to

the parametric method, the least square methods do not

need to regard the type of the innovation distributions,

showing flexibility implementation capability.

The relative errors of the predictions of the training set

and the test set in the LS-SVM-IPSO model are less than

those of the hybrid ANN models. The above comparison

results show that the LS-SVM-IPSO model has more

advantages than the hybrid ANN models. Furthermore,

Figs. 5, 6 plot the predicted values employing the proposed

method with the actual observation values. It is observed

that the proposed LS-SVM-IPSO approach presents a

powerful and efficient tool with very small deviations in

Table 4 The stock index volatility forecasting results of S&P 500

Model type MAE MSE RMSE

GARCH type

GARCH-normal 0.00726 0.0000827 0.00617

GARCH-GED 0.00715 0.0000746 0.00628

GARCH-Student-t 0.00712 0.0000806 0.00594

GARCH-AST 0.00710 0.0000795 0.00587

EGARCH-normal 0.0689 0.0000755 0.00600

EGARCH-GED 0.0651 0.0000713 0.00605

EGARCH-Student-t 0.0621 0.0000700 0.00588

EGARCH-AST 0.0607 0.0000685 0.00532

GJR-GARCH-normal 0.0703 0.0000788 0.00624

GJR-GARCH-GED 0.0679 0.0000739 0.00624

GJR-GARCH-Student-t 0.0646 0.0000721 0.00599

GJR-GARCH-AST 0.0617 0.0000694 0.00548

AGARCH-nG-ANN

EGARCH-normal-ANN 0.00436 0.0000374 0.00499

EGARCH-GED-ANN 0.00416 0.0000369 0.00426

EGARCH-Student-t-ANN 0.00309 0.0000351 0.00415

EGARCH-AST-ANN 0.00257 0.0000288 0.00374

ML

SVM-PSO 0.00184 0.0000068 0.00417

LS-SVM-IPSO 0.00083 0.0000029 0.00328

Table 5 The stock index volatility forecasting results of HS300

Model type MAE MSE RMSE

GARCH type

GARCH-normal 0.00837 0.0000854 0.00622

GARCH-GED 0.00797 0.0000803 0.00637

GARCH-Student-t 0.00743 0.0000766 0.00581

GARCH-AST 0.00713 0.0000789 0.00576

EGARCH-normal 0.0546 0.0000714 0.00613

EGARCH-GED 0.0522 0.0000698 0.00622

EGARCH-Student-t 0.0507 0.0000638 0.00576

EGARCH-AST 0.0487 0.0000602 0.00519

GJR-GARCH-normal 0.0714 0.0000740 0.00651

GJR-GARCH-GED 0.0695 0.0000736 0.00638

GJR-GARCH-Student-t 0.0651 0.0000732 0.00608

GJR-GARCH-AST 0.0622 0.0000697 0.00582

AGARCH-nG-ANN

EGARCH-normal-ANN 0.00330 0.0000271 0.00485

EGARCH-GED-ANN 0.00388 0.0000246 0.00413

EGARCH-Student-t-ANN 0.00262 0.0000219 0.00406

EGARCH-AST-ANN 0.00248 0.0000274 0.00385

ML

SVM-PSO 0.00147 0.0000059 0.00408

LS-SVM-IPSO 0.00051 0.0000017 0.00311
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Fig. 5 The volatility forecasting

and estimation errors of

S&P500 index

Fig. 6 The volatility forecasting

and estimation errors of HS300

index
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both training samples and testing samples, meaning that the

proposed model equips with fine approximation capability

and generalization ability.

The similar conclusion can also be inferred from the

scatter graphs of goodness of fitting for volatility fore-

casting of SP500 and HS300 stock indices in Figs. 7, 8.

Obviously seen from the scatter plot, it indicates that the

proposed LS-SVM-IPSO approach can effectively forecast

the volatility tendency of stock indexes.

8 Conclusion

Accurate forecast of stock returns volatility is challenging

since the highly complex nonlinear nature of returns. In

this study, we apply the LS-SVM technique optimized by

the IPSO algorithm that can map nonlinear functions

without prior hypothesis to forecast stock returns volatility.

Furthermore, the individual GARCH family models with

non-Gaussian distributions and those hybridized with the

ANN method are also compared in the empirical

experiments.

In terms of the loss functions, the resulting forecast

performances obtained by the three different methods have

been compared. It is observed that the asymmetric GARCH

volatility model with generalized asymmetric Student-

t distribution combing with ANN technique exhibits higher

accuracy than individual parametric methods. The empiri-

cal studies find that the SVM technique without PSO

optimization has similar modeling accuracy and general-

ization ability with hybrid models based on ANN. How-

ever, the LS-SVM-IPSO technique exhibits the most

promising prediction performances, showing the lowest

forecasting errors. Comparing with the neural network

methods, the optimized least square support vector

machine displays obvious higher modeling accuracy, closer

approximation degree and better generalization abilities,

which demonstrates to be an efficient and superior fore-

casting approach on the whole.
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