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Abstract
Fuzzy rule-based systems, due to their simplicity and comprehensibility, are widely used to solve regression problems. Fuzzy
rules can be generated by learning from data examples. However, this strategy may result in high numbers of rules that most
of them are redundant and/or weak, and they affect the systems’ interpretability. Hence, in this paper, a new rule learning
method, EEFR-R, is proposed to extract the effective fuzzy rules from regression data samples. This method is formed through
the cooperation of association rule mining concepts and evolutionary algorithms in the three stages. Indeed, the components
of a Mamdani fuzzy rule-based system are generated during the first two stages, and then, they will be refined through some
modifications in the last stage. In EEFR-R, fuzzy rules are extracted from numerical data using the idea ofWang andMendel’s
method and utilizing the concepts of Support and Confidence; furthermore, a new rule pruning method is presented to refine
these rules. By employing this method, non-effective rules can be pruned in three different modes as the preferences of a
decision maker. The proposed model and its stages were validated using 19 real-world regression datasets. The experimental
results and the conducted statistical tests confirmed the effectiveness of EEFR-R in terms of complexity and accuracy and in
comparison with the three state-of-the-art regression solutions.

Keywords Discretization · Fuzzy rule learning · Rule pruning · Support and confidence · Particle swarm optimization

1 Introduction

In regression problems, a specified output is estimated using
a set of input variables. There are a lot of methods which
are employed to model regression problems, simple meth-
ods such as least squares to more advanced ones such
as multi-objective evolutionary algorithms (Ratner 2017).
Fuzzy inference systems (FISs) are one of the most use-
ful methods to address regression problems. FISs, proposed
based on the fuzzy set theory of Zadeh (1965, 1975), employ
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linguistic concepts to model input and output relationships.
Since the inference ability of these systems relies on their
rules, FISs are also called fuzzy rule-based systems (FRBSs).
Each FRBS has a Knowledge Base (KB) which itself is com-
prised of two fundamental parts including Data Base (DB)
and Rule Base (RB); the DB includes fuzzy set definitions
and membership functions (MFs) parameters, and the RB
contains a set of linguistic fuzzy If-Then rules (Riza et al.
2015). Fuzzy rules have a critical role in each FIS so that
decision-making process is not possible without applying
them.

There exist two types of approaches to derive fuzzy If-
Then rules. In the first one, the RB is manually generated
by the knowledge of human experts, while in the second
one, called data-driven models, the rules are automatically
extracted from numerical data by using the learningmethods.
The second approach is more practical in the situation of
lacking human expert’s knowledge or in the complex systems
where a complete knowledge of the problem is not available
(Riza et al. 2015). In this regard, one of the classical rule
learningmethods isWang andMendel’s algorithmWang and
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Mendel (1992), it obtains the rules set by learning from the
training data. The simplicity and quickness of this approach
have made it as a popular and widely used method, and for
this reason, a lot of researchers have utilized its idea in their
applications and have tried to improve it (Kato et al. 2009;
Gacto et al. 2014).

In the automatic generation approaches, the number of
obtained rules may become enormous, especially in the case
of big datasets. Moreover, some of these generated rules may
be redundant and non-effective, even theymay be destructive
in the cooperation with the other rules. On the other hand,
the high number of rules results in losing interpretability
of the fuzzy model (Alonso et al. 2015) such that the sys-
tem behavior becomes hard to understand and the efficiency
is highly affected. To handle these problems, there are two
strategies available; the first one which relies on learning an
appropriate number of effective rules from the beginning,
and the second one where all possible rules are initially gen-
erated and in the second step, the non-effective rules will be
pruned through an optimization process. Although the first
approaches avoid exhaustive optimization tasks, the second
group results in more efficient RB (Patel 2013). In this study,
we attempt to combine the advantages of these two strate-
gies.Moreover, most of the rule learning approaches perform
with the same principles for different datasets with different
conditions, e.g., the maximum and the minimum number of
obtained rules are general and fixed parameters (Alcalá et al.
2011; Alcalá-Fdez et al. 2011a; Gacto et al. 2014). In this
way, the circumstances of the problem and the preferences
of the decision makers are ignored. This matter is also taken
into account in the proposed rule learning method.

This paper presents EEFR-R, a new method to Extract
Effective Fuzzy Rules for Regression problem. Indeed, an
efficient Mamdani FRBS is constructed through the cooper-
ation of association rule mining concepts and PSO algorithm
in the three stages. Input variables are preprocessed using
Fayyad and Irani’s discretization method, and then, all MFs
are defined. In the following, the RB is constructed via a
two-step process: rule generation and rule pruning. Rule gen-
eration is done using the idea ofWang andMendel’s method,
and rule pruning is proposed based on integrating a PSO
algorithm into a common rule mining strategy. The new rule
pruning method can eliminate additional rules in three lev-
els (modes) based on the preferences of decision makers.
Finally, in the post-processing stage, an optimization algo-
rithm is utilized to tune the MFs and adjust the rules’ weight.
EEFR-R is validated using 19 real-world regression datasets
with different numbers of variables and samples. The per-
formance of each stage is separately evaluated. Furthermore,
the results of EEFR-R are compared with the three state-
of-the-art regression solutions and some statistical tests are
employed to carry out more clearly pairwise and multiple

comparisons. Experimental results show the effectiveness of
EEFR-R, especially in terms of complexity and accuracy.

The rest of this paper is organized as follows. Section 2
describes the preliminaries of themodel. Section 3 details the
three stages of EEFR-R, including preprocessing,model gen-
eration, and post-processing stage. Section 4 demonstrates
the results of evaluations, comparisons, and statistical tests,
and finally, Sect. 5 presents the conclusion of this study.

2 Preliminaries

The preliminaries of this study including discretizationmeth-
ods, association rulemining concepts, and PSO algorithm are
described in this section. Before these descriptions, a review
in the related literature is also done.

2.1 Literature review

There are different learning methods for the FRBS genera-
tion in the literature, e.g., learning based on space partitions,
learning based on clustering approaches, learning based
on gradient descent method, and learning by the means
of neural networks or evolutionary algorithms (Riza et al.
2015). Learning based on space partitions, or structure-based
approaches, partitions the data space using fuzzy sets and
then extracts fuzzy rules based on those partitions (Liu and
Cocea 2018). Cluster-based approaches do a clustering in
data and then use each cluster to generate one rule (Prasad
et al. 2014). The last three methods utilize the capabilities
of gradient descent, neural networks, and evolutionary algo-
rithms iteratively to learn the components of the FRBSs (Jang
1993; Fernandez et al. 2015).

One of the most successful learning algorithms for auto-
matic generation of an FRBS is evolutionary fuzzy systems
(EFSs), i.e., evolutionary algorithms have been integrated
into fuzzy systems to learn or tune fuzzy elements (Fernan-
dez et al. 2015). These hybrid systems due to their flexibility
in the codification of the FRBSs, and given their ability in
providing different trade-offs of accuracy and interpretabil-
ity, are popular, especially in learning tasks. A rule learning
process was proposed in Debie et al. (2014), it employed an
evolutionary algorithm to search for attribute intervals and
rules structures, simultaneously. The parameters of DB and
RB can be also learned concurrently (Shill et al. 2011).

Particle swarm optimization (PSO) algorithm is one of the
evolutionary algorithms which has been significantly used
in FISs. Easy implementation, quick convergence, and lower
complexity are prominent features of the PSO algorithm, and
they havemade it popular among researchers (Du andSwamy
2016). Some papers have efficiently employed these features
to perform learning and tuning tasks of a fuzzy system. In
Zanganeh et al. (2011), a PSOalgorithmhas been used to tune
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Each entropy-based discretization algorithm performs the following steps :

1) Calculate total entropy of partition P
2) For all candidate points in P 

- Calculate Entropy of both generated sub-partitions 
- Find the weighted entropy*
- Calculate information gain*

3) Select point T if the information gain after accepting it, is highest
4) Divide P into two partitions using T
5) Recursively repeat step 1, 2 ,3 and 4 for both generated partitions of step 4 until the termination criteria is met 

* Weighted entropy is the weighted values of entropies for two sides of a CP and it must be minimized. 
* Information gain:  is the expected reduction in entropy caused by partitioning the examples according to a certain attribute.

Fig. 1 Pseudo-code of an entropy-based discretization algorithm (de Sá et al. 2016)

the rule’s antecedent and consequent parameters with respect
to theminimization of an estimated error. In another work, an
efficient PSO-based approach has been proposed to construct
an FRBS by using data examples (Esmin 2007). A method
called fuzzy particle swarm optimization (FPSO) was pro-
posed in Permana and Hashim (2010) to use the capabilities
of PSO for generating and adjusting MF automatically. Two
different fuzzy classifiers based on Mamdani and TSK FISs
have been developed in Elragal (2010), where all parameters
of the proposed classifiers and the structure of fuzzy rules are
optimized using a PSO algorithm. Because of the faster con-
vergence and the simplicity of PSO algorithm in comparison
with genetic algorithm (it balances between exploration and
exploitation in the search space Visalakshi and Sivanandam
2009), PSO algorithm is employed for the optimization tasks
of this paper.

However, as mentioned in the previous section, some of
the generation methods lead to an enormous number of rules.
To handle this problem, there are also different strategies in
the literature: strategies like removing redundant rule (Patel
2013), merging the overlapping rules (Alonso et al. 2015),
rule selection (Alcalá et al. 2007), or rule pruning (Batbarai
and Naidu 2014).

In some researches, the concepts ofFRBSs and association
rule mining are fused so that the strategists of the associa-
tion rule mining can be used to refine the RB of the FRBSs
(Alcalá-Fdez et al. 2011a); e.g., in Shehzad (2013), by using
the concepts of Support and Confidence, a measure of sig-
nificance level is defined for each rule, and then using the
values of this measure, less significant rules are pruned, or in
Antonelli et al. (2017), to manage unbalanced data in a fuzzy
classifier, the rules’ weights are defined using the scaled Sup-
port and Confidence. Due to the results of these researches,
in this study, an idea related to the association rule mining
concepts is also adapted and combined with a PSO algorithm
to propose a new rule pruning method.

2.2 Discretizationmethod: Fayyad and Irani’s

In some machine learning applications, discretization meth-
ods are required to handle data with continuous attributes
(Zeinalkhani and Eftekhari 2014). Thesemethods are emplo-
yed to convert continuous variables into discrete ones.
Indeed, through a discretization process, the domain of a
continuous variable is partitioned into several intervals, and
consequently, a set of cut points is generated.

The term of cut point (CP) is applied for a value within
the domain of a certain continuous variable so that it divides
the variable’s domain into two sub-partitions; one partition
is less than or equal to that CP, and the other partition is
greater than it. Given these definitions, if k CPs are chosen
in the domain of a continuous variable, k + 1 partitions will
be built in that domain (Garcia et al. 2013).

Each value within the variable’s domain is a candidate
to choose as a CP. The best CPs are picked out based on a
splitting measure which is a criterion to evaluate different
candidate points. Different splitting measures and accord-
ingly different discretization methods are available in the
literature,methods such as binning-based, Chi-square-based,
entropy-based, and wrapper-based (Dash et al. 2011).

Entropy is one of the most commonly used discretization
measures; it refers to the measure of uncertainty in informa-
tion being processed. A lot of discretization algorithms have
been developed using the entropymeasure. They evaluate the
entropy of the candidate partitions to select the CPs. Figure 1
shows a pseudo-code of a typical entropy-based discretiza-
tion algorithm. The process of choosing suitable CPs starts
by considering one big partition containing all values of a
variable; then, among all candidate points within this par-
tition, that point is accepted as a CP which has the highest
information gain; this process is recursively repeated for each
generated sub-partition until a stopping condition is met (de
Sá et al. 2016).
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Fayyad and Irani’s is a popular entropy-based discretiza-
tion method. It considers the midpoints between each pair of
the accepted CPs as the candidate points; then, it evaluates all
candidate points and selects that point for which the entropy
is minimal. These evaluations recursively continue until a
stopping condition, which is determined based on the min-
imal description length principle, is met. More detail about
this method is available in Fayyad and Irani (1993). Fayyad
and Irani’s discretization method is utilized in Sect. 3.1 to
prepare regression data before model generation.

2.3 Association rule mining concepts

In order to modify conflicting rules in the rule generation
process of Sect. 3.2.2, and also to propose a new rule pruning
method in Sect. 3.2.3, two rule evaluation metrics related to
the association rule mining concepts, namely Support and
Confidence, are utilized. In this section, we briefly describe
them.

Support is a measure that used to calculate the frequency
of a certain rule in a rules set, while Confidence is a measure
that employed to specify the reliability of the rules (Bhargava
and Shukla 2016). To define these measures, first of all, we
denote a generic fuzzy If-Then rule (it is defined in Eq. (18)
in “Appendix A”) as:

Rulei : Ai −→ Bi (1)

in which Ai = {A1
i , A2

i , . . . , An
i } and it includes all fuzzy

sets corresponding to the antecedent part of rule i , and Bi is
the fuzzy set of the consequent part.

Support of a certain rule is equal to the fraction of rules
in the RB that exactly composed of the same antecedent and
consequent of that particular rule. It is calculated for the i th
rule as (Bhargava and Shukla 2016):

Sup(Rulei ) = n(Ai , Bi )

m
(2)

where n(Ai , Bi ) returns the number of rules which contain
Ai and Bi , simultaneously, and m is the number of available
rules in the RB.

Confidence of a certain rule is the proportion of rules that
contain both antecedent and consequent parts of that partic-
ular rule, to those which only have its antecedent part. It is
computed for the i th rule as (Bhargava and Shukla 2016):

Conf(Rulei ) = n(Ai , Bi )

n(Ai )
(3)

where n(Ai ) is the number of rules which contain all Ak
i in

their antecedent part.
Support and Confidence are often used to eliminate unin-

teresting rules in the rule mining algorithms (Bhargava and

Shukla 2016). Generally, the strength of each rule is mea-
sured by its Support and its Confidence. Indeed, rules with
very low Support are not frequent and may hardly occur for
a few data samples. On the other hand, a low Confidence
rule has a low probability for its occurrence among similar
rules (rules whose antecedents are the same as antecedent
part of that rule). These rules are not strong and they do not
have an effective role in the inferring process, so if a mini-
mum threshold is defined for Support and Confidence, these
weak rules are detected and can be removed from the rules
set (Batbarai and Naidu 2014).

This common strategy is usually applied in the rulemining
algorithms. Indeed, the rules set is evaluated based on some
minimum thresholds, and then those rules that failed to reach
the minimum thresholds are eliminated from the rules set.
The minimum Support and Confidence thresholds are called
MinSupp and MinConf, respectively. So, in the mentioned
strategy all rules require satisfying MinSupp and MinConf
and the rules set is refined through the two steps as follows
(Batbarai and Naidu 2014):

1. Find all frequent rules that satisfy MinSupp.
2. Extract all high Confidence rules that satisfy MinConf

among the frequent rules that have been found in step 1.

Themain difficulty of this strategy is specifying theMinSupp
and MinConf measures. If an appropriate threshold is not
set, some problems arise; e.g., if the minimum threshold is
set too high, some interesting rules may be missed, or if it
is set too low, a lot of unnecessary rules may remain. On
the other hand, by changing the training data, the minimum
thresholds should be updated and adapted with the new data,
while finding a user-specified minimum threshold for each
dataset is time-consuming, it should be found by trial and
error or it needs an expert knowledge. Anyway, setting of
these thresholds manually, is a hard and risky mission, and a
simpler and more accurate alternative method is required. In
this regard, a new stronger rule pruning method is proposed
in Sect. 3.2.3.

2.4 A brief overview of PSO

PSO (Du and Swamy 2016) is a parallel search algorithm
which is inspired by the swarm behaviors. PSO algorithm
tries to find the best solution by starting from some initial
solutions and optimizing them continuously. This algorithm
produces a population of candidate solutionswhich are called
particles; particles are abstract entities that used to simulate
solutions; they can move iteratively and randomly through
a multi-dimensional search space; they try to improve their
positions as the information changes (He et al. 2016).

Unlike genetic algorithm, PSO has no operators such as
crossover and mutation. As Fig. 2 shows, it is initialized with

123



EEFR-R: extracting effective fuzzy rules for regression problems, through the cooperation… 11741

Fig. 2 Pseudo-code of PSO
algorithm (Du and Swamy 2016) For each particle

{ Initialize particle }

Do until maximum iterations or minimum error criteria
{

For each particle
{ Calculate fitness value

If the fitness value is better than Pbest
{ Set Pbest = current fitness value    }

If Pbest is better than Gbest
{ Set Gbest = Pbest        }

}
For each particle
{        Calculate particle velocity

Update particle position using the current particle solution and velocity 
}

}

a population of random particles. These particles are evalu-
ated using a fitness function. Each particle has a velocity,
which manages its movement. Indeed, each particle itera-
tively changes its position in the search space according to
two tips: the best-known position found so far by itself called
Pbest, and the best-known position found so far by the entire
swarm called Gbest. In this way, each particle can move
toward the best current solution until the desired convergence
criterion is met.

As these statements, each PSO algorithm consists of three
steps, namely generating particles’ positions and veloci-
ties, updating particles’ velocities, and updating particles’
positions. The pseudo-code of standard PSO algorithm is
presented in Fig. 2. More details about update formulas and
circumstances of PSOare available inDu and Swamy (2016).

Due to the general advantages1 of PSO algorithm (Cheng
and Jin 2015; Visalakshi and Sivanandam 2009; Oliveira and
Schirru 2009), i.e., simplicity, fast convergence, easy imple-
mentation, less operators, better computational efficiency,
few parameters to adjust, it is employed for our optimization
tasks in this paper. However, it is not an obligation and the
proposedmodel can simply adapt with the other optimization
algorithms.

3 Description of the proposedmethod

This section describes details of the three stages of EEFR-
R, namely preprocessing, model generation, and post-
processing. Figure 3 illustrates the general scheme of EEFR-
R. The preprocessing stage prepares the input data through
the discretization and data partitioning tasks; it generates a set
of CPs using Fayyad and Irani’s discretization method. The

1 These advantages are general and may be variant depending on the
application.

second stage is the main stage of EEFR-R; it constructs the
DB and the RB of a Mamdani FRBS through the three tasks
of MFs definition, Rule generation, and Rule pruning. Wang
and Mendel’s method (WM’s) and PSO algorithm assist in
performing the rule generation and rule pruning, respectively.
Finally, in the post-processing stage,MFs are tuned and rules’
weights are adjusted using another PSO algorithm. In what
follows, we describe in detail the three stages of EEFR-R.

3.1 Preprocessing

When there is no expert knowledge about MFs (e.g., num-
ber of MFs of each variable, or support of each MF), a
discretization method is employed to compensate this defi-
ciency; indeed, discretization methods generate a set of CPs
which are utilized to define MFs and determine fuzzy parti-
tions.

Regarding the result of Zeinalkhani and Eftekhari (2014),
which has recommended Fayyad and Irani’s method as one
of the most efficient discretization methods in classification
tasks, this method is applied in this study to choose CPs and
partition data domains. This algorithm is for classification
tasks, and it needs a nominal attribute as class label; so, a
K -means clustering is performed before it to determine the
required nominal outputs. Then, all input andoutput variables
are discretized as described in Sect. 2.2, and a set of CPs
is obtained for each variable; the minimum and maximum
values of each variable are also added to these sets as the
first and last CPs, respectively; i.e., if for variable k with the
domain of [ lk , uk ], n CPs are selected, a set S, composed
of n + 2 CPs, is built for it as:

S =
{
CPk1 = lk, CPk2, . . . , CPkn+2 = uk

}
(4)

Each pair of successive CPs makes one partition; thus, as
Fig. 4 illustrates, the domain of variable k is divided into n+1

123



11742 F. Aghaeipoor, M. Eftekhari

Model generation

Fayyad and Irani’s method

Non-fuzzy partitions

Data
Samples

Discretization

Data partitioning

DB
(MFs 

parameters)

RB
(Rules)

PSO algorithm

Post-processing

Weight adjustment
and

MFs tuning

Rule pruning

MFs definition

Rule generation
CPs set

Pre-processing

WM’s method

Fig. 3 General scheme of EEFR-R; blue rectangles show the task(s) of each stage, solid black arrows indicate flow of input and output for each
task, and dashed blue arrows represent the utilized methods (or algorithms) of each task

= … … =

Fig. 4 Partitioning of variable k, using the discretization method

partitions by using the set S. These partitions are employed
for definition of MFs in the next section.

3.2 Model generation

To construct a Mamdani FRBS, all of its components includ-
ing fuzzification, KB, inference engine, and defuzzification
should be defined. Among these components, KB, comprised
ofDBandRB, has a critical role in the fuzzification and infer-
ence processes. Hence, in this section, the focus is on the
mechanisms of DB and RB generation, and the other com-
ponents are similar to a typical Mamdani FRBS (“Appendix
A”). Since the DB includes fuzzy set definitions and MFs
parameters, in the first following subsection, the method of
MFs definition is described in details. On the other hand, the
RB is composed of a set of If-Then rules which are employed
by the inference engine to perform the reasoning operations.
In this study, it is proposed to construct the RB via a two-
step process: rule generation and rule pruning; these steps are
presented to extract all possible rules and to prune additional
rules, respectively, and they are demonstrated in the second
and third following subsection.

3.2.1 MFs definition

Definition of MFs using discretization methods consists
of two steps; In the first step, non-fuzzy partitions are
determined using a discretization method, and then in the
second step, for each of these partitions an MF is defined
(Zeinalkhani and Eftekhari 2014). The operation related to
the first step was carried out in the preprocessing stage
(Sect. 3.1), and the non-fuzzy partitions corresponding to
each variable obtained. In this section, the focus is on trans-
formingnon-fuzzypartitions into fuzzypartitions bydefining
MFs.

MFs are used to map crisp values into fuzzy numbers. For
each element X belonging to the fuzzy set A, a degree of
membership between 0 and 1 is assigned; it is denoted by
μA(X). μA is a mathematical function defined using trian-
gular, trapezoidal, Gaussian, or other types of MFs. Among
these types of MF, Gaussian MF, due to its advantages in
predictive models, is often used for modeling regression
problems (Tay and Lim 2011). Gaussian MF has two param-
eters, c and σ , i.e., it is defined as:

μA(X; c, σ ) = exp

(
−1

2

(
X − c

σ

)2
)

(5)

c is the mean value which represents the center of MF, and it
has the curve peak. σ is the standard deviation that controls
the curve width.
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Four differentmethods have been proposed in Zeinalkhani
and Eftekhari (2014) to define MFs using the generated non-
fuzzy partitions. In these methods, different measures are
extracted from CPs and partitions, and then based on these
measures,MFs are defined;measures such as partitionwidth,
standard deviation, neighbor partition coverage rate, and par-
tition coverage rate. In this stage, the method of definition
based on partition width is adapted to design MFs. This
method utilizes the distance between two CPs to compute
the parameters of MFs, and it does not consider how exam-
ples are distributed inside each partition.

After the preprocessing tasks of Sect. 3.1, n + 2 CPs and
accordingly n+1 partitions were obtained for a typical vari-
able k. In this step, one Gaussian MF is considered for each
partition; so, n+1GaussianMFsmust be defined for variable
k. Consider the i th MF of variable k is denoted by MFki , it is
designed based on partition i which itself has been built using
two successive CPs CPki and CP

k
i+1.Moreover, as Eq. (5), the

two parameters c and σ have to be set for each Gaussian MF,
therefore, to define MFki , the values of these two parame-
ters should be determined using the information of CPki and
CPki+1, i.e., they are specified as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c ki = (CP k
i+1 + CP k

i )

2

σ k
i = (CP k

i+1 − CP k
i )

2
√
ln 4

(6)

This design is based on these principles: the center of
each Gaussian MF is placed at the center of each parti-
tion, the membership degrees of the two CPs are equal to
0.5, and each two adjacent MFs intersect at one common
CP which is the connection point of their respective parti-
tions. Unlike (Zeinalkhani and Eftekhari 2014), the leftmost
and the rightmost MFs do not differ from the middle ones.
Figure 5 shows an example of MFs definition for a variable
in the domain [0.001, 1.0]; a set composed of four CPs as
{0.001, 0.1295, 0.5195, 1.0} has been chosen for this vari-
able; CPs have been marked with black solid circles in this
figure.

3.2.2 Rule generation

The first step of constructing the RB is rule generation. In
this study, the mechanism of rule learning of WM’s (Wang
and Mendel 1992), with some modifications, is utilized to
generate fuzzy If-Then rules.WM’s approach is a data-driven
method that extracts If-Then rules from data samples. It is
based on uniform fuzzy partitioning and performs in five
steps. Themethod of rule generation of this study differs from
the WM’s one in the fuzzy partitioning mechanism (step 0),
and in the determination of the importance degree for each
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mf1 mf2 mf3

X1

Fig. 5 An example of MFs definition

rule (step 2), i.e., it is carried out through the following four
steps as:

Step 0: Discretization, partitioning, and MFs definition for
all variables are done according to the principles of
Sect. 3.2.1; this step is a prerequisite for the next
steps.

Step 1: Extracting one candidate rules from each data sam-
ple; suppose that a dataset with m data samples is
given, in which each data sample has n input vari-
ables and 1 output variable, so the i th row of this
dataset is denoted as:

(
X1
i , . . . , Xn

i , Yi
)

; i = 1, . . . , m (7)

According to these assumptions, the structure of
each rule has n antecedents, 1 consequent, and
totally n + 1 dimensions. For this data sample, the
corresponding linguistic terms of each dimension
are determined with the fuzzy set whose output is
maximum, same as the original WM’s (Wang and
Mendel 1992). By repeating this procedure for all
m data samples, m candidate rules are obtained, so
that each of them may be or may not be a member
of the final RB.

Step 2: Assign an importance degree for each candidate
rule; the importance degree is a criterion to evalu-
ate strength of each rule in comparison with similar
rules in a group of conflicting rules. It is determined
by multiplication of Support and Confidence (two
rule evaluation metrics introduced in Sect. 2.3), i.e.,
the importance degree, ID, is assigned for rule i as:

ID(Rulei ) = Sup(Rulei ) ∗ Conf(Rulei ) (8)
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Fig. 6 The proposed rule
pruning algorithm; Sup(Rulei )
and Conf(Rulei ) are calculated
as Eqs. (2) and (3), respectively

where Sup(Rulei ) is the Support of rule i as Eq. (2),
and Conf(Rulei ) is its Confidence as Eq. (3).

Step 3: Classify conflicting rules; rules with exactly the
same antecedents but different consequent conflict
with each other. Such these rules are classified into
one group, and among them, the most appropriate
one should be selected.

Step 4: Choose the final fuzzy If-Then rules; from each
group, that rule which has the highest importance
degree is chosen as a final member of the RB.
Regarding the contribution of utilizing the mea-
sures of Support and Confidence to define the
rules’ importance degrees, the strongest rules will
be chosen based on their reliability as well as their
frequency. In other words, if a rule has the highest
degree of frequency (Support) and reliability (Con-
fidence), its importance degree will be the highest
and it will be chosen from its group. In this regard,
more qualified rules are generated in the first step of
constructing the RB.

3.2.3 Rule pruning

In this section, a new rule pruning method is presented to
modify the rules set by removing weak rules. Up to this step,
a set of If-Then rules with no conflict has been obtained.
However, this set is not optimal yet, the number of rules is
high, and the set may contain plenty of redundant and not
effective rules; so, a modification process is needed to refine
this set.

In Sect. 2.3, a common strategy to eliminate additional
rules usingMinSupp andMinConf was described. The draw-
backs of that strategy were also stated. In this section, a new
rule pruningmethod is presented based on that strategy and it
is proposed to specify theminimum thresholds automatically
and regarding the training data instead of setting fixed values
for all situations. For this purpose, the mentioned strategy is
combined with an optimization algorithm.

Figure 6 shows the proposed rule pruning algorithm. It is
comprised of two rounds. In the first round, theRB is scanned
to find the most frequent rules, while in the second round, it
is searched to find the most reliable rules. As illustrated in

Fig. 6, each round has two steps; at first, a PSO algorithm
is run to find the most appropriate minimum threshold, and
afterward, the RB is scrutinized and those rules which do not
satisfy the minimum thresholds, are eliminated from it.

In thismethod, finding the appropriate values forMinSupp
andMinConf is delegated to the PSO algorithm. It carries out
thismission by considering two important perspectives of the
rules set, namely cardinality2 and arising error. Indeed, the
RB must be composed of those rules that optimize these two
criteria simultaneously as much as possible. To achieve this
goal, two new criteria, called Reduction and Increase, are
introduced; they are related to the cardinality of the RB and
the system error, respectively.

Definitions

• Reduction is defined to control the number of rules in the
RB. It is equal to the percentages of diminution in the
number of rules after a pruning process, i.e., the Reduc-
tion, R, is defined as:

R = (1 − #NRafter/#NRbefore) × 100 (9)

where #NRbefore and #NRafter are the cardinality of the
RB before and after the pruning process, respectively.

• Increase is defined to control the system error. After a
pruning process, due to eliminating some rules, it is antic-
ipated that the system error rises. Increase criterion is
considered tomeasure this error increment, and it is equal
to the percentages of error increment after applying a rule
pruning process. Therefore the Increase, I , is defined as:

I = (Eafter/Ebefore − 1) × 100 (10)

where Ebefore and Eafter are the system errors before and
after the rule pruning process, respectively. Mean square
error is used tomeasure the system error in each situation,
and it is computed as:

2 In mathematics, the number of elements of a set is called the cardi-
nality of that set.
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E =
(

1

2 × |D|
)

×
|D|∑
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F(

−→
Xi ) − Yi

)2
(11)

where |D| is the number of data samples in the training
dataset D,

−→
Xi is the i th training input vector, F(

−→
Xi ) is

the estimated output for this sample using the FRBS, and
Yi is the i th target value.

Fitness function

It is clear that a configuration of the RB,which providesmax-
imum Reduction and minimum Increase simultaneously, is
desirable. It means that the maximum number of weak rules
should be eliminated, so that the minimum cost be imposed
on the system error. PSO algorithm has undertaken this goal.
It tries different values of MinSupp and MinConf and evalu-
ates different states of pruning until the best one is found.
For this meaning, a fitness function using Reduction and
Increase is made for PSO algorithm. Due to the goal of prun-
ing process (maximum Reduction and minimum Increase),
and given that PSO algorithm minimizes its fitness function,
a fractional function in which Increase is in the numerator
and Reduction is in the denominator, is considered as the
fitness function of PSO algorithm, i.e., it is formulated as
follows:

fitness = a × I k + b

c × Rp + d
(12)

where I and R are normalized values of Reduction and
Increase, respectively. a, b, c, d, k, and p are parameters of
the model; they are used to adjust the model to a specified
training data. a, b, c, and d (a �= 0, c �= 0) are coeffi-
cients that utilized tomake a nonlinear function of Reduction
and Increase. They can be usually set to a = c = 1 and
b = d = 0. The most important parameters in this defini-
tion are k and p which provides different trade-offs between
Reduction and Increase. p is called Reduction impact factor,
and it determines the degree of influence of Reduction in the
pruning process. Similarly, k is called Increase impact fac-
tor, and it specifies the importance of Increase in the pruning
process.

Different pruning modes

Depending on the values assigned to the factors k and p,
three modes of pruning are provided as follows:

(1) If k > p ≥ 1, less pruning occurs. In thismode, Increase
has a more effective role in the pruning operation rather
than Reduction; the system error is in the best situation;
and the cardinality of the RB is greater than the other
modes.

Table 1 Different modes of rule pruning

Mode Parameters More effective aspect Result

1 k > p ≥ 1 Increase Less pruning

2 p > k ≥ 1 Reduction More pruning

3 k = p Both Moderate

(2) If 1 ≤ k < p, more pruning occurs. This time, Reduc-
tion influences the pruning process more than Increase.
In this mode, although the number of rules is less than
all other modes, the error increment might be slightly
higher.

(3) If k = p = 1, a moderate state is obtained. In this
mode, the roles of Reduction and Increase in the pruning
operation are the same so that the cardinality of the RB
and the error increment are in a moderate situation.

These different modes are also summarized in Table 1.
Depending on the application that this model will be applied
in, and given the degree of importance of each aspect, a
decision maker can set the parameters of the fitness func-
tion. According to our experiments, the third mode provides
acceptable results in the most applications.

Several remarkable points

In this part, we should mention several remarkable points
about the proposed rule pruning method:

• In the employed PSO algorithm, each particle has a two-
dimensional position, it is coded as P = Psup + Pconf ,
where Psup and Pconf are related to theMinSupp andMin-
Conf parameters, respectively. These parameters take
values in their respective variation intervals. This sim-
ple coding scheme provides a significant reduction in the
number of required parameters. Indeed, the proposed rule
pruning method uses only two parameters for each num-
ber of initial rules, while the other rule selection methods
(Gacto et al. 2014; Alcalá et al. 2011) have applied one
parameter per rule. This reduction is remarkable, espe-
cially in the large-scale datasets, where the number of
initial rules is probably significantly high. Reducing the
length of particle’s position and consequently making the
search space smaller, improve the efficiency of evolution-
ary algorithms and lessen the costs of memory and time
(Xue et al. 2016); this matter is properly achieved by the
proposed rule pruning method, so that our experiments
revealed that the employed PSO algorithm converges at
most in five iterations, and it effects on the running times
that shown in Sect. 4.5.
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• In the second mode, more pruning may be caused further
increase in the system error; however, this is not a critical
issue because a tuning process which compensates this
error increasing, is ahead.

• In the fitness function, If p set to 0, the pruning operation
will only be performed by considering the system error,
and if k set t̊o 0, just the cardinality of theRBwill be taken
into account; however, neither of these two conditions is
recommended for normal applications.

• The parameters a, b, c, and d (a �= 0, c �= 0) are the
coefficients that utilized to make a nonlinear function of
Reduction and Increase. They initially and usually set as
a = c = 1 and b = d = 0. However, these parameters
are as a safety valve for the fitness function, they can be
adjusted more precisely in the second round. Indeed, if
manipulating the values of k and p (while a, b, c, and d
have their default values) cannot make a capable fitness
function, these four parameters are employed to adjust
the fitness function more exactly.

• During our experiments, some negative values were
observed for the Increase criterion. It means that in some
applications with this rule pruning method not only there
is not any error rising, but also pruning significantly
reduces the system error. It occurs due to the presence
of some destructive rules in the RB; these rules are those
which lonely and for a few numbers of data samples
work well, but they are weak in cooperation with the
others; the presence of such these rules make the rules
set to weaken, and consequently, the system error grows.
The negative Increase values show that the proposed rule
pruning method is able to discover these rules, so that
when these rules are eliminated from the RB, the system
error goes down and the negative values are reported for
the Increase criterion.

3.3 Post-processing

Some of the most important factors that influence the perfor-
mance of an FRBS include the structure of RB, the size of
RB, the rules’ weight, and the structure of DB. Therefore,
to improve the performance of EEFR-R, after generating the
initial model, some modifications are organized according to
these factors. The first two factors, which are related to the
RB, were improved in the rule pruning process, Sect. 3.2.3.
In this stage, the final modifications are done, i.e., the struc-
ture of DB and the weights of rules are improved by means
of another PSO algorithm.

The main constituents of DB are MFs which are specified
by their parameters. These parameters should be optimized
to find an efficient DB. The mechanism of MFs definition in
Sect. 3.2.1 is just a strategy for the initial generation of MFs.
It determines the parameters of MFs only by considering the
information of the CPs and regardless of the training data.

This is a deficiency that should be compensated through the
optimization of MFs.

The second goal of this stage is the proper adjustment
of the rules’ weights. According to our empirical results,
when a rule’s weight is initially set with the Confidence of
that rule, fewer errors will occur. This is not happened by
chance, and it was predictable; because the weight of each
rule determines the strength of influence of that rule, and this
is the same as the reliability of that rule whichwas previously
(in Sect. 2.3) introduced as Confidence criterion. However,
this initial setting for the rules’ weights is not enough, and
again the trainingdata are not considered.Thus, in this regard,
an optimization process is also required.

A PSO algorithm is employed to perform the aforemen-
tioned optimization tasks. To codify the particle’s position in
this algorithm, a double-coding scheme is considered as:

P = PMF + PW (13)

The first part of this scheme is PMF (Vaneshani and Jazayeri-
Rad 2011); it is used to codify parameters of all available
MFs in the DB, i.e., it is encoded as:

PMF = P1, P2, . . . , P n+1

Pi = ci1, σ
i
1, . . . , c

i
NMF(i), σ

i
NMF(i); i = 1, . . . , n + 1

(14)

in which as Eq. (7) the system has n + 1 variables, n inputs
and 1 output. If we suppose that NMF(i) MFs have been
defined for the i th variable, Pi encodes all parameters of
all MFs related to this variable. Since the type of MFs are
Gaussian, and given that eachGaussianMFhas 2 parameters,
the length of PMF is calculated as:

|PMF| =
n+1∑
i=1

2 × NMF(i) (15)

By adjusting parameter c in this scheme, each MF, as
Fig. 7a shows, can move its peak between its two constructor
CPs. It is a kind of lateral tuning (Alcalá et al. 2007) which
shifts the position of an MF to its environment until the best
possible position is found. On the other hand, as Fig. 7b,
by adjusting parameter σ , each MF can change its width
up to twice of its initial value. In fact, the tuning of MFs
is a combination of these two changes, simultaneously. An
example of MFs before and after tuning is shown in Fig. 7c
and d, respectively.

The second part of the particle’s scheme is PW , and it is
used to codify the rules’ weights. Assume that the number of
final rules (after rule pruning) is equal to m, so the weights
of these m rules are encoded in PW as:

PW = (W1,W2, . . . ,Wm) (16)
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Fig. 7 a Adjusting the center of MF, b adjusting the width of MF, c MFs before the tuning, d MFs after the tuning

where Wi is the weight of rule i th that can obtain an optimal
value between 0 and 1. After the codification, an initial set of
particles is randomly generated. Then, the particles are eval-
uated using the fitness function until the stopping conditions
are met. The fitness function is equal to the system error as
Eq. (11). The mechanisms of updating for the positions and
the velocities are similar to what is done in the standard PSO
(Du and Swamy 2016).

Since in this stage, the process of optimization deals with
the data samples, the applied evolutionary algorithm may be
computational in the case of large-scale datasets, which have
a high number of data samples; therefore, an efficient strategy
should be considered to tackle this problem. For this purpose,
the mechanism of fast error estimation, proposed in Alcalá
et al. (2011), has been incorporated into the PSO algorithm
of this stage. It uses a small percentage of data samples for
initial evaluation of a new solution; if, given the initial eval-
uation, that solution is not dominated, the evaluation must
be repeated using the whole data samples; but if that solu-
tion is dominated, it is discarded, and the process continues
with the next solution. With this mechanism, the whole set
of data samples is used only to evaluate the solutions which
seem desirable. This method improves the evolutionary algo-
rithms in terms of computations and running times. More
details about the error estimation mechanism are available in
Gacto et al. (2014), Alcalá et al. (2011).

4 Experimental results

In this section, the experiments, which have been carried
out to evaluate the effectiveness of EEFR-R, are detailed.
In what follows, firstly the datasets and the parameters of
the experiments are described. Then, different stages of the
proposed model are individually evaluated, and in the fourth
subsection, the overall performance of EEFR-R is compared
with the three state-of-the-art approaches. The statistical tests
are also conducted to further analyzing of these methods. At
the end of this section, the average running times of EEFR-R
are reported.

4.1 Datasets, parameters and evaluation criteria

To evaluate EEFR-R, 19 real-world regression datasets have
been used; they have different number of variables, ranging
from 2 to 40, and different number of data samples ranges
from 337 to 14998. All datasets have been chosen from the
KEEL dataset repository (Alcalá-Fdez et al. 2011b). Table 2
shows the main characteristics of these datasets. It shows the
number of variables and the number of data samples for each
dataset. All experiments were implemented using MATLAB
tools and keel software (Alcalá-Fdez et al. 2011b). STAC
platform (Rodríguez-Fdez et al. 2015) was used to do the
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Table 2 Properties of the used
datasets for the experimental
study

Datasets Abbr. # of variables # of data samples

Electrical Length 1 Ele-1 2 495

Plastic Strength PLA 2 1650

Quake Quake 3 2178

Electrical Length 2 Ele-2 4 1056

Friedman Freidman 5 1200

AutoMPG6 autoMPG6 5 398

Delta Ailerons Del-Ail 5 7129

Daily Electricity Energy Dee 6 365

AutoMPG8 autoMPG8 7 398

Weather Izmir WIZ 9 1461

Stock prices stock 9 950

Forest Fires FOR 12 517

Mortgage MOR 15 1049

Treasury TRE 15 1049

Baseball BAS 16 337

Computer Activity CA 21 8192

Pole Telecommunications POLE 26 14998

Pumadyn PUM 32 8192

Ailerons AIL 40 13750

statistical tests. The mechanism of 10-fold cross-validation
was utilized to generate the training and test data. Moreover,
each experiment was performed three times for each fold,
and the average of 30 runs were reported as final result. The
parameters of EEFR-R have been set as follows; they are
general and fixed for all 19 datasets in all experiments, i.e.,

• The properties of Mamdani FIS which is generated using
EEFR-R are specified in Table 3.

• The parameters of PSO algorithm, employed in the rule
pruning method of Sect. 3.2.3 and in the post-processing
operation of Sect. 3.3, are adjusted in Table 4.

In the case of evaluation criteria, different FRBSs are usu-
ally compared in terms of their efficiency in the two notable
aspects, namely accuracy and complexity. So, two criteria,
related to each of these aspects, have been considered for the
evaluation of this stage. The error of estimation, as Eq. (11),
is considered as the accuracy measure; it is denoted by Tra.
for the training data and by Tst. for the test data in the follow-
ing tables. On the other hand, to evaluate the complexity or
clearly the interpretability of the FRBSs, there are no explicit
and fixed criteria in the literature. Different measures have
been used in different applications (Alonso et al. 2015). In
this model, given the contribution of pruning of additional
rules, the complexity is considered at the level of RB, and
the most well-known measure of this level, namely the car-
dinality of the RB, is utilized, i.e., it is denoted by #R in the
following tables.

Table 3 FIS structure

FIS properties Method

Type Mamdani

AND operator Min

OR operator Max

Implication method Min

Aggregation method Max

Defuzzification Centroid (center of gravity)

Table 4 PSO algorithm parameters

Parameter Value

C1 1.2

C2 0.8

Inertia W factor 1

Number of population 100

Iterations (in the tuning stage) 100

Iterations (in the pruning stage) 10

4.2 The role of rule pruning process

Two criteria, namely Reduction, as Eq. (9), and Increase, as
Eq. (10),were introduced to propose the rule pruningmethod.
The same criteria were also considered for evaluation of it.
The focus of pruning method is to reduce the number of
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Table 5 Results of different rule
pruning modes

Datasets Less pruning Moderate More pruning

k = 2, p = 1 k = 1, p = 1 k = 1, p = 2

R (%) I (%) R (%) I (%) R (%) I (%)

Ele-1 88.25 −13.17 88.91 −12.67 89.75 −10.88

PLA 63.28 15.89 77.00 46.43 82.14 70.30

Quake 90.14 −18.12 94.39 −15.34 95.09 −14.80

Ele-2 84.22 47.33 88.69 51.95 92.65 60.48

Freidman 77.29 17.36 83.40 29.03 90.44 49.38

autoMPG6 86.41 −1.94 87.28 −0.03 90.78 7.14

Del-Ail 76.06 −35.31 88.84 −27.13 91.28 −19.41

Dee 83.47 27.6 91.15 36.50 94.65 49.38

autoMPG8 88.47 −7.7 96.60 −3.38 96.88 −1.96

WIZ 90.17 −5.67 93.69 −1.53 97.69 1.07E−04

stock 67.82 15.7 81.45 38.34 91.08 79.31

FOR 88.05 −0.17 90.05 −0.0072 94.31 2.93

MOR 91.53 −0.0083 93.54 0.0094 97.54 0.14

TRE 87.47 −0.0091 90.17 −0.0079 91.73 1.06

BAS 76.09 −2.50E−15 88.11 3.04E−15 92.74 7.71E−15

CA 80.23 1.07E−06 95.04 1.97E−06 97.02 2.13E−06

POLE 73.10 −4.517 84.38 −1.69 87.90 15.23

PUM 50.15 1.12E−15 52.50 1.17E−15 61.111 1.30E−14

AIL 87.97 7.83 91.97 14.59 94.39 18.59

rules (Reduction) as much as possible, so that the least error
increment (Increase) is arisen.

Table 5 shows the three modes of rule pruning method in
the three columns, namely less pruning mode (first), moder-
ate mode (second), and more pruning mode (third), from
left to right, respectively. For each dataset, the values of
Reduction and Increase of all modes have been indicated.
As expected, for all datasets, Reduction has its minimum
value in the first mode and its maximum value in the third
mode. Furthermore, in the first mode, due to the least prun-
ing, the minimum Increase is occurred, and vice versa, in the
third mode, due to the most pruning, the maximum Increase
is observed. In other words, in Table 5, by moving from the
less pruning mode toward the more pruning mode, for all
datasets, Reduction values grow and accordingly Increase
values also grow.

From another perspective, as previously stated, the pres-
ence of some rules in the RB may be destructive, so that
eliminating of them will result in error decrement instead of
error increment; these cases are revealed by negative Increase
values. The proposed rule pruning algorithm, due to its fit-
ness function, is able to discover these situations. According
to the results of Table 5, in the first mode 11 cases, in the
second mode 9 cases, and in the third mode 4 cases of such
situations have occurred.

Generally, the experiments that performed in the mod-
erate mode, provide the best balances between Reduction

and Increase. In this mode, in 9 datasets, there is no error
increment, and in 4 datasets (MOR, BAS, CA, and PUM),
the increment is negligible; so, it can be concluded that the
pruning process does not have an adverse effect on the system
error, even it has a positive influence in the most cases. In the
6 remaining datasets, the error increments are slightly high;
however, it does not worry us, and they are compensated at
the tuning stage.

Lastly, we mention that the experiments of this stage were
performed with the default values k and p; in this way, the
fractional fitness function is formed by the minimal differ-
ence between its numerator and denominator. It is clear that
by adjusting the larger values for k and p so that the dif-
ference between numerator and denominator becomes more,
the functionality of each mode will be more confirmed, and
the results will be more robust.

4.3 The role of MFs and weight tuning

In this section, the effectiveness of the post-processing stage
is evaluated. Table 6 shows the results of this evaluation.
This table has three main columns. The first two columns are
related to two situations before and after the tuning process,
and the third column is for Reduct measure. In each situation,
the errors of the training and the test data have been indicated.
As can be seen, for all datasets, the values of Tra. and Tst.
significantly reduce after the tuning process. However, to
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Table 6 Results of MFs and
weight tuning, the errors in this
table should be multiplied by
105, 10−8, 105, 10−4, 10−8 in
the case of Ele-1, Del-Ail, BAS,
PUM, AIL, respectively

Datasets Before tuning After tuning Reduct (%)

Tra. Tst. Tra. Tst. Tra. Tst.

Ele-1 3.61 3.66 2.34 2.00 35.06 45.36

PLA 2.39 2.36 1.34 1.07 43.90 54.36

Quake 0.0198 0.0198 0.0179 0.0171 9.97 14.02

Ele-2 1.93E+04 1.89E+04 7046 7422 63.49 60.73

Freidman 4.30 4.53 2.87 2.15 33.10 52.51

autoMPG6 8.69 8.98 4.29 5.19 50.60 42.19

Del-Ail 3.83 3.88 3.13 3.17 18.27 18.29

Dee 0.127 0.145 0.075 0.072 40.69 50.39

autoMPG8 8.11 8.52 4.76 5.19 41.32 39.06

WIZ 4.63 4.54 0.53 0.94 88.44 79.14

stock 2.55 2.85 0.63 0.73 75.31 74.39

FOR 2097.3 2079.7 2005.5 2023.3 4.377 2.711

MOR 2.80 2.76 0.11 0.12 95.75 95.65

TRE 1.099 1.096 0.228 0.255 79.25 76.73

BAS 3.42 3.49 2.19 2.78 35.96 20.34

CA 7.64 7.54 4.17 4.19 45.41 44.43

POLE 124.70 129.89 93.20 98.70 25.26 24.01

PUM 3.79 4.00 0.41 0.45 89.11 88.55

AIL 3.50 4.80 2.92 3.62 16.78 24.56

Average 46.95 47.76

analyze more, Reduct measure is defined. It is used to find
out the percentage of error reduction after applying the tuning
process, i.e., it is calculated as:

Reduct = (1 − Eafter/Ebefore) × 100 (17)

where Ebefore and Eafter are the system errors (as Eq. (11))
before and after the tuning process, respectively. Reduct val-
ues are different in every case of Table 6; theminimumvalues
are for dataset Quake (9.970 for the Tra. and 14.02 for the
Tst.), while the maximum values are for dataset MOR (95.75
for the Tra. and 95.65 for the Tst.); these values are marked
in bold in Table 6.

As the last row of Table 6 shows, the average values of
Reduct are 46.95 and 47.76 for the train and test errors,
respectively. Given these values, it can be deduced that the
post-processing stage generally halves the errors, and this is
an effective complementary task to improve the accuracy of
the model.

4.4 Comparing the overall performance of methods

In this section, the overall performance of EEFR-R is evalu-
ated in comparison with the three state-of-the-art regression
models. Therefore, in the next two subsections, at first, the
three selected models are introduced, and then, results of
comparisons are presented.

4.4.1 Selected methods from the literature for comparisons

Three different methods have been considered to evaluate the
performance of EEFR-R. These methods include one classi-
cal data-driven method and two evolutionary fuzzy systems.
A brief review of these models is as follows:

• Wang and Mendel’s method (Wang and Mendel 1992) is
an ad-hoc data-driven method which learns fuzzy rules
from data example through a five-step algorithm. Since
this method utilizes grid partitioning to define MFs, and
given that it chooses the best rules based on a powerless
importance degree, it involves some drawbacks, e.g., an
enormous number of rules or ignoring cooperation of the
rules. However, due to its simplicity and quickness, it has
been employed in many researches and comparisons. In
our experiments, it has been implementedwith five labels
and denoted by WM (5).

• FSMOGFS
e +TUNe(Alcalá et al. 2011) is a fast and scal-

able multi-objective genetic fuzzy system for linguistic
fuzzy modeling in high-dimensional regression prob-
lems. It proposes to learn all components of the KB of
a Mamdani FIS, simultaneously in a common process.
Moreover, lateral tuning of MFs and rule selection are
done to further refinement of the model.

• FRULER (Rodríguez-Fdez et al. 2016), fuzzy rule learn-
ing through evolution for regression, is a new genetic
fuzzy system to learn a TSK FIS automatically. It has
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Table 7 Average results of
different methods, the test errors
in this table should be multiplied
by 105, 10−8, 105, 10−4, 10−8

in the case of Ele-1, Del-Ail,
BAS, PUM, AIL, respectively

Datasets EEFR-R FSMOGFS
e + TUNe FRULER WM(5)

#R Tst. #R Tst. #R Tst. #R Tst.

Ele-1 3.5 2.000 8.1 1.954 4.1 2.012 17 5.055

PLA 13.3 1.078 18.6 1.194 1.4 1.219 15 6.1414

Quake 3.7 0.0171 3.2 0.0178 7.8 0.0181 54 0 .052

Ele-2 10.1 7422 8 10548 4.3 6729 65 56359

Freidman 6.5 2.151 22 3.138 8 0.731 839 4.9016

autoMPG6 10.8 4.196 20 4.562 13.7 3.727 115 6.096

Del-Ail 1.7 2.17 15 2 2.5 1.458 221 5.89

Dee 11.1 0.072 18.3 0.093 7.9 0.080 193 0.2165

autoMPG8 9.3 5.195 23 4.474 12.7 4.084 161 7.195

WIZ 6.3 0.947 10 1.011 8.9 0.663 399 5.961

stock 13.3 0.732 23 0.912 42.4 0.353 265 2.9101

FOR 3.3 2023 10 2628 5.6 2214 375 34235

MOR 6.1 0.012 7 0.019 7.9 0.007 199 0.134

TRE 3.4 0.035 9 0.044 4.5 0.027 196 0.405

BAS 4.3 2.78 17 2.61 6.2 3.05 253 6.19

CA 3.2 4.198 14 5.216 7.1 4.634 1539 12.44

POLE 16.3 98.7 13.1 102.81 40.8 110.898 3461 473.48

PUM 4.1 0.45 17.6 0.29 7.8 0.36 7372 4.29

AIL 7.3 1.62 15 2 8.5 1.40 6581 2.99

been organized in the three stages. At first, a new
instance selection process performs to prepare data.
Next, a multi-granularity fuzzy discretization obtains
non-uniform fuzzy partitions of the input variables, and
finally, a genetic algorithm learns the fuzzy rules based
on the elastic net regularization mechanism.

4.4.2 Results of comparisons

Table 7 shows the average results of EEFR-R and the three
selected methods. In this table, each column has been ded-
icated to one method. Two measures of #R and Tst. have
been taken into account to compare these methods. The best
values of #R and Tst. for each row have beenmarked in bold.

As Table 7 shows, about #R, EEFR-R has the lowest val-
ues in the majority of the datasets, 14 out of 19 cases; after
that, FRULERhas 3 cases, and FSMOGFS

e+TUNehas 2 cases
of the best values. By these results, it seems that EEFR-R
operates better than the other methods in terms of complexity
reduction in the level of RB. However, to further investigate
this initial guess, the statistical tests are carried out in the
next section.

About Tst. values, Table 7 shows EEFR-R has obtained
the lowest errors in 6 cases, FRULER in 10 cases, and
FSMOGFS

e + TUNein 3 cases. So, FRULER has gener-
ally generated more accurate models. However, it seems
that EEFR-R does not have a significant difference with
FRULER. The final conclusion about these results needs

Table 8 Results of Friedman’s test on #R. (α = 0.1)

Algorithm Rank

EEFR-R 1.31

FRULER 2.05

FSMOGFS
e + TUNe 2.68

WM (5) 3.94

p-value = 1E−5 H0 is rejected

more investigation and comparison that are done in the next
section.

4.4.3 Statistical nonparametric tests

In what follows, the statistical tests are done in order to ana-
lyze the results of Table 7more. According to the recommen-
dation of the assistant of STAC platform (Rodríguez-Fdez
et al. 2015), Friedman’s test (Friedman 1937) is the best fit-
ted test for our data. It is a nonparametric statistical test which
ranks themodels based on a specificmeasure. Friedman’s test
was performed for both considered measures of Table 7 (#R
and Tst.).

Table 8 shows the results of Friedman’s test for #R; P
value of the test has been indicated in the last row. Given the
Rank values, EEFR-R has the top ranking level; FRULER,
FSMOGFS

e+TUNe, andWM(5) are at the next levels, respec-
tively.
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Table 9 Result of Holm’s test
for #R, EEFR-R as the control
method and α = 0.1

Comparison Statistic Adjusted p-value Hypothesis

EEFR-R versus FRULER 1.75 0.078 Rejected

EEFR-R versus FSMOGFS
e + TUNe 3.26 0.002 Rejected

EEFR-R versus WM (5) 6.28 1E−5 Rejected

In the next step, to find out which of the methods have
significant differences, aHolm’s post hoc test was conducted.
This test evaluates a null hypothesis (H0) and compares a
control method with the remaining methods in pairs. Table 9
shows the results of this test with EEFR-R as the control
method and significance level α = 0.1. Since the adjusted p
values of all comparisons are less than α, Holm’s test rejects
the null hypotheses of all comparisons. It means that in the
measure of #R, the methods FRULER, FSMOGFS

e + TUNe,
and WM (5) are not statistically equivalent with EEFR-R,
and there are significant differences between EEFR-R and
the others. Thus, due to the top ranking of EEFR-R in the
complexity criterion, and given the significant differences
of EEFR-R with the other approaches, it is concluded that
EEFR-R and the proposed rule pruning method have been
successful in reducing the complexity of the model.

In order to analyze accuracy of the methods, Friedman’s
testwas also performed for theTst. values ofTable 7. Table 10
shows the results and the p-value of this test. Give the rank
values, FRULER is in the first ranking place, and EEFR-R,
with a little difference, is in the second level. In this regard,
since FRULER employs a TSK FIS and EEFR-R utilizes a
Mamdani FIS, and the TSK systems are usually more accu-
rate than the Mamdani ones, the ranking results of accuracy
were predictable and also acceptable.

Similarly, Holm’s post hoc test was performed again to
find out whether the difference between EEFR-R and the first
method, FRULER, is significant or not. This time, FRULER
was the control method. As Table 11 shows, the hypothesis
of equality of FRULER and EEFR-R is accepted. It indicates
that although EEFR-R is placed at the second level of rank-
ing, there is no significant difference between it and the first
method, and EEFR-R can work as accurate as FRULER.

In addition, to compare the accuracy of EEFR-R with its
next rankedmethod in Table 10, aWilcoxon’s test (Wilcoxon
1945) was performed. It is also a statistical test to do the
individual pairwise comparison. Table 12 shows the result of
Wilcoxon’s test for EEFR-R versus FSMOGFS

e + TUNewith
α = 0.1. According to the adjusted p-value and the values
of R+ and R− in Table 12, the null hypothesis is rejected in
favor of EEFR-R. It means that EEFR-R is more successful
than FSMOGFS

e + TUNein the Tst. measure.
With respect to these analyses for the complexity and

accuracy, it is inferred that EEFR-R has achieved the most
accurate solution with the least complexity. In order to

Table 10 Results of Friedman’s test on Tst. (α = 0.1)

Algorithm Rank

FRULER 1.73

EEFR-R 1.84

FSMOGFS
e + TUNe 2.42

WM (5) 4.00

p-value = 1E−5 H0 is rejected

Table 11 Result of Holm’s test on Tst., FRULER as the control method
and α = 0.1

Comparison Statistic Adjusted p-value Hypothesis

FRULER versus EEFR-R 0.25 0.80 Accepted

Table 12 Results of Wilcoxon’s test on Tst., EEFR-R versus
FSMOGFS

e + TUNeand α = 0.1

Comparison R+ R− Adjusted p-value Hypothesis

EEFR-R versus
FSMOGFS

e +TUNe
144 46 0.048 Rejected

demonstrate the functionality of EEFR-R more clearly, an
illustrative example of it is provided in “Appendix B.”

4.5 Time evaluation

Table 13 shows the average running time for the different
stages of EEFR-R. The time of run of EEFR-R has been
also calculated for each dataset. These times were obtained
using a single thread of an Intel Xeon Processor E5-2650L
(20M Cache, 1.80 GHz). As can be seen, the first two stages
of EEFR-R, which perform the fundamental operations of
this model including model generation and rule pruning,
are not time-consuming; their time ranges from 5 seconds
to 21 min for Ele-1 problem and the most complex prob-
lem AIL, respectively. The main portion of the total time of
EEFR-R is related to the post-processing stagewhich focuses
on the tuning and error decreasing. This time ranges from 43
seconds to 1 h and 4 min in the cases of Ele-1 and AIL,
respectively. Indeed, except for the most complex datasets
(CA, POLE, PUM, AIL), EEFR-R could obtain the model
in less than 10 min. The total times of the complex datasets,
given their number of variables and/or samples, are also very
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16 good (less than an hour and a half). These times are obtained,

due to the complexity reduction that EEFR-R provides well,
especially in the complex datasets.

5 Conclusion

This paper proposed EEFR-R, a novel rule extractionmethod
integrated into an evolutionary fuzzy system for regression
problems. EEFR-R formed three stages to learn and mod-
ify a Mamdani fuzzy inference system based on Wang and
Mendel’s and the association rule mining concepts. Indeed,
the DB and the RB of a Mamdani FRBS were initially gen-
erated during the first two stages, and then, they were refined
through some modifications in the last stage. Furthermore, a
new rule pruning method was proposed in order to eliminate
weak rules and refine the RB based on the preferences of
the decision makers. Nineteen real-world regression datasets
were used to evaluate the performance of EEFR-R. Results
of evaluations and statistical tests revealed that EEFR-R
obtained the simplest model with a high degree of accuracy.

Nowadays, large-scale and big datasets have made sev-
eral challenges for machine learning algorithms. As future
works, the proposed method can be integrated into the multi-
objective evolutionary fuzzy systems. It can be also adapted
to handle the large-scale and big data challenges, particu-
larly. For instance, feature selection and training set selection
algorithms can be added. Furthermore, some parallel and dis-
tributed computing frameworks such as Map-Reduce can be
used for utilizing the memory and CPU resources optimally.
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Appendix A: overview of Mamdani FRBSs

The standard architecture of a fuzzy rule-based system con-
sists of four main modules as below (Riza et al. 2015):
Fuzzification—The fuzzification module converts the crisp
input values into linguistic ones. Linguistic values refer to
ordinary concepts like high, medium, low, etc., which are
used in our conversation to declaremeasures.MFs are defined
based on these linguistic variables to map input values into
fuzzy concepts.
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Knowledge Base (KB)—KB is one of the essential compo-
nents of FRBS. It comprises two fundamental parts including
Data Base (DB) and Rule Base (RB). The DB includes fuzzy
set definitions and the MF’s parameters while the RB con-
tains a set of linguistic fuzzy If-Then rules. Fuzzy rules are
applied in the decision-making process. They are written in
the following format: If x is A, Then y is B where the If
part is called antecedent and the Then part is called conse-
quent of the rule. This rule is described as: If the antecedent
conditions are satisfied, Then the consequent can be inferred.
Inference Engine—The inference engine is where FRBS per-
forms the process of reasoning; it uses fuzzy If-Then rules
and input data to make the inference operation.
Defuzzification module—In defuzzification procedure, the
acquired output is transformed from a fuzzy value into a
crisp one.

Among the different fuzzy inference systems (Timothy
2010), two types of Mamdani FIS (Mamdani 1977) and
Takagi–Sugeno–Kang (TSK) FIS (Takagi and Sugeno 1985)
have been widely used in the regression applications. The
most important differences between these FISs are related to
the consequent part of the rules, and accordingly, their aggre-
gation and defuzzificationmethods are different. InMamdani
fuzzy inference systems, both antecedent and consequent
parts of a rule are determined by fuzzy sets, while in TSK
systems only the antecedent part is represented by fuzzy sets
and the consequent part is computed through a weighted lin-
ear function or a constant value. Mamdani fuzzy systems are
usually applied to get more interpretable models, whereas
TSK systems focus on the accuracy and precision (Blej and
Azizi 2016).

The general form of a fuzzy If-Then rule in Mamdani
system is like this:

Rulei :If X1 is A1
i and X2 is A2

i and . . . and Xn is An
i

Then Y is Bi ; i = 1, . . . , p (18)

where Xk is the kth input variable, n is the number of input
variables, Y is the output variable, p is the number of all
rules, and A j

i and Bi are the linguistic variables defined by
MFs in the DB. The main advantage of this composition of
inputs and output is its close relationship with the way of
human thinking.

After generating or learning the constituents of DB and
RB, the process of inferring in Mamdani system is done
through the following five steps:

(1) Fuzzification of the input values using the defined MFs.
(2) Applying the fuzzy operator (AND or OR) to the

antecedents in order to combine the fuzzified inputs
and obtain the rule strength (hi ). hi is also called firing
strength of the i th rule. It measures the degree of match-

ing the input vector (X1, X2, . . . , Xn) to the i th rule.

hi = T (A1
i (X

1), A2
i (X

2), . . . , An
i (X

n)) (19)

where Ak
i is the fuzzy value of the kth input variable

(Xk) and T is the T -norm conjunctive operator. Mam-
dani specifically recommended the use of the minimum
T -norm (Mamdani 1977).

(3) Indicating the final consequent for each rule; it is
achieved by combining the computed rule strength and
the linguistic fuzzy term related to the output of a certain
rule as:

B ′
i (Y ) = T (hi , Bi (Y )) (20)

B ′
i is the conclusive consequent of the i th rule, Bi is the

fuzzy value of output variable Y and T is the T -norm
conjunctive operator. Mamdani has also recommended
the use of the minimum T -norm in this case (Mamdani
1977).

(4) Aggregation of all rule’s consequent; this is usually done
by using the fuzzy OR operator as:

O(Y ) =
p⋃

i=1

B ′
i (Y ) (21)

where O(Y ) is the result MF.
(5) Defuzzificationof the result; the outputMF is not enough

in many applications and the crisp value is needed.
Some methods like centroid, weighted average, mean-
max membership, etc., have been suggested computing
the crisp value of the result. The most common method
is centroid which uses the center of gravity of the fuzzy
sets in which the crisp output y is calculated as:

y =
∫

O(Y )Ydy�
∫

O(Y )dy (22)

Due to the capability ofMamdani FIS in generating sim-
ple and interpretable models and regarding our objective
in reducing the complexity of regression solutions, it is
used in this study. Mamdani weakness in getting lower
accuracy (in comparison with TSK models), however,
has been overcome using optimization methods.

AppendixB: an illustrative exampleof EEFR-R

In this section, an illustrative example of EEFR-R is
described. For this purpose, the first problem of Table 2,
Ele-1, has been taken into account. Ele-1 is a real-world
benchmark problem which estimates the length of low-
voltage lines in rural towns using some available inputs. This

123



EEFR-R: extracting effective fuzzy rules for regression problems, through the cooperation… 11755

(a) The initial MFs of Inhabitants (b) The tuned MFs of Inhabitants

(c) The initial MFs of Distance (d) The tuned MFs of Distance

(e) The initial MFs of Length (f) The tuned MFs of Length

Fig. 8 MFs of different variables; left figures are related to the initial MFs, and right figures are the same left MFs which have been tuned
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dataset includes 3 attributes, namely Inhabitants, Distance,
and Length; Inhabitants and Distance are the system inputs
which are used to estimate the output Length (Cordón et al.
1999).

EEFR-R is performed for Ele-1 in the three stages as the
descriptions of Sect. 3. In the following, the results of one
run of EEFR-R for this dataset are demonstrated. In the pre-
processing stage, Sect. 3.1, a set of CPs is generated for each
variable as:

SInhabitants = {1, 20, 320}
SDistance = {60, 362.5, 500.8, 665.83, 1673.3}
SLength = {80, 1568, 3492.5, 7675}

These sets are utilized in the model generation stage to
define initial MFs in Sect. 3.2.1; the initial MFs of the three
variables are shown in the left column of Fig. 8. In the fol-
lowing of the second stage, all rules are extracted from the
data samples of the Ele-1 dataset using the rule generation
process of Sect. 3.2.2; these rules and their weights are repre-
sented in Table 14. After that, the rule pruning method, 3.2.3,
is carried out, and among the 7 generated rules, just 3 of them
(the highlighted ones in italic) remain in the RB. Table 15
shows the structure of final RB.

Finally, as Sect. 3.3, the post-processing tasks including
MFs tuning and rules’weights adjustment are done. The right
column of Fig. 8 shows the MFs of the three variables after
the tuning. Also, the optimized weights of the final rules are
indicated in the weight column of Table 15. The test error
of this run of EEFR-R for the Ele-1 dataset was equal to
2.0527E+05.

Table 14 Results of rule generation

# Inhabitants Distance Length Weight

1 mf1 mf1 mf1 1.00

2 mf1 mf2 mf1 0.98

3 mf1 mf3 mf2 0.64

4 mf1 mf4 mf2 0.43

5 mf2 mf2 mf1 0.71

6 mf2 mf3 mf2 0.83

7 mf2 mf4 mf2 0.55

Table 15 Results of rule pruning and rules’ weights adjustment

# Inhabitants Distance Length Weight

1 mf1 mf2 mf1 1

2 mf2 mf2 mf1 0.79

3 mf2 mf3 mf2 0.60
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