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Abstract
As a powerful pre-accident risk evaluation method, the traditional failure mode and effect analysis (FMEA) is extensively

used to identify and eliminate the potential failure modes of products or processes, and presents several limitations

simultaneously. To improve the accuracy of risk evaluation, this paper proposes a novel FMEA approach considering

consensus level between decision makers. First, linguistic variables are applied to express the decision makers’ evaluation

information of failure modes, which can be transformed into the corresponding interval-valued intuitionistic fuzzy (IVIF)

numbers. Second, an IVIF consensus model is constructed to confirm whether the consensus is achieved, and subsequently,

the collective evaluation matrix is aggregated by the interval-valued intuitionistic fuzzy prioritized weighted averaging

operator. Third, a deviation maximization model is used to calculate the weights of risk factors. Finally, the improved

IVIF-MULTIMOORA method is implemented to determine the risk ranking of failure modes. This paper also provides a

numerical example to illustrate the validity and rationality of the proposed method.

Keywords Failure mode and effect analysis � Consensus model � Interval-valued intuitionistic fuzzy set � MULTIMOORA

method � Risk evaluation

1 Introduction

Failure mode and effect analysis (FMEA) is a structured

approach originally used in the aerospace industry to sat-

isfy the requirements of reliability and risk management

(Bowles and Peláez 1995). Compared with other risk

evaluation methods, FMEA focuses on pre-accident pre-

vention measures, rather than searching for solutions after

the occurrence of accidents. FMEA is also used to obtain

the risk ranking of potential failure modes according to the

evaluation information concerning several risk factors.

Depending on the ranking results, different levels of safety

control measures are adopted to reduce the failure rate of

products or processes (Stamatis 2003). After decades of

theoretical and practical research, FMEA has been exten-

sively applied in various fields (Chang and Cheng 2011;

Chin et al. 2009; Liu et al. 2013, 2014a; Sharma et al.

2005; Song et al. 2014), such as chemical, power elec-

tronics, nuclear, and manufacturing industries.

Traditionally, several cross-functional decision makers

list the potential failure modes of a specific product or

process. Combined with the 1–10 crisp number scale,

failure modes are evaluated concerning three risk factors,

namely occurrence (O), severity (S), and detection (D) (Liu

et al. 2013). Subsequently, the risk ranking of failure

modes is determined according to their risk priority num-

bers (RPNs):

RPN ¼ O� S� D; ð1Þ

where O represents the incidence rate of failure modes, S

represents the severity level of failure modes, and D rep-

resents the probability of failure modes that are not
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detected. Although traditional FMEA has been proven as

an effective risk management tool, it still presents several

limitations, most of which are summarized as follows (Liu

et al. 2013): (1) The evaluation information of failure

modes is uncertain and incomplete in real life and is

unreasonable to be evaluated using the 1–10 crisp number

scale, (2) three risk factors are considered equally impor-

tant, which is contrary to actual situations, and (3) the

different scores of three risk factors are likely to obtain the

same RPN value, resulting in difficulty in judging the

ranking of failure modes.

To resolve the drawbacks of traditional FMEA, scholars

have introduced many uncertainty theories and multiple-

attribute decision-making (MADM) methods to develop

new FMEA approaches. In the aspect of evaluation infor-

mation forms, the ordered qualitative scale (Franceschini

and Galetto 2001), fuzzy set (Chang et al. 1999; Hu et al.

2009; Kutlu and Ekmekçioğlu 2012; Pillay and Wang

2003; Safari et al. 2016; Song et al. 2013), fuzzy Demp-

ster–Shafer theory (Du et al. 2016; Liu et al. 2011; Vahdani

et al. 2015), 2-tuple/interval 2-tuple linguistic variable (Liu

et al. 2014b, 2015a, 2016), intuitionistic/interval-valued

intuitionistic fuzzy set (Chang and Cheng 2010; Zhao et al.

2017), soft set (Chang 2014), interval type-2 fuzzy set

(Bozdag et al. 2015), and rough set (Song et al. 2014) were

utilized to address the uncertainty and incompleteness of

evaluation information. For example, Franceschini and

Galetto (2001) applied ordered qualitative scale to evaluate

failure modes without transforming the evaluation infor-

mation into any numerical forms. Song et al. (2013)

characterized evaluation information with triangular fuzzy

numbers. Vahdani et al. (2015) introduced fuzzy belief

structure to describe the FMEA knowledge of decision

makers. Liu et al. (2016) constructed a new FMEA

approach under interval 2-tuple linguistic environment.

Zhao et al. (2017) used interval-valued intuitionistic fuzzy

numbers (IVIFNs) instead of crisp numbers in FMEA.

Among the aforementioned evaluation information forms,

the interval-valued intuitionistic fuzzy set (IVIFS) pro-

posed by Atanassov and Gargov (1989) can convey the

membership, non-membership, and hesitancy degrees of

evaluation information, simultaneously. Therefore, in

consideration of the complex actuality, IVIFS is more

suitable to be applied in FMEA.

Current weighting methods of risk factor during FMEA

are largely divided into subjective, objective, and com-

prehensive weighting types. Subjective weighting method

commonly determines the weights of risk factors through

analytical hierarchy process (AHP) method (Hu et al. 2009;

Kutlu and Ekmekçioğlu 2012) or aggregating the decision

makers’ evaluation information of risk factors (Song et al.

2014; Safari et al. 2016; Liu et al. 2011, 2015a). On the

other hand, objective weighting method is invariably used

to compute the weights of risk factors combined with the

evaluation information of failure modes. For instance,

Zhao et al. (2017) calculated the weights of risk factors by

using IVIF continuous weighted entropy. Emovon et al.

(2015) used entropy and statistical variance methods to

determine the weights of risk factors. Comprehensive

weighting method considers subjective and objective fac-

tors and is a combination of the two aforementioned

weighting methods (Song et al. 2013; Wang et al. 2016).

To solve the problem of RPN model, in practice, FMEA

can be regarded as a MADM process; then, the ranking

results can be obtained using several MADM ranking

methods, such as AHP (Ilangkumaran et al. 2014), tech-

nique for order preference by similarity to an ideal solution

(TOPSIS) (Song et al. 2013, 2014; Vahdani et al. 2015),

Vlsekriterijumska optimizacija I Kompromisno Resenje

(VIKOR) (Safari et al. 2016; Liu et al. 2015b; Mohsen and

Fereshteh 2017), and decision-making trial and evaluation

laboratory (DEMATEL) (Chang and Cheng 2010, 2011;

Wang et al. 2016) methods. However, the decision-making

mode of the aforementioned MADM ranking methods is

unitary, and the robustness of ranking results should be

improved. Brauers (Brauers 2012) presented that the use of

two different multi-objective optimization methods is more

robust than the use of a single method; moreover, the use of

three different multi-objective optimization methods is

more robust than the use of two different methods. Brauers

and Zavadskas (2010) introduced the full multiplicative

form to multi-objective optimization by using ratio analysis

coupled with reference point theory (MOORA) and pro-

posed MOORA with the full multiplicative form (MUL-

TIMOORA) ranking method, which is a combination of

three different multi-objective optimization methods.

Thereafter, the MULTIMOORA ranking method is widely

used in many decision-making fields, because of its dis-

tinguished features of simplicity and strong robustness

(Zhao et al. 2017; Baležentis and Baležentis 2014; Liu

et al. 2014c).

Although researchers have made many improvements to

overcome the shortcomings of traditional FMEA, some

deficiencies of FMEA research remain. (1) The weights of

decision makers are generally assigned the exact value

subjectively; this process would affect the accuracy of the

ranking results. (2) In actuality, some decision makers

inevitably express extreme or incorrect evaluation infor-

mation, which is far from the collective evaluation infor-

mation. The ranking results of failure modes would be

biased without revising the extreme or incorrect evaluation

information (Herrera-Viedma et al. 2014); thus far, few

studies have investigated on the problem of consensus in

previous FMEA research. (3) The importance of risk factor

weights is not reflected in the calculation process of tra-

ditional MULTIMOORA method.
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Instead of determining the exact weights of decision

makers directly, identifying the priority level of decision

makers according to their knowledge structures and

domain experiences is more feasible. Yager (2008) pro-

posed the prioritized average (PA) operator to aggregate

the evaluation information when prioritization exists

among the aggregated arguments. Furthermore, Yu et al.

(2012) extended the PA operator into IVIF environment

and proposed the interval-valued intuitionistic fuzzy pri-

oritized weighted averaging (IVIFPWA) operator. When

prioritization is observed among decision makers, the

aforementioned operators can also aggregate information

effectively. In recent years, the consensus reaching process

of decision-making problems has been a hot topic. The

existing consensus models can be divided into two cate-

gories. (1) The first category includes methods that deter-

mine whether decision makers have reached a high

consensus level through defining the concepts of consensus

measure and proximity measure, confirm the accurate

evaluation information set that should be modified, and

provide decision makers with the amendments until con-

sensus is achieved (Cabrerizo et al. 2010; Herrera-Viedma

et al. 2005; Wu and Xu 2016). (2) The second category

includes methods that judge whether the consensus is

achieved according to the concept of group consensus

measure and optimize the non-consensus individual eval-

uation information iteratively based on the collective

evaluation information until the consensus is achieved (Wu

and Xu 2012; Xu and Wu 2013). However, to the best of

our knowledge, most studies have focused on the consen-

sus reaching process with preference relations, and the

consensus model under IVIF environment has not been

investigated yet. Motivated by the first consensus model

above, this paper constructs a consensus model under IVIF

environment to revise the extreme or incorrect evaluation

information in FMEA.

In this paper, we utilize IVIFNs to express the evalua-

tion information of decision makers. Combined with the

IVIFPWA operator and the IVIF consensus model, the

collective evaluation information that reached the consen-

sus threshold is obtained. Next, we develop a deviation

maximization model to calculate the weights of risk factors

and construct the improved IVIF-MULTIMOORA (IIVIF-

MULTIMOORA) method to determine the final risk

ranking of failure modes. The rest of this paper is orga-

nized as follows. Section 2 briefly introduces some basic

concepts of IVIFS and the IVIFPWA operator. Section 3

proposes a new FMEA considering consensus under IVIF

environment. Section 4 shows an empirical example of

steel production to illustrate the applications and advan-

tages of the proposed method. Section 5 summarizes the

conclusions of the study.

2 Preliminaries

This section briefly introduces several basic mathematical

concepts, such as IVIFS, operational laws and improved

score function of IVIFNs, and the IVIFPWA operator,

which would be utilized in the subsequent research.

2.1 Interval-valued intuitionistic fuzzy set

Based on the fuzzy set (Zadeh 1965) and intuitionistic

fuzzy set (Atanassov 1986), Atanassov and Gargov (1989)

introduced the interval numbers to extend the membership

and non-membership degrees; then, the IVIFS was defined,

and several basic operations of IVIFNs were investigated,

simultaneously.

Definition 1 (Atanassov and Gargov 1989) Let X be a

non-empty and finite set; an IVIFS ~A in X is given by:
~A ¼ x; ~l ~AðxÞ; ~v ~AðxÞ

� �
jx 2 X

� �
, where ~l ~AðxÞ and ~v ~AðxÞ are

the membership and non-membership functions of ~A,

respectively, ~l ~A xð Þ ¼ l�~A xð Þ; lþ~A xð Þ
h i

� 0; 1½ �, ~v ~A xð Þ ¼

v�~A xð Þ; vþ~A xð Þ
h i

� 0; 1½ � with the condition of

sup ~l ~A xð Þ þ sup ~v ~A xð Þ� 1. In addition, ~p ~A xð Þ ¼
1 � lþ~A xð Þ � vþ~A xð Þ; 1 � l�~A xð Þ � v�~A xð Þ
h i

is the hesitancy

degree of ~A. For convenience, an IVIFN ~a is expressed as

a; b½ �; c; d½ �ð Þ, where a; b½ � � 0; 1½ �, c; d½ � � 0; 1½ �, and

bþ d� 1.

Since the IVIFS was proposed, the operational laws of

IVIFNs have been researched by Atanassov and Gargov

(1989), Atanassov (1994), and Xu (2007a). Furthermore,

the score and accuracy functions of IVIFN were developed

in the literature (Xu 2007a).

Definition 2 (Atanassov and Gargov 1989; Atanassov

1994; Xu 2007a) Let ~a ¼ a; b½ �; c; d½ �ð Þ,
~a1 ¼ a1; b1½ �; c1; d1½ �ð Þ, and ~a2 ¼ a2; b2½ �; c2; d2½ �ð Þ be three

IVIFNs, k[ 0, and then, the basic operations of IVIFNs

are defined as:

~a1 � ~a2 ¼ a1 þ a2 � a1a2; b1 þ b2 � b1b2½ �; c1c2; d1d2½ �ð Þ;
ð2Þ

~a1 	 ~a2 ¼ a1a2; b1b2½ �; c1 þ c2 � c1c2; d1 þ d2 � d1d2½ �ð Þ;
ð3Þ

~ak ¼ ak; bk
� �

; 1 � 1 � cð Þk; 1 � 1 � dð Þk
h i� 	

; ð4Þ

k~a ¼ 1 � 1 � að Þk; 1 � 1 � bð Þk
h i

; ck; dk
� �� 	

: ð5Þ
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Definition 3 (Xu 2007a) Let ~a ¼ a; b½ �; c; d½ �ð Þ be an

IVIFN, and then, the score and accuracy functions of ~a are

given as follows:

s ~að Þ ¼ 1

2
a� cþ b� dð Þ; ð6Þ

h ~að Þ ¼ 1

2
aþ bþ cþ dð Þ: ð7Þ

Definition 4 (Xu 2007a) Let ~a1 ¼ a1; b1½ �; c1; d1½ �ð Þ and

~a2 ¼ a2; b2½ �; c2; d2½ �ð Þ be two IVIFNs, and then:

1. If s ~a1ð Þ[ s ~a2ð Þ, then ~a1 [ ~a2;

2. If s ~a1ð Þ ¼ s ~a2ð Þ, and

a. If h ~a1ð Þ ¼ h ~a2ð Þ, then ~a1 ¼ ~a2;

b. If h ~a1ð Þ[ h ~a2ð Þ, then ~a1 [ ~a2;

c. If h ~a1ð Þ\h ~a2ð Þ, then ~a1\~a2.

The score function of IVIFN would be used during the

information fusion of the IVIFPWA operator, and its range

should be limited to 0; 1½ �; however, the range of Eq. (6) is

�1; 1½ �. Consequently, an improved score function based

on hesitancy degree is applied to replace Eq. (6) in Defi-

nition 3 (Bai 2013):

�s ~að Þ ¼ aþ a 1 � a� cð Þ þ bþ b 1 � b� dð Þ
2

: ð8Þ

Definition 5 (Xu 2007b) Let ~a1 ¼ a1; b1½ �; c1; d1½ �ð Þ and

~a2 ¼ a2; b2½ �; c2; d2½ �ð Þ be two IVIFNs, and then, the

Hamming distance between ~a1 and ~a2 is defined as follows:

d ~a1; ~a2ð Þ ¼ 1

4
a1 � a2j j þ b1 � b2j j þ c1 � c2j j þ d1 � d2j jð Þ:

ð9Þ

2.2 The interval-valued intuitionistic fuzzy
prioritized weighted averaging operator

Definition 6 (Yu et al. 2012) Let ~aj ¼ aj; bj
� �

;



cj; dj
� �

Þ j ¼ 1; 2; . . .; nð Þ be a collection of IVIFNs, and let

IVIFPWA : Vn ! V; if

IVIFPWA ~a1; ~a2; . . .~anð Þ ¼ T1Pn
j¼1 Tj

~a1 �
T2Pn
j¼1 Tj

~a2 � � � �

� TnPn
j¼1 Tj

~an;

ð10Þ

then the function IVIFPWA is called the IVIFPWA oper-

ator, where Tj ¼
Qj�1

k¼1 �s ~akð Þ j ¼ 2; 3; . . .; nð Þ, T1 ¼ 1.

According to the operational laws of IVIFNs in Defi-

nition 2, the aggregated value by the IVIFPWA operator is

also an IVIFN (Yu et al. 2012), and

IVIFPWA ~a1; ~a2; . . .~anð Þ ¼

1 �
Yn

j¼1

1 � aj

 �

TjPn

j¼1
Tj ; 1 �

Yn

j¼1

1 � bj

 �

TjPn

j¼1
Tj

2

4

3

5

0

@ ;

Yn

j¼1

cj

 �

TjPn

j¼1
Tj ;
Yn

j¼1

dj

 �

TjPn

j¼1
Tj

2

4

3

5

1

A;

ð11Þ

where Tj ¼
Qj�1

k¼1 �s ~akð Þ j ¼ 2; 3; . . .; nð Þ, T1 ¼ 1.

3 Proposed FMEA method

Suppose s cross-functional decision makers

DMk k ¼ 1; 2; . . .; sð Þ exist in a FMEA team, which are

divided into s priority levels according to their knowledge

structures and domain experiences; they evaluate m

potential failure modes FMi i ¼ 1; 2; . . .;mð Þ concerning n

risk factors RFj j ¼ 1; 2; . . .; nð Þ based on linguistic vari-

ables, which can be transformed into the corresponding

IVIFNs. Let ~Rk ¼ ~a kð Þ
ij

� 	

m�n
be the IVIF evaluation matrix

of DMk, where ~a kð Þ
ij ¼ a

kð Þ
ij ; b

kð Þ
ij

h i
;

�
c

kð Þ
ij ; d

kð Þ
ij

h i
Þ is the IVIFN

given by DMk on the evaluation of FMi concerning RFj.

Let wj j ¼ 1; 2; . . .; nð Þ be the weights of risk factors that are

determined by a deviation maximization model. Based on

the aforementioned assumptions, the risk ranking can be

obtained combined with the information fusion process and

IIVIF-MULTIMOORA method. Figure 1 shows the

flowchart of ranking failure modes in the proposed FMEA.

3.1 Obtain the evaluation information of failure
modes

In real life, it is more inclined for decision makers to

evaluate failure modes by linguistic variables instead of

crisp numbers. Decision makers utilize the linguistic vari-

ables in Table 1 to evaluate failure modes with respect to

risk factors (Zhao et al. 2017). Therefore, the IVIF evalu-

ation matrix ~Rk can be obtained.

The FMEA team is likely to be composed of decision

makers from different departments and professions in

practice. Thus, the occurrence of extreme or incorrect

evaluation information, which will affect the accuracy of

the risk evaluation results, is inevitable. Inspired by Wu

and Xu (2016), the consensus measures on three levels

between two IVIF evaluation matrices of failure modes are

defined. Next, we propose a procedure for revising the

extreme or incorrect evaluation information until a high

consensus level is achieved.
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Definition 7 For each pair of decision makers

DMk;DMlð Þ k ¼ 1; 2; . . .; s� 1; l ¼ k þ 1; . . .; sð Þ, the sim-

ilarity measure between DMk and DMl in their evaluation

for FMi concerning RFj is given as follows:

smkl
ij ¼ 1 � d ~a kð Þ

ij ; ~a lð Þ
ij

� 	
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .nð Þ:

ð12Þ

where d ~a kð Þ
ij ; ~a lð Þ

ij

� 	
is the Hamming distance between ~a kð Þ

ij

and ~a lð Þ
ij .

Subsequently, the similarity matrix SMkl ¼ smkl
ij

� 	

m�n

between IVIF evaluation matrices ~Rk and ~Rl is obtained. In

addition, the consensus matrix CM ¼ cmij


 �
m�n

can be

calculated by aggregating all similarity matrices:

cmij ¼ / smkl
ij

� 	
; ð13Þ

where / is the arithmetic average operator. According to

the consensus matrix, we can define the consensus mea-

sures on three levels, namely risk factor, failure mode, and

evaluation matrix levels.

Definition 8 Risk Factor Level: the consensus measure for

FMi over RFj, denoted as crij, can be defined by the ele-

ment of consensus matrix CM as

crij ¼ cmij i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ: ð14Þ

This measure allows for the identification of the positions

in the IVIF evaluation matrix that have a low consensus

level.

Failure Mode Level: the consensus measure on FMi,

denoted as cfi, can be defined using the consensus measure

crij as

cfi ¼
Pn

j¼1 crij

n
: ð15Þ

Determine the priority levels of  decision 
makers

Assemble FMEA team and list potential failure 
modes

Identify risk evaluation objectives and 
determine FMEA scope

Evaluate failure modes using linguistic 
variables

IVIF evaluation matrices Calculate the similarity matrices between 
decision makers Determine the consensus matrix

Calculate the consensus level of risk factors, 
failure modes and evaluation matrices

Satisfied consensus 
levelIdentification rules and direction rules

Determine risk factor weights combined with  
the deviation maximization model

The IIVIF ratio system with IVIFWA operator The IIVIF reference point approach with 
Tchebycheff distance

The IIVIF full multiplicative form with 
IVIFWG operator

The final risk ranking of failure modes 
according to dominance theory

NO

YES

Preparations of FMEA team

Consensus process

The IIVIF-MULTIMOORA method

Fig. 1 Flowchart of the proposed FMEA approach

Table 1 Linguistic variables for evaluating failure modes (Zhao et al.

2017)

Linguistic variables IVIFNs

Extremely low (EL) ([0.00,0.05], [0.90,0.90])

Very low (VL) ([0.05,0.10], [0.80,0.90])

Low (L) ([0.10,0.20], [0.70,0.80])

Medium low (ML) ([0.30,0.40], [0.50,0.60])

Medium (M) ([0.50,0.50], [0.50,0.50])

Medium high (MH) ([0.50,0.60], [0.30,0.40])

High (H) ([0.70,0.80], [0.10,0.20])

Very high (VH) ([0.80,0.90], [0.05,0.10])

Extremely high (EH) ([0.90,0.90], [0.00,0.05])
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This measure is used to identify the failure modes that are

lower than the consensus threshold.

Evaluation Matrix Level: the consensus measure on the

evaluation matrix that represents the global consensus

level, denoted as ca, can be defined as follows:

ca ¼ min
i

cfif g: ð16Þ

Once the consensus measures for three levels are

obtained, we can determine whether the consensus is

reached by a comparison between the consensus measure

ca and the predefined ideal consensus threshold e 2 0; 1ð �.
If ca
 e, then the consensus is reached; thus, the consensus

reaching process ends and the evaluation matrices can be

used for subsequent decision-making; otherwise, some

identification and direction rules are suggested to decision

makers to correct the non-consensus evaluation informa-

tion according to the three consensus measures above.

Identification rules are utilized to determine the evaluation

information set that contributes less to reach a high con-

sensus level for each iteration. Direction rules can provide

guidance for decision makers to revise the non-consensus

evaluation information in next round. Then, a consensus

iterative procedure in FMEA is proposed to reach the ideal

consensus threshold e:

Step 1.1 The ideal consensus threshold e 2 0:5; 1½ � is

confirmed according to the importance degree of risk

evaluation objective, and the maximum permission

iterative number of times Rmax is assigned to avoid the

difficult convergence of the consensus measure ca. Let

the initial iterative number be R ¼ 0.

Step 1.2 Calculate the similarity matrix SMkl between

IVIF evaluation matrices ~Rk and ~Rl. Aggregate the

similarity matrices to obtain the consensus matrix CM,

and then, the consensus measures crij, cfi, and ca can be

computed. If ca
 e or R[Rmax, then proceed to Step

1.5; otherwise, proceed to the next step.

Step 1.3 Some identification rules can be determined

according to the three aforementioned consensus mea-

sures. First, the non-consensus failure mode set IRF is

obtained by comparing the consensus measure cfi with the

ideal consensus threshold e, i.e., IRF ¼
FMijcfi\e; i ¼ 1; 2; . . .;mf g: This rule identifies the rows

of the evaluation matrix that should be revised. Second, the

non-consensus risk factor set IRRi is obtained as IRRi ¼
RFjjFMi 2 IRF ^ crij\e; j ¼
�

1; 2; . . .; ng through a

comparison between the consensus measure crij and the

ideal consensus threshold e. This rule identifies the

columns of the evaluation matrix that should be modified

for the rows distinguished in IRF. Third, the non-

consensus decision maker’s set IRDij is determined to

represent the decision makers that should improve the

evaluation information at position i; jð Þ as IRDij ¼
DMljFMif 2 IRF ^ RFj 2 IRRi ^ dlij ¼ max

k

�
dkij
��

,

where dlij is the distance between the similarity measures

of DMl and other decision makers, dlij ¼
Ps

k¼1;k 6¼l 1 � smkl
ij

� 	
¼ s� 1 �

Ps
k¼1;k 6¼l sm

kl
ij . Finally,

the non-consensus evaluation information set IR that

should be modified can be determined as

IR ¼ l; i; jð Þð ÞjDMl 2 IRDij ^ FMi 2 IRF ^ RFj 2 IRRi

� �
:

ð17Þ

Step 1.4 Aggregate the IVIF evaluation matrices
~Rk k ¼ 1; 2; . . .; sð Þ combined with the IVIFPWA opera-

tor, and then, the collective IVIF evaluation matrix ~R ¼
~aij

 �

m�n
is obtained as

IVIFPWA ~a 1ð Þ
ij ; ~a 2ð Þ

ij ; . . .~a sð Þ
ij

� 	
¼ ~aij ¼ aij; bij

� �
; cij; dij
� �
 �

¼ 1 �
Ys

k¼1

1 � a
kð Þ
ij

� 	 TkPs

k¼1
Tk ; 1 �

Ys

k¼1

1 � b
kð Þ
ij

� 	 TkPs

k¼1
Tk

" # 

;

Ys

k¼1

c
kð Þ
ij

� 	 TkPs

k¼1
Tk ;
Ys

k¼1

d
kð Þ
ij

� 	 TkPs

k¼1
Tk

" #!

:

ð18Þ

Both ~aij and l; i; jð Þð Þ 2 IR show that the direction rules

that suggest decision makers how to change the non-con-

sensus evaluation information are presented as follows:

1. If ~aij [ ~a lð Þ
ij , then DMl should increase the evaluation

on FMi with respect to RFj.

2. If ~aij\~a lð Þ
ij , then DMl should decrease the evaluation on

FMi with respect to RFj.

Set R ¼ Rþ 1 and proceed to Step 1.2.

Step 1.5 Output the number of iterations R and the

revised IVIF evaluation matrices of decision makers.

Then, we can obtain the acceptable consensus collective

IVIF evaluation matrix ~R based on Eq. (18).

3.2 Determine the weights of risk factors

When the information about the weights of risk factors

is completely unknown in FMEA, according to infor-

mation theory, if all failure modes have similar evalu-

ation information concerning a risk factor, then a small

weight value should be assigned to the risk factor

because it contributes less to differentiate failure modes

(Xu 2010).
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Step 2.1 Construct a deviation maximization model

Combined with the principle above and collective IVIF

evaluation matrix ~R, let
Pm

p¼1;p 6¼i d ~aij; ~apj

 �

wj be the devia-

tion between the collective evaluation information on FMi

and other failure modes with respect to RFj, where d ~aij; ~apj

 �

is the Hamming distance between ~aij and ~apj; then, the

total deviation between the collective evaluation informa-

tion is
Pn

j¼1

Pm
i¼1

Pm
p¼1;p 6¼i d ~aij; ~apj


 �
wj. Subsequently, we

develop a deviation maximization model as follows:

max
Pn

j¼1

Pm

i¼1

Pm

p¼1;p 6¼i

d ~aij; ~apj

 �

wj

s:t:
Pn

j¼1

wj


 �2¼ 1 wj 
 0; j ¼ 1; 2; . . .; n:
ð19Þ

Step 2.2 Solve the deviation maximization model

To solve the model combined with Lagrange function:

L w; kð Þ ¼
Xn

j¼1

Xm

i¼1

Xm

p¼1;p 6¼i

d ~aij; ~apj

 �

wj þ
k
2

Xn

j¼1

wj


 �2�1

 !

:

ð20Þ

where k is the Lagrange multiplier. Differentiate Eq. (20)

concerning wj and k, and let these partial derivatives be

equal to zero simultaneously:

oL w; kð Þ
owj

¼
Xm

i¼1

Xm

p¼1;p 6¼i

d ~aij; ~apj

 �

þ kwj ¼ 0;

oL w; kð Þ
ok

¼
Xn

j¼1

wj


 �2�1 ¼ 0:

8
>>>><

>>>>:

ð21Þ

By solving Eq. (21), the optimal solution is obtained as

w�
j ¼

Pm
i¼1

Pm
p¼1;p6¼i d ~aij; ~apj


 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1

Pm
i¼1

Pm
p¼1;p6¼i d ~aij; ~apj


 �� 	2
r : ð22Þ

Step 2.3 Calculate the weights of risk factors

The weights of risk factors are determined after nor-

malizing the optimal solution:

wj ¼
Pm

i¼1

Pm
p¼1;p 6¼i d ~aij; ~apj


 �

Pn
j¼1

Pm
i¼1

Pm
p¼1;p 6¼i d ~aij; ~apj


 � : ð23Þ

Then, we can obtain the weight vector of risk factors as

W ¼ w1;w2; . . .;wj; . . .wn


 �T
.

3.3 Rank failure modes by the IIVIF-
MULTIMOORA method

Traditional MULTIMOORA method is only applicable to

decision-making under crisp number environment and

cannot reflect the weight information of attributes. There-

fore, the relevant steps in traditional MULTIMOORA

method should be improved. We introduce the interval-

valued intuitionistic fuzzy weighted averaging (IVIFWA)

and interval-valued intuitionistic fuzzy weighted geometric

(IVIFWG) operators (Xu 2007a) into the ratio system and

the full multiplicative form, respectively, to improve IVIF

information fusion process and calculate the improved

Hamming distance in the reference point approach to

enhance the ranking robustness. Consequently, the role of

risk factor weights is highlighted in the relevant steps. The

IIVIF-MULTIMOORA ranking method is proposed as:

Step 3.1 The IIVIF ratio system.

It is not necessary to standardize the evaluation infor-

mation, because the range of the improved score function

of IVIFNs is 0; 1½ � and all the three risk factors are cost-

type attributes. Combined with the collective IVIF evalu-

ation matrix ~R and risk factor weights wj, the compre-

hensive utility value of FMi on all risk factors is computed

as

~y�i ¼ IVIFWA ~ai1; ~ai2; . . .; ~ainð Þ ¼ �
n

j¼1
wj~aij

¼ 1 �
Yn

j¼1

1 � aij

 �wj ; 1 �

Yn

j¼1

1 � bij

 �wj

" #

;

 

Yn

j¼1

c
wj

ij ;
Yn

j¼1

d
wj

ij

" #!

:

ð24Þ

According to the score value of ~y�i , the risk ranking of

failure modes can be determined; the larger the score value

of ~y�i , the higher the ranking of FMi.

Step 3.2 The IIVIF reference point approach.

In general, the two kinds of reference points to choose

from are the extreme value of evaluation information

concerning each risk factor and the ideal reference point. In

this paper, we choose the negative ideal reference point as
~b ¼ 1; 1½ �; 0; 0½ �ð Þ. Next, the distance between collective

evaluation information of failure modes over each risk

factor and the reference point can be calculated using the

Minkowski measure (Zhang et al. 2013):

d ~b;FMi

� 	
¼

Xn

j¼1

d ~b; ~aij
� 	h ic

( )1=c

; c 2 Nþ: ð25Þ
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In Eq. (25), when c ¼ 1 and c ¼ 2, the distance is

defined as the absolute distance and Euclidean distance,

respectively. However, the robustness of these two kinds of

distances should still be improved. According to Brauers

(2012), the robustness of the optimization problem based

on Minkowski measure is enhanced by increasing the value

of c; therefore, we set c ! 1. As a result, the distance is

defined as Tchebycheff distance:

d ~b;FMi

� 	
¼ max

1� j� n
d ~b; ~aij
� 	

: ð26Þ

Furthermore, the weighted Tchebycheff distance

between collective evaluation information and the refer-

ence point is obtained as

d ~b;FMi

� 	
¼ max

1� j� n
d ~b; ~aij
� 	

¼ max
1� j� n

wj

4
aij � 1
 þ bij � 1

 þ cij
 þ dij

 
 �
:

ð27Þ

The smaller the weighted Tchebycheff distance

d ~b; FMi

� 	
, the higher the ranking of FMi.

Step 3.3 The IIVIF reference point approach.

In consideration of the risk factor weights wj, the mul-

tiplicative utility value of FMi on all risk factors is com-

puted as

~U�
i ¼ IVIFWG ~ai1; ~ai2; . . .; ~ainð Þ ¼ �

n

j¼1
~awj

ij

¼ 1 �
Yn

j¼1

a
wj

ij ; 1 �
Yn

j¼1

b
wj

ij

" #

;

 

1 �
Yn

j¼1

1 � cij

 �wj ; 1 �

Yn

j¼1

1 � dij

 �wj

" #!

:

ð28Þ

The ranking results can be determined based on the

score value of ~U�
i ; the larger the score value of ~U�

i , the

higher the ranking of FMi.

Step 3.4 Aggregate the three risk rankings by the

dominance theory

We employ the dominance theory (Baležentis and

Baležentis 2014) to aggregate the three risk rankings

obtained by the IIVIF ratio system, IIVIF reference point

approach, and IIVIF full multiplicative form; then, the final

risk ranking of all failure modes is determined.

4 Case study

In this section, the proposed FMEA approach is applied to

the steel production process to illustrate its feasibility and

applicability. Furthermore, a comparative analysis with

some relevant approaches is performed to validate the

effectiveness of the proposed methodology.

4.1 Implementation

Ten potential failure modes of the sheet steel production

process in Guilan steel factory (Vahdani et al. 2015; Zhao

et al. 2017) are listed as non-acceptable formation (FM1),

nipple thread pitted (FM2), arc formation loss (FM3), burn-

out electrode (FM4), breaking of house of pipe (FM5),

problem in movement of arm (FM6), refractory damage

(FM7), formation of steam (FM8), refractory line damage

(FM9), and movement of roof stop (FM10). Table 2 shows

the causes and effects of failure modes above summarized

by Deshpande and Modak (2002). We evaluate these ten

failure modes by using the proposed FMEA to obtain the

final risk ranking.

Table 2 FMEA of the sheet steel production process in Guilan steel factory

Items Failure modes Failure causes Failure effects

FM1 Non-acceptable formation Non-conductive scrap Electrode may break

FM2 Nipple thread pitted Proper coverage not obtained Electrode comes out

FM3 Arc formation loss Leakage of water, proper gripping loss Breakage of electrode, busting of bus tube

FM4 Burn-out electrode Cooler not working properly Missing of electrode

FM5 Breaking of house pipe Wearing of pipe due to use Emulsion lost, pressure decrease

FM6 Problem in arm movement Sever leakage Arc formation problem

FM7 Refractory damage Because of slag Heat convection takes place

FM8 Formation of steam Roof leak Hot gas comes out

FM9 Refractory line damage By hot gas Heat convection takes place

FM10 Movement of roof stop Jam of plunger in unloader valve Roof cannot move
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First, three decision makers DMk k ¼ 1; 2; 3ð Þ in the

FMEA team accomplish the task of risk evaluation, and

they evaluate the ten potential failure modes concerning

occurrence, severity, and detection using the linguistic

variables given in Table 1. To compare with the existing

FMEA methods more clearly in Sect. 4.3, we adopt the

evaluation information used by Zhao et al. (2017), as

expressed in Table 3. Considering the weight vector of

decision makers in the literature (Zhao et al. 2017), we set

up DM2 with the first priority level, followed by DM1 and

DM3.

Second, we should determine whether the decision

makers have reached the ideal consensus level before

aggregating the individual evaluation information.

According to Table 1, the linguistic variables are converted

into the corresponding IVIFNs. Then, the consensus level

can be improved to reach the ideal consensus threshold e
through the following steps:

Step 1.1 Set the ideal consensus threshold e ¼ 0:85 and

the maximum permission iterative number of times

Rmax ¼ 5. Let the initial iterative number be R ¼ 0.

Step 1.2 Calculate the similarity matrix

SMkl k ¼ 1; 2; . . .; s� 1; l ¼ k þ 1; . . .; sð Þ between IVIF

evaluation matrices ~Rk and ~Rl using Eq. (12):

SM12 ¼

0:86 0:91 0:80

0:86 1:00 0:91

1:00 0:95 0:80

1:00 1:00 0:86

1:00 1:00 0:91

1:00 1:00 0:91

1:00 0:90 0:86

1:00 0:95 1:00

1:00 1:00 0:91

0:80 0:91 0:60

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

; SM13 ¼

1:00 0:40 1:00

1:00 0:80 1:00

0:95 0:91 0:80

0:95 1:00 0:91

1:00 1:00 0:80

1:00 1:00 0:80

1:00 0:80 1:00

0:95 0:91 1:00

1:00 1:00 0:80

0:80 0:80 0:60

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

;

SM23 ¼

0:86 0:31 0:80

0:86 0:80 0:91

0:95 0:86 1:00

0:95 1:00 0:95

1:00 1:00 0:71

1:00 1:00 0:71

1:00 0:90 0:86

0:95 0:86 1:00

1:00 1:00 0:71

1:00 0:71 1:00

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

:

The consensus matrix can be obtained by Eq. (13):

CM ¼

0:91 0:54 0:87

0:91 0:87 0:94

0:97 0:91 0:87

0:97 1:00 0:91

1:00 1:00 0:81

1:00 1:00 0:81

1:00 0:87 0:91

0:97 0:91 1:00

1:00 1:00 0:81

0:87 0:81 0:73

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

:

Then, the three consensus measures crij, cfi, and ca are

determined, where the elements of the consensus matrix

represent the consensus measure crij, and the consensus

measure on FMi is computed as follows:

Table 3 Linguistic evaluation

information of failure modes

(Zhao et al. 2017)

Risk factors O S D

Decision makers DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

FM1 L EL L H VH L L ML L

FM2 L EL L H H MH VH H VH

FM3 EL EL VL VH EH H L ML ML

FM4 EL EL VL ML ML ML L EL VL

FM5 L L L ML ML ML H VH MH

FM6 L L L ML ML ML H VH MH

FM7 L L L ML M MH L EL L

FM8 EL EL VL VH EH H ML ML ML

FM9 L L L ML ML ML H VH MH

FM10 L ML ML H VH MH H ML ML
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cf1 ¼ 0:7722; cf2 ¼ 0:9056; cf3 ¼ 0:9139; cf4 ¼ 0:9583;

cf5 ¼ 0:9361;

cf6 ¼ 0:9361; cf7 ¼ 0:9250; cf8 ¼ 0:9583;

cf9 ¼ 0:9361; cf10 ¼ 0:8028:

Furthermore, we can obtain the consensus measure on

evaluation matrix ca ¼ min
i

cfif g ¼ 0:7722. Obviously,

ca\e.
Step 1.3 By comparing the three consensus measures

with the ideal consensus threshold e, the failure mode set

IRF and risk factor set IRRi that should be modified are

obtained as:

IRF ¼ FMi 2 FM cfi\0:85jf g ¼ FM1; FM10f g;
IRR1 ¼ RFj FM1 2 IRF ^ cr1j\0:85

� �
¼ RF2f g;

IRR10 ¼ RFj FM10 2 IRF ^ cr10j\0:85
� �

¼ RF2;RF3f g:

Combined with the distance between evaluation infor-

mation of each decision maker, the decision maker set

IRDij is obtained:

d1
12 ¼ 0:6875; d2

12 ¼ 0:7750; d3
12 ¼ 1:2875:

d1
102 ¼ 0:2875; d2

102 ¼ 0:3750; d3
102 ¼ 0:4875:

d1
103 ¼ 0:8000; d2

103 ¼ 0:4000; d3
103 ¼ 0:4000:

IRD12 ¼

DMljFM1 2 IRF ^ RF2 2 IRR1 ^ dl12 ¼ max
k

dk12

� �� �

¼ DM3f g;
IRD102

¼ DMljFM10 2 IRF ^ RF2 2 IRR10 ^ dl102 ¼ max
k

dk102

� �
� �

¼ DM3f g;
IRD103

¼ DMljFM10 2 IRF ^ RF3 2 IRR10 ^ dl103 ¼ max
k

dk103

� �
� �

¼ DM1f g:

Next, we can determine the evaluation information set

IR, which contributes less to reach a high consensus level:

IR ¼ l; i; jð Þð ÞjDMl 2 IRDij ^ FMi 2 IRF ^ RFj 2 IRRi

� �

¼ 3; 1; 2ð Þð Þ; 3; 10; 2ð Þð Þ; 1; 10; 3ð Þð Þf g:

Step 1.4 The collective evaluation matrix can be

obtained using Eq. (18); then, compared the individual

evaluation information of the evaluation information set

IR with the corresponding collective evaluation infor-

mation given in Table 4, decision makers modify their

evaluation information as follows:

~a3
12¼ 0:50; 0:60½ �; 0:30; 0:40½ �ð Þ;
~a3

102 ¼ 0:70; 0:80½ �; 0:10; 0:20½ �ð Þ;
~a1

103 ¼ 0:50; 0:60½ �; 0:30; 0:40½ �ð Þ:

Set R ¼ 1 and proceed to Step 1.2.

Step 1.2’ Similarly, recalculate the similarity matrix

SMkl between the revised IVIF evaluation matrices ~Rk

and ~Rl by using Eq. (12):

SM12 ¼

0:86 0:91 0:80

0:86 1:00 0:91

1:00 0:95 0:80

1:00 1:00 0:86

1:00 1:00 0:91

1:00 1:00 0:91

1:00 0:90 0:86

1:00 0:95 1:00

1:00 1:00 0:91

0:80 0:91 0:80

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

;

SM13 ¼

1:00 0:80 1:00

1:00 0:80 1:00

0:95 0:91 0:80

0:95 1:00 0:91

1:00 1:00 0:80

1:00 1:00 0:80

1:00 0:80 1:00

0:95 0:91 1:00

1:00 1:00 0:80

0:80 1:00 0:80

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

;

SM23 ¼

0:86 0:71 0:80

0:86 0:80 0:91

0:95 0:86 1:00

0:95 1:00 0:95

1:00 1:00 0:71

1:00 1:00 0:71

1:00 0:90 0:86

0:95 0:86 1:00

1:00 1:00 0:71

1:00 0:91 1:00

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

:

The consensus matrix in round one can be obtained by

Eq. (13):
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CM ¼

0:91 0:81 0:87

0:91 0:87 0:94

0:97 0:91 0:87

0:97 1:00 0:91

1:00 1:00 0:81

1:00 1:00 0:81

1:00 0:87 0:91

0:97 0:91 1:00

1:00 1:00 0:81

0:87 0:94 0:87

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

:

Then, the consensus measures on FMi in round one are

computed as follows:

cf1 ¼ 0:8611; cf2 ¼ 0:9056; cf3 ¼ 0:9139; cf4 ¼ 0:9583;

cf5 ¼ 0:9361;

cf6 ¼ 0:9361; cf7 ¼ 0:9250; cf8 ¼ 0:9583; cf9 ¼ 0:9361;

cf10 ¼ 0:8917:

Furthermore, we can obtain the consensus measure on

evaluation matrix ca ¼ min
i

cfif g ¼ 0:8611[ 0:85, and the

consensus is achieved and proceed to Step 1.5.

Step 1.5 Output R ¼ 1 and the revised IVIF evaluation

matrices of decision makers. The collective evaluation

matrix is determined based on the revised IVIF evalu-

ation matrices and IVIFPWA operator, as given in

Table 5.

Third, according to Steps 2.1, 2.2, and 2.3, a deviation

maximization model is developed using Eq. (19); then, the

weight vector of risk factors is determined as

W ¼ w1;w2;w3ð ÞT¼ 0:147; 0:360; 0:493ð ÞT
.

Fourth, the IIVIF-MULTIMOORA method is con-

structed to obtain the risk ranking results. In Step 3.1, the

comprehensive utility value of failure modes ~yi is acquired

by using Eq. (24). In Step 3.2, the weighted Tchebycheff

distance d ~b;FMi

� 	
between the collective evaluation

information of failure modes and the reference point is

determined using Eq. (26). In Step 3.3, the multiplicative

utility value of failure modes ~Ui is computed using

Eq. (27). The exact values of ~yi, d ~b;FMi

� 	
, and ~Ui are

given in Table 6.

In Step 3.4, for each failure mode, the rankings of the

relevant steps in IIVIF-MULTIMOORA method are

obtained; then, the final risk ranking is determined using

the dominance theory, as given in Table 7.

4.2 Sensitivity analysis

A sensitivity analysis is conducted by changing the weights

of risk factors according to Table 8. Exp. 0 shows the risk

factor weights that are determined by the deviation maxi-

mization model in this paper, and Exps. 1–4 show the other

possible weight values. Subsequently, the ranking results

under different situations are illustrated in Fig. 2.

As we change the weights of risk factors, the different

risk rankings are determined. For example, in Exps. 0, 1,

and 3, FM10 is the most important failure mode, while the

most important failure modes are FM5, FM6, and FM9 in

Exps. 2 and 4. Moreover, the risk ranking of FM8 is higher

in Exps. 0 and 2 because of the relatively high weight value

of the risk factor D. Therefore, the sensitivity analysis

result indicates that the weights of risk factors are crucial in

determining the risk ranking of failure modes; we should

select the appropriate weighting method in practical FMEA

process. Furthermore, the top four most important failure

modes are invariably FM5, FM6, FM9, and FM10; the

proposed FMEA approach is proven to have relatively

strong robustness.

4.3 Comparison and discussion

To further verify the effectiveness of the proposed method,

we apply some existing FMEA methods to analysis this

case study; these methods include conventional RPN

method, IVIF-MULTIMOORA method (Zhao et al. 2017),

intuitionistic fuzzy TOPSIS (IF-TOPSIS) method

(Tooranloo and Ayatollah 2016), and IVIF-MABAC

method (Liu et al. 2017). The risk evaluation results of the

five FMEA methods are given in Table 9.

Table 9 shows some differences in the ranking results

between the proposed FMEA and the conventional RPN

method. The inconsistent rankings can be explained by the

limitations of traditional FMEA. The crisp numbers cannot

deal with the uncertainty of evaluation information in real

life, and the ranking will be inaccurate without considering

the weights of risk factors. Furthermore, the RPN values of

FM3 and FM8 are both 32, but the specific evaluation

information concerning each risk factor is different; the

Table 4 Results for the

direction rules
IR Individual evaluation information Collective evaluation information Comparison

(3,(1,2)) ([0.10,0.20], [0.70,0.80]) ([0.6494,0.7726], [0.1331,0.2274]) ~a3
12\~a12

(3,(10,2)) ([0.50,0.60], [0.30,0.40]) ([0.7027,0.8128], [0.1049,0.1872]) ~a3
102\~a102

(1,(10,3)) ([0.70,0.80], [0.10,0.20]) ([0.4213,0.5312], [0.3483,0.4688]) ~a1
103 [ ~a103
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ranking orders of these two failure modes cannot be dif-

ferentiated in the conventional RPN method.

A notable difference exists between the risk rankings of

the proposed FMEA and the IVIF-MULTIMOORA

method. For example, FM1 has a higher priority in the

proposed method than that in IVIF-MULTIMOORA

method. Table 2 shows that the linguistic evaluation

information of DM3 for FM1 over S is L, and the linguistic

Table 5 Collective IVIF evaluation matrix

Failure modes O S D

FM1 ([0.0031,0.0548], [0.8933,0.8969]) ([0.7027,0.8128], [0.1049,0.1872]) ([0.2441,0.3448], [0.5542,0.6552])

FM2 ([0.0031,0.0548], [0.8933,0.8969]) ([0.6557,0.7589], [0.1345,0.2411]) ([0.7658,0.8690], [0.0655,0.1310])

FM3 ([0.0000,0.0500], [0.8999,0.9000]) ([0.8223,0.8761], [0.0000,0.0971]) ([0.2520,0.3527], [0.5464,0.6473])

FM4 ([0.0000,0.0500], [0.8999,0.9000]) ([0.3000,0.4000], [0.5000,0.6000]) ([0.0029,0.0544], [0.8938,0.8973])

FM5 ([0.1000,0.2000], [0.7000,0.8000]) ([0.3000,0.4000], [0.5000,0.6000]) ([0.7027,0.8128], [0.1049,0.1872])

FM6 ([0.1000,0.2000], [0.7000,0.8000]) ([0.3000,0.4000], [0.5000,0.6000]) ([0.7027,0.8128], [0.1049,0.1872])

FM7 ([0.1000,0.2000], [0.7000,0.8000]) ([0.4477,0.4854], [0.4721,0.5146]) ([0.0031,0.0548], [0.8933,0.8969])

FM8 ([0.0000,0.0500], [0.8999,0.9000]) ([0.8223,0.8761], [0.0000,0.0971]) ([0.3000,0.4000], [0.5000,0.6000])

FM9 ([0.1000,0.2000], [0.7000,0.8000]) ([0.3000,0.4000], [0.5000,0.6000]) ([0.7027,0.8128], [0.1049,0.1872])

FM10 ([0.2520,0.3527], [0.5464,0.6473]) ([0.7425,0.8459], [0.0770,0.1541]) ([0.3535,0.4548], [0.4431,0.5452])

Table 6 Ranking indices of IIVIF-MULTIMOORA method

Failure modes ~yi �s ~yið Þ d ~b;FMi

� 	
~Ui �s ~Ui


 �

FM1 ([0.4374,0.5596], [0.3265,0.4371]) 0.4212 0.3230 ([0.1881,0.3583], [0.5357,0.6068]) 0.3664

FM2 ([0.6671,0.7818], [0.1246,0.2165]) 0.2872 0.1372 ([0.3223,0.5513], [0.3393,0.3950]) 0.3962

FM3 ([0.5347,0.6223], [0.0000,0.3432]) 0.2254 0.3191 ([0.1043,0.3673], [0.5172,0.5889]) 0.3108

FM4 ([0.1218,0.1967], [0.7259,0.7766]) 0.2829 0.4602 ([0.0080,0.1102], [0.8161,0.8331]) 0.1507

FM5 ([0.5238,0.6475], [0.2433,0.3525]) 0.3878 0.2160 ([0.3884,0.5124], [0.3819,0.4876]) 0.4293

FM6 ([0.5238,0.6475], [0.2433,0.3525]) 0.3878 0.2160 ([0.3884,0.5124], [0.3819,0.4876]) 0.4293

FM7 ([0.2060,0.2590], [0.6851,0.7221]) 0.3612 0.4600 ([0.0310,0.1454], [0.7792,0.8015]) 0.1916

FM8 ([0.5497,0.6362], [0.0000,0.3306]) 0.2237 0.2958 ([0.1136,0.3908], [0.4934,0.5626]) 0.3179

FM9 ([0.5238,0.6475], [0.2433,0.3525]) 0.3878 0.2160 ([0.3884,0.5124], [0.3819,0.4876]) 0.4293

FM10 ([0.5258,0.6453], [0.2434,0.3547]) 0.3885 0.2687 ([0.4394,0.5478], [0.3519,0.4522]) 0.4329

Table 7 Final risk ranking of failure modes

Failure

modes

Ranking of the IIVIF ratio

system

Ranking of the IIVIF reference point

approach

Ranking of the IIVIF full multiplicative

form

Final

ranking

FM1 1 8 6 6

FM2 7 1 5 5

FM3 9 7 8 8

FM4 8 10 10 10

FM5 3 2 2 2

FM6 3 2 2 2

FM7 6 9 9 9

FM8 10 6 7 7

FM9 3 2 2 2

FM10 2 5 1 1
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evaluation information of DM1 and DM2 is H and VH,

respectively. Evidently, the evaluation information of DM3

is far from the other decision makers and negatively affects

the risk ranking. As such, the ranking order of FM1 is not

accurate in IVIF-MULTIMOORA method without revising

the extreme or incorrect evaluation information. In addi-

tion, in IVIF-MULTIMOORA method, the specific values

of decision maker’s weights are determined subjectively;

thus, the collective IVIF evaluation information will be

unreasonable. Moreover, the role of the risk factor weights

is not highlighted in IVIF-MULTIMOORA method. By

contrast, the weights of risk factors are introduced into

each step of the MULTIMOORA method to emphasize

their impact on the ranking results in the proposed method.

The ranking result of the proposed method significantly

differs from that obtained by IF-TOPSIS and IVIF-

MABAC methods. For instance, FM10 ranks fourth in

IVIF-MABAC method but is the most important failure

mode in the other FMEA methods. FM1 ranks eighth in IF-

TOPSIS and IVIF-MABAC methods but has a higher pri-

ority in the proposed method. These inconsistent results

could be due to three reasons. First, the evaluation infor-

mation of IF-TOPSIS method is aggregated when the

weights of decision makers are determined by subjective

evaluation; thus, the collective evaluation information

would be unreliable. Furthermore, the accurate

membership and non-membership values are extremely

difficult to specify in practice; we can solve this problem

by using the IVIFNs. Second, the ranking results of IF-

TOPSIS and IVIF-MABAC methods are all obtained when

the consensus level between decision makers is ignored. By

contrast, the evaluation information of FM1 and FM10 is

modified in the proposed method; thus, the ranking orders

of FM1 and FM10 positively change. Third, the sorting

mode of IF-TOPSIS and IVIF-MABAC methods is single;

however, the IIVIF-MULTIMOORA method is composed

of the IIVIF ratio system, the IIVIF reference point

approach, and the IIVIF full multiplicative form. As a

result, the ranking result of the proposed method will differ

from the two former methods, but its robustness is greatly

improved.

Based on the aforementioned analysis, the proposed

method has the following advantages compared with cur-

rent FMEA methods:

• IVIF theory is introduced to address the uncertainty and

incompleteness of the evaluation information in FMEA;

thus, the ranking results of failure modes can be more

accurate.

• Instead of determining the exact decision maker’s

weights, dividing the decision makers into several

priorities according to their research fields and domain

experiences is more feasible and reasonable. And the

IVIFPWA operator is introduced to aggregate the

evaluation information that a priority relationship exists

between the decision makers.

• A deviation maximization model is established to

compute the weights of risk factors based on the

collective evaluation information. The risk ranking can

be favorably distinguished when the information of risk

factor weights is completely unknown.

• Slight extreme evaluation information that deviates

from group opinion is frequently observed during risk

evaluation. A consensus model is constructed to revise

the extreme or incorrect evaluation information to reach

the ideal consensus level, which can improve the

accuracy of the ranking results.

• The IVIFWA and IVIFWG operators are used to

improve the aggregation process in the IIVIF ratio

system and the IIVIF full multiplicative form, respec-

tively, and the Tchebycheff distance is used in the IIVIF

reference point approach. Consequently, the aforemen-

tioned improvements in the proposed method highlight

the role of the risk factor weights in risk ranking and

increase the robustness of FMEA results.

Table 8 Weight information of sensitivity analysis

Risk factors Exp. 0 Exp. 1 Exp. 2 Exp. 3 Exp. 4

O 0.147 0.333 0.200 0.600 0.200

S 0.360 0.333 0.200 0.200 0.600

D 0.493 0.334 0.600 0.200 0.200

Fig. 2 Risk ranking results of sensitivity analysis

New failure mode and effect analysis approach considering consensus under interval-valued… 11623

123



5 Conclusions

To overcome the drawbacks of traditional FMEA, we

propose a new FMEA considering consensus level between

decision makers under IVIF environment. The linguistic

variables that can be transformed into the corresponding

IVIFNs are utilized to express the evaluation information

of decision makers; the uncertainty and incompleteness of

the evaluation information can be effectively addressed.

The IVIFPWA operator is introduced to aggregate IVIF

evaluation matrices of decision makers, and the determi-

nation of decision maker weights is solved, simultaneously.

A consensus model is constructed to revise the extreme or

incorrect evaluation information to reach the ideal con-

sensus level, thereby improving the accuracy of risk eval-

uation results. Furthermore, a deviation maximization

model is developed to compute the weights of risk factors

according to the collective IVIF evaluation matrix. Finally,

we employ the IVIFWA operator, the Tchebycheff dis-

tance, and the IVIFWG operator to improve the MULTI-

MOORA method; then, the ranking results are obtained

combined with the IIVIF-MULTIMOORA method.

The proposed FMEA method is applied to the steel

production process to validate its feasibility and effec-

tiveness. Analysis of sensitivity and comparison shows the

strong robustness and advantages of the proposed method;

especially when the extreme or incorrect evaluation

information of decision makers exists, the proposed

method can modify them to obtain a more reasonable risk

evaluation result.

In recent years, along with the development of risk

management in enterprises, the scale of FMEA team

expands and decision makers may come from diverse

professional fields. In future research, we will enhance the

proposed method to deal with FMEA in the presence of

incomplete evaluation information, different forms of

evaluation information, or multipolar evaluation informa-

tion of decision makers. Furthermore, we will consider

additional risk factors to improve the rationality of FMEA.
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