Soft Computing (2020) 24:5517-5537
https://doi.org/10.1007/s00500-018-03703-8

FOCUS

@ CrossMark

Scalable detection of botnets based on DGA

Efficient feature discovery process in machine learning techniques

1

Mattia Zago'® - Manuel Gil Pérez' ® - Gregorio Martinez Pérez’

Published online: 18 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Botnets are evolving, and their covert modus operandi, based on cloud technologies such as the virtualisation and the dynamic
fast-flux addressing, has been proved challenging for classic intrusion detection systems and even the so-called next-generation
firewalls. Moreover, dynamic addressing has been spotted in the wild in combination with pseudo-random domain names
generation algorithm (DGA), ultimately leading to an extremely accurate and effective disguise technique. Although these
concealing methods have been exposed and analysed to great extent in the past decade, the literature lacks some important
conclusions and common-ground knowledge, especially when it comes to Machine Learning (ML) solutions. This research
horizontally navigates the state of the art aiming to polish the feature discovery process, which is the single most time-
consuming part of any ML approach. Results show that only a minor fraction of the defined features are indeed practical and
informative, especially when considering 0-day botnet identification. The contributions described in this article will ease the
detection process, ultimately enabling improved and more scalable solutions for DGA-based botnets detection.

Keywords Botnet - Domain generation algorithm - DGA - Machine Learning - Natural language processing

1 Introduction and motivation

Computer networks enable sharing resources, immediate
communications and distributed computation, which have
been strengthened in recent years by the Cloud Comput-
ing paradigm where “everything” is being offered as an
on-demand service (Mell and Grance 2011). Unfortunately,
such network functionalities are misused by malicious enti-
ties aiming to compromise as many systems as possible in

Communicated by B. B. Gupta.

B Gregorio Martinez Pérez
gregorio@um.es

Mattia Zago
mattia.zago@um.es

Manuel Gil Pérez
mgilperez@um.es

Department of Communications and Information
Engineering, Faculty of Computer Science, University of
Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain

order to have them available for later use. Such compromised
hosts are generically defined as zombies (or bots), being part
of a network controlled by one or multiple command & con-
trol (C&C) servers. In order to conceal the infection and hide
the botnet purposes, malwares are employing a variety of
techniques such as code obfuscation and encryption (Vor-
mayr et al. 2017; Gupta et al. 2016). Nevertheless, bots need
to reach the C&C servers so as to receive commands and
pull-out recorded data. There is a potential weak point from
attackers perspective: once the C&C is taken out, or seized by
the authorities, the botmaster—botnet owner will lose the con-
trol over the botnet (Leelasankar et al. 2018; Lerner 2014).
As a consequence, malwares are actively employing
advanced evasion techniques to conceal the communications
with C&C servers. A domain generation algorithm (DGA)
represents a practical solution from the attacker’s point of
view. With DGAs, we indicate a family of algorithms that
given a seed, often shipped with the malware as a pre-shared
secret, generate strings of domain names that can be queried
and resolved for locating the active C&C server. In addition,
these evasion characteristics are currently being enhanced
by using the cloud computing environment (Sharieh and Alb-
dour 2017; Stergiou et al. 2018), in which both bots and C&C

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-03703-8&domain=pdf
http://orcid.org/0000-0001-5267-2392
http://orcid.org/0000-0002-7768-9665
http://orcid.org/0000-0001-5532-6604

5518

M. Zago et al.

servers can be provisioned dynamically and being moved
from one location to another or even between providers
within the cloud (Bugiel et al. 2011; Hussain et al. 2017).
This fact makes botnets more difficult to trace and detect
in real time (Zhang et al. 2014). Moreover, cyber-criminals
are continuously updating their malwares’ DGA in order to
evade regular patterns and signatures created by security ven-
dors. These updated versions are considered as 0-day threats.
To be more precise, a 0-day is a threat that was previously
unknown, which can be either in form of a new variant of a
known malware or an entirely new malware family.

Most DGAs algorithms are both time-dependent and
deterministic, i.e. their generation parameters are retrievable
and reusable to compute all the possible outcomes. Hypo-
thetically, it is possible to reverse engineer each malware
variant to obtain the generation algorithm and the seed, thus
extracting the subset of valid domain names (DNs) for a given
date and time. This approach is not viable when considering
the number of malware families and variants (0-days) dis-
covered every day. Moreover, even excluding exceedingly
large algorithmically generated domains (AGDs) produced
by malwares such as Conficker or Virut, which can generate
an average of 50,000 domains per day (Plohmann et al. 2016),
a blacklisting approach is not a practical solution. This huge
number of information discovering C&C connectivity entails
a key challenge to address the big data problem (Watkins
et al. 2017). In this context, this work focuses on the detec-
tion approach, aiming to prevent malwares to contact C&C
servers by distinguishing between legitimate and malicious
DNs, taking into account big data analysis algorithms for
reduction. And, by its own definition, AGDs are dynami-
cally generated as pseudo-random strings or by combination
of dictionary words; consequently, it is possible to sepa-
rate legitimate DNs from the others by applying Machine
Learning (ML) techniques. Under the hood, our ML frame-
work leverages two separate families of metrics: on one side
static and dynamic analysis of Domain Name Service (DNS)
queries highlights suspicious behaviours of clients, while on
the other side, natural language processing (NLP) techniques
permit to accentuate linguistic differences between DNs. We
called these two families Context-Aware and Context-Free,
respectively.

Although different in nature, these two families of met-
rics are complementary. DNS queries analysis can provide
evidence of non-human activity, such as daily similarity
and repeating communication patterns. For example, it has
been proven that legitimate users repeat daily patterns (Bilge
et al. 2014). Similarly, NLP-based metrics help to identify
non-human activities; that is, DNs are intended to be easily
remembered by users, or at least mnemonic, since the main
purpose of any DNS service is to provide human-readable
association with IP addresses. By comparison, most mal-
ware families do not include such forethoughts (Bilge et al.

@ Springer

2014). DNS-related metrics can natively deal with the con-
cept of fast-flux botnets, a subset of the DGA-based family.
This technique, spotted in the wild since at least 2007 (with
the Storm Worm (Holz et al. 2008), consists in registering
multiple IP addresses within the same DNS-A record, lever-
aging the well-known round-robin DNS scheme to provide
short-lived C&C rendezvous-points.

Due to privacy concerns, it is important to state also that
metrics based on network analysis are difficult to obtain
and use. However, Context-Free metrics are anonymous and
more privacy-oriented since they do not require any con-
textual information from the users or the network state. In
other words, users’ confidentiality is compromised by packet
inspection and network analysis. Additionally, the literature
review (Sect. 2) and preliminary results (Sect. 3.3) suggest
that these confidentiality-harming solutions may be subdued
by more privacy-oriented solutions that do not require users’
contextual information in order to achieve excellent detection
results.

A key challenge in this field is the comparability of dif-
ferent models. From the theory of ML, it is clear that there
are three key aspects of any learning model: data sources,
feature characterisation and model optimisation. This work
focuses on homogenising the existing Context-Free features
in order to be able to test different models with the same data
source.

Lastly, it is worth stating that in this research paper two
different ML problems are dealt with; that is, given a set of
fully qualified domain names (FQDNs), (i) binary separate
legitimate domains from malware ones and (ii) categorise
them according to their malware family.

Therefore, the contributions of this work are threefold:

— Firstly, a horizontal survey of the state of the art in
terms of features used in ML and Deep Learning (DL)
approaches to solve cybersecurity challenges related to
DGA-based botnets;

— secondly, the analysis of the two aforementioned ML
problems and their potential solution using privacy-
preserving approaches; and,

— thirdly, a deep analysis of the previously mentioned fea-
tures to highlight their properties with respect to the
feature engineering process and their evaluation using
six amongst the most important ML algorithms.

To do so, this article firstly recollects the usage of both
families (Context-Aware and Context-Free) in the literature,
aiming to establish which features are used, by whom and
with which results. Section 2 presents these outcomes. Sec-
ondly, in Sect. 3, this work proposes an analysis of the
Context-Free features using two different feature selection
and extraction techniques and evaluated using six differ-

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5519

ent classifiers. Finally, conclusions and the further work are
drawn and discussed in Sect. 4.

2 DGA-based botnet detection in the
literature

Despite the efforts spent to fight them, DGAs are still thrust-
ing a good portion of the most advanced malware families. As
stated before, classic blacklisting approaches are inadequate
to contrast malwares, just consider that the DGA powering
the now-obsolete Conficker malware can generate up to 50
thousands DN per day. As illustrated in Kiihrer et al. (2014),
public blacklists were lacking in terms of DGA coverage with
less than 1.2% of DGAs analysed by the authors being con-
tained in any of the blacklists. Bruteforcing those generation
algorithms is thus not going to solve the problem (espe-
cially when considering 0-days variants); however, Artificial
Intelligence (AI) can help to tackle them. Al techniques and
precisely ML algorithms have been not only proven appli-
cable but also relevant and well suited when tackling these
malwares (Tran etal. 2018; Zhang etal. 2016). Along with the
classic network detection techniques, e.g. honeypot-based or
signature-based, Alieyan et al. (2017) cited passive DNS-
based anomaly detection techniques based on Graph Theory
(GT), entropy, statistics, Neural Network (NN), Decision
Tree (DT) and clustering. Our aim is to extend this taxon-
omy to provide a more complete and sound classification
to achieve better performance when detecting DGA-based
botnets; that is, we build a taxonomy based on:

1. The ML approach used, that is either supervised, not
supervised or semi-supervised.

2. The families of features adopted in the learning model,
that is Context-Aware features (e.g. DNS inspection),
Context-Free features [e.g. lexical analysis (Fu et al.
2017] and, finally, a Featureless model [e.g. NN-based
learners (Mac et al. 2017)].

To this extent, and with respect to the aforementioned
taxonomy categories, this research article will adhere to the
following definitions:

Definition 1 (Context-Aware feature) A feature that is
dependent on the specific malware sample execution, which
is realised in a precise environment with a specific configu-
ration and in a particular time frame; for example, Features
extracted upon DNS-response inspection.

Definition 2 (Context-Free feature) A feature that is related
only to a FQDN and thus is independent of contextual infor-
mation, including, but not limited to, timing, origin or any
other environment configuration. First and foremost example
of this family is the lexical analysis of the domain name.

In summary, the Context-Free feature family represents
the complement set of the Context-Aware feature, that is,
a feature can either belong to the Context-Aware or the
Context-Free family, but not both.

With regards to the Context-Aware feature family, they are
subject to a number of limitations that should be taken into
account, so exiting data sets containing them are rare, out-
dated and generally partial. For example, on the one hand,
AGDs lists such as Malware Domain List (2009), Abaku-
mov (2016), Risk Analytics (2007) and OSINT are limited,
fragmented and generally outdated. On the other hand, big-
ger repositories of network traces such as Biglar Beigi et al.
(2014) and Garcia et al. (2014) are crafted, heavily unbal-
anced and often include only short burst of malware packets.
They are usually collected in a test environment or hand-
crafted because mass-collecting real user data are, in fact,
a direct breach of user’s privacy, and can therefore only
be gathered in an anonymous way after explicit consent.
Nonetheless, the quality of these data sets is notable (Biglar
Beigi et al. 2014; Garcia et al. 2014), and when correctly
used, they can be of great help to any detection model. On
the contrary, data sets with Context-Free features (Malware
Domain List 2009; Abakumov 2016; OSINT; Risk Analyt-
ics 2007) consist mainly of lists of FQDNs belonging to a
specific malware family. They are natively privacy-oriented
since users’ data are not involved in any phase of the pro-
cessing.

Finally, it is worth mentioning that in the literature exist
several models that do not make use of hand-crafted, or
even automatically guessed features. These models can take
advantage of both types of data sets, thus we consider them
as a third, distinct category. We define such models “Feature-
less™:

Definition 3 (Featureless model) A Machine Learning
model that does not require features in order to learn the
training data set.

Both Mac et al. (2017), Woodbridge et al. (2016) and
Vinayakumar et al. (2018) claim that feature-based detection
systems can be easily circumvented by malware engineers in
the context of the Adversarial Machine Learning theory. The
motivation for such claims generically relies on the intrinsic
difficulties of defining and analysing the feature set suitable
for not only differentiate AGDs from legitimate FQDNs but
also to separate and pinpoint different malware families.

On one side, it is clear that featureless detection systems
can produce good results without the need of ideate a feature
set; but on the other side, an extensive and deep knowledge
about the specific subject represented by the data enables the
feature engineering process to converge to an optimal feature
set. Feature-based detection systems are in general more reli-
able and offer important qualities such as the transparency,
efficiency, scalability and the capabilities of fine-tuning the

@ Springer

5520

M. Zago et al.

algorithms. Not all features, though, are strictly relevant or
helpful during the detection process, i.e. a given feature might
not be relevant as-is for the detection model, but in combi-
nation with others it may produce optimal results.

To reflect the taxonomy we propose in this research article,
this section is divided into two subsections according to the
ML paradigm chosen by the authors of the different related
works of the literature that we have thoroughly analysed,
either supervised or unsupervised learning.

Generally speaking, the act of labelling a data set such
as a collection of domain names is an extremely compli-
cate and resource-consuming task, especially because white
and blacklists can help only to a certain extent. unsupervised
learning is, unlike supervised, missing the knowledge related
to the instances, i.e. the model does not know the label of
each point in the data set. It is imperative to understand that
supervised and unsupervised learning are different both in
nature and in scope of application: on the one hand, super-
vised learning techniques partition a data set into subsets,
named clusters, according to some common characteristics;
on the other hand, unsupervised learning algorithms divide
the instances into classes and use that knowledge to infer the
class (label) of new and previously unseen elements.

With regards to all the aforementioned aspects, in each
subsection, a list of the most used or relevant algorithms for
that category is presented. Furthermore, each subsection will
provide several tables that report:

— the reference of the work;

— the type of classifier or cluster used;

— an indication whenever the authors made a comparison
with other works or other methods;

— whether their proposed framework is capable of realtime
(RT) detection;

— the algorithm proposed;

— the usage of either Context-Aware or Context-Free fea-
tures; and

— a generic field that considers the overall results —
specifically, we consider as poor performances whenever
the proposed results (in terms of precision and recall) are
below 75%, average below 85%, good below 95% and
excellent above 95%.

Remarkably, it is worth noticing that only a few authors
have cited any challenge related to 0-day, either as part of
their analysis (Nguyen et al. 2015; Pu et al. 2015; Tong and
Nguyen 2016) or as potential future work (Ahluwalia et al.
2017; Fu et al. 2017; Thomas and Mohaisen 2014).

@ Springer

2.1 Supervised machine learning approach

A supervised ML algorithm is a function that associates a
label (also known as outcome or dependent variable) to a
given set of predictors (also known as independent variables).
The learning process consists of optimising the internal
parameters of the algorithm to associate the input set with
the desired output. Examples of supervised ML algorithms
are Decision Tree (DTs), Random Forests (RFs), k-Nearest
Neighbours (kNN), Hidden Markov Models (HMMs), Neu-
ral Network (NNs), etc. Amongst them, we considered only
the most effective that have been successfully used in the
recent past to detect DGA-based malwares in the network.
Here follows a brief list of such approaches.

2.1.1 Hidden Markov Model (HMM)

HMMs are the simplest class of dynamic Bayesian Networks
(BNs) and, specifically, they are Markov Models in which
the states are hidden (unobservable). HMMs have a proven
record of successful applications in the linguistic field when
applied to the extraction of grammars and information from
texts.

In the literature, they have been used by several authors in
order to distinguish legitimate DNs from malicious AGDs.
On one side, for example, Mac et al. (2017), Tran et al.
(2018), Woodbridge et al. (2016) showed that HMMs behave
poorly in comparison with more complex featureless solu-
tions such as Long Short-Term Memory Networks (LSTMs).
In general, HMMs have unsatisfactory performances when
applied to binary classification between AGDs and legiti-
mate DNs (Woodbridge et al. 2016). HMMs, however, have
been successfully deployed by Antonakakis et al. (2012) to
trace back the C&C servers, achieving interesting results only
when targeting specific classes of malware. Table 1 presents
a comparison of these previous works, especially with Deep
Learning (DL) and feature aware solutions.

On the other side, however, Fu et al. (2017) decided to use
HMMs and probabilistic context-free grammars (PCFGs) to
extract core properties of legitimate DN, in order to build
a new family of DGAs able to guarantee the generation of
statistically undistinguishable AGDs when referring to lex-
ical analysis (as specified below in Sect. 3). As reported
by the authors, the inclusion of others lexical properties, in
combination with network-based features, helps in overcom-
ing this concealing technique. Extending the work proposed
in Anderson etal. (2016), in terms of using Generative Adver-
sarial Network (GAN) as an anti-detection approach, may
result in interesting outcomes. Table 2 presents a compari-
son of the work used to evade the detection techniques.

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5521

Table 1 Supervised approach—Hidden Markov Models

Refs. Classifier Comparison RT Algorithm Feature context Results
Aware Free
Antonakakis et al. (2012) C&C identification X X HMM Featureless Poor
Mac et al. (2017) and Tran et al. (2018) MultiClass Feature aware, DL~ X HMM Featureless Poor
Woodbridge et al. (2016) MultiClass Feature aware, DL~ X HMM Featureless Poor
Table2 Sup er\.rls.ed . Refs. Used for Comparison Algorithm
approach—avoiding detection
Anderson et al. (2016) AGDs generation Other DGAs GAN, LSTM
Fu et al. (2017) AGDs generation Other DGAs PCFG, HMM

2.1.2 Artificial neural network (NN) and deep learning

Artificial Neural Networks (NN) are mathematical structures
that combine nonlinear functions to compute complex func-
tions. They ultimately aim to resemble the structure of human
neurons and interactions. One of the most impressive results
of NNis is that it has been proved that they can approximate
the result of any function [Universality Theorem (Haykin
1998)]. There is a catch, though, in using NN for such task:
they can only approximate continuous functions. Deep Neu-
ral Networks come to improve this result.

Amongst the past decades, NNs have been widely and
successfully used for image processing, speech recognition
and text analysis (Abdel-Hamid et al. 2014). NNs have been
adapted to several problems by changing the composition and
the number of the inner layers to align with complex prob-
lems. As, for example, Baruch and David (2018) designed a
NN with a single strongly connected hidden layer and a sin-
gle output neuron to binary distinguish between legitimate
domains and AGDs.

In the case of DGAs, Extreme Learning Machines (ELMs)
have been proved effective in the classification of such
domains (Mac et al. 2017; Tran et al. 2018; Shi et al. 2017).
Nevertheless, NNs have a major shortcoming, the lack of
any persistence mechanism. As a result, Recurrent Neu-
ral Networks (RNNs), LSTM (more commonly known as
Deep Learning) and a bunch of other techniques, including
Convolutional Neural Network (CNN) and Cost-Sensitive
Neural Network (CS-NN), have been developed to include,
respectively, short-term and long-term persistence. Mac et al.
(2017) and Tran et al. (2018) studied and developed a
specific variation of classic LSTMs to include binary and
multiclass classification models with class-dependent cost-
sensitive functions. Despite the very good performances in
binary classification, they are still unable to distinguish mal-
wares using pronounceable AGDs.

To be more precise, the performances of the most
advanced DL techniques (Mac et al. 2017; Tran et al. 2018;

Woodbridge et al. 2016) are achieving excellent results only
in the binary case, i.e. when distinguishing between mal-
ware and legitimate FQDNSs. In the multiclass classification,
and especially with regards to the most advanced malware
families (such as Kraken, CryptoWall or Qakbot), DL-based
detection solutions achieve questionable results in terms of
both precision and recall.

Woodbridge et al. (2016) also used LSTMs to learn the
sequence of patterns generated by DGAs, ultimately classi-
fying AGDs and legitimate DNs. Vinayakumar et al. (2018)
also proved the excellent results of RNNs and LSTMs (and
their combinations) when solving the binary classification
problem of distinguishing legitimate and harmful domain
names. Table 3 presents a comparison of the previous works.

As a final remark, it is worth mentioning that DL has many
issues that are usually skipped during the evaluation phase
of the proposed works. Although it is correct that they can
offer impressive results, it is also correct that they are often
overfitted and especially opaque. This lack of transparency
ultimately leads to the impossibility of fine-tuning the algo-
rithms and of explicating the reasons behind the results. As
for HMMs, Deep Learning can be used to outshine the con-
cealing capabilities of classic DGAs. Itis the case studied and
reported by Anderson et al. (2016), who developed a DGA
specifically designed for crafting difficult DNs. The AGDs
were used then to harden the proposed classifier, resulting in
a GAN architecture able to lower the detection rate below any
acceptable threshold. Related works used to evade the detec-
tion techniques have been presented and compared above in
Table 2.

2.1.3 Decision trees (DTs) and derived

Contrarily to the Deep Learning solutions presented in
Sect. 2.1.2, Decision Trees (DTs) offer transparent solu-
tions that do not require any scaling or data normalisation.
Moreover, since they are particularly resilient to outliers,
missing values and nonlinear relationships, they are capa-

@ Springer

5522 M. Zago et al.

Table 3 Supervised approach—neural network and deep learning

Refs. Classifier Comparison RT Algorithm Feature context Results

NN-based LSTM Aware Free

Baruch and David (2018) Binary Feature aware X NN X X v Good

Mac et al. (2017) and MultiClass HMM, feature aware X CS-NN,ELM CNN-LSTM Featureless Excellent®
Tran et al. (2018)

Shi et al. (2017) Binary Feature aware X ELM X v v Excellent

Vinayakumar et al. (2018) MultiClass ~ Feature aware X I-RNN, CNN CNN-LSTM Featureless Excellent

Woodbridge et al. (2016) MultiClass ~ HMM, feature Aware X X v Featureless Excellent

2While classifying some classes. The scores are excellent when considering micro-averaging the per-class scores, but on macro-averaging the results

are quite poor

ble of remaining consistent regardless of the data shape.
Nonetheless, they are prone to errors and misconfiguration,
i.e. without pruning and limitations they tend to overt the
data, thus lowering the prediction accuracy. Although it is
common to find a scenario-specific algorithm that performs
better [typically DL or AdaBoost (AB)], they conventionally
require more resources or time to be trained.

Several works have been proposed so far in the context
of DTs, not surprisingly using the classic C4.5 as gener-
ation algorithm. Specifically, Ahluwalia et al. (2017) and
Bilge et al. (2014) have used them to solve the binary clas-
sification problem of distinguishing AGDs from FQDNs,
while Antonakakis et al. (2012), Mac et al. (2017), Ste-
vanovic et al. (2017), Tran et al. (2018), Truong and Cheng
(2016), Vinayakumar et al. (2018) have instead opted for
the multi-classification problem of identifying the malware
family.

Random Forests (RFs) have been proposed to help to
fix the aforementioned overfitting bias of DTs. RFs require
almost no parameter tuning, as DTs can handle any type
of feature without scaling or normalisation. They do not
require tweaking of the hyper-parameters, perform implicit
features selection and train extremely fast. However, these
accomplishments are often paid with the slow evaluation per-
formances and the important amounts of resources required
creating and storing them. Nevertheless, RF, out of the box,
performs particularly well. Not surprisingly RFs have been
widely used in the literature to approach the DGA-based bot-
net problem both in the binary (Ahluwalia et al. 2017; Xu
et al. 2017) and in the multiclass (Luo et al. 2017; Song and
Li 2016; Stevanovic et al. 2017; Truong and Cheng 2016;
Vinayakumar et al. 2018; Woodbridge et al. 2016) forms.

As specified before, both DT-based and RF-based mod-
els need features in order to work. Generally speaking,
the usage of Context-Free features (as defined in Sect. 2)
is sufficient to have a good-to-excellent classifier. To be
more precise though, it is worth mentioning that to the
best of our knowledge, there are not related researches
that only uses Context-Aware features for the classifica-

@ Springer

tion with DT or RF algorithms. In fact, when considering
Context-Aware metrics they tend to have them integrated
with NLP-based ones (Bilge et al. 2014; Stevanovic et al.
2017; Xu et al. 2017), while on the contrary, researches
featuring DT and/or RF solutions tend to focus purely on
linguistic features (Ahluwalia et al. 2017; Luo et al. 2017,
Mac et al. 2017; Song and Li 2016; Tran et al. 2018; Truong
and Cheng 2016; Xu et al. 2017).

Table 4 presents a comparison of these previous works.

It may perhaps be observed that the authors have used
a different subset of these features, both belonging to the
Context-Aware and Context-Free families. To clarify this
observation, Sect. 3.2 will highlight and present, to the best
of our knowledge, the complete list and description of the
used features.

It also worth mentioning how Vinayakumar et al. (2018)
used a CNN to generate the features that later on have been
analysed by the DT and the RF classifier. Moreover, highlight
how these classifiers are compared with several algorithms
that are intrinsically different, including classic approaches
such as SVM, NB and SGD.

2.1.4 Other supervised approaches

Apart from DL and DT derived learners, historically exist
several other decision algorithms. Amongst them, the five
most used algorithms are presented in Table 5 and described
in the following list.

— Naive Bayes (NB), afamily of probabilistic classifiers that
assume a strong (and thus naive) independence between
the features. In the context of AGDs detection, it has
been applied with inconsistent results (Truong and Cheng
2016; Vinayakumar et al. 2018).

— Regression, both linear and logistic regressions represent
a family of learners that attempt to define an explanation
model by interpolating the data. To the best of our knowl-
edge, this approach has not yet been studied and applied
to the problem.

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5523
Table 4 Supervised approach—decision trees and derived
Refs. Classifier Comparison RT Algorithm Feature context Results
DT RF Aware Free
Ahluwalia et al. (2017) Binary X X v v X 4 Excellent
Antonakakis et al. (2012) MultiClass X X v X X v Excellent
Bilge et al. (2014) Binary X 4 4 X 4 v Excellent
Luo et al. (2017) MultiClass X v X v X v Good
Mac et al. (2017)and MultiClass SVM, DL X v X X v Average
Tran et al. (2018)
Song and Li (2016) MultiClass X X X v X v Good
Stevanovic et al. (2017) MultiClass X v v v X v Good
Truong and Cheng (2016) MultiClass NB, kNN, SVM X v v X v Good
Vinayakumar et al. (2018) MultiClass AB, NB, DL X v v CNN-generated Excellent
Woodbridge et al. (2016) MultiClass HMM, DL X X v X v Excellent
Xu et al. (2017) Binary AB, SGD v X v v v Excellent
Table 5 Supervised approach—other machine learning techniques
Refs. Classifier Comparison RT Algorithm Feature context Results
Aware Free
Baruch and David (2018) Anomaly DL X SVM, kNN X v Good
Han and Zhang (2017) Binary Accuracy (Luo et al. 2017) X SVM Filter 4 Good
Mac et al. (2017) and MultiClass DT, RE, DL X SVM X v Good
Tran et al. (2018)
Truong and Cheng (2016) MultiClass DT, RF X NB, kNN, SVM, AB X v Poor
Vinayakumar et al. (2018) MultiClass RF, DT, DL X NB, AB CNN-generated Excellent
Xu et al. (2017) Binary DT, RF X SGD, AB v v Excellent

— Support Vector Machines (SVMs) represent a family of
linear models that attempt to classify data by finding
a hyperplane that maximises the data distance in an n-
dimensional space. A common approach is to use the
SVM as binary classifier to separate legitimate and mali-
cious AGDs (Baruch and David 2018; Han and Zhang
2017), but also as multiclass classifier (Mac et al. 2017,
Tran et al. 2018; Truong and Cheng 2016).

— k-Nearest Neighbours (kNNs), a classifier that defines the
boundaries of the classes by the distance from their neigh-
bours through a majority vote. In one case, Truong and
Cheng (2016) successfully applied this algorithm to the
problem, obtaining poor results. However, Baruch and
David (2018) have used this approach for anomaly detec-
tion, obtaining interesting results.

— Stochastic Gradient Descend (SGD), a family of clas-
sification algorithms that approximate gradient optimi-
sation. Xu et al. (2017) have reportedly used it for
comparison.

As specified before, and similarly to the previous subsec-
tions, Table 5 reports the comparison of these works in terms
of RT usage, algorithms, feature families and results.

2.2 Unsupervised machine learning approach

Amongst the algorithms making use of unsupervised learn-
ing techniques, it appears that in the literature the K-Means,
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Hierarchical Clustering (HC) algorithms are
the most used. To this extent, it is clear that unsupervised
learning has a concrete and important advantage compared
with supervised learning, as it does not require labelled
data sets. However, the labels of each cluster’s instance can
be inferred by a few manually recognised examples. The
main drawback of most of unsupervised learning algorithms
resides in the fact that they need to be configured with the
predicted number of clusters, an assumption that may not be
available.

In the literature, unsupervised learning has been applied
in many scenarios with different objectives, including, but
not limited to:

— statistical filtering techniques to filter out the most basic
AGDs (Grill et al. 2015);

— techniques to correlate bots and C&Cs (Han and Zhang
2017);

@ Springer

5524 M. Zago et al.

Table 6 Unsupervised approach—K-Means and derived

Refs. Cluster Comparison RT Algorithm Feature context Results
K-Means Other Aware Free

Antonakakis et al. (2012) Multiclass X X X-Means X X v Excellent

Bisio et al. (2017) Multiclass X v v X Filter v Unclear®

Nguyen et al. (2015) Multiclass DBSCAN X X-Means X v v Average

Pu et al. (2015) Multiclass X X v X X v Unknown

Stevanovic et al. (2015) Binary X X v X v v Good

Tong and Nguyen (2016) Multiclass DBSCAN X X-Means X Filter v Unclear®

2 Authors are not providing detection metrics such as accuracy, precision and recall

— techniques to label groups of FQDNs according to their
similarity (Berger and Gansterer 2013; Stevanovic et al.
2015);

— detection tools to separate legitimate from malicious
FQDNs (Baruch and David 2018; Pu et al. 2015); and

— techniques to group users according to their network
behaviour, e.g. users who query the same group of
non-existent domains (NXDomains) (Antonakakis et al.
2012).

A clear trend in the literature is the usage of unsupervised
learning techniques to perform some sort of data prepro-
cessing prior to performing real classification with more
resource-consuming supervised algorithms. Several works
are, in fact, at least partially based on clustering and/or associ-
ation, such as the ones presented in Antonakakis et al. (2012),
Fu et al. (2017) and Nguyen et al. (2015), just to reference a
few.

2.2.1 K-means and derived

The well-known K-Means algorithm is the first and the sim-
plest unsupervised learning algorithm. It requires defining a
priori the number of desired clusters and maps each point in
the data set with the same label of the nearest cluster cen-
troid. These centroids evolve and move during the iterations
of the algorithm, ensuring the adaptability of the algorithm to
different scenarios and applications. It is worth noticing that
although it produces an output in a finite amount of time, it
may not be the optimal result, which may be strongly depen-
dent from the initial configuration. Essentially, it has three
major drawbacks (Pelleg and Moore 2000), that is, it scales
poorly, the number of clusters has to be supplied beforehand
and it may output local optimal results.

Several authors Bisio et al. (2017), Pu et al. (2015), Ste-
vanovic et al. (2015) have used the K-Means to, at least
partially, solve the AGDs detection problem. Knowing the
aforementioned issues, Antonakakis et al. (2012), Bisio et al.
(2017), Tong and Nguyen (2016) have instead opted for a
variant known as X-Means (Pelleg and Moore 2000) that

@ Springer

estimates the number of clusters and their parameters, fac-
ing though a sensible amount of resources required (Nguyen
et al. 2015). Table 6 presents a comprehensive list of literary
works that have been reportedly used either this algorithm or
a derived version.

Using an appropriate feature set, the K-Means algorithm
is capable of associating collected FQDNss in clusters, which
can be later on used to recognise 0-day AGDs with similar
characteristics to previously discovered malwares (Tong and
Nguyen 2016). Such module can be used as a filter to collect
and then discard the AGDs generated by known malwares,
in order to focus on the ones that are potentially generated
by new DGAs.

2.2.2 Other unsupervised approaches

Amongst the historically notable unsupervised learning algo-
rithms, it appears, to the best of our knowledge, that only a
few of them have been studied and presented in the past
decade to deal with the problem of detecting DGA-based
botnets. In fact, apart from the K-Means and its variants high-
lighted in the previous section, there are two approaches to
clustering: the Mixture Model (MM) and the HC, but their
usage is quite limited and with questionable results.

To be more precise, the MM attempts to model the data
by using a mixture of probability distributions, while the HC
uses distance (and linkage) functions to separate (or join)
groups of points in the data set. While the HC has been pro-
posed a few times (Zhang et al. 2016; Thomas and Mohaisen
2014; Tuetal. 2015; Fu et al. 2017), to the best of our knowl-
edge the MM clustering has not been applied so far to this
subject. Similarly, the Bipartite Graph Clusterings (BGCs)
approach used by Han and Zhang (2017) does not need to
indicate a number of clusters and it has the ability to find
any geometric clusters. But, in the course of running, this
algorithm requires high computational resources when run-
ning online in comparison with K-Means (Tong and Nguyen
2016).

Finally, we can also find the DBSCAN algorithm that,
similarly to the agglomerative HC approach, join together

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5525

Table 7 Unsupervised approach—other algorithms

Refs. Usage Comparison RT Algorithm Feature family Results
DNS NLP

Han and Zhang (2017) C&C identification X X BGC v X Unknown

Zhang et al. (2016) Detection X X HC X v Average

Thomas and Mohaisen (2014) Detection X X HC X 4 Average

Tu et al. (2015) Correlation X X HC v X Good

Fu et al. (2017) Correlation X X HC X v Average

Nguyen et al. (2015) Identification Schiavoni et al. (2014) X DBSCAN v v Average

Tong and Nguyen (2016) Identification K-Means X DBSCAN Filter v Average

elements of the data set according to the density of the region
in which they reside, being capable of modelling clusters of
any spatial shape. A few authors Nguyen et al. (2015) and
Tong and Nguyen (2016) have used it in order to circumvent
the need of initialising the parameters of the aforementioned
K-Means. Table 7 presents a list of these works that have just
been discussed.

2.3 Discussion and key points

The proposed state of the art has highlighted a few important
inconsistencies in terms of solutions for tackling DGA-based
botnets. The foremost notable shortage is undoubtedly the
lack of structured data sources, especially when considering
those suitable for ML algorithms. The preprocessing phase
for the raw-data such as the PCAP files or the network flows
is not trivial, and its consequent exploratory analysis is con-
siderably time-consuming. As a result, the evaluation of the
proposed classifying and clustering algorithms is quite a chal-
lenge. Several algorithms have been proposed, and authors
have reported discordant results. As previously cited, a com-
mon ground may lead to improved and, most importantly,
comparable results.

For another thing, although most of the reported works
are focusing on the multiclass analysis of malware fami-
lies, the binary case should not be a priori excluded. Further
researches are required in order to establish a signature for
the legitimate FQDNs so to be able to filter out suspicious
DNS queries for subsequent analysis.

Finally, it is worth noticing the staggering absence of
solutions capable of targeting 0-day malware variants and
families. In fact, only a few authors Nguyen et al. (2015),
Pu et al. (2015), Tong and Nguyen (2016) have included
at least a partial analysis of the subject, even if, intuitively,
this may be explained through the native predisposition of
unsupervised learning techniques towards unknown samples
and classes. In brief, the 0-day detection still represents an
open research topic in detection as well as in other phases of

the cybersecurity process (Lobato et al. 2018; Nespoli et al.
2018).

To this extent, we define the following challenges and
potential research lines that should be considered by the
cybersecurity community and industry.

1. Firstly, privacy-oriented data sets must be researched and
made publicly available;

2. secondly, it is mandatory to establish a series of shared
best practices that lead and advise future researches
related to ML applications for botnet detection;

3. thirdly, to enable the research community to focus on
the study of new approaches and detection algorithms
instead of data gathering and preprocessing, ML-oriented
and ready-to-use data sets must be researched and made
publicly available; and,

4. finally, having taken into consideration the delicate and
complex nature of the data, ad-hoc nonlinear solutions
might be worth investigating.

To summarise, the scientific community, but also the
security vendors, might benefit from exploiting the afore-
mentioned research lines. Ideally, by establishing a common
ground in terms of data, feature sets, procedures and even-
tually reactions, the future researches might only focus on
providing algorithms and advanced solutions for detection,
reaction and mitigation purposes.

3 Defining a common base for feature
analysis

In Machine Learning, the process of feature analysis is well
known for being complex and extremely time-consuming
(Bishop 2006; Almomani et al. 2018), conjecture that has
been confirmed once again in the case of DGA-based bot-
net detection (Woodbridge et al. 2016). It also requires a
deep knowledge of the data in conjunction with the algo-
rithm that attempt to model the training data. In this context,

@ Springer

5526

M. Zago et al.

and as specified in Sect. 2, we consider two macro-categories
for features related to DGA-based botnet detection, namely
Context-Aware (Definition 2) and Context-Free (Defini-
tion 1) features. They are, respectively, dependent on the
instantiation of the malware sample (e.g. DNS response
Time-to-Live, TTL) and independent from it (e.g. the number
of characters in the queried FQDN). Clearly, being the focus
of this work on feature analysis, we a priori exclude the Fea-
tureless (Definition 3) solutions. Similarly, we exclude the
automatic generated features solutions due to their strong
dependence from the input data and not on the definition of
the features itself.

This work only focuses on the Context-Free category that,
being independent of the state of the network, permits us
an evaluation not susceptible to the environment variations
occurring where and when the malware is executed. As a con-
sequence, further researches are required in order to analyse
the Context-Aware feature family.

The features collected and presented in this work are indi-
vidual; they are extracted from a single and precise FQDN
(e.g. the domain length) so that the feature set does not
include aggregated features such as the average of such
domain length.

This section is divided into three parts. Section 3.1 briefly
introduces the methodology and the data used for carrying out
the comparison, Sect. 3.2 highlights the most informative fea-
tures existing in the literature and, finally, Sect. 3.3 presents
a detailed evaluation of these features through a series of
experiments.

3.1 Methodology

In order to be as variate as possible, we retrieved a list of
collected AGDs from public available data sets (Bader; Net-
lab 360; Plohmann 2015; Risk Analytics 2007) and malware
blacklists (Malware Domain List 2009; OSINT). The follow-
ing families using DGAs were taken as data source due to
their importance, usage or complete reverse engineering sta-
tus: Alureon, Conficker, CryptoLocker, Goz, Kraken, Mat-
snu, Murofet, Nymaim, Pushdo, QakBot, Ramdo, Rovnix,
Shiotob, Simda, Tinba and Zeus. To establish a compar-
ison with the real-world legitimate FQDNs, we retrieved
the list of the top-ranking domains according to Majestic-
12 Ltd: The Majestic Million (2018) backlink data set. Our
collected data set includes a thousand distinct samples for
each class, with the ones that we consider a priori legit-
imate. We extracted from each sample the list of features
described in Sect. 3.2 and, based on the histogram analy-
sis, performed the suggested data preprocessing operations,
e.g. transformation, scaling and normalisation. The data have
been preprocessed with alternatively Orange3 (Demsar et al.
2013) and Weka (Fran et al. 2016).

@ Springer

In order to do so, we will:

1. Present the list of features extracted from the state of
the art in the category of individual Context-Free
features.

2. Present a selection of distribution histograms and the cor-
relation matrix from the new feature set obtained from the
ranking method.

3. Apply the Principal Component Analysis (PCA) to
extract n features that cumulatively cover at least 98%
of the variance on the original feature set.

4. Evaluate the original data with the six most used classi-
fiers in the state of the art (RF, NN, SVM, DT, AB and
kNN), using the well-known accuracy, precision, recall,
area under the curve (AUC) and F1 scores.

3.2 Most informative features

By reviewing the literature on the subject of DGA-based bot-
net discovery, we collected a total amount of 40 features, of
which 17 are related to the NLP nGrams, and thus recal-
culated for every value of n € {I,2,3}. Table 8 reports
these findings. Specifically, the first 23 features,' presented
in Table 8 are related to the metrics that can be extracted by
analysing the domain name as if it were a string of text. It
makes sense, as a consequence, to measure metrics such as
its entropy (that measure the randomness of the string), its
length and the length of the longest consecutive consonant
sequence. Moreover, most of these features reflect real-world
common practices such as the Search Engine Optimisation
(SEO) and the netiquette. For example, SEO advice includes
not only the ideal length of a domain name, which should be
around 12-13 characters, but also suggestions like the read-
ing easiness and the ability to spell the relay the FQDN to
someone else.

The presented features in Table 8 can be assigned to two
groups, on the one side classic string metrics such as the
length (67% of cited works) (Schales et al. 2016; Ahluwalia
et al. 2017; Antonakakis et al. 2012; Bisio et al. 2017; Han
and Zhang 2017; Luo et al. 2017; Mowbray and Hagen 2014,
Plohmann et al. 2016; Pu et al. 2015; Schiavoni et al. 2014;
Shi et al. 2017; Song and Li 2016; Stevanovic et al. 2017,
Tran et al. 2018; Truong and Cheng 2016; Xu et al. 2017),
the number of vowels characters (17%) Schales et al. (2016),
Ahluwalia et al. (2017), Song and Li (2016), Stevanovic
et al. (2017) or the entropy (46%) Antonakakis et al. (2012),
Bisio et al. (2017), Han and Zhang (2017), Luo et al. (2017),
Plohmann et al. (2016), Pu et al. (2015), Shi et al. (2017),

1 Including four features (NLP-L-x, NLP-R-NUM-x,
NLP-R-VOW-x, NLP-R-CON-x) for each domain name level:
the FQDN, the Second Level Domain Name (2LD) or all the others
sub-levels as a whole (OLD).

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5527

Table 8 Context-Free features collected from the literature

Code Description

(a) Context-Free features with their descriptions

NLP-L-x String length

NLP-LDN Number of domain levels
NLP-R-NUM-x Ratio of numerical characters
NLP-R-VOW-x Ratio of vowel characters
NLP-R-CON-x Ratio of consonants characters
NLP-LANG Language hypothesis

NLP-LC-C Longest consecutive cons. sequence
NLP-LC-V Longest consecutive vowel sequence
NLP-LC-D Longest consecutive number sequence
NLP-COV Covariance matrix

NLP-R-MC Ratio of meaningful characters®
NLP-LMS Length of longest meaningful string®
NLP-WLU Number of “word-like” units®
NLP-SQS Domain squatting score®

NLP-LED Levenshtein edit distance®
NLP-nG-FR Frequency distribution (histogram)
NLP-nG-E Entropy

NLP-nG-COV Covariance?

NLP-nG-MEAN Mean of frequencies

NLP-nG-MED Median of frequencies
NLP-nG-VAR Variance of frequencies
NLP-nG-STD Standard deviation of frequencies
NLP-nG-PRO Pronounceability score?
NLP-nG-NORM Normality score

NLP-nG-PRT Transition probability?
NLP-nG-PRA Probability of appearance®
NLP-nG-PRI Index probability®
NLP-nG-DST-KL Kullback-Leiber divergence®
NLP-nG-DST-JI Jaccard Index measure®
NLP-nG-DST-TH Distance-threshold?
NLP-nG-DST-AF Distance-avg. frequency?®
NLP-nG-DST-AC Distance—avg. count®

Used by Code (NLP-)

L-x LDN R-NUM-x R-VOW-x R-CON-x LANG LC-C LC-V LC-D COV R-MC LMS WLU SQS LED

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017)

Ahluwalia et al. (2017) v v v v

Antonakakis et al. (2012) v v

Baruch and David (2018) v
Bilge et al. (2014) v v

Bisio et al. (2017) v v

Han and Zhang (2017) v v v v v

Kintis et al. (2017) v

@ Springer

5528 M. Zago et al.

Table 8 continued

Used by Code (NLP-)
L-x LDN R-NUM-x R-VOW-x R-CON-x LANG LC-C LC-V LC-D COV R-MC LMS WLU SQS LED

Luo et al. (2017) v v
Mac et al. (2017)

Mowbray and Hagen (2014)
Plohmann et al. (2016)

Pu et al. (2015)

Schales et al. (2016)
Schiavoni et al. (2014)

v
v
v
v
v
Shi et al. (2017) v

Used by Code (NLP-)
nG-FR nG-E nG-COV nG-MEAN nG-MED nG-VAR nG-STD nG-PRO nG-NORM

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017)

Ahluwalia et al. (2017)

Antonakakis et al. (2012) v v v v v

Baruch and David (2018)

Bilge et al. (2014)

Bisio et al. (2017) v

Han and Zhang (2017) v v

Kintis et al. (2017)

Luo et al. (2017) v v

Mac et al. (2017) v
Mowbray and Hagen (2014)

Plohmann et al. (2016) v

Pu et al. (2015) v v

Schales et al. (2016)

Schiavoni et al. (2014) v v v

Shi et al. (2017) v

Song and Li (2016) v v v

Stevanovic et al. (2017)
Thomas and Mohaisen (2014)

Tong and Nguyen (2016) v
Tran et al. (2018) v
Truong and Cheng (2016) v
Xu et al. (2017) v v

Yadav et al. (2010)

Used by Code (NLP-)
nG-PRT nG-PRA nG-PRI nG-DST-KL nG-DST-JI nG-DST-TH nG-DST-AF nG-DST-AC

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017) v
Ahluwalia et al. (2017)

Antonakakis et al. (2012)

Baruch and David (2018) v v
Bilge et al. (2014)

@ Springer

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5529

Table 8 continued

Used by Code (NLP-)

nG-PRT nG-PRA nG-PRI nG-DST-KL nG-DST-JI nG-DST-TH nG-DST-AF nG-DST-AC

Bisio et al. (2017)

Han and Zhang (2017)

Kintis et al. (2017)

Luo et al. (2017) v v v
Mac et al. (2017)

Mowbray and Hagen (2014)

Plohmann et al. (2016)

Pu et al. (2015) v
Schales et al. (2016)

Schiavoni et al. (2014)

Shi et al. (2017)

Song and Li (2016)

Stevanovic et al. (2017)

Thomas and Mohaisen (2014)

Tong and Nguyen (2016)

Tran et al. (2018)

Truong and Cheng (2016) v

Xu et al. (2017) v

Yadav et al. (2010) v

v

v

x € {FQDN, 2LD, OLD} denotes the domain levels ? is about the English language n € [1, 2, 3] represents the n Gram size

Song and Li (2016), Tran et al. (2018), Truong and Cheng
(2016), Xu et al. (2017) shows attempts of solving the prob-
lem by using simpler but effective metrics; on the other side,
features like the Jaccard Index measure (17%) (Abbink and
Doerr 2017; Baruch and David 2018; Thomas and Mohaisen
2014; Yadav et al. 2010), the Kullback-Leiber divergence
(0.08%) (Baruch and David 2018; Pu et al. 2015) or the
probability of appearance (0.08%) (Luo et al. 2017; Truong
and Cheng 2016) depict a deeper knowledge about the struc-
ture of the domain names and their usage from the linguistic
point of view. Most importantly, however, is the fact that
a standard pool of features is missing; that is, most of
the presented solutions use arbitrary combinations of them,
often with different names and unconventional mathematical
definitions.

This work aims to homogenise the features by imple-
menting them according to their theoretical definitions
and common usage. Although with different formulations,
authors like Ahluwalia et al. (2017) and Schales et al. (2016)
have both proposed at a feature based on differentiating
between vowels and consonants. Specifically, Ahluwalia
et al. (2017) proposed to use the count of the occur-
rences of the consonants as feature, while Schales et al.
(2016) proposed a Boolean flag that indicates whenever
the domain name is composed only by consonants. Intu-
itively, the former is a discrete number whose value can

range’ from 3 to 255 characters that can be easily nor-
malised with respect to the domain length. The Ilatter,
however, delineate a partial information by discarding
data regarding the string composition. Both features are
homogenised in our proposal by the NLP-R-CON-FQDN
feature, which measures the ratio between the consonants
and the length of the FQDN: on the one hand, it per-
fectly represents the number of occurrences normalised
with respect to the length of the domain, while on the
other hand not only includes the Boolean situation where
the domain name is composed by all consonants but also
provides additional information regarding the domain struc-
ture.

Likewise, a similar process has been completed for all the
others features presented in Table 8; however, due to space
and complexity concerns, such homogenisation process is
not reported in this research item.

We included in Table 8b previous researches that are not
strictly aligned with the DGA-based botnet detection, being
either grouping client based on their connections (Schales
et al. 2016; Yadav et al. 2010), applying filtering tech-
niques (Abbink and Doerr 2017; Mowbray and Hagen

2 According to ICANN specifics, the minimum length of a domain

name without considering the Top Level Domain (TLD) is three char-
acters. The maximum, including symbols and extensions, is 255, having
a maximum length per-level of 63 characters.

@ Springer

5530

M. Zago et al.

Murofet

Conficker Shiotob

Density

Legitimate

-10 0 10 20 30 40 50
Feature NLP-L-2LD

(a) Distribution histogram of NLP-L-2LD.

Fig.1 Distribution histograms of two selected features from Table 8a

2014) or targeting a different problem (Kintis et al. 2017).
Nonetheless, their feature definition and usage are clear and
well used.

In order to realise a potential common data set of AGDs
suitable for ML algorithms, the data are required to be nor-
malised. To do so, each feature’s histogram and relative
distribution have been analysed and accordingly transformed
to obtain, where possible, a normal distribution. Addi-
tionally, their graphical representations permit revealing
some important aspects; for example, amongst all the fea-
tures, we picked two normalised distributions from Table 8,
namely NLP-L-2LD (length of the second level domain
name) and NLP-LC-C (longest consecutive consonants
sequence).

These features have been chosen as example to illustrate
an important property that can be extracted from the distri-
bution analysis, that is, a feature can be used to discriminate
according to its value (Fig. 1a) or its shape (Fig. 1b). In fact,
it is important to notice that malwares have different and
well-defined distributions; for example, in the case of the
feature NLP-L-2LD (Fig. 1a) the density histogram shows
how different values of the feature permits to sort AGDs into
their classes. The feature NLP-LC-C, however, presents a
more overlapped distribution due to its nature (only a few
malwares, such as Pushdo and Nymaim have an indistin-
guishable distribution with respect to the legitimate ones).
Yet, its information is enough to separate them by exclusion
from the simpler ones.

As for the features related to the nGrams, presented in
Table 8, and similarly to the aforementioned habits, it is worth
mentioning the pronounceability and normality scores, the
transition and index probability and the different distances
and divergences from the English language. These values are
often calculated differently but having the same objective in

@ Springer

Pushdo

Nymaim

s Matsnu
Legitimate

Rovnix

Density

-8 -2 4 10 16 22 28
Feature NLP-LC-C

(b) Distribution histogram of NLP-LC-C.

Table 9 Most informative features

Code IG IGratio Gini X2

(a) Sorted by IG

NLP-L-2LD 1.450 0.725 0.112 13296.997
NLP-L-FQDN 1.425 0.716 0.112 14143.591
NLP-1G-PRO 1.392 0.697 0.109 12441.981
NLP-2G-PRO 1.304 0.652 0.101 12291.421
NLP-1G-MEAN 1.000 0.500 0.081 8492.071
(b) Sorted by IG ratio

NLP-R-NUM-OLD 0.306 0.821 0.044 1023.027
NLP-LC-D 0.306 0.820 0.044 13236.135
NLP-L-2LD 1.450 0.725 0.112 13296.997
NLP-L-FQDN 1.425 0.716 0.112 14143.591
NLP-R-NUM-FQDN 0.645 0.711 0.069 30694.025
(c) Sorted by Gini Coefficient

NLP-L-2LD 1.450 0.725 0.112 13296.997
NLP-L-FQDN 1.425 0.716 0.112 14143.591
NLP-1G-PRO 1.392 0.697 0.109 12441.981
NLP-2G-PRO 1.304 0.652 0.101 12291.421
NLP-1G-MEAN 1.000 0.500 0.081 8492.071
(d) Sorted by x>

NLP-R-NUM-FQDN 0.645 0.711 0.069 30694.025
NLP-R-NUM-2LD 0.634 0.699 0.065 30031.921
NLP-L-FQDN 1.425 0.716 0.112 14143.591
NLP-L-2LD 1.450 0.725 0.112 13296.997
NLP-LC-D 0.306 0.820 0.044 13236.135

mind, i.e. establishing “how random” are the domain names.
However, they have been accordingly analysed, as illustrated,
for example, for feature NLP-R-CON-FQDN, and reduced to
a common formal definition. In order to analyse this feature

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5531
Table 10 Correlation matrix of the most informative features

Features (NLP-) R-NUM-FQDN L-FQDN L-2LD LC-D 1G-PRO 2G-PRO 1G-MEAN R-NUM-OLD R-NUM-2LD
R-NUM-FQDN - 0.51 0.51 —-0.11 -0.14 0.04 —0.04 0.02 0.99
L-FQDN 0.51 - 0.96 —0.1 —0.81 —0.59 —0.16 —0.01 0.47
L-2LD 0.51 0.96 - —-0.36 —0.76 —0.55 —0.14 0.00 0.47

LC-D —0.11 —0.10 —0.36 - 0.03 0.03 —0.01 0.00 —0.11
1G-PRO —0.14 —0.81 —0.76 0.03 - 0.86 0.21 0.03 —0.08
2G-PRO 0.04 —0.59 —0.55 0.03 0.86 - 0.19 0.05 0.08
1G-MEAN —0.04 —0.16 —0.14 —0.01 0.21 0.19 - —0.01 —0.02
R-NUM-OLD 0.02 —0.01 0.00 0.00 0.03 0.05 —0.01 - 0.00
R-NUM-2LD 0.99 0.47 0.47 —-0.11 —0.08 0.08 —0.02 0.00 -

set, we extracted the five most relevant features according to
four different algorithms, reported in Table 9; namely:

— Information Gain (IG), sorted in Table 9a. It gives a score
regarding “how much” information is the feature bringing
with respect to the classification target.> Substantially,
it reflects the amount of information that was available
before and after considering the feature.

— IG Ratio, sorted in Table 9b. Similar in concept to the IG,
this score measures the ratio between the information
provided by the actual label and the one provided by the
feature. It compensates for high-entropy features, which
are normally advantaged by the simple IG, score.

— Gini Coefficient, sorted in Table 9c. This metric measures
the “purity” of the feature with regards to the actual label.
The greater the value is, the better the feature is.

— Chi-Square (x?), sorted in Table 9d. This statistical
score measures the independence (specifically its lack)
between the feature and the actual label compared with
the x? distribution with one degree of freedom. The
greater the value is, the more category information the
feature contains.

As the features’ names suggest, the length of the domain
as a whole and the length of the second level domain name
might be strictly correlated, as well as the number ratio for
the second and the FQDN. We thus extracted the correlation
matrix, presented in Table 10, which confirms our hypothe-
sis by identifying a strong correlation between two different
pairs of features.

Generally speaking, having highly correlated features
affects the model performances, especially in supervised
learning. However, to be more precise, both the improvement
and the deterioration in model performances are question-
able and require further investigations. Removing them may
be the correct approach, but also may degrade the model:

3 The IG, is purely theoretic, it does not consider any particular classi-
fication algorithm.

— Performance improvement. Especially in terms of train-
ing speed, due to the well-known problem of the “Curse
of Dimensionality”.

— Bias decrease. As a rule of thumb, features that present
low values of mutual correlation or multicollinearity, to
the target are helpful and generally speaking they should
be kept in the feature set.

— Interpretability. Fewer features lead to a model that is
easier to justify and explain, thus it may worth to remove
them, possibly paying in terms of precision and recall.

Within the context of our data set and the aforemen-
tioned applicability scenario, we decided to discard the
feature NLP-L-2LD in favour of NLP-L-FQDN since
former is stripped from the extensions, thus losing infor-
mation with respect to the latter. Likewise, we discard the
NLP-R-NUM-FQDN in favour of NLP-R-NUM-2LD due
to the ICANN rules that prevent numerical characters from
appearing in the extension part.

Furthermore, feature engineering algorithm such as the
PCA may provide another hint towards a more suitable
feature set. Specifically, the PCA decorrelates the data by
mapping it to n orthogonal dimensions that maximise the
variance and minimise the correlation between them. In
Fig. 2, it is highlighted the PCA configuration to cover 99%
of the variance of the data, where the upper line represents the
cumulative variance covered, while the lower one represents
the variance covered per component. However, knowing
the structure and the complexity of the data analysed, the
PCA may not represent the most suitable data transforma-
tion to improve the learning models performances. In fact,
by observing Fig. 2, one could argue that the PCA is not
producing the desired effects (i.e. reducing the number of
features without losing too much information) since most of
the principal components are not so informative.

In this context, and as demonstrated by the following eval-
uation Sect.3.3, blindly maximising the variance amongst the
data leads to worse performances. This phenomena suggest

@ Springer

5532 M. Zago et al.
Fig.2 PCA configured to cover B ... CTH
99% of the data variance ’
o 9.8+
1)
c
S 14
o
[
©
> 0.6 2y
b 55
o) +,
T Cumulative Variance £3
g T Covered by Components é*
= 0.4 o
t ___Variance Covered
o per Component
=4 i
o
jo
& 9.2
0.003
0.0 T i T
23 25
Number of Principal Components
Fig.3 Evaluation using the 1
original feature set (U.C. 1)
09 ’Method‘ Acc. ‘Prec.‘ Rec. ‘AUC‘ F1 ‘
0.8 §\ AB 0.983 | 0.983 | 0.983 | 0.923 | 0.983
E
0.7 § NN 0.990 | 0.990 | 0.990 | 0.992 | 0.990
§ RF 0.989 | 0.989 | 0.989 | 0.988 | 0.989
06 | SVM | 0.958 | 0.955 | 0.958 | 0.956 | 0.956
A\
0.5 § DT 0.978 1 0.976 | 0.978 | 0.840 | 0.976
E
04 § kNN 0.982 | 0.981 | 0.982 | 0.950 | 0.981
) NN RF SYM DT kNN
Accuracy Precision Recall = AUC F1
(a) Binary experiment using the original feature set. (Exp. 1, U.C. 1)
1
09 ’Method‘ Acc. ‘Prec.‘ Rec. ‘AUC‘ F1 ‘
0.8 AB 0.9130.913 1 0.913 | 0.954 | 0.913
0.7 NN 0.93210.932|0.932|0.997 | 0.932
RF 0.930 | 0.928 | 0.930 | 0.995 | 0.928
06 SVM | 0.668 | 0.733]0.668 | 0.966 | 0.673
0.5 DT 0.9170.916 [0.917 | 0.966 | 0.916
kNN 0.791|0.790 [0.791 | 0.956 | 0.786
0.4 AB NN RF SVM DT kNN

Accuracy — Precision < Recall & AUC 7 F1

(b) Multiclass experiment using the original feature set. (Exp. 2, U.C. 1)

that an exploratory analysis regarding the nonlinear dimen-
sionality reduction techniques may be indeed necessary.

3.3 Evaluation

In order to compare and confirm the findings of Sects. 2
and 3.2, we designed a series of experiments. These exper-
iments were conducted on a Dell M3800 workstation with
an Intel 17-4712HQ processor running at 2.30GHz, 16 GB
of DDR3 RAM at 1600 MHz and a NVIDIA Quadro
K1100M graphic processor. Experiments were run using
Orange3 (Demsar et al. 2013), and for each set of data

@ Springer

described in the aforementioned methodology Sect. 3.1, six
classifiers were applied and cross-validated using a stratified
tenfold approach. On the one hand, the six algorithms used
are defined using the following configuration:

— AdaBoost (AB)—Using 50 trees as base estimators, with
SAMME R classificator (updates base estimators weight
with probability estimates) and linear regression loss
function.

— Neural Network (NN)—Single hidden layer with 100
nodes activated with the Rectified Linear unit (ReLu)
function, weight optimised with the stochastic gradient-

Scalable detection of botnets based on DGA: efficient feature discovery process in machine...

5533

Fig.4 Evaluation using the 1
most informative features
(U.C.2) 0.9

0.8
0.7

0.6

0.5

0.4 . N Ly

SVM

AB NN RF

§
|
.
.

|

%

’ Method‘ Acc. ‘Prec. ‘ Rec. ‘ AUC ‘ F1 ‘

AB 0.954 | 0.951 | 0.954 | 0.847 | 0.952
NN 0.960 | 0.956 | 0.960 | 0.909 | 0.951
| RF 0.959 | 0.955 | 0.959 | 0.879 | 0.956
§ SVM 0.669 | 0.905 | 0.669 | 0.630 | 0.759
. DT 0.959 1 0.953 [0.959 | 0.667 | 0.951
kNN 0.959 | 0.953 | 0.959 | 0.858 | 0.954

DT kNN

Accuracy - Precision « Recall = AUC = F1

(a) Binary experiment using the most informative feature set. (Exp. 1, U.C. 2)

0.9

0.8

0.7

0.6

0.5

04 " aB NN

SVM

’ Method ‘ Acc. ‘ Prec. ‘ Rec. ‘ AUC ‘ F1 ‘
AB 0.840 | 0.839 | 0.840 | 0.974 | 0.839
NN 0.828 | 0.819|0.828 | 0.983 | 0.814
RF 0.864 | 0.859 | 0.864 | 0.978 | 0.860
SVM 0.490 | 0.538 | 0.490 | 0.925 | 0.448
DT 0.858 | 0.853 | 0.858 | 0.963 | 0.854
kNN 0.800 | 0.812 | 0.800 | 0.941 | 0.797

DT kNN

Accuracy Precision = Recall s AUC = F1

(b) Multiclass experiment using the most informative feature set. (Exp. 2, U.C. 2)

based optimiser (Adam), « = 0.0010 and 200 max
iterations.

— Random Forest (RF)—Using 10 trees, considering up to
five attributes at each split and without splitting subsets
smaller than five.

— Support Vector Machine (SVM)—Configured with
C = 1.00, € = 0.10 and using the RBF Kernel.

— Decision Tree (DT)—Two minimum instances in leaves,
do not split trees smaller than five, having a max depth
of 100. Exiting condition when the majority reaches
95%.

— k-Nearest Neighbours (kNN)—Five neighbours using the
Euclidean metric and a uniform weight.

While, on the other hand, the tables reported in Figs. 3, 4
and 5 are reporting the average values over the tested classes
with a testing set obtained by cross-validation sampling (hav-
ing 10 stratified folds).

Section 3.3.1 introduces the three evaluation use cases
which are later discussed and commented in Sect. 3.3.2.

3.3.1 Experiments design and use cases

Two sets of experiments were run on with the same data
set and the same configuration. In the first one, the malware
families (reported in Sect. 3.1) are used as separate classes,
while in the second one the malwares are considered as a
single class, enabling the binary analysis of malware versus
legitimate domain names. To be more specific:

Experiment 1 (Binary) The binary experiment is designed
to answer the ML question of separating legitimate FQDNs
from malicious AGDs, considering all malware families as a
single category.

Experiment 2 (Multiclass) The multiclass experiment is
designed to go beyond the above-mentioned binary exper-
iment in order to classify not only the legitimate FOQDN but
also sort malware samples according to their families.

Moreover, in order to present the experiments results in
combination with the aforementioned feature sets, three use
cases are introduced and commented below.

Use Case 1 (Original features set) In the first use case, both
experiments were run using the original data set with the all
the collected features, as presented in Table 8. The results
are reported in Fig. 3. Specifically, it is possible to compare
the results of the binary experiment and the multiclass one
in Fig. 3a and b, respectively.

Use Case 2 (Most informative features set) Similarly, in the
second use case the experiments were run using the data set
updated with the features selected in the previous Sect. 3.2
and presented in Fig. 4, also divided into binary (Fig. 4a)
and multiclass (Fig. 4b) experiments.

Use Case 3 (PCA features set) Finally, and as reported
above, the third use case features the experiments run
using the data set manipulated with the PCA algorithm.
Likewise, Fig. 5 presents the comparison tables and the rel-
ative charts for binary (Fig. Sa) and multiclass (Fig. 5b)
experiments.

@ Springer

5534 M. Zago et al.
Fig.5 Evaluation using the 1
PCA (U.C. 3)
03 ’Method‘ Acc. ‘Prec.‘ Rec. ‘AUC‘ F1 ‘
0.8 AB 0.968 | 0.968 | 0.968 | 0.850 | 0.968
07 NN 0.989 [0.989 [0.989 | 0.991 | 0.989
RF 0.979 1 0.978 | 0.979 [0.964 | 0.977
0.6 SVM [0.932]0.950 | 0.932 | 0.941 | 0.939
05 | DT 0.964 | 0.961 | 0.964 | 0.696 | 0.958
;: kNN 0.982 | 0.981 | 0.982 | 0.946 | 0.981
04 " pB NN RF SVM DT kNN
Accuracy Precision = Recall = AUC =~ F1
(a) Binary experiment using the PCA feature set. (Exp. 1, U.C. 3)
1
03 ’Method‘ Acc. ‘Precl‘ Rec. ‘AUC‘ F1 ‘
0.8 AB 0.702 | 0.702 | 0.702 | 0.842 | 0.702
07 NN 0.906 | 0.905 | 0.906 | 0.995 | 0.905
RF 0.777 10.775 [0.777 | 0.972 | 0.775
0.6 SVM [0.678|0.726 | 0.678 | 0.969 | 0.681
05 DT 0.707 | 0.708 | 0.707 | 0.859 | 0.707
! kNN 0.787 1 0.787 | 0.787 | 0.955 | 0.782
0.4 DT kNN

NN RF SVM

Accuracy - Precision = Recall = AUC F1

(b) Multiclass experiment using the PCA feature set. (Exp. 2, U.C. 3)

3.3.2 Discussion

When looking at the multiclass experiments (Exp. 2), it is
important to restate that the values reported in Figs. 3b, 4b
and 5b are referring to the average value calculated over the
classes-specific values. As a consequence, values such as the
F1 score are not to be considered inconsistent; that is, the
average of all the F1 scores over the classes might be outside
the range delimited by the average of the precision and recall
scores. The same applies to the AUC results, a value that
represents the discrimination, i.e. the ability of the specific
classification algorithm to sort the member of the target class.
Not surprisingly, by having 17 classes (16 malware families
plus the legitimate one, see Sect. 3.1) the average value of
the AUC is quite high because of the excellent performances
with regard to some easily identifiable malwares.

As expected, the multiclass experiments are presenting
worse performances than the binary ones due to the poor
performances obtained when distinguishing similar mal-
wares such as Qakbot or Matsnu. In the binary experiments,
however, those samples are considered as a generic mal-
ware class, thus improving the overall detection. Similarly,
the performances of the PCA use case (U.C. 3) are worse
than the ones reported in the original use case (U.C. 1).
This worsening trend is mainly due to the nature of the
PCA itself, i.e. maximise the variability of the features,
but not the classes’ separability. Although very common
and widely used, the PCA is an example of unsupervised
analysis tool that is not suitable in this scenario, thus lead-
ing in general to worse performances. Further researches

@ Springer

are required in order to establish which feature reduc-
tion strategy optimally approximates the data. Preliminary
results using nonlinear feature reduction techniques seem
promising.

In contrast with the expected results of the previous use
cases, the feature selection use case (U.C. 2) reports unantic-
ipated slightly worse performances. However, the theory of
ML permits to explain such results, especially when compar-
ing them to the ones described in the literature (outlined in
Sect. 2). First and foremost, the data set used plays an impor-
tant role; that is, by accurately selecting the data involved in
the analysis, it is possible to boost the accuracy and generally
increase the performances. Secondly, different algorithms
require different optimal structures for the data, e.g. RF are
indifferent to scaling and normalisation techniques, while
NN require normal and scaled distributions. Last, but not
least, fine-tuning each algorithm permits to extend further
their efficiency (Mantovani et al. 2015).

To sum up, this evaluation process once again pointed
out the lack of common elements that can be used so as
to guarantee the reproducibility of the experiments and thus
their comparative analysis. To this extent, a publicly available
data set of AGDs may lead to better, but more importantly,
comparable results.

4 Conclusions and future work

Although DGA-based botnets have been proved challeng-
ing, there are some positive results within the research field

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5535

that looks promising. In this context, in fact, ML approaches
have been successfully employed both in a supervised and
unsupervised manner aiming to achieve usable and scalable
solutions.

After presenting the state of the art in terms of both algo-
rithms and feature set, this work has defined and established
a common-ground knowledge regarding the features used as
a base for such algorithms, showing that the Context-Free
feature family is more than capable of pinpointing DGA-
based malwares without harming the users’ privacy. Besides
what is discussed in Sect. 3.3.2, the sole use of Context-Free
features achieves excellent results in terms of performances,
precision and recall both in the Binary and in the Multiclass
scenarios.

Therefore, the main outcomes of this work are several.
In fact, this research firstly collects and studies the most
relevant literature works that attempted to deal with the DGA-
based botnet detection problem; secondly, this research item
enables the development of privacy-preserving solutions*;
and, finally, by collecting and studying the literature and
the proposed features, it prearranges a common ground that
enables future researches to focus on the evaluation and the
creation of new efficient detection algorithms in the subject of
DGA-based botnet. To this extent, in fact, preliminary anal-
yses carried out internally indicate positive and interesting
results.

Therefore, to summarise and complement what is pro-
posed in Sect. 2.3, future works might include (i) the study
of the Context-Aware feature family to establish whether it
may combine and consolidate detection solutions; (ii) the
development of a full-fledged, public available and labelled
data set of either Context-Aware and Context-Free features
that might emerge as a common ground for the evaluation of
existing and new ML solutions; (iii) the exploratory analy-
sis of the above-mentioned data with nonlinear techniques in
order to achieve improved classification results; and, finally,
(iv) testing detection algorithms against 0-day resilience by
adding both new malware families and variants.

Acknowledgements This study was founded by a predoctoral and a
postdoctoral INCIBE Grant within the “Ayudas para la Excelencia de
los Equipos de Investigacién Avanzada en Ciberseguridad” program,
with Codes INCIBEI-2015-27353 and INCIBEI-2015-27352.

Compliance with ethical standards

Conflict of interest The authors declare that they do not have any con-
flict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

4 By experimentally demonstrating that users’ data are not strictly
required to recognise malwares in the wild. See Sect. 3.3.

References

Abakumov A (2016) andrewaeva/DGA. URL https://github.com/
andrewaeva/DGA

Abbink J, Doerr C (2017) Popularity-based detection of domain gener-
ation algorithms. In: 12th international conference on availability,
reliability and security, pp 79:1-79:8. https://doi.org/10.1145/
3098954.3107008

Abdel-Hamid O, Mohamed Ar, Jiang H, Deng L, Penn G, Yu D (2014)
Convolutional neural networks for speech recognition. [IEEE/ACM
Trans Audio Speech Lang Process 22(10):1533—-1545. https://doi.
org/10.1109/TASLP.2014.2339736

Ahluwalia A, Traore I, Ganame K, Agarwal N (2017) Detecting broad
length algorithmically generated domains. In: Intelligent, secure,
and dependable systems in distributed and cloud environments,
chap. 2, pp 19-34. Springer International Publishing. https://doi.
org/10.1007/978-3-319-69155-8_2

Alieyan K, ALmomani A, Manasrah A, Kadhum MM (2017) A sur-
vey of botnet detection based on DNS. Neural Comput Appl
28(7):1541-1558. https://doi.org/10.1007/s00521-015-2128-0

Almomani A, Alauthman M, Albalas F, Dorgham O, Obeidat A (2018)
An online intrusion detection system to cloud computing based
on Neucube algorithms. Int J Cloud Appl Comput 8(2):96-112.
https://doi.org/10.4018/IJCAC.2018040105

Anderson HS, Woodbridge J, Filar B (2016) DeepDGA: adversarially-
tuned domain generation and detection. In: 2016 ACM workshop
on artificial intelligence and security, pp 13-21. https://doi.org/10.
1145/2996758.2996767

Antonakakis M, Perdisci R, Nadji Y, Vasiloglou N, Abu-
Nimeh S, Lee W, Dagon D (2012) From throw-away traf-
fic to bots: detecting the rise of DGA-based malware. In:
21st USENIX security symposium, pp 491-506. Bellevue,
WA. URL https://www.usenix.org/conference/usenixsecurity 12/
technical-sessions/presentation/antonakakis

Bader J. Domain Generation Algorithms. URL https://github.com/
baderj/domain_generation_algorithms

Baruch M, David G (2018) Domain generation algorithm detec-
tion using machine learning methods. In: Cyber security: power
and technology, pp 133-161. Springer International Publishing.
https://doi.org/10.1007/978-3-319-75307-2_9

Berger A, Gansterer WN (2013) Modeling DNS agility with DNSMap.
In: 2013 proceedings IEEE INFOCOM, pp 3153-3158. https://
doi.org/10.1109/INFCOM.2013.6567130

Biglar Beigi E, Hadian Jazi H, Stakhanova N, Ghorbani AA (2014)
Towards effective feature selection in machine learning-based
botnet detection approaches. In: 2014 IEEE conference on com-
munications and network security, pp 247-25. https://doi.org/10.
1109/CNS.2014.6997492

Bilge L, Sen S, Balzarotti D, Kirda E, Kruegel C (2014) Exposure: a pas-
sive DNS analysis service to detect and report malicious domains.
ACM Trans Inf Syst Secur 16(4):14:1-14:28. https://doi.org/10.
1145/2584679

Bishop C (2006) Pattern recognition and machine learning. Springer,
Berlin

Bisio F, Saeli S, Lombardo P, Bernardi D, Perotti A, Massa D (2017)
Real-time behavioral DGA detection through machine learning. In:
2017 international carnahan conference on security technology, pp
1-6. https://doi.org/10.1109/CCST.2017.8167790

Bugiel S, Niirnberger S, Poppelmann T, Sadeghi AR, Schneider T
(2011) AmazonlA: when elasticity snaps back. In: 18th ACM con-
ference on computer and communications security, pp 389—-400.
https://doi.org/10.1145/2046707.2046753

Demsar J, Curk T, Erjavec A, Gorup C, Hogevar T, Milutinovi¢ M,
Mozina M, Polajnar M, Toplak M, Stari¢ A, étajdohar M, Umek
L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: data

@ Springer

https://github.com/andrewaeva/DGA
https://github.com/andrewaeva/DGA
https://doi.org/10.1145/3098954.3107008
https://doi.org/10.1145/3098954.3107008
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1007/978-3-319-69155-8_2
https://doi.org/10.1007/978-3-319-69155-8_2
https://doi.org/10.1007/s00521-015-2128-0
https://doi.org/10.4018/IJCAC.2018040105
https://doi.org/10.1145/2996758.2996767
https://doi.org/10.1145/2996758.2996767
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://github.com/baderj/domain_generation_algorithms
https://github.com/baderj/domain_generation_algorithms
https://doi.org/10.1007/978-3-319-75307-2_9
https://doi.org/10.1109/INFCOM.2013.6567130
https://doi.org/10.1109/INFCOM.2013.6567130
https://doi.org/10.1109/CNS.2014.6997492
https://doi.org/10.1109/CNS.2014.6997492
https://doi.org/10.1145/2584679
https://doi.org/10.1145/2584679
https://doi.org/10.1109/CCST.2017.8167790
https://doi.org/10.1145/2046707.2046753

5536

M. Zago et al.

mining toolbox in Python.] Mach Learn Res 14:2349-2353. URL
http://jmlr.org/papers/v14/demsar13a.html

Fran E, Hall MA, Witten IH (2016) The WEKA Workbench. Tech. rep.
URL https://www.cs.waikato.ac.nz/ml/weka

Fu Y, Yu L, Hambolu O, Ozcelik I, Husain B, Sun J, Sapra K, Du D,
Beasley CT, Brooks RR (2017) Stealthy domain generation algo-
rithms. IEEE Trans Inf Forensics Secur 12(6):1430-1443. https:/
doi.org/10.1109/TIFS.2017.2668361

Garcia S, Grill M, Stiborek J, Zunino A (2014) An empirical comparison
of botnet detection methods. Comput Secur 45:100-123. https://
doi.org/10.1016/j.cose.2014.05.011

Grill M, Nikolaev I, Valeros V, Rehak M (2015) Detecting DGA mal-
ware using NetFlow. In: 2015 IFIP/IEEE international symposium
on integrated network management, pp 1304-1309. https://doi.
org/10.1109/INM.2015.7140486

Gupta B, Agrawal DP, Yamaguchi S (eds) (2016) Handbook of research
on modern cryptographic solutions for computer and cyber secu-
rity, 1st edn. IGI Global

Han C, Zhang Y (2017) CODDULM: an approach for detecting C&C
domains of DGA on passive DNS traffic. In: 2017 6th international
conference on computer science and network technology, pp 385—
388. https://doi.org/10.1109/ICCSNT.2017.8343724

Haykin S (1998) Neural networks: a comprehensive foundation, 2nd
edn. Prentice Hall PTR, Upper Saddle River

Holz T, Steiner M, Dahl F, Biersack E, Freiling F (2008) Measurements
and mitigation of peer-to-peer-based Botnets: a case study on
storm worm. In: USENIX security 2008. URL https:/www.
usenix.org/conference/leet-08/measurements-and-mitigation-
peer-peer-based-botnets-case- study-storm-worm

Hussain SA, Fatima M, Saeed A, Raza I, Shahzad RK (2017) Multi-
level classification of security concerns in cloud computing. Appl
Comput Inform 13(1):57-65. https://doi.org/10.1016/j.aci.2016.
03.001

Kintis P, Miramirkhani N, Lever C, Chen Y, Romero-Gémez R,
Pitropakis N, Nikiforakis N, Antonakakis M (2017) Hiding in plain
sight: a longitudinal study of combosquatting abuse. In: ACM
SIGSAC conference on computer and communications security,
pp 569-586. https://doi.org/10.1145/3133956.3134002

Kiihrer M, Rossow C, Holz T (2014) Paint it black: evaluating the effec-
tiveness of malware blacklists. In: RAID 2014: research in attacks,
intrusions and defenses, June, pp 1-21. Springer International Pub-
lishing. https://doi.org/10.1007/978-3-319-11379-1_1

Leelasankar K, Chellappan C, Sivasankar P (2018) Handbook of
research on network forensics and analysis techniques, chap. suc-
cessful computer forensics analysis on the cyber attack Botnet, pp
266-281. IGI Global. https://doi.org/10.4018/978-1-5225-4100-
4.ch014

Lerner Z (2014) Microsoft the Botnet hunter: the role of public-
private partnerships in mitigating Botnets. Harvard J Law Technol
28(1):237-261. URL http://jolt.law.harvard.edu/articles/pdf/v28/
28HarvJLTech237.pdf

Lobato AGP, Lopez MA, Sanz 1J, Cardenas AA, Duarte OCMB, Pujolle
G (2018) An Adaptive real-time architecture for zero-day threat
detection. In: 2018 IEEE international conference on communica-
tions (ICC), pp 1-6. https://doi.org/10.1109/1CC.2018.8422622

Luo X, Wang L, Xu Z, Yang J, Sun M, Wang J (2017) DGASensor:
fast detection for DGA-based malwares. In: Sth international con-
ference on communications and broadband networking, pp 47-53.
https://doi.org/10.1145/3057109.3057112

Mac H, Tran D, Tong V, Nguyen LG, Tran HA (2017) DGA Botnet
detection using supervised learning methods. In: 8th international
symposium on information and communication technology, pp
211-218. https://doi.org/10.1145/3155133.3155166

Majestic-12 Ltd: The Majestic Million (2018) URL https://majestic.
com/reports/majestic-million

@ Springer

Malware Domain List (2009) URL https://www.malwaredomainlist.
com/mdl.php

Mantovani RG, Rossi AL, Vanschoren J, Bischl B, Carvalho AC (2015)
To tune or not to tune: recommending when to adjust SVM hyper-
parameters via meta-learning. In: Proceedings of the international
joint conference on neural networks, vol 2015-September, pp 1-8.
https://doi.org/10.1109/1IJCNN.2015.7280644

Mell P, Grance T (2011) The NIST definition of cloud computing,
NIST Special Publication 800-145. URL http://faculty.winthrop.
edu/domanm/csci411/Handouts/NIST.pdf

Mowbray M, Hagen J (2014) Finding domain-generation algorithms by
looking at length distribution. In: 2014 IEEE international sympo-
sium on software reliability engineering workshops, pp 395-400.
https://doi.org/10.1109/ISSREW.2014.20

Nespoli P, Papamartzivanos D, Mrmol FG, Kambourakis G (2018)
Optimal countermeasures selection against cyber attacks: a com-
prehensive survey on reaction frameworks. IEEE Commun Surv
Tutor 20(2):1361-1396. https://doi.org/10.1109/COMST.2017.
2781126

Netlab 360: DGA Families. URL http://data.netlab.360.com/dga/

Nguyen TD, Cao TD, Nguyen LG (2015) DGA Botnet detection using
collaborative filtering and density-based clustering. In: 6th interna-
tional symposium on information and communication technology,
pp 203-209. https://doi.org/10.1145/2833258.2833310

OSINT: OSINT DGA List. URL http://osint.bambenekconsulting.com/
feeds/

Pelleg D, Moore A (2000) X-means: Extending K-Means with efficient
estimation of the number of clusters. In: 7th international confer-
ence on machine learning pp 727-734. https://doi.org/10.1007/3-
540-44491-2_3

Plohmann D (2015) DGArchive. URL https://dgarchive.caad.fkie.
fraunhofer.de

Plohmann D, Yakdan K, Klatt M, Bader J, Gerhards-Padilla E
(2016) A comprehensive measurement study of domain gen-
erating malware. In: 25th USENIX security symposium, pp
263-278. Austin, TX. URL https://www.usenix.org/system/files/
conference/usenixsecurity 16/sec16_paper_plohmann.pdf

Pu Y, Chen X, Pu Y, Shi J (2015) A clustering approach for detecting
auto-generated Botnet domains. In: Applications and techniques
in information security, pp 269-279. https://doi.org/10.1007/978-
3-662-48683-2_24

Risk Analytics: DNS-BH-Malware Domain Blocklist (2007). URL
http://www.malwaredomains.com

Schales DL, Jang J, Wang T, Hu X, Kirat D, Wuest B, Stoecklin MP
(2016) Scalable analytics to detect DNS misuse for establishing
stealthy communication channels. IBM J Res Dev 60(4):3:1-3:14.
https://doi.org/10.1147/JRD.2016.2557639

Schiavoni S, Maggi F, Cavallaro L, Zanero S (2014) Phoenix: DGA-
based Botnet tracking and intelligence. In: 11th international
conference on detection of intrusions and malware, and vulnera-
bility assessment, pp 192-211. Springer International Publishing.
https://doi.org/10.1007/978-3-319-08509-8_11

Sharieh A, Albdour L (2017) A heuristic approach for service allocation
in cloud computing. Int J Cloud Appl Comput 7(4):60-74. https://
doi.org/10.4018/1JCAC.2017100104

Shi Y, Chen G, Li J (2017) Malicious domain name detection based on
extreme machine learning. Neural Process Lett. https://doi.org/10.
1007/511063-017-9666-7

Song WJ, Li B (2016) A method to detect machine generated domain
names based on random forest algorithm. In: 2016 international
conference on information system and artificial intelligence, pp
509-513. https://doi.org/10.1109/ISAL.2016.0114

Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Secure integration of
IoT and cloud computing. Future Gener Comput Syst 78(3):964—
975. https://doi.org/10.1016/j.future.2016.11.031

http://jmlr.org/papers/v14/demsar13a.html
https://www.cs.waikato.ac.nz/ml/weka
https://doi.org/10.1109/TIFS.2017.2668361
https://doi.org/10.1109/TIFS.2017.2668361
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1109/INM.2015.7140486
https://doi.org/10.1109/INM.2015.7140486
https://doi.org/10.1109/ICCSNT.2017.8343724
https://www.usenix.org/conference/leet-08/measurements-and-mitigation-peer-peer-based-botnets-case-study-storm-worm
https://www.usenix.org/conference/leet-08/measurements-and-mitigation-peer-peer-based-botnets-case-study-storm-worm
https://www.usenix.org/conference/leet-08/measurements-and-mitigation-peer-peer-based-botnets-case-study-storm-worm
https://doi.org/10.1016/j.aci.2016.03.001
https://doi.org/10.1016/j.aci.2016.03.001
https://doi.org/10.1145/3133956.3134002
https://doi.org/10.1007/978-3-319-11379-1_1
https://doi.org/10.4018/978-1-5225-4100-4.ch014
https://doi.org/10.4018/978-1-5225-4100-4.ch014
http://jolt.law.harvard.edu/articles/pdf/v28/28HarvJLTech237.pdf
http://jolt.law.harvard.edu/articles/pdf/v28/28HarvJLTech237.pdf
https://doi.org/10.1109/ICC.2018.8422622
https://doi.org/10.1145/3057109.3057112
https://doi.org/10.1145/3155133.3155166
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.malwaredomainlist.com/mdl.php
https://www.malwaredomainlist.com/mdl.php
https://doi.org/10.1109/IJCNN.2015.7280644
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://doi.org/10.1109/ISSREW.2014.20
https://doi.org/10.1109/COMST.2017.2781126
https://doi.org/10.1109/COMST.2017.2781126
http://data.netlab.360.com/dga/
https://doi.org/10.1145/2833258.2833310
http://osint.bambenekconsulting.com/feeds/
http://osint.bambenekconsulting.com/feeds/
https://doi.org/10.1007/3-540-44491-2_3
https://doi.org/10.1007/3-540-44491-2_3
https://dgarchive.caad.fkie.fraunhofer.de
https://dgarchive.caad.fkie.fraunhofer.de
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_plohmann.pdf
https://doi.org/10.1007/978-3-662-48683-2_24
https://doi.org/10.1007/978-3-662-48683-2_24
http://www.malwaredomains.com
https://doi.org/10.1147/JRD.2016.2557639
https://doi.org/10.1007/978-3-319-08509-8_11
https://doi.org/10.4018/IJCAC.2017100104
https://doi.org/10.4018/IJCAC.2017100104
https://doi.org/10.1007/s11063-017-9666-7
https://doi.org/10.1007/s11063-017-9666-7
https://doi.org/10.1109/ISAI.2016.0114
https://doi.org/10.1016/j.future.2016.11.031

Scalable detection of botnets based on DGA: efficient feature discovery process in machine... 5537

Stevanovic M, Pedersen JM, D’ Alconzo A, Ruehrup S, Berger A (2015)
On the ground truth problem of malicious DNS traffic analysis.
Comput Secur 55:142-158. https://doi.org/10.1016/j.cose.2015.
09.004

Stevanovic M, Pedersen JM, D’ Alconzo A, Ruehrup S (2017) A method
for identifying compromised clients based on DNS traffic analysis.
Int J Inf Secur 16(2):115-132. https://doi.org/10.1007/s10207-
016-0331-3

Thomas M, Mohaisen A (2014) Kindred domains: detecting and clus-
tering Botnet domains using DNS traffic. In: 23rd international
conference on World Wide Web, pp 707-712. https://doi.org/10.
1145/2567948.2579359

Tong V, Nguyen G (2016) A method for detecting DGA Botnet based on
semantic and cluster analysis. In: 7th symposium on information
and communication technology, pp 272-277. https://doi.org/10.
1145/3011077.3011112

Tran D, Mac H, Tong V, Tran HA, Nguyen LG (2018) A LSTM
based framework for handling multiclass imbalance in DGA Bot-
net detection. Neurocomputing 275:2401-2413. https://doi.org/
10.1016/j.neucom.2017.11.018

Truong D, Cheng G (2016) Detecting domain-flux botnet based on
DNS traffic features in managed network. Secur Commun Netw
9(14):2338-2347. https://doi.org/10.1002/sec.1495

Tu TD, Guang C, Xin LY (2015) Detecting Bot-infected machines
based on analyzing the similar periodic DNS queries. In:
2015 international conference on communications, manage-
ment and telecommunications, pp 35-40. https://doi.org/10.1109/
ComManTel.2015.7394256

Vinayakumar R, Soman K, Poornachandran P, Sachin Kumar S (2018)
Evaluating deep learning approaches to characterize and classity
the DGAs at scale. J Intell Fuzzy Syst 34(3):1265-1276. https://
doi.org/10.3233/JIFS-169423

Vormayr G, Zseby T, Fabini J (2017) Botnet communication patterns.
IEEE Commun Surv Tutor 19(4):2768-2796. https://doi.org/10.
1109/COMST.2017.2749442

Watkins L, Beck S, Zook J, Buczak A, Chavis J, Robinson WH, Morales
JA, Mishra S (2017) Using semi-supervised machine learning to
address the big data problem in DNS networks. In: 2017 IEEE 7th
annual computing and communication workshop and conference,
pp 1-6. https://doi.org/10.1109/CCWC.2017.7868376

Woodbridge J, Anderson HS, Ahuja A, Grant D (2016) Predicting
domain generation algorithms with long short-term memory net-
works. CoRR abs/1611.0. URL http://arxiv.org/abs/1611.00791

Xu S, Li S, Meng K, Wu L, Ding M (2017) An adaptive malicious
domain detection mechanism with DNS traffic. In: 2017 VI inter-
national conference on network, communication and computing,
pp 86-91. https://doi.org/10.1145/3171592.3171595

Yadav S, Reddy AKK, Reddy ALN, Ranjan S (2010) Detecting algorith-
mically generated malicious domain names. In: 10th ACM SIG-
COMM conference on internet measurement, pp 48—61. https:/
doi.org/10.1145/1879141.1879148

Zhang S, Zhang X, Ou X (2014) After we knew it: empirical study
and modeling of cost-effectiveness of exploiting prevalent known
vulnerabilities across laaS cloud. In: 9th ACM symposium on
information, computer and communications security, pp 317-328.
https://doi.org/10.1145/2590296.2590300

Zhang H, Gharaibeh M, Thanasoulas S, Papadopoulos C (2016) BotDig-
ger: detecting DGA Bots in a single network. Tech. rep., Colorado
State University. URL http://www.cs.colostate.edu/TechReports/
Reports/2016/tr16-101.pdf

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.cose.2015.09.004
https://doi.org/10.1016/j.cose.2015.09.004
https://doi.org/10.1007/s10207-016-0331-3
https://doi.org/10.1007/s10207-016-0331-3
https://doi.org/10.1145/2567948.2579359
https://doi.org/10.1145/2567948.2579359
https://doi.org/10.1145/3011077.3011112
https://doi.org/10.1145/3011077.3011112
https://doi.org/10.1016/j.neucom.2017.11.018
https://doi.org/10.1016/j.neucom.2017.11.018
https://doi.org/10.1002/sec.1495
https://doi.org/10.1109/ComManTel.2015.7394256
https://doi.org/10.1109/ComManTel.2015.7394256
https://doi.org/10.3233/JIFS-169423
https://doi.org/10.3233/JIFS-169423
https://doi.org/10.1109/COMST.2017.2749442
https://doi.org/10.1109/COMST.2017.2749442
https://doi.org/10.1109/CCWC.2017.7868376
http://arxiv.org/abs/1611.00791
https://doi.org/10.1145/3171592.3171595
https://doi.org/10.1145/1879141.1879148
https://doi.org/10.1145/1879141.1879148
https://doi.org/10.1145/2590296.2590300
http://www.cs.colostate.edu/TechReports/Reports/2016/tr16-101.pdf
http://www.cs.colostate.edu/TechReports/Reports/2016/tr16-101.pdf

	Scalable detection of botnets based on DGA
	Efficient feature discovery process in machine learning techniques
	Abstract
	1 Introduction and motivation
	2 DGA-based botnet detection in the literature
	2.1 Supervised machine learning approach
	2.1.1 Hidden Markov Model (HMM)
	2.1.2 Artificial neural network (NN) and deep learning
	2.1.3 Decision trees (DTs) and derived
	2.1.4 Other supervised approaches

	2.2 Unsupervised machine learning approach
	2.2.1 K-means and derived
	2.2.2 Other unsupervised approaches

	2.3 Discussion and key points

	3 Defining a common base for feature analysis
	3.1 Methodology
	3.2 Most informative features
	3.3 Evaluation
	3.3.1 Experiments design and use cases
	3.3.2 Discussion

	4 Conclusions and future work
	Acknowledgements
	References

