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Abstract
Modeling of real-world problems requires data as input parameter which include information represented in the state of
indeterminacy. To deal with such indeterminacy, use of uncertainty theory (Liu in Uncertainty theory, Springer, Berlin, 2007)
has become an important tool for modeling real-life decision-making problems. This study presents a profit maximization and
time minimization scheme which considers the existence of possible indeterminacy by designing an uncertain multi-objective
multi-item fixed charge solid transportation problem with budget constraint (UMMFSTPwB) at each destination. Here,
items are purchased at different source points with different prices and are accordingly transported to different destinations
using different types of vehicles. The items are sold to the customers at different selling prices. In the proposed model, unit
transportation costs, fixed charges, transportation times, supplies at origins, demands at destinations, conveyance capacities and
budget at destinations are assumed to be uncertain variables. To model the proposed UMMFSTPwB, we have developed three
different models: (1) expected value model, (2) chance-constrained model and (3) dependent chance-constrained model using
uncertain programming techniques. These models are formulated under the framework of uncertainty theory. Subsequently,
the equivalent deterministic transformations of these models are formulated and are solved using three different methods: (1)
linear weighted method, (2) global criterion method and (3) fuzzy programming method. Finally, numerical examples are
presented to illustrate the models.
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programming
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1 Introduction

The notion of classical transportation problem (TP) is to
determine an optimal solution (transportation plan) such that
the transportation cost is minimized. The noteworthy work
of Hitchcock (1941) introduced the term transportation prob-
lem, by modeling it as a conventional optimization problem
with two dimensional properties, i.e., supply and demand.
However, apart from supply and demand constraints, in real-
world scenarios, often we need to consider the mode of
transportation (e.g., goods train, cargo flights and trucks),
types of goods, etc. Under such circumstances, a TP is
extended to a solid transportation problem (STP),where apart
from source and destination constraints, an additional con-
straint, related to the modes of transportation (convenience)
or types of goods, is considered. Schell (1955) first extended
the classical TP to solid transportation problem (STP). Later,
Bhatia et al. (1976) minimized the shipping time of an STP.
Afterward, Jiménez andVerdegay (1999), in their work, dealt
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with an STP and solved the problem by considering the sup-
ply quantities, demand quantities and conveyance capacities
as interval values instead of point values.

Hirsch and Dantzig (1968) presented another variant of
TP, called fixed charge transportation problem (FTP). In FTP,
the objective is to determine an optimal transportation plan
that minimizes the overall cost between sources and destina-
tions. The overall cost has two components: variable shipping
cost and an independent fixed charge. The shipping cost
depends directly on the quantity of the transported item(s)
from sources to destinations, whereas the fixed charge, which
commonly appears due to the expenditure related to permit
fees, property tax or toll charges, etc., is associatedwith every
feasible transportation plan. Several researchers (Kenning-
ton and Unger 1976; Sun et al. 1998; Adlakha and Kowalski
2003) have proposed different solution approaches for FTP.

Most of the real-life decision-making problems can be
well expressed with multiple conflicting criteria and are usu-
ally formulated as multi-objective optimization problems.
Moreover, the associated parameters for such problems may
be imprecise because to insufficient or inexact information
due to incompleteness or lackof evidence, statistical analysis,
etc. Therefore, in order to process and represent impre-
cise or ill-defined data for decision-making problems, many
researchers have presented a number of theories, e.g., fuzzy
set (Zadeh 1965), type-2 fuzzy set (Zadeh 1975a, b), rough
set (Pawlak 1982). The uncertainty theory proposed by Liu
(2007) deals with the belief degrees of human being, which
can appropriately evaluate personal belief degree of experts
in terms of uncertain measure.

In the literature, there are many works done in the field
of TP with uncertain input parameters. Kaur and Kumar
(2012) described a new solution technique for TP by con-
sidering the transportation costs as generalized trapezoidal
fuzzy numbers. In multi-objective domain, Bit et al. (1993)
solved the multi-objective STP using Zimmermann’s fuzzy
programming technique (1978). Later, Gen et al. (1995) pro-
posed a bi-objective STP with fuzzy parameters. Recently,
Kundu et al. (2017a) used interval type-2 fuzzy multi-
criteria group decision-making (MCGDM) approach to solve
a transportation mode selection problem. Considering the
budget limitation of a TP, Kundu et al. (2013a) discussed
a multi-objective STP by imposing budget constraints at
destinations with fuzzy random hybrid parameters. Later,
Baidya and Bera (2014) proposed a budget constraint STP
by representing transportation cost, availability and demand,
and conveyance capacity as interval numbers. In addition,
Kundu et al. (2014a) also investigated a fuzzy multi-criteria
decision-making (MCDM) approach to determine the most
preferred transportation mode, in order to solve an STP.
Recently, Das et al. (2017) solved the green STP under type-
2 fuzzy environment. Considering fixed charge in imprecise
domain, Liu et al. (2008) presented an FTP in fuzzy environ-

ment and solved it bygenetic algorithm.Later, Pramanik et al.
(2015) revisited the FTP by considering the shipping cost,
fixed charge, availability and demand in a two-stage supply
chain under type-2 Gaussian fuzzy transportation network.

Under the framework of uncertainty theory (Liu 2007),
different variants of TP have been studied in the literature
(Sheng and Yao 2012a, b; Cui and Sheng 2013; Mou et al.
2013; Guo et al. 2015; Chen et al. 2017). In Table 1, we
have furnished some recent reviews of different variants of
TP under diverse uncertain environments.

In spite of all the developments of TP, there are several
gaps in the literature which are listed below.

• To the best of our knowledge, none has considered, a
multi-objective multi-item profit maximization and time
minimization fixed charge STP model with budget con-
straint.

• Use of Liu’s uncertainty theory to formulate the multi-
objective solid transportation problem using dependent
chance-constrained programming technique is yet to be
studied.

• Implementation and analysis of results for EVM, CCM
and DCCM for any fixed charge STP with budget con-
straint, using zigzag and normal uncertain variables,
under the framework of uncertainty theory (Liu 2007),
has not yet been done.

In order to address the above-mentioned lacunas, in
the present study we have considered uncertain multi-
objective multi-item fixed charge STPwith budget constraint
(UMMFSTPwB) at destinations, under the framework of
uncertainty theory (Liu 2007). The problem is formulated
in three different models: expected value model (EVM),
chance-constrained model (CCM) and dependent chance-
constrained model (DCCM). Consecutively, each model is
solved by three different multi-objective compromise tech-
niques: linear weighted method, global criterion method and
fuzzy programming method.

The subsequent sections of this study are organized as
follows. The preliminary concepts for our study are given
in Sect. 2. The uncertain programming models, EVM, CCM
and DCCM, of the proposed UMMFSTPwB are presented
in Sect. 3. The crisp equivalent for each of the models of
UMMFSTPwB is formulated in Sect. 4. Three different com-
promise multi-objective solution methodologies and some
related theorems are explained in Sect. 5. In Sect. 6, we
present the numerical examples to illustrate the model and
the results are discussed with comparative analysis. Finally,
the epilogue of our study is presented in Sect. 7.

2 Preliminaries

Uncertainty theory, founded byLiu (2007) and refined byLiu
(2009, 2010, 2015), is a branch of axiomatic mathematics
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Table 1 Some recent studies on variants of transportation problem under diverse uncertain frameworks

Author(s) (year) Uncertain
environment

Objective(s) Uncertain programming
model(s)

Model variants

TP STP FTP Items Budget
constraint

Sheng and Yao (2012a) Uncertainty
theory

Single Expected-constrained Yes No Yes Single No

Sheng and Yao (2012b) Uncertainty
theory

Single Expected-constrained Yes No No Single No

Mou et al. (2013) Uncertainty
theory

Multi Expected-constrained Yes No No Single No

Kundu et al. (2013a) Random, fuzzy,
random fuzzy

Multi Chance-constrained,
Expected value

Yes Yes No Single Yes

Kundu et al. (2013b) Fuzzy Multi Expected value, minimum
of fuzzy number

Yes Yes No Multi No

Kundu et al. (2014b) Type-2 fuzzy Single Chance-constrained Yes No Yes Single No

Giri et al. (2015) Fuzzy Single Chance-constrained Yes Yes Yes Multi No

Sinha et al. (2016) Interval type-2
Fuzzy

Multi Expected value Yes Yes No Single No

Das et al. (2016) Rough interval Single Expected value,
Chance-constrained

Yes Yes No Single No

Dalman (2016) Uncertainty
theory

Multi Expected-constrained Yes Yes No Multi No

Gao and Kar (2017) Uncertainty
theory

Single Expected value,
Chance-constrained

Yes Yes No Single No

Kundu et al. (2017b) Rough Single Chance-constrained Yes Yes No Single No

Liu et al. (2017) Uncertainty
theory

Single Expected value,
Chance-constrained

Yes Yes Yes Multi No

Proposed model Uncertainty
theory

Multi Expected value,
Chance-constrained,
Dependent chance-
constrained

Yes Yes Yes Multi Yes

for modeling human uncertainty. Nowadays, uncertainty the-
ory has been applied to many areas such as economics (Yang
and Gao 2016, 2017), management (Gao and Yao 2015; Gao
et al. 2017) and finance (Chen and Gao 2013; Guo and Gao
2017).

In this section, some fundamental concepts associated
with uncertainty theory (Liu 2007) required to design
UMMFSTPwB are discussed.

Definition 2.1 (Liu 2007) Let � be a nonempty set, L be a
σ algebra over � and M be the uncertain measure of any
element and � is contained inL. Then (�,L,M) represents
an uncertainty space.

In an uncertainty space (�,L,M), for each event � in
L,M is the uncertain measure which maps L to �(0, 1),
i.e.,M : L �→ �(0, 1). In order to define uncertain measure
axiomatically, a number M {�} is assigned with each event
� which determines the belief degree with which the event
� has occurred. To establish the mathematical properties of

the uncertain measure, Liu (2009) proposed the following
axioms.

Axiom 1. (Normality) M {�} = 1 for the universal set
�.

Axiom 2. (Self-Duality) M {�} + M {�c} = 1 for any
event �.

Axiom 3. (Subadditivity) For every countable sequence
of events �1,�2, . . . , we have M {⋃∞

i=1 �i
}≤∑∞

i=1
M {�i }.
Axiom 4. (Product) Let

(
� j ,L j ,M j

)
be the uncer-

tainty spaces for j = 1, 2, . . . then the product uncer-
tain measure M is an uncertain, measure satisfying,

M
{∏∞

j=1 � j

}
=∧∞

j=1M j
{
� j
}
, where � j is arbi-

trary chosen event from L j , for every j = 1, 2, . . .,
respectively.

Definition 2.2 (Liu 2007) An uncertain variable ζ is said to
be zigzag uncertain variable if ζ follows a zigzag uncertainty
distribution as given below in (1).
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Fig. 1 Uncertain distribution of a Z(6, 8, 14) b N (10, 2)

� (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if x ≤ a
x−a

2(b−a)
, if a < x ≤ b

(x+c−2b)
2(c−b) , if b < x ≤ c

1, if x > c,

(1)

where ζ is denoted by Z(a, b, c) such that a < b < c and
a, b, c ∈ �.

Example 2.1 The uncertainty distribution of a zigzag uncer-
tain variable Z(6, 8, 14) is displayed in Fig. 1a.

Definition 2.3 (Liu 2007) Let ζ be an uncertain variable such
that ζ follows a normal uncertainty distribution as defined in
(2). Then ζ becomes a normal uncertain variable

�(x) =
(
1+ exp

(
π(ρ − x)

σ
√
3

))−1

, x ∈ �, (2)

where ζ is denoted by N (ρ, σ ) such that ρ, σ ∈ � and
σ > 0.

Example 2.2 The uncertainty distribution of a normal uncer-
tain variable N (10, 2) is presented in Fig. 1b.

Definition 2.4 (Liu 2010) Let ζ be an uncertain variable with
regular uncertainty distribution �(x), then the inverse func-
tion �−1 (α) is said to be inverse uncertainty distribution of
ζ , where α ∈ [0, 1].

Example 2.3 (i) The inverse uncertainty distributionof zigzag
uncertain variable Z(a, b, c) is

�−1 (α) =
{

(1 − 2α) a+2αb, if α < 0.5
(2 − 2α) b + (2α − 1) c, if α ≥ 0.5.

(ii) The inverse uncertainty distribution of a normal uncertain
variable N (ρ, σ ) is

�−1 (α) = ρ+σ
√
3

π
ln

α

1−α
·

Theorem 2.1 (Liu 2010) Let ζ1, ζ2, . . . , ζn be the indepen-
dent uncertain variables, respectively, of regular uncertainty
distributions �1,�2, . . . ,�n, respectively. If f (ζ1, ζ2, . . . ,
ζn) is strictly increasing function with respect to ζ1, ζ2, . . . ,

ζm, and strictly decreasing with respect to ζm+1, ζm+2, . . . ,

ζn, then the inverse uncertainty distribution of

ζ = f (ζ1, ζ2, . . . , ζn) (3)

becomes

� −1 (α) = f
(
�−1

1 (α) ,�−1
2 (α) , . . . , �−1

m (α) ,�−1
m+1

(1 − α), . . . , �−1
n (1 − α)

)
(4)

Definition 2.5 (Liu 2007) Let ζ be an uncertain variable then
the expected value of ζ is defined below in (5).

E [ζ ] =
∫ +∞

0
M {ζ ≥ t} −

∫ 0

−∞
M {ζ ≤ t}, (5)

provided at least one of the two integrals is finite.

Theorem 2.2 (Liu 2010) If ζ be an uncertain variable with
regular uncertainty distribution �, then

E [ζ ]=
∫ 1

0
� −1 (α) dα. (6)
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Definition 2.6 (Liu 2007) Let ζ be an uncertain variable and
α ∈ (0, 1] be the confidence level, then ζsup (α) and ζinf (α)

are the respective α-optimistic and α-pessimistic values of ζ

such that

ζsup (α) = sup {t |M {ζ ≥ t} ≥ α} (7.1)

and

ζinf (α) = inf {t |M {ζ ≤ t} ≥ α} . (7.2)

Example 2.4 (i) Let ζ be a zigzag uncertain variable denoted
asZ(a, b, c), then its α-optimistic and α-pessimistic val-
ues are, respectively,

ζsup (α) =
{
2b+ (1 − 2) c, if α < 0.5
(2 − 1) a+ (2 − 2) b, if α ≥ 0.5

and

ζinf (α) =
{

(1 − 2) a+2b, if < 0.5
(2 − 2) b+ (2 − 1) c, if ≥ 0.5.

(ii) Let ζ be a normal uncertain variable denoted asN (ρ, σ )

then the respective α-optimistic and α-pessimistic val-
ues of ζ are,

ζsup (α) = ρ−σ
√
3

π
ln

α

1−α

and

ζinf (α) = ρ+σ
√
3

π
ln

α

1−α
·

3 Problem description

A solid transportation problem is concerned with transporta-
tion of homogeneous products from source i to destination j
via conveyance k (≥ 2) (trucks, cargo van, goods train, etc.)
for which we need to find an optimal transportation plan so
that the total transportation cost is minimized. A balanced
condition in STP assumes that the total supply at source
depots, total demand at destinations and total conveyance
capacities are equal. But, in reality, we may encounter fol-
lowing situations in the context of TP. They are mentioned
as follow.

(i) Adequate quantities of the item at the sources to satisfy
the demands at destinations.

(ii) The conveyances have the ability to suffice the demand
at destinations.

(iii) There may be a requirement of multiple items or prod-
ucts at destinations for which we may need to consider
shipment of heterogeneous items from source i to des-
tination j via conveyance k.

(iv) Limited budget at destinations.
(v) Besides transportation cost, fixed charge cost can also

exist when a transportation activity is initiated from
source i to destination j .

(vi) In some situations, often we require to optimize several
objectives at the same time, which are conflicting in
nature. In the context of transportation problem, these
objectives may be minimization of total transporta-
tion cost, total delivery time, deterioration of breakable
goods, maximization of profit, etc.

In order to consider some of the practical situations men-
tioned above, in our study, we have presented a profit max-
imization and time minimization of multi-item fixed charge
solid transportation problem with budget constraint. The fol-
lowing notations are used to formulate a multi-objective
multi-item fixed charge solid transportation problem with
budget constraint (MMFSTPwB) model.

• m : Number of origins/source depots.
• n : Number of destinations/demand points.
• K : Number of conveyances utilize for transportation of

products.
• r : Number of different types of items to be transported.

For i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , K ,
p = 1, 2, . . . , r

• a p
i : Amount of item p available at source i .

• bp
j : Demand of item p at destination j .

• ek : Transportation capacity of conveyance k.
• cpi jk :Cost for transporting one unit of item p from source
i to destination j by conveyance k.

• f pi jk : Fixed chargewith respect to the transportation activ-
ity for transporting item p from source i to destination j
by conveyance k.

• x p
i jk : Quantity of item p transported from source i to
destination j by conveyance k.

• t pi jk : Time required for transporting item p with respect
to transportation activity from source i to destination j
by conveyance k.

• s pj : Selling price per unit of item p at the destination j .

• v
p
i : Purchasing cost per unit of item p at the source i .

• Bj : Budget at destination j .

To initiate a transportation activity from source i to desti-
nation j , we need to reserve conveyance k, leading to fixed
charge. In other words, a fixed charge will be added to the
direct transportation cost, if x p

i jk > 0. Therefore, in our prob-
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lem, the fixed charge is incorporated using a binary decision

variable y pi jk , where y pi jk =
{
1, if x p

i jk > 0
0, otherwise

∀ p, i, j, k.

The mathematical model of MMFSTPwB is presented in
model (8).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z1 =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

{(
s pj − v

p
i − cpi jk

)
x p
i jk

− f pi jk y
p
i jk

}

Min Z2 =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

{
t pi jk y

p
i jk

}

subject to
∑n

j=1
∑K

k=1 x
p
i jk ≤ a p

i , i = 1, 2, . . . ,m, p = 1, 2, . . . , r
∑m

i=1
∑K

k=1 x
p
i jk ≥ bp

j , j = 1, 2, . . . , n, p = 1, 2, . . . , r
∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk ≤ ek , k = 1, 2, . . . , K

∑r
p=1

∑m
i=1
∑K

k=1

{(
v
p
i + cpi jk

)
x p
i jk + f pi jk y

p
i jk

}
≤ Bj ,

j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1; x p

i jk > 0

0; otherwise
∀ p, i, j, k.

(8)

In model (8), the first objective is to maximize the overall
profit earned after transporting all the required items from
each source to every destination points through the available
conveyances. The second objectiveminimizes the total trans-
portation time for shipment of all the required items from all
sources to all destinations. The significance of the constraints
of model (8) is discussed below.

The first constraint determines that the total quantity of
item p which is shipped from source i does not exceed the
availability a p

i . The second constraint determines the ship-
ment of total quantity of item p at destination j , satisfies at
least the demand bp

j . Third constraint implies that the quan-
tity of item p shipped from source i to destination j bymeans
of conveyance k does not exceed ek . Finally, the fourth con-
straint indicates that the total expenditure at destination j
including the purchase price of item p at source i , trans-
portation cost and fixed charge for transporting item p from
source i to destination j via conveyance k is not more than
the allocated budget Bj .

Estimation of an effective transportation plan generally
depends on previous records. But, often the data of these
previous records may be ill-defined due to uncertainty in
the judgment, lack of evidence, fluctuation in market price,
etc. For example, the transportation cost and transportation
time cannot be exact since these parameters depend on labor
charges, toll tax, fluctuation in fuel price, traffic congestion,
etc. Similarly, the supply at source may be inexact due to
availability ofmanpower, rawmaterials, demand of products,
etc. Under such circumstances, uncertain programming, pro-
posed by Liu (2007), becomes one of the possible techniques
to deal with uncertain information. Uncertain programming
is a mathematical programming which models decision-
making approaches in uncertain environments using belief
degrees.

In order to propose the formulation of MMFSTPwB
problem under the framework of uncertainty theory, we cate-
gorically termed the problem as uncertainMMFSTPwB, i.e.,
uncertainmulti-objectivemulti-item fixed charge solid trans-
portation problem with budget constraint (UMMFSTPwB).
The UMMFSTPwB is essentially converted to uncertain
programming models, i.e., expected value model (EVM),
chance-constrained model (CCM) and dependent chance-
constrained model (DCCM). Here, the associated uncertain
parameters of UMMFSTPwB are considered as transporta-
tion cost, fixed charge, transportation time, availability of
item at source, demand of item at destination, conveyance
capacities and budget at destinations. These parameters are,
respectively, represented as ξcpi jk

, ξ f pi jk
, ξt pi jk

, ξa p
i
, ξbpj

, ξek and

ξBj .
The corresponding formulations of expected value model

(EVM), chance-constrained model (CCM) and dependent
chance-constrained model (DCCM) are discussed below.
Thesemodels ofUMMFSTPwBalongwith the solution tech-
niques are graphically represented in Fig. 2.

3.1 Expected valuemodel (EVM)

Liu and Liu (2002) presented the expected value model of
uncertain programming. The model optimizes the expected
value of an objective function under the expected constraints.
Here, we formulate EVM for UMMFSTPwB and present the
model in (9).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E [Z1] = E
[∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

{(
s pj − v

p
i

−ξcpi jk

)
x p
i jk − ξ f pi jk

y pi jk

}]

Min E [Z2] = E
[∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1 ξt pi jk
y pi jk

]

subject to

E
[∑n

j=1
∑K

k=1 x
p
i jk − ξa p

i

]
≤ 0, i = 1, 2, . . . ,m,

p = 1, 2, . . . , r

E
[∑m

i=1
∑K

k=1 x
p
i jk − ξbpj

]
≥ 0, j = 1, 2, . . . , n,

p = 1, 2, . . . , r

E
[∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − ξek

]
≤ 0, k = 1, 2, . . . , K

E
[∑r

p=1
∑m

i=1
∑K

k=1

{(
v
p
i + ξcpi jk

)
x p
i jk + ξ f pi jk

y pi jk

}

−ξBj

] ≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1 ; x p

i jk > 0

0 ; otherwise
∀ p, i, j, k.

(9)

In model (9), the first objective is to maximize the over-
all expected profit. The second objective is to minimize the
expected total transportation time. These objectives are sub-
jected to some expected constraints.
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Fig. 2 Graphical representation of UMMFSTPwB: from model formulation to solution techniques

3.2 Chance-constrainedmodel (CCM)

Chance-constrained programming is an alternate method to
deal with optimization of a problem under uncertain environ-
ment. The basic idea of CCM (Charnes andCooper 1959; Liu
2002) is that it allows violation of constraints, but we need to
ensure that the constraints should hold at some chance level
(confidence level). Here, we develop the chance-constrained
model for UMMFSTPwB and present it in model (10).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z̄1
Min Z̄2
subject to

M
{
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i − ξcpi jk

)
x pi jk

−ξ f pi jk
y pi jk

]
≥ Z̄1

}
≥ α1

M
{
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
ξt pi jk

y pi jk

]
≤ Z̄2

}
≥ α2

M
{
∑n

j=1
∑K

k=1 x
p
i jk − ξa pi

≤ 0

}
≥ β

p
i , i = 1, 2, . . . ,m,

p = 1, 2, . . . , r

M
{
∑n

i=1
∑K

k=1 x
p
i jk − ξbpj

≥ 0

}
≥ γ

p
j ,

j = 1, 2, . . . , n, p = 1, 2, . . . , r

M
{∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − ξek ≤ 0

}
≥ δk ,

k = 1, 2, . . . , K

M
{
∑r

p=1
∑m

i=1
∑K

k=1

{(
v
p
i + ξcpi jk

)
x pi jk + ξ f pi jk

y pi jk

}

−ξB j ≤ 0
}

≥ ρ j , j = 1, 2, . . . , n

x pi jk ≥ 0, y pi jk =
{
1; x pi jk > 0

0; otherwise
∀ p, i, j, k.

(10)

In CCM, α1, α2, β
p
i , γ

p
j , δk and ρ j are predetermined

confidence levels. The objectives Z̄1 and Z̄2 determine the
critical values corresponding to the first and second con-
straints. The first constraint determines the α1-optimistic
value of the overall profit corresponding to α1transportation
plan, and the second constraint determines theα2-pessimistic
value of the shipping/transportation time with respect to
α2-transportation plan. Moreover, the remaining constraints
(third to sixth) of model (10) also hold at their corresponding
chance levels, which are at least β p

i , γ
p
j , δk and ρ j .

3.3 Dependent chance-constrainedmodel (DCCM)

The main idea of dependent chance programming is to opti-
mize the chance of an uncertain event. For the proposed
problem, a DM has to satisfy predetermined minimum profit
margin and predetermined maximum transportation time
limit and then to maximize the uncertain measures (confi-
dence level) that satisfy the following.

• Total profit is not less than a predetermined profit margin.
• Total transportation time is not more than the predeter-
mined time.

We formulate the dependent chance programming model
under chance constraints in model (11) to obtain the most
suitable transportation plan.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max ν
Z

′
1

= M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i

−ξcpi jk

)
x pi jk − ξ f pi jk

y pi jk

]
≥ Z

′
1

}

Max ν
Z

′
2

= M
{
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
ξt pi jk

y pi jk

]

≤ Z
′
2

}

subject to third to seventh constraints of(10),

(11)

where Z
′
1 and Z

′
2 are, respectively, the predetermined values

of minimum profit and maximum transportation time.

4 Crisp equivalents of themodels

The crisp equivalent of EVM is provided below in Theo-
rem 4.1.

Theorem 4.1 Let ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξek and ξBj are

the independent uncertain variables, respectively, associ-
ated with uncertainty distributions �ξ

c
p
i jk

, �ξ
f
p
i jk

, �ξ
t
p
i jk

,

�ξ
a
p
i
, �ξ

b
p
j
, �ξek

and �ξB j
. Then the crisp equivalent of

EVM is presented below in model (12.1).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E [Z1] =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

{(
s pj − v

p
i

− ∫ 10 �−1
ξ
c
p
i jk

(α1) dα1

)
x p
i jk

− ∫ 10 �−1
ξ
f
p
i jk

(α1) dα1y
p
i jk

}

Min E [Z2] =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

∫ 1
0 �−1

ξ
t
p
i jk

(α2) dα2y
p
i jk

subject to
∑n

j=1
∑K

k=1 x
p
i jk − ∫ 10 �−1

ξ
a
p
i

(
1 − β

p
i

)
dβ

p
i ≤ 0,

i = 1, 2, . . . ,m, p = 1, 2, . . . , r
∑m

i=1
∑K

k=1 x
p
i jk − ∫ 10 �−1

ξ
b
p
j

(
γ
p
j

)
dγ

p
j ≥ 0,

j = 1, 2, . . . , n, p = 1, 2, . . . , r
∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − ∫ 10 �−1

ξek
(1−δk)dδk ≤ 0,

k = 1, 2, . . . , K
∑r

p=1
∑m

i=1
∑K

k=1

{ (
v
p
i + ∫ 10 �−1

ξ
c
p
i jk

(
ρ j
)
dρ j

)
x p
i jk

+ ∫ 10 �−1
ξ
f
p
i jk

(
ρ j
)
dρ j y

p
i jk

}

− ∫ 10 �−1
ξB j

(
1−ρ j

)
dρ j ≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1; x p

i jk > 0
0; otherwise

∀ p, i, j, k.

(12.1)

Proof From the linearity property of expected value operator,
crisp equivalent of EVM in model (12.1) can be formulated
as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E [Z1] =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1

{(
s pj − v

p
i

−E

[
ξcpi jk

])
x pi jk − E

[
ξ f pi jk

]
y pi jk

}

Min E [Z2] =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1 E

[
ξt pi jk

]
y pi jk

subject to

∑n
j=1

∑K
k=1 x

p
i jk − E

[
ξa pi

]
≤ 0, i = 1, 2, . . . ,m, p = 1, 2, . . . , r

∑m
i=1

∑K
k=1 x

p
i jk − E

[
ξbpj

]
≥ 0, j = 1, 2, . . . , n, p = 1, 2, . . . , r

∑r
p=1

∑m
i=1

∑n
j=1 x

p
i jk − E

[
ξek
] ≤ 0, k = 1, 2, . . . , K

∑r
p=1

∑m
i=1

∑K
k=1

{ (
v
p
i + E

[
ξcpi jk

])
x pi jk + E

[
ξ f pi jk

]
y pi jk

}

−E
[
ξB j

]
≤ 0, j = 1, 2, . . . , n

x pi jk ≥ 0, y pi jk =
⎧
⎨

⎩

1; x pi jk > 0

0; otherwise
∀ p, i, j, k.

(12.2)

FollowingTheorem2.2,model (12.2) canbewritten asmodel
(12.1).

Corollary 1 If ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξek and ξBj are

the independent zigzag uncertain variables of the form
Z (g, h, l) with g, h, l ∈ R and g < h < l, then the crisp
equivalent of the model (12.1) can be written as shown in the
model (12.3).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E [Z1] =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝s

p
j − v

p
i

−

(

g
c
p
i jk

+2h
c
p
i jk

+l
c
p
i jk

)

4

⎞

⎟⎟
⎠ x pi jk −

(

g
f
p
i jk

+2h
f
p
i jk

+l
f
p
i jk

)

4 y pi jk

⎫
⎪⎪⎬

⎪⎪⎭

Min E [Z2] =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1

(

g
t
p
i jk

+2h
t
p
i jk

+l
t
p
i jk

)

4 y pi jk
subject to

∑n
j=1

∑K
k=1 x

p
i jk −

(
g
a
p
i

+2h
a
p
i

+l
a
p
i

)

4 ≤ 0, i = 1, 2, . . . ,m,

p = 1, 2, . . . , r

∑m
i=1

∑K
k=1 x

p
i jk −

(

g
b
p
j
+2h

b
p
j
+l

b
p
j

)

4 ≥ 0, j = 1, 2, . . . , n,

p = 1, 2, . . . , r

∑r
p=1

∑m
i=1

∑n
j=1 x

p
i jk −

(
gek +2hek +lek

)

4 ≤ 0, k = 1, 2, . . . , K

∑r
p=1

∑m
i=1

∑K
k=1

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝v

p
i +

(

g
c
p
i jk

+2h
c
p
i jk

+l
c
p
i jk

)

4

⎞

⎟⎟
⎠x pi jk

+

(

g
f
p
i jk

+2h
f
p
i jk

+l
f
p
i jk

)

4 y pi jk

⎫
⎪⎪⎬

⎪⎪⎭
−
(
gB j

+2hB j
+lB j

)

4 ≤ 0,

j = 1, 2, . . . , n

x pi jk ≥ 0, y pi jk =
{
1 ; x pi jk > 0

0 ; otherwise ∀ p, i, j, k.

(12.3)
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Corollary 2 If ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξepk
and ξB p

j
are

the independent normal uncertain variables of the form
N (μ, σ ), where μ, σ ∈ � and σ > 0, then model (12.1)
can be written as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E [Z1] =∑r
p=1
∑m

i=1
∑n

j=1
∑K

k=1

{(
s pj − v

p
i

−μcpi jk

)
x p
i jk − μ f pi jk

y pi jk

}

Min E [Z2] =∑r
p=1
∑m

i=1
∑n

j=1
∑K

k=1 μt pi jk
y pi jk

subject to∑n
j=1
∑K

k=1 x
p
i jk − μa p

i
≤ 0, i = 1, 2, . . . ,m,

p = 1, 2, . . . , r∑m
i=1
∑K

k=1 x
p
i jk − μbpj

≥ 0, j = 1, 2, . . . , n,

p = 1, 2, . . . , r∑r
p=1
∑m

i=1
∑n

j=1 x
p
i jk − μek ≤ 0, k = 1, 2, . . . , K

∑r
p=1
∑m

i=1
∑K

k=1

{(
v
p
i + μcpi jk

)
x p
i jk + μ f pi jk

y pi jk

}

−μBj ≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1; x p

i jk > 0
0; otherwise

∀ p, i, j, k.

(12.4)

Some related theorems for the crisp equivalents of CCM,
and DCCM and their corresponding proofs and corollaries
are presented in “Appendix B.”

5 Methodologies for crisp equivalence

In this section, we discuss three differentmulti-objective pro-
gramming techniques: (i) linear weighted method, (ii) global
criterionmethod and (iii) fuzzy programmingmethod. These
methods are used to generate the compromise solutions of
EVM, CCM and DCCM.

5.1 Linear weightedmethod

The linear weighted method converts a multi-objective opti-
mization problem to its equivalent SOOP by weighted sum
of the objective functions, where the weights are the relative
importance of the objectives as determined by the DM.

The crisp equivalent multi-objective models, models
(12.1) and (B1) (cf. “Appendix B”), are converted to their
equivalent compromise SOOPs by weighted sum of the
objective functions and are represented in models (13.1) and
(13.2), respectively. For DCCM, model (B5) (cf. “Appendix
B”), presented in model (13.3), can be converted to equiva-
lent compromise SOOP.

⎧
⎨

⎩

Min {−λ1E [Z1] + λ2E [Z2]}
subject to the constraints of (12.1)
λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1] .

(13.1)

⎧
⎨

⎩

Min
{−λ1 Z̄1 + λ2 Z̄2

}

subject to the constraints of (B1) in “Appendix B′′
λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1] .

(13.2)

⎧
⎪⎨

⎪⎩

Max
{
λ1υZ

′
1
+ λ2υZ

′
2

}

subject to the constraints of (B1) in “Appendix B′′
λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1] .

(13.3)

Theorem 5.1 A feasible solution of the crisp equivalent of
EVM in (12.1) is

(i) an optimal solution of the compromise model (13.1), if
it is Pareto optimal to the multi-objective model (12.1),

(ii) a Pareto optimal solution of multi-objective model
(12.1), if it is an optimal solution of the compromise
model (13.1).

Proof (i) Let t∗ is the optimal solution of the compro-
mise model (13.1), which is not Pareto optimal to
multi-objective model (12.1). Then, there exists a Pareto
optimal solution t , which dominates t∗ or t ≺ t∗. It fol-
lows,

(−λ1E
[
Zt
1

]+ λ2E
[
Zt
2

])
<
(−λ1E

[
Zt∗
1

]
+λ2E

[
Zt∗
2

] )
, where λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1]. This even-

tually implies that t∗ is not an optimal solution of model
(13.1) which contradicts our previous hypothesis that t∗
is the optimal solution of model (13.1).

(ii) Let t∗ be the Pareto optimal solution of model (12.1),
which is not an optimal solution of themodel (13.1). Then
there exist an optimal solution t ′ of model (13.1) such

that
(
−λ1E

[
Zt ′
1

]
+ λ2E

[
Zt ′
2

])
<
(−λ1E

[
Zt∗
1

]
+λ2E

[
Zt∗
2

] )
, where λ1, λ2 ∈ [0, 1] and λ1 + λ2 = 1. This

implies t ′ is Pareto optimal to model (12.1). It contradicts
our initial hypothesis that t∗ is the Pareto optimal solution
of model (12.1).
Similar proofs can be done for multi-objective model

(B1) and compromise model (13.2) of CCM, and for multi-
objective model (B5) and compromise model (13.3) of
DCCM. ��

5.2 Global criterionmethod

The global criterion method (Rao 2006; Kundu et al.
2013a, b) transforms a multi-objective optimization problem
to its equivalent SOOP and minimizes the sum of deviation
of the ideal solutions from the corresponding objective func-
tions. Here, we use the global criterion method in L2 norm to
convert the crisp equivalent multi-objective models to their
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equivalent compromise SOOPs as presented below in (14.1),
(14.2) and (14.3).

⎧
⎪⎨

⎪⎩

Min

{√(
E[Z1]max−E[Z1]

E[Z1]max

)2 +
(
E[Z2]−E[Z2]min

E[Z2]min

)2
}

subject to the constraints of (12.1) ,

(14.1)

where E [Z1]max and E [Z2]min are the ideal objective values
of the crisp equivalent of EVM in (12.1).

⎧
⎪⎪⎨

⎪⎪⎩

Min

⎧
⎨

⎩

√
(
Z
max
1 −Z1

Z̄max
1

)2
+
(

Z2−Z̄min
2

Z
min
2

)2
⎫
⎬

⎭

subject to the constraints of(B1) in “Appendix B′′,
(14.2)

where Z
max
1 and Z

min
2 are the ideal objective values of the

crisp equivalent of CCM in (B1).

⎧
⎪⎪⎨

⎪⎪⎩

Min

⎧
⎨

⎩

√√√√
(

υmax

Z
′
1

−υ
Z
′
1

υmax

Z
′
1

)2

+
(

υmax

Z
′
2

−υ
Z
′
2

υmax

Z
′
2

)2
⎫
⎬

⎭

subject to the constraints of (B1) in “Appendix B′′,
(14.3)

where υmax
Z

′
1

and υmax
Z

′
2

are the ideal objective values of the

crisp equivalent of DCCM in (B5).

Theorem 5.2 A feasible solution of the crisp equivalent of
EVM in (12.1) is

(i) an optimal solution of the compromise model (14.1), if
it is Pareto optimal to multi-objective model (12.1),

(ii) a Pareto optimal solution of multi-objective model
(12.1), if it is optimal solution of compromise model
(14.1).

Proof (i) Let t∗ is the optimal solution of compromisemodel
(14.1) which is not Pareto optimal to multi-objective
model (12.1). Then, there exists a Pareto optimal solution
t , such that t dominates (≺) t∗. This implies
√√√√
(
E [Z1]max − E

[
Zt
1
]

E [Z1]max

)2
+
(
E
[
Zt
2
]− E [Z2]min

E [Z2]min

)2

<

√√√√√√

⎛

⎝
E [Z1]max − E

[
Zt∗
1

]

E [Z1]max

⎞

⎠

2

+
⎛

⎝
E
[
Zt∗
2

]
− E [Z2]min

E [Z2]min

⎞

⎠

2

.

It implies that t∗ is not the optimal solution of (14.1),
which directly contradicts our previous assumption that
t∗ is the optimal solution of (14.1).

(ii) Let t∗ be the Pareto optimal solution of (12.1) which is
not an optimal solution of (14.1). Then there exists an
optimal solution t ′ of (14.1) such that
√√√√√√

⎛

⎝
E [Z1]max − E

[
Zt ′
1

]

E [Z1]max

⎞

⎠

2

+
⎛

⎝
E
[
Zt ′
2

]
− E [Z2]min

E [Z2]min

⎞

⎠

2

<

√√√√√√

⎛

⎝
E [Z1]max − E

[
Zt∗
1

]

E [Z1]max

⎞

⎠

2

+
⎛

⎝
E
[
Zt∗
2

]
− E [Z2]min

E [Z2]min

⎞

⎠

2

.

Therefore, it follows that t ′ is Pareto optimal to (12.1),
which contradicts with our previous assumption that t∗
is the Pareto optimal solution of the model (12.1).

Similar proofs can be done for multi-objective model (B1)
and compromise model (14.2) of CCM, and for multi-
objective model (B5) and compromise model (14.3) of
DCCM.

5.3 Fuzzy programmingmethod

Zimmermann (1978) presented theFuzzyprogramming tech-
nique (FPT) for solving multi-objective linear programming
(MOLP) problem. In this paper, the FPT is applied on crisp
equivalentmulti-objectivemodels, (12.1) for EVMpresented
above, (B1) for CCM and (B5) for DCCM and convert those
to their equivalent compromise SOOPs by introducing an
auxiliary variable λ. These compromise models are repre-
sented, respectively, in (15.1), (15.2) and (15.3).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max λ

subject to
(

E[Z1]−E[Z1]LB1
E[Z1]UB1−E[Z1]LB1

)
≥ λ

(
E[Z2]UB2−E[Z2]

E[Z2]UB2−E[Z2]LB2

)
≥ λ

constraints of (12.1) ,

(15.1)

where E [Z1]UB1 and E [Z2]LB2 are, respectively, the
expected optimal solutions of E [Z1] and E [Z2], E [Z1]LB1

is the expected lower bound of E[Z1] corresponding to
E [Z2]LB2 , and E [Z2]UB2 is the expected upper bound of
E[Z2] corresponding to E [Z1]UB1 .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max λ

subject to(
Z1−Z1

LB1

Z
UB1
1 −Z

LB1
1

)
≥ λ

(
Z
UB2
2 −Z2

Z
UB2
2 −Z

LB2
2

)
≥ λ

constraints of (B1) in “Appendix B′′,

(15.2)
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where Z
UB1
1 and Z

LB2
2 are, respectively, the optimal solutions

of Z1 and Z2, Z
LB1
1 is the lower bound of Z1 corresponding

to Z
LB2
2 , and Z

UB2
2 is the upper bound of Z2 corresponding

to Z
UB1
1 .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max λ

subject to⎛

⎝
υ
Z
′
1
−υ

LB1

Z
′
1

υ
UB1

Z
′
1

−υ
LB1

Z
′
1

⎞

⎠ ≥ λ

⎛

⎝
υ
Z
′
2
−υ

LB2

Z
′
2

υ
UB2

Z
′
2

−υ
LB2

Z
′
2

⎞

⎠ ≥ λ

constraints of (B1) in “Appendix B′′

(15.3)

where υ
UB1

Z
′
1

and υ
UB2

Z
′
2

are, respectively, the optimal solutions

ofυZ
′
1
andυZ

′
2
,υLB1

Z
′
1

is the lower bound ofυZ
′
1
corresponding

to υ
UB2

Z
′
2

, and υ
LB2

Z
′
2

is the lower bound of υZ
′
2
corresponding

to υ
UB1

Z
′
1

.

Theorem 5.3 A feasible solution of the crisp equivalent of
EVM in (12.1) is

(i) an optimal solution of compromise model (15.1), if it is
Pareto optimal to multi-objective model (12.1),

(ii) a Pareto optimal solution of multi-objective model
(12.1), if it is optimal to compromise model (15.1).

Proof (i) Let t∗ is the optimal solution of compromisemodel
(15.1) which is not the Pareto optimal to multi-objective
model (12.1). Then, there exists a Pareto optimal solution
t , such that t dominates (≺) t∗. It implies

E
[
Zt
1

]− E [Z1]
LB1

E [Z1]UB1 − E [Z1]LB1

>
E
[
Zt∗
1

]
− E [Z1]

LB1

E [Z1]UB1 − E [Z1]LB1
and

E [Z2]UB2−E
[
Zt
2

]

E [Z2]UB2−E [Z2]LB2

<
E [Z2]UB2−E

[
Zt∗
2

]

E [Z2]UB2−E [Z2]LB2

⇔ η1
(
E
[
Zt
1
])

> η1

(
E
[
Zt∗
1

])
and η2

(
E
[
Zt
2
])

< η2

(
E
[
Zt∗
2

])
,

where η1
(
E
[
ZT
1

])

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if E [Z1]UB1 ≤ E
[
ZT
1

]

E
[
ZT
1

]−E[Z1]LB1

E[Z1]UB1−E[Z1]LB1
, if E [Z1]LB1 < E

[
ZT
1

]
< E [Z1]UB1

0, if E
[
ZT
1

]
≤ E [Z1]LB1

and

η2

(
E
[
ZT
2

])

=

⎧
⎪⎨

⎪⎩

1, if E
[
ZT
2

] ≤ E [Z2]LB2

E[Z2]UB2−E
[
ZT
2

]

E[Z2]UB2−E[Z2]LB2
, if E [Z2]LB2 < E

[
ZT
2

]
< E [Z2]UB2

0, if E [Z2]UB2 ≤ E
[
ZT
2

]

for T ∈ {t, t∗}.
This means there exists a λ, such that λ > λ∗. There-

fore, it follows t∗ is not the optimal solution of model (15.1)
which contradicts our initial assumption that t∗ is the optimal
solution of model (15.1).

(ii) Let t∗ be the Pareto optimal solution of model
(12.1), which is not an optimal solution of model (15.1).
Then there exists an optimal solution t ′ of (15.1) such

that η1

(
E
[
Zt ′
1

])
> η1

(
E
[
Zt∗
1

])
and η2

(
E
[
Zt ′
2

])
<

η2

(
E
[
Zt∗
2

])
. Therefore,

E
[
Zt ′
1

]
−E[Z1]

LB1

E[Z1]UB1−E[Z1]LB1

>
E
[
Zt∗
1

]
−E[Z1]

LB1

E[Z1]UB1−E[Z1]LB1
and

E[Z2]UB2−E
[
Zt ′
2

]

E[Z2]UB2−E[Z2]LB2

<
E[Z2]UB2−E

[
Zt∗
2

]

E[Z2]UB2−E[Z2]LB2
. Hence, t∗ is not the Pareto optimal

solution ofmodel (12.1) which contradicts our initial hypoth-
esis that t∗ is the Pareto optimal solution of (12.1).

Similar proofs can be done for multi-objective model
(B1) and compromise model (15.2) of CCM, and for multi-
objective model (B5) and compromise model (15.3) of
DCCM.

6 Results and discussion

This section, presents the results of three models: (i) EVM,
(ii) CCM and (iii) DCCM of the proposed UMMFSTPwB
problem using three compromise programming methods: (i)
linear weighted method, (ii) global criterion method and (iii)
fuzzy programming method. For numerical illustration of
the proposed UMMFSTPwB, we have considered shipment
of two items from two sources to three destinations using
two types of conveyance, i.e., r = 2, m = 2, n = 3 and
K = 2. The values of all the input parameters are provided
in 9 tables, which are, tables 10, 11, 12, 13, 14, 15, 16, 17
and 18 as reported in the “Appendix C.” We have used the
standard optimization software LINGO 11.0, to determine
the results of three models for which a personal computer
with Intel (R) Core (T M) i3 @ 2.93GHz and 2 GB memory
is used.

We have presented the results for crisp equivalent of EVM
and CCM followed by the results of DCCM along with their
transportation plans. For CCM, cl1 and cl2 represent all the
chance levels having the values within the interval [0, 0.5)
and [0.5, 1.0], respectively. For cl1, the values of chance
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Table 2 Optimum results of
EVM and CCM for zigzag and
normal uncertain variables using
linear weighted method

Weights EVM CCM

cl1 cl2
λ1 λ2 E [Z1] E [Z2] Z̄1 Z̄2 Z̄1 Z̄2

Zigzag uncertain variables 1.0 0.0 526.125 87.500 572.327 86.719 346.414 102.481

0.7 0.3 526.125 87.500 570.600 85.120 346.414 102.481

0.5 0.5 513.250 75.250 570.600 85.120 344.440 100.800

0.3 0.7 509.419 73.742 554.440 72.940 326.175 93.154

0.0 1.0 334.375 69.700 315.980 62.420 268.580 90.740

cl2

Z̄1 Z̄2

Normal uncertain variables 1.0 0.0 576.185 89.290 467.172 98.741

0.7 0.3 573.769 87.912 456.383 97.279

0.5 0.5 572.848 87.800 456.147 95.584

0.3 0.7 535.400 65.114 404.117 84.650

0.0 1.0 427.529 59.600 347.127 81.525

levels are set as α1 = 0.4, α2 = 0.4, β
p
i = 0.45, γ

p
j =

0.35, δk = 0.45 and ρ j = 0.4 ∀ i, j, k, p. For cl2, the
chance level values are set as α1 = 0.9, α2 = 0.9, β

p
i =

0.8, γ
p
j = 0.75, δk = 0.85 and ρ j = 0.8 ∀ i, j, k, p.

EVM and CCM optimize the objective values, and DCCM
maximizes the satisfaction levels. Hence, we have combined
the results of EVM and CCM, but the results of DCCM are
presented separately.

For EVM, themodels, (12.3) and (12.4), are solved to gen-
erate the results, respectively, for zigzag andnormal uncertain
variables. In case of CCM, the models, (B2) and (B3), are
solved for zigzag uncertain variables at chance levels cl1 and
cl2, respectively, and model (B4) is solved for normal uncer-
tain variables at chance level cl2 . The results of DCCM are
obtained by solving models (B6) and (B7), respectively, for
zigzag and normal uncertain variables.

Table 2 shows the results of EVM and CCM for zigzag
and normal uncertain variables. Here, the linear weighted
method is used to generate the results of the corresponding
models with different values of the weights, λ1 and λ2. From
Table 2, it is observed that, as λ1 decreases, both the maxi-
mization functions, E [Z1] and Z̄1, proportionately decrease
their values. Similarly, the minimization functions, E [Z2]
and Z̄2, decrease their values when λ2 increases. Moreover,
from Table 2 it is observed, for both the zigzag and normal
uncertain variables, the results of EVM and CCM are non-
dominated to each other at different values of λ1 and λ2.

The results generated by three solution methodologies to
solve the crisp equivalent models of EVM and CCM are
reported in Table 3. Here, the values of the weights for linear
weighted method, i.e., λ1 and λ2, are considered the same.
FromTable 3, it is observed that, in the case of EVM, for both

uncertain variables (zigzag and normal uncertain variables),
the solutions generated by global criterion method and fuzzy
programming method, which are the same, and the solution
generated by linear weighted method are nondominated to
each other. However, for CCM and for zigzag uncertain vari-
ables, the solutions generated by linear weighted method and
global criterion method are nondominated to each other, and
the solutions generated by linear weighted method and fuzzy
programming method are nondominated to each other but
the solution generated by global criterion method dominates
the solution of fuzzy programming method. While, for CCM
with normal uncertain variables, the solutions generated by
linear weighted method, global criterion method and fuzzy
programming method are nondominated to each other.

Table 4 shows the transportation plans corresponding to
the results provided in Table 3, for EVM and CCM. Sub-
sequently, Table 5 reports the corresponding execution time
(in seconds), require by LINGO, to solve the EVM and CCM
for both the uncertain variables using three different solution
methodologies.

From Table 5, we observe that linear weighted method
is computationally efficient, compared to global criterion
method and fuzzy programming method, for both EVM and
CCM.

For DCCM, the results for three solution methodologies
are shown in Table 6. Similar to Table 3, the associated
weights of linear weighted method in Table 6 are considered
as equal. Moreover, to solve the crisp equivalents of DCCM
the predetermined limits of Z

′
1 and Z

′
2, are set to, 325 and 94,

respectively, for model (B6), and 419 and 83, respectively,
for model (B7). It is observed from Table 6 that, for zigzag
uncertain variables, the solution generated by global criterion
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Table 3 Comparative results of three different solution methodologies

Solution method Model

EVM CCM

E [Z1] E [Z2] cl1 cl2

Z̄1 Z̄2 Z̄1 Z̄2

Zigzag uncertain
variables

Linear weighted method
(with equal weights)

513.250 75.250 570.600 85.120 344.440 100.800

Global criterion method 495.750 72.425 542.220 70.180 315.500 94.860

Fuzzy programming method 495.750 72.425 483.558 70.180 313.372 94.860

cl2

Z̄1 Z̄2

Normal uncertain
variables

Linear weighted method
(with equal weights)

572.848 87.800 456.147 95.584

Global criterion method 516.736 69.200 404.117 84.652

Fuzzy programming method 516.736 69.200 409.800 87.736

method dominates each of the solutions generated by linear
weighted method and fuzzy programming method. More-
over, the solution generated by fuzzy programming method
dominates the solution generated by linear weightedmethod.
However, for normal uncertain variables, the solutions gener-
ated by linear weighted method and global criterion method,
which are the same, and the solution generated by fuzzy pro-
gramming method are nondominated to each other.

Table 7 shows the transportation plans corresponding to
the results presented in Table 6, of DCCM, for zigzag and
normal uncertain variables. Subsequently, Table 8 reports the
execution time (in seconds), to solve the DCCM for zigzag
and normal uncertain variables using three different solution
methodologies by LINGO.

From Table 8, it is observed that linear weighted method
is efficient compared to global criterion method and fuzzy
programmingmethod, for both the uncertain variables, while
generating the results of DCCM.

Sensitivity analysis

We have analyzed the sensitivity of CCM with input
parameters ofUMMFSTPwB, considering as zigzag and nor-
mal uncertain variables. The corresponding results of the
CCM are reported in Table 9. Here, the models for both the
uncertain variables (zigzag and normal uncertain variables)
are solved, using global criterion method, by changing the
values of the chance levels, α1 and α2. For zigzag uncertain
variables, model (B2) is solved when the values of α1 and
α2 change their respective values between 0.1 to 0.4. In this
case, all other chance levels, except α1 and α2, are set to
β
p
i = 0.45, γ

p
j = 0.35, δk = 0.45 and ρ j = 0.4. When the

values of α1 and α2 are changed within the range from 0.5 to
1.0, model (B3) is solved with the remaining chance levels

set to, β p
i = 0.8, γ p

j = 0.75, δk = 0.85 and ρ j = 0.8. How-
ever, for normal uncertain variables, model (B4) is solved at
different values of α1 and α2 by considering the values of the
remaining chance levels, the same, as set for model (B3).

From Table 9, we observe that, for all the models, and
for both the uncertain variables (zigzag and normal uncer-
tain variables), as the values of α1 and α2 are increased, the
corresponding values of maximizing objective Z̄1 and mini-
mizing objective Z̄2 increase and decrease, respectively.

Subsequently, the values of Z̄1 and Z̄2 are also displayed
graphically at different values of α1 and α2, for models (B2)
and (B3), for zigzag uncertain variables in Fig. 3a, and for
model (B4), for normal uncertain variables in Fig. 3b.

7 Conclusion

In this paper, we have designed an uncertain multi-objective
multi-item fixed charge solid transportation problem with
budget constraint (UMMFSTPwB). The uncertainmodel has
been developed by considering different uncertain param-
eters as zigzag and normal uncertain variables. We have
formulated the three models, EVM, CCM and DCCM, for
UMMFSTPwB to transform it into deterministic ones. The
equivalent multi-objective deterministic models are solved
using linear weighted method, global criterion method and
fuzzy programming method. Further, the features of these
models are studied and some related theorems are also estab-
lished. The models are numerically illustrated by analyzing
there results.

In future, the models we have developed can be extended
to include price discounts and breakable/deteriorating items.
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Table 5 Execution time of three
different solution methodologies
of EVM and CCM for zigzag
and normal uncertain variables
using LINGO

Execution time (in seconds)
Solution method Zigzag uncertain variables Normal uncertain variables

EVM CCM EVM CCM

cl1 cl2 cl2

Linear weighted method (with equal weights) 1 2 2 1 2

Global criterion method 6 7 7 5 7

Fuzzy programming method 4 4 3 3 4

Table 6 Results of DCCM for
zigzag and normal uncertain
variables

Solution method Maximum satisfaction levels

υZ
′
1

υZ
′
2

Zigzag uncertain
variables

Linear weighted method
(with equal weights)

0.848 0.798

Global criterion method 0.866 0.869

Fuzzy programming method 0.857 0.868

Normal uncertain
variables

Linear weighted method (with equal
weights)

0.815 0.856

Global criterion method 0.815 0.856

Fuzzy programming method 0.830 0.747

Table 7 Optimal transportation plan for DCCM for normal uncertain variables

Solution method

Linear weighted method
(with equal weights)

Global criterion method Fuzzy programming method

Zigzag uncertain
variables

x1112 = 12.40, x1121 =
19.00, x1212 = 14.70, x1232 =
20.50, x2121 = 5.40, x2131 =
20.00, x2212 = 20.00, x2222 =
11.10

x1121 = 20.60, x1132 =
10.80, x1212 = 25.50, x1232 =
9.70, x2122 = 3.30, x2131 =
22.10, x2212 = 14.00, x2222 =
13.20

x1121 = 20.26, x1132 =
11.13, x1212 = 25.31, x1232 =
9.36, x2122 = 3.30, x2131 =
22.10, x2212 = 14.0, x2222 =
13.20

Normal uncertain
variables

x1112 = 10.89, x1121 =
16.46, x1212 = 15.61, x1232 =
18.72, x2131 = 23.68, x2212 =
13.13, x2222 = 14.50

x1112 = 10.89, x1121 =
16.46, x1212 = 15.61, x1232 =
18.72, x2131 = 23.68, x2212 =
13.1, x2222 = 14.50

x1121 = 16.46, x1132 =
14.34, x1212 = 30.10, x1232 =
4.22, x2131 = 19.53, x2212 =
13.13, x2222 = 14.50

Table 8 Execution time of three
different solution methodologies
required for DCCM for zigzag
and normal uncertain variables
using LINGO

Solution method Execution time
(in seconds)

Zigzag uncertain
variables

Linear weighted method (with equal weights) 14

Global criterion method 19

Fuzzy programming method 17

Normal uncertain
variables

Linear weighted method (with equal weights) 12

Global criterion method 18

Fuzzy programming method 15
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Table 9 Results for CCM for zigzag and normal uncertain variables at different chance levels of α1 and α2

Chance Levels Zigzag uncertain variables Normal uncertain variables

Objective values of model (B2) Objective values of model (B3) Objective values of model (B4)

α1 α2 Z̄1 Z̄2 Z̄1 Z̄2 Z̄1 Z̄2

0.1 0.1 579.420 68.820 – – 582.691 66.948

0.2 0.2 538.440 71.740 – – 549.106 70.215

0.3 0.3 503.620 76.780 – – 526.784 72.387

0.4 0.4 466.960 80.340 – – 508.486 74.166

0.5 0.5 – – 430.300 83.900 491.694 75.800

0.6 0.6 – – 401.600 86.640 475.533 77.433

0.7 0.7 – – 372.900 89.380 457.922 79.213

0.8 0.8 – – 344.200 92.120 436.439 81.385

0.9 0.9 – – 315.500 94.860 404.117 84.651

Fig. 3 Uncertainty distribution of CCM at different chance levels of α1 and α2, for a zigzag uncertain variables; b normal uncertain variables

The models can also be extended for uncertain-random envi-
ronment where the associated indeterminate parameters can
be represented as uncertain and random variables.
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Appendix A

In this section, some theorems related to uncertain program-
ming are revisited.

Theorem A.1 (Liu 2010) Let ζ1, ζ2, . . . , ζn are indepen-
dent uncertain variables with uncertainty distributions �1,
�2,…,�n, respectively, and f1 (x), f2 (x) , . . ., fn (x), f (x)
are real valued functions. Then,

M
{∑n

i=1
ζi f i (x) ≤ f (x)

}
≥ α

holds if and only if,
∑n

i=1
�−1
i (α) f +

i (x) −
∑n

i=1
�−1
i (1 − α) f −

i (x) ≤ f (x) , (A1)
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where

f +
i (x) =

{
fi (x) ; fi (x) > 0

0 ; fi (x) ≤ 0
(A2)

and

f −
i (x) =

{
0 ; fi (x) ≥ 0

− fi (x) ; fi (x) < 0
for i = 1, 2, . . . , n. (A3)

If f1 (x) , f2 (x) , . . ., fn (x) are all nonnegative, then
(A1) becomes

∑n
i=1 �−1

i (α) fi (x) ≤ f (x), and if f1 (x),
f2 (x) , . . ., fn (x) are all nonpositive, then (A1) becomes∑n

i=1 �−1
i (1 − α) fi (x) ≤ f (x) .

Theorem A.2 (Liu 2010) Let x1, x2, . . . , xn are nonnegative
decision variables and ζ1, ζ2, . . ., ζn are independent zigzag
uncertain variables which are represented as Z (g1, h1, l1),
Z (g2, h2, l2) , . . ., Z (gn, hn, ln), respectively. Then,

M
{∑n

i=1
ζi xi ≤ c

}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if c <
∑n

i=1 gi xi
c−∑n

i=1 gi xi
2
∑n

i=1 (hi−gi )xi
, if c ∈ [∑n

i=1 gi xi ,
∑n

i=1 hi xi
]

c+∑n
i=1 (li−2hi )xi

2
∑n

i=1 (li−hi )xi
, if c ∈ [∑n

i=1 hi xi ,
∑n

i=1 li xi
]

1, if c >
∑n

i=1 hi xi

(A4)

Theorem A.3 (Liu 2010) Let x1, x2, . . . , xn are nonnegative
decision variables and ζ1, ζ2, . . . , ζn are independent nor-
mal uncertain variables which are denoted as N (ρ1, σ1),
N (ρ2, σ2) , . . . ,N (ρn, σn), respectively. Then,

M
{∑n

i=1
ζi xi ≤ c

}

=
(

1 + exp

(
π
(∑n

i=1 ρi xi − c
)

√
3
∑n

i=1 σi xi

))−1

. (A5)

Theorem A.4 (Liu 2010) Let ζ be an uncertain variable with
continuous uncertainty distribution �. Then, for any real
number x, we have

M {ζ ≤ x} = �(x), M {ζ ≥ x} = 1 − �(x). (A6)

Appendix B

In this section,we state the relevant theorems to formulate the
crisp equivalents of chance-constrained model (CCM) and
dependent chance-constrained model (DCCM) of UMMF-
STPwB.

Crisp equivalents of chance-constrained model (CCM)

Lemma B.1 If a and r are positive real numbers, ξ is an
independent uncertain variable with uncertainty distribution
� and α is the chance level. Then,M {a − ξ ≥ r} ≥ α holds
if and only if a − �−1 (α) ≥ r .

Proof

M {a − ξ ≥ r} ≥ α ⇔ M {ξ ≤ a − r} ≥ α ⇔
a − r ≥ �−1 (α) ⇔ a − �−1 (α) ≥ r .

Theorem B.1 Let ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξek and ξBj are

the independent uncertain variables, respectively, associated
with uncertainty distributions �ξ

c
p
i jk

, �ξ
f
p
i jk

, �ξ
t
p
i jk

, �ξ
a
p
i
,

�ξ
b
p
j
, �ξek

and �ξB j
then the crisp equivalent of chance-

constrained model (CCM) in model (10) can be equivalently
formulated as model (B1).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z̄1 =
[
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

{(
s pj − v

p
i

−�−1
ξ
c
p
i jk

(α1)

)
x p
i jk − �−1

ξ
f
p
i jk

(α1) y
p
i jk

}]

Min Z̄2 =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1 �−1
ξ
t
p
i jk

(α2) y
p
i jk

subject to∑n
j=1
∑K

k=1 x
p
i jk − �−1

ξ
a
p
i

(
1 − β

p
i

) ≤ 0,

i = 1, 2, . . . ,m, p = 1, 2, . . . , r
∑m

i=1
∑K

k=1 x
p
i jk − �−1

ξ
b
p
j

(
γp
j

)
≥ 0,

j = 1, 2, . . . , n, p = 1, 2, . . . , r∑r
p=1

∑m
i=1
∑n

j=1 x
p
i jk − �−1

ξek
(1−δk) ≤ 0,

k = 1, 2, . . . , K
∑r

p=1
∑m

i=1
∑K

k=1

{(
v
p
i + �−1

ξ
c
p
i jk

(
ρ j
))

x p
i jk

+ �−1
ξ
f
p
i jk

(
ρ j
)
y pi jk

}
− �−1

Bj

(
1−ρ j

) ≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1; x p

i jk > 0
0; otherwise

∀ p, i, j, k.

(B1)

Proof Considering the CCM of UMMFSTPwB presented in
model (10), the corresponding constraints can be written as
follow.

(i) The constraint M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
≥ Z̄1

}
≥ α1

can be rewritten as M {
Z1 ≥ Z̄1

} ≥ α1, since ξcpi jk
and ξ f pi jk

are the independent uncertain variables with

regular uncertainty distributions �ξ
c
p
i jk

and �ξ
f
p
i jk
,

respectively. Then according to Theorem 2.1 provided
in Section 2 and the Lemma B.1, M {

Z1 ≥ Z̄1
} ≥ α1

can be reformulated as
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∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
s pj − v

p
i

−�−1
cpi jk

(α1)

)
x p
i jk − �−1

f pi jk
(α1) y

p
i jk

]
≥ Z̄1.

In similar way, constraint M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
ξt pi jk

y pi jk

]
≤ Z̄2

}
≥ α2 can be restruc-

tured as

∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1
�−1

t pi jk
(α2) y

p
i jk ≤ Z̄2.

(ii) Constraint M
{∑n

j=1
∑K

k=1 x
p
i jk − ξa p

i
≤ 0
}

≥ β
p
i

⇔ M
{
ξa p

i
≥∑n

j=1
∑K

k=1 x
p
i jk

}
≥ β

p
i . Since, �ξ

a
p
i

is the uncertainty distribution of ξa p
i
then fromTheorem

A.4 (cf. “Appendix A”),

M
{
ξa p

i
≥
∑n

j=1

∑K

k=1
x p
i jk

}

≥ β
p
i ⇔ 1−�ξ

a
p
i

(∑n

j=1

∑K

k=1
x p
i jk

)
≥ β

p
i

⇔
∑n

j=1

∑K

k=1
x p
i jk − �−1

a p
i

(
1 − β

p
i

) ≤ 0.

(iii) Constraint M
{∑m

i=1
∑K

k=1 x
p
i jk − ξbpj

≥ 0
}

≥ γ
p
j

⇔ M
{
ξbpj

≤∑n
i=1
∑K

k=1 x
p
i jk

}
≥ γ

p
j .

Since, �ξ
b
p
j
is the uncertainty distribution of ξbpj

then

from Theorem A.4,

M
{
ξbpj

≤
∑m

i=1

∑K

k=1
x p
i jk

}

≥ γ
p
j ⇔ �ξ

b
p
j

(∑n

j=1

∑K

k=1
x p
i jk

)

≥ γ
p
j ⇔

∑n

j=1

∑K

k=1
x p
i jk − �−1

ξ
b
p
j

(
γ
p
j

)
≥ 0.

Similarly, constraint M
{∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk

−ξek ≤ 0
} ≥ δk can be equivalently transformed into∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − �−1

ek (1−δk) ≤ 0.
(iv) From Theorem A.1 and Theorem A.4, the crisp trans-

formation of constraint

M
{{∑r

p=1

∑m

i=1

∑K

k=1

(
v
p
i + ξcpi jk

)
x
p

i jk

+ ξ f pi jk
y pi jk

}
− ξB p

j
≤ 0
}

≥ ρ j is equivalently becomes,
{∑r

p=1

∑m

i=1

∑K

k=1

(
v
p
i + �−1

cpi jk

(
ρ j
))

x p
i jk + �−1

f pi jk

(
ρ j
)
y pi jk

}

−�−1
Bj

(
1 − ρ j

)≤ 0.

Therefore, considering (i), (ii), (iii) and (iv) shown above,
the crisp equivalent of model (10) follows directly, the model
(B1).

Corollary B.1 If ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξepk
and ξB p

j
are

the independent zigzag uncertain variables of the form
Z (g, h, l) with g < h < l. Then, according to Theorem B.1
and the inverse uncertainty distribution of zigzag uncertain
variables, we can conclude the following.

(i) For all chance levels < 0.5, model (B1) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z̄1 = ∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i −

(
(1 − 2α1) gcpi jk

+2α1hcpi jk

))
x p
i jk −

(
(1 − 2α1) g f pi jk

+ 2α1h f pi jk

)
y pi jk

]

Min Z̄2 =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

[(
(1 − 2α2) gt pi jk

+ 2α2ht pi jk

)
y pi jk

]

subject to
∑n

j=1
∑K

k=1 x
p
i jk −

(
2β p

i ha p
i

+ (1 − 2β p
i

)
la p

i

)
≤ 0,

i = 1, 2, . . . ,m, p = 1, 2, . . . , r
∑m

i=1
∑K

k=1 x
p
i jk −

((
1 − 2γ p

j

)
gbpj

+ 2γ p
j hbpj

)
≥ 0,

j = 1, 2, . . . , n, p = 1, 2, . . . , r
∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − (2δkhek + (1 − 2δk ) lek

) ≤ 0,

k = 1, 2, . . . , K
∑r

p=1
∑m

i=1
∑K

k=1

[
v
p
i +

((
1 − 2ρ j

)
gcpi jk

+ 2ρ p
j hcpi jk

)]
x p
i jk

+
[((

1 − 2ρ j
)
g f pi jk

+ 2ρ j h f pi jk

)]
y pi jk

−
(
2ρ j hB j

+ (1 − 2ρ j
)
lB j

)
≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1; x p

i jk > 0

0; otherwise
∀ p, i, j, k.

(B2)

(ii) For all chance levels ≥ 0.5, model (B1) can be
described as given in (B3).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z̄1 =∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i −

(
(2 − 2α1) hcpi jk

+ (2α1 − 1) lcpi jk

))
x p
i jk −

(
(2 − 2α1) h f pi jk

+(2α1 − 1) l f pi jk

)
y pi jk

]

Min Z̄2 = ∑r
p=1

∑m
i=1
∑n

j=1
∑K

k=1

[(
(2 − 2α2) ht pi jk

+ (2α2 − 1) lt pi jk

)
y pi jk

]

subject to
∑n

j=1
∑K

k=1 x
p
i jk −

((
2β p

i − 1
)
gap

i
+ (2 − 2β p

i

)
hap

i

)
≤ 0,

i = 1, 2, . . . ,m, p = 1, 2, . . . , r
∑m

i=1
∑K

k=1 x
p
i jk −

((
2 − 2γ p

j

)
hbpj

+
(
2γ p

j − 1
)
lbpj

)
≥ 0,

j = 1, 2, . . . , n, p = 1, 2, . . . , r
∑r

p=1
∑m

i=1
∑n

j=1 x
p
i jk − ((2δk − 1) gek + (2 − 2δk ) hek

) ≤ 0,

k = 1, 2, . . . , K
∑r

p=1
∑m

i=1
∑K

k=1

[
v
p
i +

((
2 − 2ρ j

)
hcpi jk

+ (2ρ j − 1
)
lcpi jk

)]
x p
i jk

+
[(
2 − 2ρ j

)
h f pi jk

+ (2ρ j − 1
)
l f pi jk

]
y pi jk

− ((2ρ j − 1
)
gBj + (2 − 2ρ j

)
hBj

)≤ 0, j = 1, 2, . . . , n

x p
i jk ≥ 0, y pi jk =

{
1 ;x p

i jk > 0

0 ; otherwise ∀ p, i, j, k.

(B3)

Corollary B.2 If ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξek and ξBj

are independent normal uncertain variables of the form
N (μ, σ ), such that μ, σ ∈ R and σ > 0. Then, accord-
ing to Theorem B.1 and the inverse uncertainty distribution
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of normal uncertain variables, model (B1) can be written as
follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z̄1 =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1

[(
s pj − v

p
i −

(
μcpi jk

+
√
3σ

c
p
i jk

π ln α1
1−α1

⎞

⎠

⎞

⎠ x pi jk

−
⎛

⎝μ f pi jk
+

√
3σ

f
p
i jk

π ln α1
1−α1

⎞

⎠ y pi jk

⎤

⎦

Min Z̄2 =∑r
p=1

∑m
i=1

∑n
j=1

∑K
k=1

[(
μt pi jk

+
√
3σ

t
p
i jk

π ln α2
1−α2

⎞

⎠ y pi jk

⎤

⎦

subject to

∑n
j=1

∑K
k=1 x

p
i jk −

⎛

⎝μa pi
−

√
3σ

a
p
i

π ln
β
p
i

1−β
p
i

⎞

⎠ ≤ 0,

i = 1, 2, . . . ,m, p = 1, 2, . . . , r

∑m
i=1

∑K
k=1 x

p
i jk −

⎛

⎝μbpj
+

√
3σ

b
p
j

π ln
γ
p
j

1−γ
p
j

⎞

⎠≥ 0,

j = 1, 2, . . . , n, p = 1, 2, . . . , r

∑r
p=1

∑m
i=1

∑n
j=1 x

p
i jk −

(
μek −

√
3σek
π ln δk

1−δk

)
≤ 0,

k = 1, 2, . . . , K

∑r
p=1

∑m
i=1

∑K
k=1

⎡

⎣v
p
i + μcpi jk

+
√
3σ

c
p
i jk

π ln
ρ j

1−ρ j

⎤

⎦x pi jk

+
⎡

⎣μ f pi jk
+

√
3σ

f
p
i jk

π ln
ρ j

1−ρ j

⎤

⎦ y pi jk

−
(

μB j −
√
3σB j
π ln

ρ j
1−ρ j

)

≤ 0, j = 1, 2, . . . , n

x pi jk ≥ 0, y pi jk =
{
1; x pi jk > 0

0; otherwise
∀ p, i, j, k.

(B4)

Crisp equivalents of dependent chance-constrained
model (DCCM)

For DCCM, the following model in (B5) is considered as
a general case of crisp equivalent for DCCM corresponding
to models (B6) and (B7), respectively, for zigzag and normal
uncertain variables.

⎧
⎪⎨

⎪⎩

Max υZ
′
1

Max υZ
′
2

subject to the constraints of (B1) .

(B5)

Theorem B.2 Let ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξek and ξBj

are the independent zigzag uncertain variables denoted as

Z (gc, hc, lc)with c ∈
{
ξcpi jk

, ξ f pi jk
, ξt pi jk

, ξa p
i
, ξbpj

, ξek , ξBj

}

and 0.5 ≤ η ≤ 1, where

η ∈
{

β
p
i , γ

p
j , δk, ρ j

}
. Then, the crisp equivalent of

DCCM, presented in model (11), is equivalent to model (B6).

⎧
⎪⎨

⎪⎩

Max νZ
′
1

Max νZ
′
2

subject to the constraints of (B3) ,

(B6)

where

νZ
′
1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if Z
′
1 ≤ ḡ

2h̄−ḡ−Z
′
1

2(h̄−ḡ)
, if ḡ < Z

′
1 ≤ h̄

l̄−Z
′
1

2(l̄−h̄)
, if h̄ < Z

′
1 ≤ l̄

0, if Z
′
1 > l̄

and

νZ
′
2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Z
′
2 ≤ g

Z
′
2− ¯̄g

2
( ¯̄h− ¯̄g

) , if g < Z
′
2 ≤ h

Z
′
2+l−2h

2
(
l−h

) , if h < Z
′
2 ≤ l

1, if Z
′
2 > l,

such that

ḡ =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
s pj − v

p
i − lξ

c
p
i jk

)
x pi jk

−
(
lξ

f
p
i jk

)
y pi jk

]
,

h̄ =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
s pj − v

p
i − hξ

c
p
i jk

)
x pi jk

−
(
hξ

f
p
i jk

)
y pi jk

]
,

l̄ =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
s pj − v

p
i − gξ

c
p
i jk

)
x pi jk

−
(
gξ

f
p
i jk

)
y pi jk

]

g =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
gξ

t
p
i jk

)
y pi jk

]
,

h =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
hξ

t
p
i jk

)
y pi jk

]
and

l =
∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
lξ
t
p
i jk

)
y pi jk

]
.

Proof Considering the objective M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
≥ Z

′
1

}
, ξcpi jk

and ξ f pi jk
are independent zigzag uncertain variables. x p

i jk, s
p
j

and v
p
i are greater or equal to zero, and y pi jk are binary vari-

ables. Consequently, M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
≥ Z

′
1

}
follows

zigzag uncertainty distribution and therefore is a zigzag
uncertain variable say Z (ḡ, h̄, l̄

)
, where ḡ, h̄ and l̄ are

defined above in (B6). Then, from Definition 2.2, and theo-
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rems A.2 and A.4, we write

M
{∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
s pj − v

p
i − ξcpi jk

)
x p
i jk

−
(
ξ f pi jk

)
y pi jk

]
≥ Z

′
1

}

⇔ 1 − M
{
Z (ḡ, h̄, l̄

) ≤ Z
′
1

}
= νZ

′
1

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if Z
′
1 ≤ ḡ

2h̄−ḡ−Z
′
1

2(h̄−ḡ)
, if ḡ < Z

′
1 ≤ h̄

l̄−Z
′
1

2(l̄−h̄)
, if h̄ < Z

′
1 ≤ l̄

0, if Z
′
1 > l̄.

Similarly, for the second objective of model (11), ξt pi jk
are

independent zigzag uncertain variables. Hence,

M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
ξt pi jk

)
y pi jk

]
≤ Z

′
2

}
follows

zigzag uncertainty distribution for a zigzag uncertain vari-

able say Z
( ¯̄g, ¯̄h, ¯̄l

)
, where ¯̄g, ¯̄h and ¯̄l are defined above in

model (B6). So, from Definition 2.2 and Theorem A.2 we
have

M
{∑r

p=1

∑m

i=1

∑n

j=1

∑K

k=1

[(
ξt pi jk

)
y pi jk

]
≤ Z

′
2

}
= νZ

′
2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Z
′
2 ≤ g

Z
′
2− ¯̄g

2
( ¯̄h− ¯̄g

) , i f g < Z
′
2 ≤ h

Z
′
2+l−2h

2
(
l−h

) , if h < Z
′
2 ≤ l

1, if Z
′
2 > l.

Moreover, from Corollary B.1 (ii) the crisp transformations
of the constraint set of model (11) become same to that of
the constraint set of model (B3). Hence, it directly follows
model (B6).

Theorem B.3 Le ξcpi jk
, ξ f pi jk

, ξt pi jk
, ξa p

i
, ξbpj

, ξepk
and ξB p

j
are

the independent normal uncertain variables of the form

N (
μq , σq

)
withq ∈

{
ξcpi jk

, ξ f pi jk
, ξt pi jk

, ξa p
i
, ξbpj

, ξepk
, ξB p

j

}
.

Then the crisp equivalent of model (11) is given in model
(B7).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Max νZ
′
1

= 1 −
(

1 + exp

(
π
(
μ1−Z

′
1

)

√
3 σ1

))−1

Max νZ
′
2

=
(

1 + exp

(
π
(
μ2−Z

′
2

)

√
3 σ2

))−1

subject to the constraints of (B4).

(B7)

Proof Considering the first objective of model (11), i.e.,

M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
≥ Z

′
1

}
, ξcpi jk

and ξ f pi jk
are independent normal

uncertain variables. x p
i jk, s pj and v

p
i are greater or equal to

zero, and y pi jk are binary variables. Then
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
can be consid-

ered as a normal uncertain variableN
(
μ1, σ1

)
, such thatμ1

and σ1 are, respectively,
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[(
s pj −

v
p
i −μξ

c
p
i jk

)
x p
i jk+

(
μξ

f
p
i jk

)
y pi jk

]
and
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1
[
σξ

c
p
i jk
x p
i jk + σξ

f
p
i jk

y pi jk

]
. Therefore, from Definition 2.3,

and theorems A.3 and A.4, M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1[(
s pj − v

p
i − ξcpi jk

)
x p
i jk −

(
ξ f pi jk

)
y pi jk

]
≥ Z

′
1

}
= 1 −

(
1

+ exp
(π

(
μ1−Z

′
1

)

√
3 σ1

))
−1

.

Similarly, for the second objective of model (11), ξt pi jk
are the independent normal uncertain variables. Therefore,

M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
ξt pi jk

y pi jk

]
≤ Z

′
2

}
is a nor-

mal uncertain variable, N
(
μ2, σ2

)
such that μ2 and σ2

are, respectively,
∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
μξ

t
p
i jk

y pi jk

]
and

∑r
p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
σξ

t
p
i jk

y pi jk

]
.

Accordingly, from Definition 2.3, and theorems A.3 and

A.4, M
{∑r

p=1
∑m

i=1
∑n

j=1
∑K

k=1

[
ξt pi jk

y pi jk

]
≤ Z

′
2

}
=

(
1 + exp

(π

(
μ2−Z

′
2

)

√
3 σ2

))−1
. Further, from Corollary B.2

the crisp transformations of the constraints of model (11)
becomes same to that of the constraint set of model (B4).
Hence, the model (B7) follows directly.

Appendix C

Data tables for input parameters

Table 10 Unit purchase costs of
items 1 and 2 at two different
sources

i 1 2

v1i 10 8

v2i 8 9

Table 11 Unit selling prices of
items 1 and 2 at three different
destinations

j 1 2 3

s1j 22 17 19

s1j 24 16 20
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The input parameters related to UMMFSTPwB are
reported in tables 10, 11, 12, 13, 14, 15, 16, 17 and 18.
The parameters shown in tables 10 and 11 are crisp. The

parameters, presented in tables 12, 13, 14, 15, 16, 17 and
18 are uncertain. These uncertain parameters are represented
as: (i) zigzag uncertain variables and (ii) normal uncertain
variables.

Table 12 Transportation costs for item 1 and item 2 represented as zigzag and normal uncertain variables

Item p ξcpi j1
1 2 3 ξcpi j2

1 2 3

Zigzag uncertain
variables

1 1 Z (8, 10, 14) Z(5, 6, 7) Z(8, 11, 13) 1 Z(4,7,10) Z(4,6,8) Z(6,7,8)

2 Z (8 10, 12) Z (9, 12, 13) Z(10, 11, 14) 2 Z(4,5,6) Z(4,7,8) Z(5,6,7)

2 1 Z(7, 8, 12) Z(5, 6, 7) Z(5, 8, 9) 1 Z(5,7,10) Z(3,7,9) Z(4,8,11)

2 Z(7, 9, 12) Z(7, 11, 15) Z(9, 12, 14) 2 Z(6,7,8) Z(4,5,6) Z(5,7,10)

Normal uncertain
variables

1 1 N (11, 1.23) N (7, .82) N (12, .86) 1 N (7,0.52) N (5,0.37) N (6,0.49)

2 N (8, 1.02) N (9, 1.32) N (11, 2.18) 2 N (5,0.68) N (7,0.71) N (4,1.04)

2 1 N (9, 0.59) N (6, 0.62) N (7, 0.42) 1 N (5,0.43) N (8,0.68) N (9,0.49)

2 N (7, 0.39) N (10, 0.83) N (11, 1.19) 2 N (6,0.42) N (5,0.12) N (4,0.18)

Table 13 Fixed charge costs for item 1 and item 2 represented as zigzag and normal uncertain variables

Item p ξcpi j1
1 2 3 ξcpi j2

1 2 3

Zigzag uncertain
variables

1 1 Z(22, 25, 28) Z(13, 14, 16) Z(22, 26, 31) 1 Z(15, 17, 18) Z(18, 21, 23) Z(11, 13, 14)

2 Z(18, 22, 24) Z(15, 18, 19) Z(20, 22, 25) 2 Z(10, 11, 14) Z(14, 15, 20) Z(10, 11, 14)

2 1 Z(20, 23, 24) Z(14, 1517) Z(24, 26, 29) 1 Z(14, 17, 19) Z(19, 20, 24) Z(12, 14, 17)

2 Z(19, 22, 25) Z(21, 24, 26) Z(18, 20, 23) 2 Z(11, 12, 14) Z(12, 13, 16) Z(15, 18, 24)

Normal uncertain
variables

1 1 N (25, 1.28) N (16, 1.72) N (26, 0.87) 1 N (16, 0.59) N (22, 1.91) N (13, 1.35)

2 N (22, 0.85) N (18, 1.69) N (21, 2.07) 2 N (12, 1.71) N (15, 0.27) N (12, 0.59)

2 1 N (25, 0.95) N (15, 1.25) N (17, 0.50) 1 N (16, 0.67) N (20, 1.74) N (14, 0.63)

2 N (22, 0.67) N (24, 1.83) N (20, 1.26) 2 N (12, 0.45) N (15, 0.31) N (12, 0.80)

Table 14 Transportation time for item 1 and item 2 represented as zigzag and normal uncertain variables

Item p ξcpi j1
1 2 3 ξcpi j2

1 2 3

Zigzag uncertain
variables

1 1 Z(12.0, 14., 15.0) Z(6.7, 8.6.2, 11.2) Z(9.5, 11.2, 12.1) 1 Z(8.2, 9.4, 10.5) Z(10.2, 12.4, 14.7) Z(8.4, 12.8, 14.8)

2 Z(8.0, 9.0, 11.0) Z(12.2, 14.6, 16.3) Z(11.9, 14.4, 17.2) 2 Z(6.8, 7.8, 10.4) Z (11.2, 12.1, 15.8) Z(10.2, 13.9, 14.1)

2 1 Z(12.1, 15.4, 18.7) Z(8.1, 13.2, 14.5) Z(10.0, 11.8, 13.1) 1 Z(10.0, 14.1, 17.4) Z(7.0, 7.5, 8.5) Z(10.2, 13.6, 14.2)

2 Z(11.9, 13.2, 17.4) Z(10.0, 12.0, 14.0) Z(10.0, 13.7, 15.0) 2 Z(9.0, 11.0, 13.5) Z(8.0, 10.5, 12.0) Z(13.0, 14.6, 16.0)

Normal uncertain
variables

1 1 N (14.0, 0.27) N (9.2,0.53) N (11.7, 0.49) 1 N (8.6, 1.2) N (12.2, 0.6) N (11.2, 1.6)

2 N (11.6,1.21) N (12.0, 0.14) N (14.4, 0.75) 2 N (12.2, 1.0) N (9.8, 0.4) N (9.0, 1.17)

2 1 N (14.4, 0.70) N (9.0, 0.8) N (13.2, 1.03) 1 N (14.0, 1.44) N (10.7, 0.70) N (13.6, 1.27)

2 N (13.2, 0.40) N (11.6, 1.41) N (13.2, 0.25) 2 N (11.2, 0.79) N (12.4, 1.59) N (10.0, 0.75)
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Table 15 Available amounts of item 1 and item 2 represented as zigzag and normal uncertain variables

i 1 2 i 1 2

Zigzag uncertain variables ξa1i
Z(31, 32, 35) Z(34, 37, 41) ξa2i

Z(25, 26, 27) Z(26, 29, 31)

Normal uncertain variables ξa1i
N (32, 1.57) N (35, 0.87) ξa2i

N (25, 1.73) N (28, 0.47)

Table 16 Demands for item 1 and item 2 represented as zigzag and normal uncertain variables

j 1 2 3 j 1 2 3

Zigzag uncertain
variables

ξb1j
Z(19, 21, 24 ) Z(14, 17, 21) Z(17, 19, 22) ξb2j

Z(11, 13, 15) Z(12, 15, 18) Z(14, 19, 21)

Normal uncertain
variables

ξb1j
N (20,0.39) N (16, 0.76) N (18, 0.94) ξb2j

N (12, 0.47) N (14, 0.83) N (15, 0.62)

Table 17 Transportation
capacities of two conveyances
expressed as zigzag and normal
uncertain variables

k 1 2

Zigzag uncertain variables ξek Z(67, 70, 73) Z(75, 80, 83)

Normal uncertain variables ξek N (70, 1.69) N (80, 1.77)

Table 18 Budget availability at
destinations represented as
zigzag and normal uncertain
variables

j 1 2 3

Zigzag uncertain variables ξBj Z(820, 825, 830) Z(800, 810, 815) Z(890, 894, 900)

Normal uncertain variables ξBj N (650, 7.80) N (600, 9.04) N (640, 10.31)
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