
Soft Computing (2019) 23:3113–3128
https://doi.org/10.1007/s00500-017-2958-z

METHODOLOGIES AND APPL ICAT ION

Self-adaptive parameters in differential evolution based on fitness
performance with a perturbation strategy

Chen-Yang Cheng1 · Shu-Fen Li2 · Yu-Cheng Lin1

Published online: 1 December 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
Differential evolution (DE) algorithms have been used widely to solve optimization problems and practical cases and have
demonstrated high efficiency, performing favorably using only a few parameters. Compared with other traditional algorithms,
DE algorithms perform well when used to solve continuous problems. To obtain an approximate solution using DE, it is
critical that appropriate parameter values are selected. However, selecting and dynamically tuning the parameter values
during evolution are not easy tasks because the values depend significantly on the problem to be solved. To address these
issues, this study presents an enhanced DE algorithm with self-adaptive adjustable parameters and a perturbation strategy
based on individual fitness performance. Compared with two existing DE algorithms, the proposed algorithm can solve six
benchmark functions and has both high efficiency and stability.

Keywords Self-adaptive parameters ·Differential evolution · Perturbation strategy · Parameter adjusting · Fitness performance

1 Introduction

Evolutionary algorithms (EAs) are inspired by biological
evolution. Proposed by Storn and Price (1997) and orig-
inally used to solve the Chebyshev polynomial problem,
differential evolution (DE) algorithms are among the popu-
lar metaheuristic EAs. A population-based stochastic search
technique, a DE algorithm is simpler to execute, requires
fewer parameters and retains the more of the diversity of a
population than other metaheuristic EAs. Furthermore, com-
pared with other metaheuristic EAs, DE is more reliable and
converges more quickly for optimization problems (Hu et al.
2013; Salman et al. 2007). DE has been applied in various

Communicated by V. Loia.

B Chen-Yang Cheng
cycheng@ntut.edu.tw

Shu-Fen Li
fennieli@thu.edu.tw

Yu-Cheng Lin
t104378028@ntut.edu.tw

1 Department of Industrial Engineering and Management,
National Taipei University of Technology, Taipei, Taiwan

2 Department of Industrial Engineering and Enterprise
Information, Tunghai University, Taichung, Taiwan

areas (Storn andPrice 1997), such as energy planning (Rajesh
et al. 2016), scheduling (Tang et al. 2014), and supportive
decision-making (Xue et al. 2009). In addition, it has been
used to solve the traveling salesman problem (TSP) (Mi et al.
2010; Sauer and Coelho 2008) and other optimization prob-
lems (Iacca et al. 2012).

In classic DE, each new candidate solution is a combi-
nation of the parent individual and several other individuals
in the population. A candidate that has better fitness than
its parent replaces the parent. In addition, the search mech-
anism of a DE algorithm includes the mutation, crossover,
and selection operations present in evolution. As with other
EAs, a DE algorithm has only three crucial parameters: the
scaling factor (F) of the difference vector, crossover rate
(CR), and population size (NP) (Jia et al. 2011; Lee and Chi-
ang 2011). DE does have some weaknesses, major among
which are unstable convergence, slow convergence in the late
stages of evolution, and a tendency to become stuck at a local
optimal solution. Nonetheless, the use of suitable parameter
values obviates these weaknesses such that a DE algorithm
converges faster and yields superior solutions than when the
parameters are notwell selected. In addition, the properties of
the parameters are highly correlated with the problems—that
is, the objective functions—to be solved.

In the past few decades, researchers have improved many
DE algorithms in three crucial ways: first, by modifying

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2958-z&domain=pdf

3114 C.-Y. Cheng et al.

the procedure of implementing DE; next, by applying clas-
sic DE in combination with other search strategies such
as the vector to be perturbed selection strategy, number of
difference vectors considered for perturbation, and type of
crossover being used (exponential or binomial) (Storn and
Price 1997; Price et al. 2005), even with strategy adaptation
(Qin et al. 2009); and finally, by proposing new parameters
for the tuning mechanism (Das et al. 2005; Das and Sugan-
than 2011; Lee and Chiang 2011; Trivedi et al. 2015). First,
with regard to the modified procedure for DE, Chuan-Kang
and Chih-Hui (2009) proposed Poisson differential evolution
using more than one difference vector based on a Poisson
distribution, which significantly improved on DE in terms
of solution quality and convergence speed. Second, a few
researchers published studies focusing onDE in combination
with other search strategies. Zhang and Sanderson (2007)
implemented a strategy called “DE/current-to-p-best” that
both improved the rate and reliability of convergence perfor-
mance and employed scaling factors that had a distribution
that was two-thirds the Gaussian distribution and one-third
a uniform distribution. Wang et al. (2016) proposed a self-
adaptive parameter dynamics DE algorithm and modified
the algorithm’s framework by implementing a new mutation
strategy: DE/Current-to lbest/1. This modified framework
algorithm maintains a balance between exploitation and
exploration capabilities during DE. Zhang and Sanderson
(2007) showed that theCR inDE obeys a normal distribution.
Lee and Chiang (2011) proposed the use of a perturba-
tion operator in classic DE to improve the DE algorithm’s
exploration and exploitation abilities, enabling individuals
to more easily escape the local optimum. Lastly, numerous
studies have verified that the values of both the mutation
and crossover factors critically influence the performance
of a DE algorithm (Chen and Chiang 2015). Mezura-Montes
et al. (2006) empirically identified theDE algorithms that had
highest performance for various global optimization prob-
lems. However, the researchers noted that parameter tuning
is time-consuming. Brest et al. (2006) presented an improved
DE algorithm with dynamic parameter values, and this algo-
rithm randomly obtained values of the scaling factor and CR
within the range of each parameter. Likewise, Dexuan and
Liqun (2012) concluded that establishing suitable parameter
values is crucial for efficiently solving complex problems.
Therefore, they proposed a method that modifies the scaling
factor, modifies the CR, and obeys a uniform distribution
according to a linearly increasing strategy. Moreover, Li
and Yin (2016) introduced self-adaptive parameter setting
by using uniform random numbers that follow the Gaussian
distribution; this enhanced the diversity based on the two
new parameters proposed in a previous period. Chen and
Chiang (2015) created a series of DE algorithms with adap-
tive parameters and summarized the six characteristics of a
favorable adaptive scheme for controlling the parameters of

DE algorithms: (1) adaptable to different problems, stages,
and individuals; (2) revisable parameter values based on iter-
ations or other factors; (3) considers population diversity to
prevent premature convergence; (4) considers reusing suc-
cessful parameter values; (5) applies a small perturbation to
individuals with favorable fit; and (6) relies on a random
distribution, in which case, both the mean/location and devi-
ation/range are important.

As noted, adjusting or controlling parameters manually is
time-consuming. Therefore, the purpose of the present paper
is to propose an enhanced DE algorithm with self-adaptive
adjustable parameters based on individual fitness perfor-
mance (SADE-FP). The adjustmentmechanismof SADE-FP
relies on determining the mutation factor based on the fit-
ness of individuals and generating crossover factors from the
Gaussian distribution, as proposedbyLee andChiang (2011).
In addition, we compare the performance of SADE-FP with
PsDE (Lee et al. 2011) and classic DE (Storn and Price 1997)
for the solution of seven benchmark problems; the results of
this comparison verify that the proposed SADE-FP performs
well and is efficient. The rest of this paper is organized as fol-
lows. Section 2 reviews classic DE and recent adaptive DE
variants. Section 3 describes the proposed SADE-FP algo-
rithm. Section 4 presents the experimental investigation and
a discussion of the results and their implications. Finally, our
conclusions and suggestions for future research are presented
in Sect. 5.

2 Related work

The classicDEalgorithm is a population-basedmetaheuristic
algorithm proposed by Storn and Price (1997). In this algo-
rithm, the dimension vectors of an individual in a population
represent a combination of decision variables as a reasonable
solution of the objective function. An individual in the popu-
lation of each generation is represented by a D-dimensional
vector, expressed as Xi,G =(X1,G ,X2,G , . . . , Xi−1,G ,Xi,G).
A population consists of NP individuals: i = 1, 2, …, NP.
In classic DE, NP does not change during the evolution. G
denotes one generation, and the maximum number of gen-
erations (Gmax) is the stopping criterion for the algorithm’s
search procedure.

The classic DE algorithm was proposed in 1996, and
since then, many researchers have attempted to increase its
effectiveness; specifically, to address its weaknesses, such
as unstable convergence, slow convergence in late evolution
stages, and tendency to become stuck in the local optimal
solution (Jia et al. 2011; Lee and Chiang 2011). DE algo-
rithms have improved in three aspects (Lee and Chiang
2011): by applying classic DE in concert with other strate-
gies, by improving the control parameters (Brest et al. 2006;
Liu and Lampinen 2005), and by forming a hybrid of classic

123

Self-adaptive parameters in differential evolution... 3115

DE with other algorithms (Yildiz 2013; Ponsich and Coello
2013).

With regard to improving the control parameters, there
are two ways in which parameters can be set: parameter
tuning and parameter control (Eiben et al. 1999). In parame-
ter tuning, a common approach, favorable parameter values
are identified before running the algorithm, and the algo-
rithm is then implemented using these values, which are
not changed during the implementation. Parameter control,
also commonly employed, is similar to parameter tuning but
allows the parameter values to change during the implemen-
tation (Brest et al. 2007). Given that the parameters must be
adjusted manually before it can be used, the classic DE algo-
rithm employs parameter tuning as its strategy for parameter
identification. Storn and Price (1997) considered the scaling
factor to be most effective in the range F = [0.5, 1.0]; they
noted that if parameter F is smaller than 0.4 or larger than
1, the algorithm performs more poorly. The crossover rate
should be set within the range CR = [0.9, 1.0] to ensure
high convergence speed. To increase divergence and prevent
arrival at the optimal solution prematurely, Zaharie (2007)
found that when a binomial crossover strategy is used, F
should be greater than 0.18 (under the conditions NP = 50
and D = 30). However, in recent research (De Falco et al.
2014; Jiang et al. 2013), the use of parameter control has
been shown to improve the performance of DE. Parame-
ter control can be divided into adaptive and self-adaptive
parameter control. In self-adaptive parameter control, the
processes of searching for optimal parameter values and opti-
mal solutions are combined. By contrast, adaptive parameter
control separates the optimal solution search process from
the ideal parameter values search process. Unlike in self-
adaptive parameter control, the mechanism for updating the
ideal parameter values in adaptive parameter control is not
part of the optimization cycle (Aleti and Moser 2016). Brest
et al. (2006) proposed a self-adaptive parameter mechanism
that generates F and CR randomly. When F is relatively
small, each individual searches its neighboring area, and thus
convergence occurs quickly. Omran et al. (2005) made F
self-adaptive by randomly selecting the scaling factor from
the current individuals and then multiplying the selected
scaling factor by a number generated from the Gaussian dis-
tribution. This self-adaptive method, which is similar to the
method whereby DE involves mutation, generates a nonfixed
scaling factor and improves the quality of the solution com-
pared with classic DE. Furthermore, Omran et al. (2005)
commented that each individual can select from the target
vector (Xi,G) and mutation vector (Vi,G) equally when the
CR follows the normal distribution N (0.5, 0.15). According
to all these studies (Brest et al. 2006; Omran et al. 2005),
each individual can have its own scaling factor and CR.
Nonfixed and self-adaptive parameter setting avoids the time-
consuming process of manual parameter tuning and allows

for a high-quality solution to be obtained easily and with
rapid convergence.

In the present study, we propose a method that relies
on self-adaptive adjustment of parameters. We combine
self-adaptive adjustable parameters with other strategies to
avoid the time-consuming process of parameter setting, thus
increasing the speed at which a stable solution is found.
Specifically, our approach adjusts the scaling factor accord-
ing to the procedure described by Brest et al. (2006) so that
each individual has its own parameter set. Individuals in
the search space can become more diverse and extend their
search areas when F is large. When F is small, individu-
als focus on searching their neighboring areas and prioritize
convergence. From this setting perspective, we propose the
ideal scaling factor value, which should be small to obtain
favorable solutions. Individuals with poor fitness should
explore more, whereas individuals with favorable fitness
should exploit more. Adjusting the concept of the crossover
rate—referring to Omran et al. (2005) and Lee and Chiang
(2011)—we employ a normal distribution. Each individual
selects from the target vector (Xi,G) and mutation vector
(Vi,G) equally when we use a normal distribution with an
average equal to 0.5. We also use the perturbation strategy
(Lee and Chiang 2011) before mutation to ensure that the
algorithm does not become stuck at a local optimum. Owing
to use of the self-adaptive adjustable parameters and a per-
turbation strategy, the proposed algorithm is efficient and
effective at solving problems.

3 Proposed SADE-FP algorithm

We propose the self-adaptive adjustable parameters in DE
based on fitness performance and the perturbation strategy
(SADE-FP) algorithmby referring to theDE/rand/1/binomial
crossover variant designed by Chiang et al. (2013). Figure 1
shows the example of perturbation strategy. In addition to
proposing the self-adaptive mechanism of adjusting the scal-
ing factor F , we propose a new model of the ideal scaling
factor value, as shown in Fig. 2. According to individual fit-
ness performance,we force the scaling factor to obey a cosine
distribution. Furthermore, when the current fitness of an indi-
vidual is poor, the value of their scaling factor is large in the
next iteration. By contrast, when the current fitness of an
individual is good, the value of their scaling factor is small
in the next iteration. The special notation used to describe
SADE-FP is as follows:

d: number of dimensions of an individual (d =
1, 2, 3, . . ., D)

|Fi (G)|: ideal scaling factor (F) of the i th individual in
the Gth generation

Fs : ideal value of the scaling factor

123

3116 C.-Y. Cheng et al.

Fig. 1 Conceptual example of the perturbation strategy

Fb: lower bound of the ideal value of the scaling fac-
tor function

Ai (G): current fitness of the i th individual in the Gth
generation: Ai = [0, 1]

Xb: individual in the population with the highest fit-
ness value

Xw: individual in the population with the lowest fit-
ness value

The SADE-FP algorithm applies the perturbation strategy
(Lee and Chiang 2011) to the current best individual in the
population (Xb) before performing the classicDE search pro-
cedure, inwhich two dimensions of Xb are selected randomly
and exchanged to improve a partially evolved problem. For
example, as shown inFig. 1, Xb = (15.2, 33.5, . . ., 8.4, 9.54)
with D dimensions; the two dimensions randomly selected
for perturbation are the 2nd and (D − 1)th dimensions, the
values ofwhich are switched. The newcurrent best individual
in the population is then Xb = (15.2, 33.5, . . ., 8.4, 9.54).
The objective of the perturbation in SADE-FP is for the
current best individual to improve the local solution perfor-
mance.

Furthermore, in line with Chiang et al. (2013) and Lin
and Cheng (2015), we determine that the ideal scaling factor
value is smaller in favorable solutions and larger in poorer
solutions. An individual with poor fitness should explore
more; conversely, an individual with favorable fitness should
exploit more. Therefore, Fi (G) is obtained based on the cur-
rent fitness (Ai) of Xi,G . Here, Ai (G) is the normalized value
of the i th individual’s fitness in the Gth generation, as given
by Eq. (1). f

(
Xi,G

)
is the nonnormalized fitness of indi-

vidual i in generation G; f (Xw) is the fitness of the worst
individual in the population, whereas f (Xb) is the fitness of
the best individual. Subsequently, the ideal value of the scal-
ing factor of the individual (F ideal

i) is obtained by substituting
Ai (G) into Eq. (2):

Ai (G) = f (Xw) − f (Xi,G)

f (Xw) − f (Xb)
(1)

Fi (G) = Fs × 1 + cos (π ∗ Ai (G))

2
+ Fb. (2)

The ideal scaling factor function is a nonlinear cosine-
based function with the boundaries [Fb, Fs] and is illustrated

Fig. 2 Distribution of scaling factor (F) values

in Fig. 2. An individual with poor fitness has a larger
scaling factor, whereas an individual with favorable fitness
has a small scaling factor. Thus, the ideal scaling factor
function is implemented according to the concept of a fit-
ness performance-based search strategy. Given that the new
individual scaling factor F is obtained beforemutation is per-
formed, it influences the mutation and selection operations
of the new vector.

The procedure of SADE-FP is as follows:
Step 1 Initialization: randomly set the parameter values
within the restrictions and initialize the objective function
(Xi,G).
Step 2 Redefine Xb and Xw.
Step 3 Perform perturbation (Fig. 1).
Step 4 Calculate each individual’s fitness and new scaling
factor F [Eqs. (1) and (2)].
Step 5 Perform the mutation operation: randomly choose
three individuals to generate the mutant vector (Vi,G+1):

Vi,G+1 = Xr1,G + F · (
Xr2,G−Xr3,G

)
, r1 �= r2 �= r3,

(3)

where r1, r2, r3 ∈ {1, 2, . . . N P} are random integers, each
of which differs in accordance with index i . The scaling
factor F is a real and constant factor ∈ [0, 2] that controls
the scale of difference between Xr2,G and Xr3,G .
Step 6 Perform the crossover operation. Mix the target indi-
vidual with the mutant vector to yield the trial solution
(Ui,G+1). CR is set such that it obeys the Gaussian distribu-
tion (0.5, 0.1) [Eq. (4)] and is generated for every individual.

Ui, j,G+1 =
{
Vi, j,G+1, if rand j ≤ CR
Xi, j,G , otherwise

, (4)

where j denotes the dimension of individual i in the Gth
iteration. The larger the CR, the larger the movement of the

123

Self-adaptive parameters in differential evolution... 3117

Table 1 Benchmark test functions employed

Function Mathematical representation Range Dimension f (x∗)

f1 (x) Sphere
∑n

i=1 x
2
i [−100, 100] 30, 60 0

f2 (x) Schwefel’s problem 2.22
∑n

i=1 |xi | + ∏n
i=1 |xi | [−10, 10] 30, 60 0

f3 (x) Step
∑n

i=1 (|xi + 0.5|)2 [−100, 100] 30, 60 0

f4 (x) Rastrigin
∑n

i=1(x
2
i − 10 cos (2πxi) + 10) [−5.12, 5.12] 30, 60 0

f5 (x) Ackley’s − 20exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos (2πxi)

)
+20+e [−32, 32] 30, 60 0

f6 (x) Griewank 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 30, 60 0

f7 (x) Six-hump Camel-back 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 [−5, 5] 2 −1.0316285

individual in one generation, where the movement of the
individual is

(
Ui,G+1 − Xi,G

)
.

Step 7 Compare the fitness of the target individual (Xi,G)

and the trial solution (Ui,G+1) and retain the better of the
two as the new individual in the next iteration (Xi,G+1):

Xi,G+1 =
{
Ui,G+1, i f f

(
Ui,G+1

) ≤ f
(
Xi,G

)

Xi,G , otherwise
. (5)

Step 8 When the iteration criterion (T) is met, stop; else,
return to Step 2.

4 Experimental study and discussion

4.1 Experimental environment and benchmark test

To investigate the performance of various DE algorithms, 21
benchmark functions were used. The corresponding bounds
of each dimension (searching space), optimal values of each
dimension (x∗), and minimal fitness value of each func-
tion [f (x∗)] are listed in Table 1 (Fan and Yan 2015; Lee
et al. 2011). We verified the performance and accuracy of
the proposed SADE-FP algorithm by using the six-hump
camel-back function (f7). The function operates in only two
dimensions and has six local minima. A series of experi-
ments was performed for the other six test functions, each of
which had dimension sizes of 30 and 60 (Lee et al. 2011). All
test functions were minimization problems, of which three
were unimodal functions (f1– f3) and four were multimodal
functions (f4– f7). The unimodal functions were used to ver-
ify the solution quality and convergence of the algorithm,
whereas the multimodal functions, which usually have many
local optima, were used to demonstrate that the algorithm
does not become stuck at the local minima of the search
space.

Two variants of the DE algorithm were used for compari-
sonwith theproposedSADE-FPalgorithm: classicDE (Storn

Table 2 Parameter values used for the three DE algorithms

Parameters/Des DE/rand1 PsDE SADE-FP

F 0.5 N (0.4, 0.15) Self-adaptive

CR 0.9 0.9 N (0.5, 0.1)

NP 50

and Price 1997) and PsDE (Lee et al. 2011). The parameter
values used for each of these algorithms are listed in Table 2.

To increase the efficiency of the perturbation strategy, we
set the population size to 50. Each algorithm was executed
over 30 independent runs and 1000 iterations. The desired
accuracy was achieved by performing dimensions × 1000
fitness evaluations (FEs), which indicate 30,000 function
evaluations in the case of 30 dimensions and 60,000 func-
tion evaluations in the case of 60 dimensions. We performed
the experiments on a 64-bit Windows 7 computer with an
i5-2400 CPU and 8 GB of RAM.

4.2 Results and discussion

We obtained the fitness values of the approximate optima of
the seven benchmark functions by using the three DE algo-
rithms. Table 3 presents the averages and standard deviations
(SDs) of the best fitness values of the three DE algorithms
over 30 independent runs and 1000 iterations. In accordance
with Suganthan et al. (2005), we designated the best solution
obtained as the approximate optimum solution of each test
function when the bias of the best solution and the optimum
was smaller than the termination error of 10−8. The best solu-
tion of each function solved by the three DE algorithms was
considered the approximate optimal solution in accordance
with the benchmark functions.

The results of the experiments are summarized in Table 3.
The classic DE algorithm failed to solve five of the seven test
functions, and PsDE failed to solve the Rastrigin function
(f4). However, the proposed SADE-FP algorithm solved all
seven test functions. The Rastrigin function (f4) is a nonlin-

123

3118 C.-Y. Cheng et al.

Table 3 Means and SDs of the best fitness values obtained using the
three DE algorithms over 30 independent runs with 1000 iterations and
50 individuals in the population

Function/mean(SD) DE/rand1 PsDE SADE-FP

Dimensions: 30

f1(x) 2.25E−11 6.26E−20 2.67E−29

(2.02E−11) (1.08E−19) (2.83E−29)

f2(x) 3.37E−06 1.21E−11 2.08E−21

(1.95E−06) (7.18E−12) (1.11E−21)

f3(x) 0 0 0

(0) (0) (0)

f4(x) 1.93E+02 4.82E+01 0

(3.42+01) (8.64E+01) (0)

f5(x) 1.26E−06 6.66E−11 8.02E−15

(5.30E−07) (5.00E−11) (1.23E−15)

f6(x) 3.03E−03 0 0

(5.35E−03) (0) (0)

f7(x) −1.031628 −1.031628 −1.031628

(0) (0) (0)

Dimensions: 60

f1(x) 5.57E−03 3.51E−08 5.44E−17

(7.57E−03) (4.72−08) (2.85E−17)

f2(x) 2.78E−02 5.63E−06 4.54E−11

(4.50E−02) (2.87E−06) (1.95E−11)

f3(x) 9.23E+00 0 0

(1.30E+01) (0) (0)

f4(x) 4.69E+02 1.95E+02 9.48E+01

(4.39E+01) (3.10E+01) 2.39E+01

f5(x) 1.14E+00 2.42E−05 2.57E−09

(3.25E+00) (9.02E−06) (1.10E−09)

f6(x) 1.24E−02 4.84E−03 6.77E−16

(1.97E−02) (1.11E−02) (2.48E−15)

f7(x) −1.031628 −1.031628 −1.031628

(0) (0) (0)

earmultimodal function andmore complicated than the other
functions; only SADE-FP solved this function by obtaining
the best solution below the termination error (10−8).

We also determined the success rate (Chen and Chiang
2015) of the threeDEs for each benchmark function (Table 4)
as the ratio of the number of successful runs to the total
number of runs. According to Suganthan et al. (2005), an
algorithm can be considered successful at solving a function
in a run if the deviation of the optimal fitness value is not
greater than the termination error of 10−8:

(number of f
(
Xi,Gmax

)
< 10−8)/NP, i = 1, 2, . . . , NP (6)

The performance of the three DE algorithms was further
compared by visualizing their evolutionary processes using
convergence plots. Some of the DE algorithms did not con-
verge even after the execution of more than 1000 iterations.
Therefore, we individually set the number of iterations of test
functions f1– f6 to clearly obtain a convergence. The num-
bers of generations were set as follows: (f1, 20,000), (f2,
6000), (f3, 1000), (f4, 6000), (f5, 3000), (f5, 1000), and
(f6, 1000).

We analyzed the convergence graphs of each function for
two dimension sizes: 30 and 60. Figure 3 displays the perfor-
mance trends of the six test functions for 30 dimensions over
30 independent runs in the evolutionary process. Figure 3a
and b plots the performance trends of the Sphere function
(f1) and Schwefel’s problem 2.22 (f2), that is, the number
of convergence iterations (from few to many) when SADE-
FP, PsDE, and classic DE were employed. The best fitness
values obtained by all the algorithms decreased dramatically
and reached the approximate optimal solution in fewer than
1000 iterations. In addition, the convergence speeds of all
algorithms in case of the Step function (f3) were higher
(approximately 400 iterations) compared with those in the
cases of f1 and f2, as illustrated in Fig. 3c. In the experi-
ments using the three unimodal functions (f1– f3), SADE-FP
converged considerably faster than the other two algorithms
and all algorithms obtained approximately optimal solutions.
In the experiments using the multimodal functions, we made
the following observations. As a classic complexmultimodal
function based on the cosine function, the Rastrigin function
(f4) generates numerous local optima and searches tend to

Table 4 Success rates (SRs) of
the three DE algorithms over 30
independent runs with 1000
iterations and 50 individuals in
the population

Function/SR dimensions DE/rand1 (30, 60) PsDE (30, 60) SADE-FP (30, 60)

f1 (x) 1, 0 1, 0.93 1, 1

f2 (x) 0, 0 1, 0 1, 1

f3 (x) 1, 0 1, 1 1, 1

f4 (x) 0, 0 0, 0 1, 0

f5 (x) 0, 0 1, 0 1, 1

f6 (x) 0.7, 0 1, 0.4 1, 1

f7 (x) 1, 1 1, 1 1, 1

AVE 0.53, 0.14 0.86, 0.48 1, 0.86

123

Self-adaptive parameters in differential evolution... 3119

Fig. 3 Performance of the three DE algorithms in solving f1– f6 with D = 30: a f1: Sphere function, b f2: Schwefel’s problem 2.22, c f3: Step
function, d f4: Rastrigin function, e f5: Ackley’s function, and f f6: Griewank function

become stuck at a local optimum. As shown in Fig. 3d, PsDE
and SADE-FP evolved toward the optima and obtained an
approximate solution. However, SADE-FP converged faster
than PsDE. In addition, Fig. 3e and f reveals that both PsDE

and SADE-FP efficiently obtained the approximate solu-
tion of Ackley’s function (f5) and the Griewank function
(f6), although classic DE could not obtain the approximate

123

3120 C.-Y. Cheng et al.

Fig. 4 Performance of the three ED algorithms in solving f1– f 6 with D = 60: a f1: Sphere function, b f2: Schwefel’s problem 2.22, c f3: Step
function, d f4: Rastrigin function, e f5: Ackley’s function, and f f6: Griewank function

solution of either. Therefore, SADE-FP converges faster and
obtains a better solution than the other two DE algorithms.

Figure 4 displays the convergence plots for the six test
functions when 60 dimensions and 30 independent runs
were employed in the evolutionary process. The differences
between the three DEs are amplified compared with Fig. 3.
In addition, in solving f3– f6, classic DE was more likely

to become stuck at a local optimum than the other DE algo-
rithms. SADE-FP also became stuck, failing to find the global
optimum in its solution of f1, f2, f4, and f5. PsDE failed
to solve only f6. SADE-FP obtained favorable solutions
and converged fast for most test functions—even the high-
dimensional problems.

123

Self-adaptive parameters in differential evolution... 3121

Fig. 5 F–fitness andCR–fitness plots for the Sphere function (f1)with D = 60 and using 50,000 iterations: a F–fitness plot of PsDE, bCR–fitness
plot of PsDE, c F–fitness plot of SADE-FP, and d CR–fitness plot of SADE-FP

Our overall purpose was to learn more about parameter
values; therefore, we examined the relationship of F and CR
values with fitness in the evolution process, as illustrated in
Fig. 5. Brest et al. (2006) defined a parameter to be successful
if using it in the mutation or crossover operator generates
an offspring that is superior to its parent; then, they used
F–fitness and CR–fitness plots to determine the extent to
which fitness can be improved and the extent to which this
improvement benefits the dynamic parameter values in the
evolution process. In the present study, we took f1 and f4
with a high number of dimensions (D = 60), solved them
using the DE algorithms with dynamic parameter values, and
then drew F–fitness and CR–fitness plots, as presented in
Figs. 5 and 6, respectively. From the two figures, we obtained
the F and CR values of successful individuals.

First, we noticed that for all algorithms, the ranges of F
and CR values of successful individuals in f1 were wider
than that in f4. For example, the scope of successful F values

determined using SADE-FP was (0.2, 0.8) in the case of f1
and (0.1, 0.8) in the case of f4 (Figs. 5c, 6c). Therefore, the
scope of F was larger in solving multimodal functions in
successful individuals with lower fitness values. Secondly,
we discovered that a small F helped the DE algorithm avoid
becoming stuck in a local optimum during the solution of f4,
as demonstrated by the plots for PsDE and SADE-FP. Next,
we found that the CR values of successful individuals were
lower when the fitness values were smaller, which may be
why PsDE requires more iterations than SADE-FP to find
the approximately optimal solution. Finally, the F plot for
SADE-FP corresponds to setting the F value based on the
cosine function. As Figs. 5c and 6c illustrate, the plot of
the F value is similar in appearance to the sine function,
which is the opposite of the shape of the cosine function,
because a lower fitness value represents higher algorithm
performance.

123

3122 C.-Y. Cheng et al.

Fig. 6 F–fitness and CR–fitness plots of Rastrigin function (f 4) with 60D over 50,000 iterations: a F–fitness plot of PsDE, b CR–fitness plot of
PsDE, c F–fitness plot of SADE-FP, and d CR–fitness plot of SADE-FP

In this study, we compared the proposed algorithm with
other algorithms by using the maximum FE stopping crite-
rion. Fourteen functions and feasible ranges were referenced
from CEC2005 (Suganthan et al. 2005) and are listed in
Table 5. The minimum solution f (x∗) of each function was
referenced from Fan and Yan (2015). In this experiment, 14
test functions (f8– f21) with 30 dimensions were employed
for comparing SADE-FP with four related algorithms—
namely, DE/best/1, DE/rand/1, MDE_pBX (Islam et al.
2012), and DE-EPA (Hsieh et al. 2013)—as summarized
in Table 6. The means and SDs obtained using DE/best/1,
DE/rand/1, MDE_pBX, and DE-EPA in Table 6 were
retrieved fromHsieh et al. (2013). The original parameter set-
tings of these algorithms were used. The initial population
size of SADE-FP was set to 100, and each algorithm was
executed 25 times independently according to Hsieh et al.

(2013). The maximum FE criterion was set to 300,000 (Sug-
anthan et al. 2005).

Themeans and SDs of the errors of the five DE algorithms
for solving the D = 30 problems are listed in Table 6. The
best results among the five approaches are shown in bold. The
proposed algorithm obtained significantly better results in
solving functions 10, 12, 13, and 16 than the other algorithms.
The proposed method also yielded the same best result as
MDE_pBX and DE-EPA for function 8.

4.3 Comparison between proposed SADE-FP
and classic DE

In this section, we compare classic DE and SADE-FP by per-
forming statistical testing for advanced analysis. We employ
the widely used nonparametric test method: the Wilcoxon

123

Self-adaptive parameters in differential evolution... 3123

Table 5 Shifting of benchmark test functions

Function Range Dimension f (x∗)

Unimodal functions f8 (x): shifted Sphere function [−100, 100] 30 0

f9 (x): shifted Schwefel’s Problem 1.2 [−100, 100] 30 0

f10 (x): shifted rotated high conditioned elliptic function [−100, 100] 30 0

f11 (x): shifted Schwefel’s Problem 1.2 with noise in fitness [−100, 100] 30 0

f12 (x): Schwefel’s Problem 2.6 with global optimum on bounds [−100, 100] 30 0

Multimodal functions f13 (x): shifted Rosenbrock’s function [−100, 100] 30 0

f14 (x): shifted rotated Griewank’s function without bounds [−∞, ∞] 30 0

f15 (x): shifted rotated Ackley’s function with global optimum on bounds [−32, 32] 30 0

f16 (x): shifted Rastrigin’s function [−5, 5] 30 0

f17 (x): shifted rotated Rastrigin’s function [−5, 5] 30 0

f18 (x): shifted rotated Weierstrass function [−0.5, 0.5] 30 0

f19 (x): Schwefel’s Problem 2.13 [− π, π] 30 0

f20 (x): expanded extended Griewank’s plus Rosenbrock’s function (F8F2) [−5, 5] 30 0

f21 (x): shifted rotated expanded Scaffer’s F6 [−100, 100] 30 0

signed-rank nonparametric test (Arasomwan and Adewumi
2014). To investigate additional details of the search pro-
cesses of these two DE algorithms, we took the mean of the
best solution at each cut point over replications as the sam-
ple data of f1 to f6 (Derrac et al. 2014). The experimental
parameters were as follows: 30 dimensions, 40 individuals,
2000 iterations, and 10 replicate executions. The cut point
was set to obtain the global best result per 100 iterations
over 2000 iterations for statistical analysis of the conver-
gence curve. We set 21 cut points per 100 iterations over
2000 iterations and conducted 10 replicate test runs to ver-
ify the reliability of the experimental data. The cut point
data obtained using SADE-FP and classic DE are listed in
Table 7.

Table 8 presents the signed rank score on the mean at each
cut point’s fitness value obtained using the two DE algo-
rithms. Three situations can exist regarding the performance
of SADE-FP and DE: SADE-FP < DE, SADE-FP > DE,
and SADE-FP = DE. As given for f1, f4, and f5 in Table 8,
the number of instances when SADE-FP < DE was 21, indi-
cating that the results obtained using SADE-FP were better
than those obtained using classic DE over all 21 cut points.
Moreover, the number of instances when SADE-FP < DE
was considerably lower than that when SADE-FP = DE for
f3, and the number of instances when SADE-FP < DE was
equal to that when SADE-FP = DE for f6.

Statistical analysis was then performed by applying the
Wilcoxon signed-rank nonparametric test, and the results are
summarized in Table 9. The values in bold represent rejec-
tion of the null hypothesis (SADE-FP fitness > classic DE
fitness). Because the P value (0.5) for f3 was larger than the
significance level (0.05), the difference SADE-FP<DEwas
nonsignificant. The P values for f1, f2, f4, f5, and f6 were

lower than the significance level (0.05), indicating rejection
of the null hypothesis and implying that the fitness values
obtained using SADE-FP were lower than those obtained
using classic DE.

Overall, we discovered that the fitness obtained using
SADE-FP was lower than that obtained using classic DE
for five test functions and equal to that obtained using classic
DE for f3 based on the number of instances of SADE-FP =
DE in Table 8.

4.4 Example: production scheduling problem

In this study, we consider production scheduling as an indus-
trial application example. In a typical production scheduling
problem, most studies discuss factors such as produc-
tion sequence, production routing, machine availability, and
machine downtime. The common objective of production
scheduling is to minimize tardiness in production. In our
example, there are four orders (Table 10) and five machines
(Table 11). Each order has a start time, due date, and some
required machines. If the order is completed after the due
date, a penalty may be incurred and customer satisfaction is
reduced. Start time indicates the earliest available time to start
the production job. Each machine has its own distinct main-
tenance due date and requiredmaintenance period.Machines
need to be maintained, otherwise they cannot be used after
the due date. The scheduling problem to minimize tardiness
can be formulated as follows:

Z = min
n∑

i=1

Ti (7)

s.t. Ti = Ci − di , i = 1, 2, . . . , n, (8)

123

3124 C.-Y. Cheng et al.

Table 6 Experimental results of D = 30 test functions with 300,000 maximum FEs

Function/mean(SD) DE/best/1 DE/rand/1 MDE_pBX DE-EPA SADE-FP

Dimensions: 30

f8 (x) 1.5489E−27 1.8331E−02 0.0000E+00 0.0000E+00 0.0000E+00

(1.0404E−27) (2.0223E−02) (0.0000E+00) (0.0000E+00) (0.0000E+00)

f9 (x) 8.3214E−10 1.1591E+03 4.0865E−22 2.7452E−28 9.0225E−02

(1.7506E−09) (1.1240E+03) (1.2701E−21) (1.3020E−28) (1.0367E−01)

f10 (x) 1.0552E+06 6.9143E+07 9.2196E+04 6.6916E+04 4.8981E+00

(6.8168E+05) (3.9599E+07) (5.6020E+04) (3.9116E+04) (4.6546E−01)

f11 (x) 1.9467E−01 5.9893E+03 7.6155E−07 5.3721E−23 7.3100E−05

(2.7168E−01) (3.1545E+03) (2.1841E−06) (1.9405E−22) (1.3835E−04)

f12 (x) 1.1653E+03 2.9065E+03 4.8612E+02 7.9786E+02 0.0000E+00

(4.6566E+02) (1.0463E+03) (2.5286E+02) (3.9145E+02) (0.0000E+00)

f13 (x) 1.9070E+00 2.2474E+03 1.2757E+00 6.3786E−01 4.3414E−02

(1.9818E+00) (6.1086E+03) (1.8597E+00) (1.4531E+00) (1.0578E−02)

f14 (x) 1.8302E−02 1.0121E+00 1.7619E−02 6.3083E−03 1.0451E−02

(1.6800E−02) (5.1349E−02) (1.1147E−02) (5.1236E−03) (1.4732E−02)

f15 (x) 2.0946E+01 2.0947E+01 2.0063E+01 2.0517E+01 2.0910E+01

(1.7939E−02) (1.7939E−02) (1.1973E−02) (1.1973E−02) (5.0211E−02)

f16 (x) 6.5629E+01 5.1668E+01 1.7369E+01 1.0177E+01 8.7004E−01

(1.3654E+01) (1.3654E+01) (3.9022E+00) (6.1192E+00) (9.7428E−01)

f17 (x) 7.3348E+01 2.2894E+02 2.6816E+01 3.7132E+01 2.6106E+01

(1.8695E+01) (1.5465E+01) (1.0360E+01) (1.1744E+01) (6.4065E+00)

f18 (x) 3.8998E+01 3.9078E+01 1.9810E+01 1.3874E+01 3.4576E+01

(7.1857E−01) (7.1857E−01) (3.9717E−01) (3.9717E−01) (9.8017E−01)

f19 (x) 3.6825E+05 4.7866E+05 2.1400E+05 1.3653E+05 1.5892E+04

(8.9462E+04) (8.0776E+04) (3.8571E+04) (4.4320E+04) (1.0255E+04)

f20 (x) 5.3427E+00 1.1698E+01 4.2723E+00 1.8879E+00 1.7480E+00

(1.8142E+00) (1.2054E+00) (7.3174E−01) (3.7689E−01) (9.7137E−01)

f21 (x) 1.3710E+01 1.4254E+01 1.2744E+01 1.2638E+01 1.3001E+01

(9.4731E−03) (9.4731E−03) (6.0359E−03) (6.0359E−03) (1.5805E−01)

Ti ≥ 0, i = 1, 2, . . . , n, (9)

the capacity and availability constraints of the machine,

(10)

where constraints (8) and (9) reflect the definitions of job
tardiness.

In this experiment, which was run 30 times, the maximum
FE criterion was set to 300,000 by referring to Suganthan
et al. (2005). For this problem, the optimal solution was
known; that is, the shortest delay time is 2. We compared
the delayed times of this problem obtained using SADE-FP,

classic DE/rand/1, DE/rand/2, DE/best/1, and DE/current-
to-best/1. The average solution obtained using classical
DE/rand/1 was 6.63, DE/rand/2 was 2.8, and SADE-FP was
2.5. The averages and SDs obtained using the five DE algo-
rithms are listed in Table 12. Classic DE found the optimal
solution in 11 of 30 runs, whereas SADE-FP obtained the
optimal solution in 15 of 30 runs. Furthermore, SADE-FP
converged faster than the other DE algorithms, as illustrated
in Fig. 7. Based on the experimental results, SADE-FP per-
formed better than the other DE algorithms in the industrial
problem.

123

Self-adaptive parameters in differential evolution... 3125

Table 7 Twenty-one cut points obtained using SADE-FP and classic DE on six test functions

Test function f1 f2 f3

Cut points DE SADE-FP DE SADE-FP DE SADE-FP

1 65,068.838 64,032.7868 3.147E+11 1.3998E+12 63,140.7333 66,801.9

2 1794.0537 47.0746386 45.4953232 0.64352056 1832.03333 32.7

3 46.8595314 0.02005565 7.07343624 0.00351262 48.9333333 0

4 1.18855804 8.2117E−06 1.10090794 1.9546E−05 2.13333333 0

5 0.0309829 3.5328E−09 0.1643956 1.0771E−07 0.03333333 0

6 0.00085042 1.6153E−12 0.02415165 5.8471E−10 0 0

7 2.2369E−05 6.9758E−16 0.00378107 3.0454E−12 0 0

8 4.9672E−07 2.7155E−19 0.00053834 1.5174E−14 0 0

9 1.3169E−08 1.3711E−22 7.8637E−05 8.0985E−17 0 0

10 3.3515E−10 6.2436E−26 1.1396E−05 4.3352E−19 0 0

11 7.9647E−12 2.6274E−29 1.7527E−06 2.0819E−21 0 0

12 1.8976E−13 1.1187E−32 2.5677E−07 1.1125E−23 0 0

13 5.1631E−15 4.1847E−36 3.8319E−08 5.7734E−26 0 0

14 1.3129E−16 1.9014E−39 5.5573E−09 3.0297E−28 0 0

15 3.6082E−18 8.2594E−43 8.2848E−10 1.6849E−30 0 0

16 1.0734E−19 3.5154E−46 1.2046E−10 9.4481E−33 0 0

17 2.4169E−21 1.2483E−49 1.8646E−11 4.7187E−35 0 0

18 6.1493E−23 5.4125E−53 2.7182E−12 2.5263E−37 0 0

19 1.4957E−24 2.6226E−56 4.1196E−13 1.3613E−39 0 0

20 3.4931E−26 9.8112E−60 6.453E−14 7.7888E−42 0 0

21 9.5517E−28 4.2481E−63 9.7579E−15 4.2567E−44 0 0

Test function f4 f5 f6

Cut points DE SADE-FP DE SADE-FP DE SADE-FP

1 436.287607 432.095576 20.6217586 20.619706 572.183705 606.875117

2 249.868688 110.180682 10.0016653 5.50297993 17.95094 1.40166667

3 220.090126 40.0828848 3.30520532 0.09729421 1.43659488 0.06938333

4 206.299092 16.7331388 0.63548346 0.00149498 0.8890599 0.00030027

5 197.224881 4.30180995 0.06017925 3.0014E−05 0.08467883 1.7287E−07

6 191.073381 0.21343738 0.00865888 6.1658E−07 0.00469573 1.1343E−10

7 186.091621 0.00017467 0.00136898 1.2672E−08 0.00228439 8.6661E−14

8 179.378137 1.3025E−07 0.00020346 2.5123E−10 0.00222014 1.48E−17

9 171.815601 6.6622E−11 3.1133E−05 5.3733E−12 0.00221805 0

10 164.17286 2.3626E−14 4.9578E−06 1.0939E−13 0.00221799 0

11 155.630872 0 7.273E−07 8.0232E−15 0.00221799 0

12 143.250397 0 1.1932E−07 6.9574E−15 0 0

13 138.214124 0 2.0391E−08 6.7206E−15 0 0

14 126.728257 0 3.2154E−09 6.6021E−15 0 0

15 118.230114 0 5.2413E−10 6.3653E−15 0 0

16 111.989705 0 8.2968E−11 6.3653E−15 0 0

17 98.2563776 0 1.3684E−11 6.2469E−15 0 0

18 90.1002176 0 2.2331E−12 6.1284E−15 0 0

19 79.5494428 0 3.7277E−13 6.1284E−15 0 0

20 72.9479515 0 5.3972E−14 6.01E−15 0 0

21 65.850027 0 1.2523E−14 5.8916E−15 0 0

123

3126 C.-Y. Cheng et al.

Table 8 Signed rank score on mean of fitness values of 100 iterations (until 2000 iterations) obtained using the proposed SADE-FP and classic
DE for six test problems

Measurement Number Mean of scaled Sum of scaled Number Mean of scaled Sum of scaled Number Mean of scaled Sum of scaled

Problems f1 f2 f3

SADE-FP < DE 21 11 231 20 10.5 210 4 2.5 10

SADE-FP > DE 0 0 0 1 21 21 1 5 5

SADE-FP = DE 0 0 16

Sum 21 21 21

Problems f4 f5 f6

SADE-FP < DE 21 11 231 21 11 231 10 5.5 55

SADE-FP > DE 0 0 0 0 0 0 1 11 11

SADE-FP = DE 0 0 10

Sum 21 21 21

Table 9 Wilcoxon signed-rank test of mean fitness values obtained
using SADE-FP and classic DE (significance level = 0.05)

f1 f2 f3 f4 f5 f6

Z −4.015 −3.285 −0.674 −4.015 −4.015 −1.956

P value 0 0.001 0.5 0 0 0

H0: SADE-FP fitness>Classic DE fitness. Bold value implies rejection
of the null hypothesis (H0)

Table 10 Order information

Order Start time Order due date Machines required

O1 1 5 M2, M3, M4

O1 7 14 M1, M2, M3, M5

O2 15 20 M2, M3, M4

O2 30 37 M1, M2, M3, M5

Table 11 Machine information

Machines Maintenance due date Maintenance time

M1 15 2

M2 30 2

M3 35 2

M4 10 2

M5 40 2

Fig. 7 Convergence rate for the production scheduling problem

5 Conclusion

The disadvantages of classic DE include unstable conver-
gence, slow convergence in the late stages of evolution, and a
tendency to become stuck in a local optimum (Jia et al. 2011;
Lee and Chiang 2011). However, the traditional method of
manually selecting appropriate values of the parameters is
time-consuming. Therefore, numerous studies have focused
on self-adaptive mechanisms to obtain favorable solutions
and rapid convergence. We propose self-adaptive controlling
parameters of DE based on fitness performancewith a pertur-
bation strategy (SADE-FP). Our results demonstrate that in
solving unimodal and multimodal functions, compared with
four other DE algorithms, SADE-FP obtains a better solu-

Table 12 Average and standard
deviation of delay times
obtained using five DE
algorithms in the production
scheduling problem

DE/rand/1 DE/rand/2 DE/best/1 DE/current-to-best/1 SADE-FP

Ave. 6.63 2.8 16.4 11.4 2.5

SD 4.00 2.44 9.71 9.11 0.50

123

Self-adaptive parameters in differential evolution... 3127

tion and converges faster, without becoming stuck at a local
optimum.

Furthermore, the experimental results obtained reveal
that SADE-FP satisfies five of the six characteristics of a
favorable scheme for adaptive control of DE parameters,
which were summarized by Chen and Chiang (2015); the
only exception is the mechanism of a random distribution.
Therefore, applying a random distribution in the parameter
adaptation mechanism would be a worthwhile direction in
future research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Aleti A, Moser I (2016) A systematic literature review of adaptive
parameter control methods for evolutionary algorithms. ACM
Comput Surv (CSUR) 49(3):56

Arasomwan MA, Adewumi AO (2014) Improved particle swarm opti-
mization with a collective local unimodal search for continuous
optimization problems. Sci World J 2014:798129. https://doi.org/
10.1155/2014/798129

Brest J, Greiner S, Bošković B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a compar-
ative study on numerical benchmark problems. IEEE Trans Evolut
Comput 10:646–657

Brest J, Bošković B, Greiner S, Žumer V, Maučec MS (2007) Per-
formance comparison of self-adaptive and adaptive differential
evolution algorithms. Soft Comput 11:617–629

Chen C-A, Chiang T-C (2015) Adaptive differential evolution: a
visual comparison. In: IEEE congress on evolutionary computa-
tion (CEC), IEEE, pp 401–408

Chiang T-C, Chen C-N, Lin Y-C (2013) Parameter control mechanisms
in differential evolution: a tutorial review and taxonomy. In: 2013
IEEE symposium on differential evolution (SDE), IEEE, pp 1–8

Chuan-Kang T, Chih-Hui H (2009) Varying number of difference vec-
tors in differential evolution. In: IEEE congress on evolutionary
computation (CEC), pp 1351–1358. https://doi.org/10.1109/CEC.
2009.4983101

Das S, Suganthan PN (2011) Differential evolution: a survey of the
state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

Das S, Konar A, Chakraborty UK (2005) Improved differential evolu-
tion algorithms for handling noisy optimization problems. In: The
2005 IEEE congress on evolutionary computation, 2005. IEEE, pp
1691–1698

De Falco I, Della Cioppa A, Maisto D, Scafuri U, Tarantino E (2014)
An adaptive invasion-based model for distributed differential evo-
lution. Inf Sci 278:653–672

Derrac J, García S, Hui S, Suganthan PN, Herrera F (2014) Analyzing
convergence performance of evolutionary algorithms: a statistical
approach. Inf Sci 289:41–58

Dexuan Z, Liqun G (2012) An efficient improved differential evolution
algorithm. In: Chinese control conference (CCC), IEEE, pp 2385–
2390

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in
evolutionary algorithms. IEEE Trans Evolut Comput 3:124–141

FanQ,YanX (2015) Differential evolution algorithmwith self-adaptive
strategy and control parameters for P-xylene oxidation process
optimization. Soft Comput 19:1363–1391

Hsieh S-T, Su T, Wu H-L (2013) An improved differential evolution
with efficient parameters adjustment. In: 2013 first international
symposium on computing and networking (CANDAR), IEEE, pp
627–629

Hu Z, Xiong S, Su Q, Zhang X (2013) Sufficient conditions for global
convergence of differential evolution algorithm. J Appl Math
2013:139196

Iacca G, Caraffini F, Neri F (2012) Compact differential evolution light:
high performance despite limitedmemory requirement andmodest
computational overhead. J Comput Sci Technol 27:1056–1076

Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive
differential evolution algorithmwith novel mutation and crossover
strategies for global numerical optimization. IEEETrans SystMan
Cybern Part B (Cybern) 42:482–500

Jia D, Zheng G, Khan MK (2011) An effective memetic differen-
tial evolution algorithm based on chaotic local search. Inf Sci
181:3175–3187

Jiang LL, Maskell DL, Patra JC (2013) Parameter estimation of solar
cells and modules using an improved adaptive differential evolu-
tion algorithm. Appl Energy 112:185–193

Lee W-PC, Chang-Yu Cai, Wan-Ting (2011) A differential evolu-
tion algorithm with perturb strategy. In: International journal of
advanced information technologies (IJAIT) p 5

LeeW-P,ChiangC-Y (2011)A self-adaptive differential evolution algo-
rithm with dimension perturb strategy. J Comput 6:524–531

Li X, Yin M (2016) Modified differential evolution with self-adaptive
parameters method. J Comb Optim 31:546–576

Lin Y-C, Cheng C-Y (2015) Self-adaptive parameters adjusting in dif-
ferential evolution based on fitness information. Paper presented
at the 15’ CIIE Chinese institute of industrial engineers,

Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algo-
rithm. Soft Comput 9:448–462

Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A
comparative study of differential evolution variants for global opti-
mization. In: Proceedings of the 8th annual conference on genetic
and evolutionary computation, ACM, pp 485–492

Mi M, Huifeng X, Ming Z, Yu G (2010) An improved differential evo-
lution algorithm for TSP problem. In: International conference
on intelligent computation technology and automation (ICICTA),
IEEE, pp 544–547

Omran MG, Salman A, Engelbrecht AP (2005) Self-adaptive dif-
ferential evolution. In: Computational intelligence and security.
Springer, Berlin, pp 192–199

Ponsich A, Coello CAC (2013) A hybrid differential evolution–tabu
search algorithm for the solution of job-shop scheduling problems.
Appl Soft Comput 13(1):462–474

Price K, Storn R, Lampinen J (2005) Differential evolution–a practical
approach to global optimization. Springer, Berlin

Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algo-
rithm with strategy adaptation for global numerical optimization.
IEEE Trans Evolut Comput 13:398–417

Rajesh K, Bhuvanesh A, Kannan S, Thangaraj C (2016) Least cost
generation expansion planning with solar power plant using dif-
ferential evolution algorithm. Renew Energy 85:677–686

Salman A, Engelbrecht AP, Omran MG (2007) Empirical analysis of
self-adaptive differential evolution. Eur J Oper Res 183:785–804

Sauer JG, Coelho LDS (2008) Discrete differential evolution with local
search to solve the traveling salesman problem: fundamentals and
case studies. In: IEEE international conference on cybernetic intel-
ligent systems. IEEE, pp 1–6

123

https://doi.org/10.1155/2014/798129
https://doi.org/10.1155/2014/798129
https://doi.org/10.1109/CEC.2009.4983101
https://doi.org/10.1109/CEC.2009.4983101

3128 C.-Y. Cheng et al.

Storn R, Price K (1997) Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces. J Global
Optim 11:341–359

Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari
S (2005) Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization. KanGAL
report 2005005:2005

Tang L, Zhao Y, Liu J (2014) An improved differential evolution algo-
rithm for practical dynamic scheduling in steelmaking-continuous
casting production. IEEE Trans Evolut Comput 18:209–225

Trivedi A, Srinivasan D, Biswas S, Reindl T (2015) Hybridizing genetic
algorithm with differential evolution for solving the unit commit-
ment scheduling problem. Swarm Evolut Comput 23:50–64

Wang HB, Ren XN, Li GQ, Tu XY (2016) APDDE: self-adaptive
parameter dynamics differential evolution algorithm. Soft Com-
put 1–21

Xue F, Sanderson AC, Graves RJ (2009) Multiobjective evolutionary
decision support for design-supplier-manufacturing planning Sys-
tems. IEEE Trans Man Cybern, Part A: Syst Hum 39:309–320

Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for
optimization of multi-pass turning operations. Appl Soft Comput
13(3):1433–1439

Zaharie D (2007) A comparative analysis of crossover variants in dif-
ferential evolution. In: Proceedings of IMCSIT pp 171–181

Zhang J, Sanderson AC (2007) JADE: self-adaptive differential evo-
lution with fast and reliable convergence performance. In: IEEE
congress on evolutionary computation, IEEE, pp 2251–2258

123

	Self-adaptive parameters in differential evolution based on fitness performance with a perturbation strategy
	Abstract
	1 Introduction
	2 Related work
	3 Proposed SADE-FP algorithm
	4 Experimental study and discussion
	4.1 Experimental environment and benchmark test
	4.2 Results and discussion
	4.3 Comparison between proposed SADE-FP and classic DE
	4.4 Example: production scheduling problem

	5 Conclusion
	References

